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Abstract: Microbial biofilm is an aggregation of microbial species that are either attached to surfaces
or organized into an extracellular matrix. Microbes in the form of biofilms are highly resistant to
several antimicrobials compared to planktonic microbial cells. Their resistance developing ability is
one of the major root causes of antibiotic resistance in health sectors. Therefore, effective antibiofilm
compounds are required to treat biofilm-associated health issues. The awareness of biofilm properties,
formation, and resistance mechanisms facilitate researchers to design and develop combating strate-
gies. This review highlights biofilm formation, composition, major stability parameters, resistance
mechanisms, pathogenicity, combating strategies, and effective biofilm-controlling compounds. The
naturally derived products, particularly plants, have demonstrated significant medicinal properties,
producing them a practical approach for controlling biofilm-producing microbes. Despite providing
effective antibiofilm activities, the plant-derived antimicrobial compounds may face the limitations
of less bioavailability and low concentration of bioactive molecules. The microbes-derived and the
phytonanotechnology-based antibiofilm compounds are emerging as an effective approach to inhibit
and eliminate the biofilm-producing microbes.
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1. Introduction

A biofilm is a complex of micro-organisms that sustains a structured and organized
pathway for their growth, proliferation, and survival on any surface [1,2]. A single bacterial
species may develop the biofilm organizations, or the biofilm can also be of mixed microbial
species adhered to a surface [3]. The survival of biofilm-forming bacterial cells depends
upon the alignment of extracellular polymeric substance-encapsulated micro-colonies in
the matrix [4]. The biofilm-forming microbial cells maintain their micro-environment by
controlling temperature, nutrients, and pH, which can affect biofilm formation. Biofilms are
known to cause several infections or diseases in humans [5,6]. Several antibiotics have been
used against biofilm-associated infections, but increased antimicrobial resistance (AMR)
has directly been linked to biofilm microbes [7]. This inefficacy of numerous antibiotics
against several biofilm-linked infections has gradually enhanced the emergence of AMR.

The development of microbial resistance to antibiotics reduces or inhibits the efficacy
of antibiotics. Consequently, it has been demonstrated that the improper use of antibiotics
leads to the emergence of antibiotic resistance [8]. Many antibiotics are losing efficacy due
to several micro-organisms’ expeditious developments in multidrug resistance. Several
factors responsible for causing AMR and intrinsic biofilm formation have been recognized
as major critical factors [9]. Moreover, AMR caused by biofilm development may cause
harmful recurrent chronic microbial infections. Therefore, the discovery of a significant
treatment approach is much needed to combat AMR. Several researchers are designing and
evaluating new combat strategies based on one health concept [10].

This study explores the new combat approaches that avoid existing resistance mecha-
nisms. Using different natural products, such as plant-derived components, bee products,
marine-derived components, and plant-based nanomaterials, is gaining great attention
from researchers to design novel antibiofilm compounds to avoid AMR. In the current
review, the emerging global concerns regarding the development of biofilm resistance and
their control by describing some potential therapeutic compounds have been recapitulated.

2. Biofilm Formation

Biofilm can be defined as the complex aggregation of micro-organisms, firmly adhered
to a surface and micro-colonized into extracellular polymeric substances (EPS) matrix. EPS
is comprised of exopolysaccharides, nucleic acids, lipids, and proteins [11]. The emergence
of biofilm formation is a multistep process in which EPS performs particularly required
functional and structural roles. Microbial communities may attach to both abiotic and biotic
surfaces facilitated by EPS. In order to maintain a biofilm lifestyle, the EPS matrix provides
essentially required chemical microenvironments and mechanical stability [12].

In addition, the EPS also improves biofilm tolerance toward different antimicrobial
agents and immune cells. The biofilm maturation needs several developmental phases
with particular features, resulting in biofilm development on the surfaces. Additionally,
understanding every developmental phase is essential for designing and applying proper
antimicrobial agents against microbial biofilms. Each developmental phase is briefly
elaborated on in Figure 1.
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2.1. Surface Adhesion

Biofilm development is initiated with the attachment of microbial cells to any surface.
Several sensing pathways (e.g., BasSR, BaeSR, and CpxAR) facilitate the microbes’ identifi-
cation of the surface [13]. After initial adhesion, the microbial cells start to multiply and
divide expeditiously under favorable conditions [14]. The microbial cells produce adhesins
(enzymes) that facilitate their attachment to the host surfaces. This phase explicitly targets
the adherence mechanism between the microbes and the surfaces. Thus, in this phase,
significant combating intervention can be achieved by entirely disrupting the attachment
mechanisms of micro-organisms with the surfaces via mainly targeting cell surface-linked
adhesins. Consequently, the initial biofilm development can be inhibited by disrupting the
initial adhesion process [15].

Surface adhesion is essentially the required parameter for biofilm development. The
adhesion initiation and the biofilm dispersal start with the adherence capacity of a spe-
cific bacterial species concerning the host surface. The surface attachment, along with
biofilm development, is the survival strategy of the microbes that typically adhere to
themselves in a particular way to meet their environmental and nutritional requirements.
The surface adhesion consists of two phases: the primary/reversible phase and the sec-
ondary/irreversible attachment phase [16]. Both of these phases are entirely controlled by
the gene’s expression. The attachment processes require several points to be considered,
including microbial species, environmental conditions, gene products, and surface com-
position [17]. In the reversible phase, microbes hydrophobically interact with the abiotic
surfaces for adhesion, whereas adherence with biotic surfaces takes place by developing
molecular interactions [18].

2.2. Biofilm Maturation

The formation of mature biofilm is followed by early biofilm development when
the microbes begin to multiply and divide, creating micro-colonies incorporated with the
EPS matrix [19]. The EPS matrix plays a multifunctional role, allowing the establishment
of several physical and chemical microhabitats facilitating the microbes to build social
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and polymicrobial interactions. The established biofilms can be disrupted or removed by
employing several targeting approaches, including the EPS matrix disruption, targeting
microenvironments (such as hypoxia or low pH), physical removal, targeting polymicrobial
interactions, and eliminating dormant cells, etc., providing a great scope for designing
biofilm combating antimicrobial therapeutics [20].

2.3. Biofilm Dispersal

During the dispersal phase, the micro-organisms of sessile biofilm begin to disperse
and change into motile form. On the other hand, the microbes that do not produce
extracellular polysaccharides directly scatter into the environment by applying a mechanical
force. The dispersed microbial communities produce saccharolytic enzymes, which release
surface microbes towards a new place for colonization. The Escherichia coli produces N-
acetyl-heparosan lyase and Pseudomonas aeruginosa, P. fluorescens produces alginate lyase,
and Streptococcus equisimilis produces hyaluronidase. The development of flagella originates
with the upregulation of protein expression by microbial cells. It allows the microbes to
move to a new place for colonization and supports them in spreading biofilm-associated
diseases. The remodeling of the EPS matrix and the dispersal pathways activation may
induce dispersion of biofilm that can assist in combating biofilms [18].

3. Biofilm Composition

Biofilm is a complex of variability and heterogeneity consisting of 10–25% microbial
cells and a 75–90% self-developed EPS matrix [21]. Moreover, the water channels or
interstitial voids of microbial biofilms are mandatory for micro-colonies’ separation from
each other [22]. The EPS creates a covering scaffold that grips the biofilm cells together and
facilitates communication between cell-to-cell, providing cohesive and adhesive forces for
biofilm development. EPS facilitates nutrient availability, maintaining the deoxyribonucleic
acid (DNA) availability for horizontal gene transfer and provides a defensive barrier
against antibiotics, desiccation, oxidizing biocides, host defense immune system, and
ultraviolet radiation [23]. The EPS constituents include polysaccharides, extracellular
proteins, extracellular DNA, lipids, surfactants, and water.

3.1. Polysaccharides

Polysaccharides developed by microbes can be categorized into two categories: hetero-
polysaccharides and homo-polysaccharides. Most polysaccharides are heterogeneous
in nature, while only a few are homogenous in nature, such as glucans, sucrose-based
fructans, and cellulose [24]. Several interactions, such as electrostatic interactions, van der
Waals forces, ionic interactions, and hydrogen bonding, help in polysaccharide interactions
with themselves or ions and proteins to maintain the architecture of biofilms [25]. The
primary function of polysaccharides is to provide a protective role by mediating microbial
adhesion among the micro-colonies and maintaining the structural stability of biofilms [26].
Three types of exopolysaccharides, such as alginate, Pel, and Psl, contribute to biofilm
development and maintain the structural stability of P. aeruginosa biofilms [27]. Some
polysaccharides identified in different microbial biofilms are represented in Table 1.



Life 2022, 12, 1618 5 of 35

Table 1. List of a few identified polysaccharides in microbial biofilms.

Polysaccharides Microbes Role Ref.

PGA
(Poly-β-1,6-N-acetyl-D-glucosamine)

Actinobacillus
actinomycetemcomitans

Intercellular adhesion
Cellular detachment
Dispersion

[28]

Colanic acid E. coli Antidesiccative [29]

Galactopyranosyl-glycerol-phosphate Bacillus licheniformis Antibiofilm [30]

Alginate, Pel, Psl P. aeruginosa

Biofilm structural stability
maintenance
Cell communication and
differentiation

[31,32]

Capsular polysaccharide, cellulose Salmonella Typhimurium Adhesion
Environmental survival [33]

3.2. Extracellular Proteins

The biofilm complex can have a substantial number of extracellular proteins [34].
Their interaction with exopolysaccharides and nucleic acids facilitates surface colonization
and stabilization in the biofilm matrix [35]. Some proteins mediate the degradation and
dispersion of biofilm matrix, such as glycosyl hydrolase, dispersin B induces polysaccharide
degradation [36], proteases dissolve the proteins of matrix [37], and some DNases cause
extracellular nucleic acid breakage [38]. Toyofuku et al. described that 30% of EPS-matrix
proteins in P. aeruginosa were observed in outer-membrane vesicles as membrane proteins.
Some of them were secreted and lysed by cell-derived proteins [39].

Several extracellular enzymes have also been found in microbial biofilms; some of them
are involved in biopolymer degradation. The extracellular enzyme substrates contain water-
insoluble components (such as lipids, cellulose, and chitin), water-soluble compounds
(such as proteins, polysaccharides, and nucleic acids), and the biofilm entraps organic
particles [40]. Additionally, some extracellular enzymes can be used for EPS structural
degradation to mediate the microbial detachment in biofilms.

3.3. Extracellular DNA (eDNA)

eDNA is one of the prime components of the EPS matrix, which is essential for the
accumulation of microbes within the biofilm. The amount of eDNA production may vary
even among closely linked microbial species. eDNA is the primary structural constituent in
the matrix of a Staphylococcus aureus biofilm, while in S. epidermidis biofilms, it is produced
as a minor constituent [41]. It has been revealed that eDNA is a vital component of the
biofilm matrix and its mode of life [42,43]. eDNA has also been found as a major component
in the biofilm matrix of P. aeruginosa and facilitates intercellular interactions [44].

Moreover, the eDNA was observed to inhibit the P. aeruginosa biofilm formation, while
in Bacillus cereus the eDNA acts similar to adhesins [45,46]. Okshevsky and Meyer reported
that eDNA is involved in cell adhesion, structural stability maintenance, and horizontal
gene transfer and also protects the immune system and antimicrobials [47]. eDNA has been
observed to facilitate cell adhesion and biofilm development in Listeria monocytogenes [48].
Wilton et al. found that eDNA causes acidification of the biofilm matrix and consequently
enhances resistance of P. aeruginosa biofilms against different antibiotics [49].

3.4. Surfactants and Lipids

The extracellular polysaccharides, proteins, and eDNA are quite hydrated (hydrophilic)
molecules, while the other components of EPS exhibit hydrophobic properties. Some bacte-
rial species, such as Rhodococcus spp. generate hydrophobic EPS, and can attach to Teflon
and may colonize the waxen surfaces with the help of hydrophobic EPS [50]. In the EPS
matrix, a few lipids exhibiting surface active properties, such as surfactin, viscosin, and
emulsan, increase the availability of hydrophobic molecules by causing their dispersion [24].
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An important surfactant class, biosurfactants, begins the micro-colony formation, aids in
biofilm structural integrity, and mediates biofilm dispersal [51].

3.5. Water

Water is recognized as the largest constituent (accounts for up to 97%) of the EPS
matrix of most of the biofilms, and it retains the biofilm hydrated and protects against
desiccation [24]. The water in the biofilm matrix may exist in the form of solvents or can
also be bound inside the bacterial cells’ capsules [52]. The binding and movement of water
inside the biofilm matrix are essential to diffusion mechanisms that occur inside the biofilm
and result in fine biofilm structure development [53]. The amount of available water is
responsible for nutrient flow and availability within the microbial biofilms [52].

4. Biofilm Structural Stability Parameters

The antimicrobial resistance and the other functional characteristics of microbial
biofilms are linked with the structure of the biofilm, matrix shape, and the 3D organization
of microbes [54]. The local environmental heterogeneous conditions inside the biofilm ma-
trix impact the microbial gene expression and the metabolic actions of biofilm-developing
microbial cells [55,56]. The closely packed microbial cells and the water channels are the
two major constituents of biofilm formation [57]. The structural familiarity of microbial
biofilms is of greater concern in identifying their behavioral and survival strategies. The
biofilm architecture and formation variability have been analyzed by applying specific
parameters, such as substratum exposure, bio-volume, thickness, and roughness, and
observing significant inter- and intra-species variability [56].

The cell-cell communication, environmental influences, and the secondary messengers,
such as c-di-GMP and cAMP, structure the biofilms by providing microbes with better envi-
ronmental adaptability [58]. Several other factors influence the biofilm architecture, such
as nutrient availability, microbial motility, hydrodynamic conditions, exopolysaccharides
and protein abundance, and anionic and cationic concentrations within the biofilm. In
P. aeruginosa, an EPS known as alginate facilitates biofilm formation and its architectural
stability [59].

The EPS in Vibrio cholera and E. coli facilitates biofilm development in a three-dimensional
configuration [60,61]. An EPS and a secreted protein called TasA are vital for developing
a fruiting body, such as a Bacillus subtilis biofilm, and maintaining the biofilm matrix’s
integrity [62]. The architecture of biofilm can be altered by the exopolysaccharides’ sub-
stituents, such as acetyl groups, known to be responsible for enhanced cohesive and
adhesive biofilm properties [24].

4.1. Proteins

Manifoili et al. determined the impact of three different mitogen-activated protein
kinases (MAPKs) (such as SakA, MpkA, and MpkC) and protein phosphatases (PhpA) on
Aspergillus fumigatus biofilm formation. MAPKs reduce the A. fumigatus adhesion in biofilm
formation. The ∆pphA strain was found to be more susceptible to cell wall destroying
antimicrobials, had less chitin, and enhanced β-(1,3)-glucan, resulting in reduced adherence
and biofilm formation [63].

The bacterial cell wall-linked fibronectin-binding proteins (FnBPs) (FnBPB and FnBPA)
mediate the biofilm development of methicillin-resistant S. aureus (strain LAC) by promot-
ing bacterial adhesion and accumulation [64]. The outer membrane protein W (OmpW)
contributes to Cronobacter sakazakii survival and biofilm formation under NaCl-stressed
conditions [65]. A surface protein, BapA1, plays a significant role in bacterial adhesin and
biofilm formation. BapA1 carries the nine putative pilin iso-peptide linker domains, which
are significant for bacterial accumulation of pilus in several Gram-positive bacteria, such as
Streptococcus parasanguinis [66].
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4.2. Genes and Signaling Cascades

Intracellular cyclic dinucleotide and extracellular quorum sensing (QS) signaling
cascades are crucial in biofilm development. It has been reported that these two signaling
pathways may coincide or link up and synergistically mediate biofilm formation [67].
QS is the process of intercellular communication that enables the bacteria to adapt to
harsh environmental conditions. They mediate biofilm formation by activating small
signaling molecules, such as autoinducer-2 (AI-2), auto-inducing peptide (AIP), and N-
acyl-homoserine lactones (AHL), in Gram-positive and -negative bacteria, respectively [68].
AI-2 mediates the QS and biofilm development with bhp- and ica-dependent modes. AI-2
regulates the QS in S. epidermidis through increased transcription levels of bhp (biofilm-
linked protein containing icaR) and ica operon [69].

QS signaling cascades observed in P. aeruginosa include integrated QS (IQS), PQS, rhl,
and las. These QS systems activate each other by regulating QS-associated genes [70]. The
small non-coding RNAs (sRNAs) regulate the bacterial transition from planktonic-sessile
bacterial biofilms. The two-component regulatory systems (TCSs), such as RsmZ and RsmY
targeting RsmA, are involved in P. aeruginosa biofilm formation [71]. Several sRNAs have
been studied that regulate the activity or expression of different transcriptional regulators
to mediate bacterial adhesion and increase biofilm formation (Table 2).

Table 2. Some identified sRNAs with their targets, bacteria, and role in the regulation of target
mRNA.

Targets sRNAs Bacteria Regulatory Effect Refs.

AphA, HapR Qrr1-4, Qrr1-5 V. cholera, V. harveyi Activation [72]

Crc CrcZ Pseudomonas spp. Repression [73]

CsgD

GcvB E. coli Repression [74]

McaS E. coli Repression [75]

OmrA, OmrB E. coli Repression [76]

SdsR S. Typhimurium Activation [77]

CsgD, YdaM RprA E. coli Repression [78]

CsgD, RpoS ArcZ S. Typhimurium, E. coli Activation [77,79,80]

CsrA CsrB, CsrC Yersinia pseudotuberculosis, E. coli Repression [81,82]

PgaA McaS E. coli Activation [74]

PqsR PhrS P. aeruginosa Activation [83]

RpoS

DsrA E. coli Activation [80]

OxyS E. coli Repression [80]

RprA E. coli Activation [84]

5. Resistance Mechanism in Biofilms

Several antimicrobial resistance mechanisms have been identified, and biofilm devel-
opment is one of the major factors of resistance emergence. Mechanisms allowing microbial
biofilms to resist or tolerate the antimicrobials’ actions are discussed here.

5.1. The Structural Complexity of Biofilms

As EPS is crucial for a biofilm’s architectural stability, it also acts as a physical bar-
rier, protecting or shielding the embedded microbes against antimicrobials, ultraviolet
light, etc. [85,86]. The polysaccharides (negatively charged) can significantly bind to the
aminoglycoside antibiotics (positively charged) and block their penetration [87]. The EPS
barrier can reduce the diffusion of small compounds, such as H2O2 (hydrogen peroxide), to
microbial cells inside the biofilm. It has been observed that P. aeruginosa in the planktonic
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state is more susceptible to H2O2, while in the form of a biofilm, it can survive even at a
very high concentration of H2O2 [88].

5.2. The Heterogeneity of Biofilms

The heterogeneity inside the developed biofilms averts the entire eradication of all
involved microbial cells by antimicrobials. There are oxygen and nutrient gradients from
the top-bottom of microbial biofilms. From the top-bottom of the biofilm matrix, the oxygen
and nutrient reduction leads to a reduced growth rate and metabolic activity [89]. The
protein expression of bacterial cells in biofilm is diverse and quite different from planktonic
cells, which may also contribute to microbial resistance development. For example, in its
biofilm form, a rice endophytic bacterium, Pantoea agglomerans YS19, expresses SPM43.1
protein (acid-resistant) at high levels to resist harsh environmental conditions [90,91].

5.3. Quorum Sensing

Quorum sensing (QS) in microbes is a cell-cell communication mediated by activating
specific signaling molecules, facilitating environmental adaptation to microbes [2]. QS is a
crucial mechanism for regulating and developing biofilms by reducing or inhibiting the
effectiveness of antimicrobials against biofilm bacteria [92]. Gram-negative and positive
bacterial species communicate using these signaling molecules, also known as autoinducers
(AIs) [2]. Some QS signaling molecules used by Gram-positive and negative bacteria include
(a) N-acyl homoserine lactone (AHL), (b) autoinducer-2 (AI-2) by V. harveyi, (c) autoinducing
peptide 1 (AIP-1) by S. aureus, (d) N-(3-oxoacyl)-l-homoserine lactone (3-oxo-AHL), (e)
diffusible signaling factor (DSF), (f) N-(3-hydroxyacyl) homoserine lactone (3-hydroxy-
AHL), (g) 2-heptyl-3-hydroxy-4(1H)-quinolone by P. aeruginosa, and (h) hydroxy-palmitic
acid methyl ester (PAME). They are presented in Figure 2.
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Environmental factors, such as nutrient deficiency, pH, antimicrobials, and salt con-
centrations, regulate QS-mediated activity in bacterial biofilms [93]. The feed-forward
mechanism enhances the QS communication in the biofilm matrix [94]. The QS signals
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facilitate biofilm formation when their concentration reaches the threshold [95]. Subse-
quently, the QS signaling molecules are translated into cells for gene expression modulation.
These genes are crucial for environmental adaptation, leading to biofilm formation [96].
The QS signaling system regulates bacterial and EPS secretion systems [97] and multidrug
efflux pumps [98]. The complete information about QS signaling molecules may offer
significant information for developing novel methods or chemicals for combating microbial
biofilms. This research era has grabbed the great attention of researchers for designing
and developing significant molecules with the ability to neutralize or compete with the QS
signaling molecules or their receptors [99].

5.4. Enhanced Efflux Pumps

The efflux pumps (proteinaceous) entrenched in the cytoplasmic membranes act as
active transporters. The multidrug and toxic compound extrusion family (MATE), the
ATP-binding cassette family (ABC), the small multidrug resistance family (SMR), the
resistance-nodulation-division family (RND), and the major facilitator superfamily (MF)
are commonly reported efflux pump classes in different bacteria [100,101].

Several molecular studies have revealed that increased efflux pumps are a popular
and criticizing resistance mechanism in microbial biofilms [102]. This mechanism has been
extensively studied in a commonly found biofilm-producing P. aeruginosa pathogen [103].
The PA1874-1877 (cluster of genes) involved in developing resistance in biofilms was
discovered by Zhang and Mah. Overexpression of PA1874-1877 in biofilm cells facilitates
resistance in a biofilm-specific manner [104]. Numerous efflux pump genes inducing
biofilm-specific resistance through their overexpression have been identified. For example,
in RND-3 efflux pumps, the overexpression of BCAL1672-1676 induces biofilm resistance
against ciprofloxacin and tobramycin, while in RND-8 and RND-9, the overexpression of
BCAM0925-0927 and BCAM1945-1947 provides resistance to Burkholderia cepacia against
tobramycin [105].

6. Pathogenicity of Biofilm Microbes

Numerous factors are known to contribute to pathogenicity in biofilm-producing
microbes. Microbial biofilms release different extracellular substances, altering the gene
regulation of several microbial virulence factors. Moreover, the biofilm-producing microbes
strengthen the maturation rate of biofilms to escape from host defenses, enhance the activity
of β-lactamase, and for plasmid-mediated gene transfer resulting in intense virulence and
antimicrobial resistance with enhanced mutation rate and efflux pump. The properties
of the extracellular matrix contribute to the biofilm’s pathogenicity, offering a defensive
barrier with less antimicrobial and immune cell penetration [106].

The MIC of antibiotics is significant against planktonic microbes but not effective
against biofilm microbes [107]. Microbial biofilms can induce several persistent biofilm-
associated infections, such as urinary tract infections, middle-ear infections, dental caries,
endocarditis, cystic fibrosis, osteomyelitis, and implant-induced infections. Numerous
pathogenic microbes are involved in causing persistent biofilm infections; some of them
are listed in Table 3.
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Table 3. Biofilm-producing pathogenic microbes involved in causing infections.

Pathogenic Microbes Targeted Area Consequences Refs.

Group A streptococci Skin Necrotizing fasciitis, tissue
necrosis [108]

Actinobacillus,
Actinomycetemcomitans,
Eikenella corrodens,
Streptococcus mutans,
Prevotella intermedia,
Porphyromonas gingivalis,
Oral spirochetes.

Oral cavity

Periodontal infections, acute
inflammation, teeth loosening due
to periodontal tissue breakdown,
halitosis

[109,110]

Streptococcus spp.
Staphylococci (coagulase-negative),
S. aureus,
Enterococcus spp.

Musculoskeletal system
Bacterial accumulation on
implants and dead bones cause
biofilm infections.

[111]

Haemophilus influenza,
Streptococcus pneumoniae,
Moraxella catarrhalis.

Middle ear Otitis media [112]

S. aureus,
P. aeruginosa.

Lungs (in patients with cystic
fibrosis) Mucoviscidosis, lung infections [113]

The pathogenic activity of microbes in the form of biofilms is significantly higher, and
they can escape from host defense cells and antibiotics. In numerous infections, biofilm
bacteria are concerned with the pathogenesis and clinical symptoms [114]. Opportunistic
pathogenic bacteria, such as P. aeruginosa and S. aureus, can cause chronic biofilm infections,
and hospitalized individuals (approximately 8–10%) are more vulnerable to carrying
infections.

6.1. Health Problems and Infections Caused by Biofilm Bacteria

Biofilm-associated infections pose a threat to human health. Over the last few decades,
innovative methods have been discovered to control microbial infections. Biofilm for-
mation in the era of the food industry poses a serious threat to human health. Biofilms
may contain only one type of bacteria, different bacterial species, or fungal species that
may be pathogenic and may only target immunocompromised patients (cancer patients,
organ recipients, HIV patients, etc.). Systematic diseases (E. coli, L. monocytogenes), food
intoxication (P. aeruginosa, S. aureus, B. cereus), and gastroenteritis (Salmonella enterica, E.
coli) can be caused by biofilm-producing pathogens [114].

6.2. Biofilms in the Food Industry

Foodborne infections may arise from microbial biofilm development on food process-
ing equipment or food matrices. Biofilms formed on food processing equipment can secrete
toxins and may result in food poisoning. Biofilm formation in any food industry may
put human health at potential risk. The severity of the risk is directly dependent on the
microbial species of the biofilm matrix.

Food processing plants provide suitable conditions for biofilm development on food
surfaces due to the complexity of manufacturing or processing plants, mass product yield,
long manufacturing durations, and large biofilm formation areas [115]. These biofilm
formations may contribute to the emergence of biofilm-associated foodborne infections.
Approximately 80% of microbial infections in the USA are considered to be specifically asso-
ciated with biofilm-producing foodborne pathogens [116]. Mixed-species or polymicrobial
biofilm formation is a highly diverse phenomenon and depends upon environmental con-
ditions [117], adherence characteristics of surfaces [118], involved microbial cells [119], and
components of the food matrix [120]. Adherence surface characteristics, such as electrostatic
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charge, topography, interface roughness, and hydrophobicity, impact biofilm development
and consequently affect the surface’s hygienic status [118,121].

Properties of microbial cells, such as components of cell membranes (e.g., lipopolysac-
charides and proteins), hydrophobicity, exopolysaccharides (EPS) production by microbes,
and the bacterial appendages (e.g., fimbriae, pili, and flagella), contribute to a crucial role
in biofilm formation [118]. Some studies have reported that microbial adherence is more
likely to develop on rough surfaces [122], and some experiments indicated no association
between microbial adherence and surface roughness [123]. The components of the food
matrix in food processing plants may influence microbial adhesion, such as food waste,
e.g., carbohydrates, proteins, and fat-enriched meat and milk exudates, mediate microbial
growth and proliferation, and facilitate the dual-species biofilm development by S. aureus
and E. coli [124,125]. Biofilm-producing foodborne pathogens have emerged as a serious
threat to human health. Some foodborne pathogens with biofilm-forming ability and their
harmful effects are listed in Table 4. Biofilms have been found to be associated with different
outbreaks or epidemics (Table 5).

Table 4. Biofilm-associated foodborne pathogens along with their consequences.

Organism Contaminated Food Items Consequences Refs.

Anoxybacillus flavithermus Milk powder Reduced acceptability of powdered
milk [126]

B. cereus Meat, dairy products, vegetables,
and rice Vomiting, diarrhea [127,128]

E. coli Meat, vegetables, fruits, and milk Hemolytic uremic syndrome, diarrhea [114]

Campylobacter jejuni Unpasteurized milk, animals,
poultry

Vomiting, bloody diarrhea, nausea,
fever, and stomach cramps [129]

S. enterica Porcine, bovine, fish, ovine, and
poultry meat Septicemia, gastroenteritis [130]

Geobacillus stearothermophilus Dairy dried products Enzymes or acids production resulting
in off-flavors [130]

Pseudomonas spp. Meat, vegetables, fruits, and dairy
products

Blue discoloration occurrence on fresh
cheese [131]

S. aureus Dairy products, poultry, eggs, meat,
salads, cakes, and pastries Diarrhea, vomiting [132,133]

L. monocytogenes Ready-to-eat products, raw milk,
dairy products,

Listeriosis in immune-compromised,
elderly, and pregnant patients [134]

Pectinatus spp. Brewery environment and beer Produces beer turbid due to the
production of sulfur compounds [135]
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Table 5. List of some outbreaks caused by biofilm-associated foodborne pathogens.

Region and Year Reported Cases Responsible Organisms Food Type Ref.

South Africa
(2017–2018) 1060 L. monocytogenes Ready-to-eat meat

products [136]

England (2018) 34 Clostridium perfringens Cheese sauce [137]

England (2015) NA E. coli O157:H7 Prepacked salad leaves [138]

Massachusetts (2014–2018) 1200 per year Salmonella NA [139]

England (2016) 69 Campylobacter Raw milk [140]

Belgium (2013) 52 S. aureus Several foods [141]

China (2010–2014) 1040 Vibrio parahaemolyticus NA [142]

Europe (2007–2014) 6657 B. cereus NA [143]

China (2003–2008) 9041 V. parahaemolyticus Meat and aquatic products [144]

Australia (2001–2010) 667 L. monocytogenes NA [145]

NA—Not available.

7. Biofilm Control

The global rise in antibiotic resistance has led to the failure of antibiotics. The ABR
has become a major threat to human health. Therefore, alternative therapies have been
reported to eliminate or inhibit biofilm formation and their associated infections. Different
points can be targeted for biofilm inhibition and eradication at different stages of biofilm
formation (Figure 3). These combating strategies include inhibition of planktonic cells,
inhibition of bacterial adhesion, surface alteration, biofilm removal, degradation of EPS,
QS inhibition, dispersion of biofilms, and matrix degradation.
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8. Biofilm Controlling Compounds

Many natural compounds can act as biofilm-controlling compounds by interfering
with QS, possessing antiadhesive properties, and inhibiting biofilm formation (Figure 4).
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8.1. Natural Plants and Bee Products

Several naturally occurring compounds can be used as antibiofilm molecules to eradi-
cate or inhibit biofilm development. The garlic extract can significantly block QS and may
promote rapid virulence attenuation (e.g., elastase, protease A, exo- and cytotoxin produc-
tion or motility, and adhesion capacity reduction) of P. aeruginosa by polymorphonuclear
leukocytes (PMNs) within the immune response of a mouse infection model [146]. Persson
et al. synthesized some QSIs derived from garlic extracts and AHLs [147]. Chamaemelum
nobile is a naturally occurring, well-known plant for its antimicrobial, anti-inflammatory,
antiseptic, spasmolytic, anticatarrhal, sedative, and carminative properties. It can inhibit P.
aeruginosa biofilm by disrupting QS [148]. Proanthocyanidins extracted from cranberries
have significantly inhibited the adhesion of E. coli to uroepithelial cells [149]. Cranberry
juice also significantly inhibited the site-specific adherence of Helicobacter pylori to the gastric
mucous of humans [150], and it also prevented Streptococci spp. biofilm formation [151,152].
Eighty medicinal plants, more prominently Fritillaria verticillata, Rhus verniciflua, Cocculus
trilobus, and Liriope platyphylla, have been analyzed for their antibiofilm activity. Compara-
tively, Cocculus trilobus (ethyl acetate fraction) has shown the highest antibiofilm activity
against Gram-positive bacteria by providing effective antiadhesive activity [153]. A Chinese
herb, Herba patriniae, with medicinal properties, has averted the gene expression of six
genes linked with biofilm development and EPS production in P. aeruginosa [154]. The
Ginkgollic acid isolated from a plant, Ginkgo biloba, exhibited antitumor, antimicrobial, and
neuroprotective and is active against S. aureus strains and E. coli biofilm formation [155,156].

Elekhnawy et al. determined the antiquorum sensing and biofilm inhibitory potentials
of Dioon spinulosum plant extract against the clinical isolates of P. aeruginosa. The in vitro
analysis of antibiofilm activity showed a 77.1–34.3% reduction in biofilm formation at
250–500 µg/mL concentrations. Both in vitro and in vivo investigations revealed a signifi-
cant reduction in P. aeruginosa biofilm formation. However, preclinical studies leading to
clinical studies are recommended to allow its practical application in treating P. aeruginosa
infections [157]. Obaid et al. studied the antibiofilm activity of six plant extracts, such as
Apium graveolens, Plantago ovata, Vitis vinifera, Viscus album, Senna acutifolia, and Melissa
officinalis, against Aggregatibacter actinomycetemcomitans. The A. actinomycetemcomitans was
collected from patients with dental caries. The obtained results indicated that the A. actino-
mycetemcomitans was more sensitive to S. acutifolia and M. officinalis, with zone inhibitions
of 33 and 35 mm, respectively [158]. Negam et al. evaluated the antifungal and antibiofilm
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potential of Encephalartos laurentianus (methanol extract) against C. albicans. The in vitro
antibiofilm analysis revealed a 62.5–25% reduction in C. albicans cell percentage. The in vivo
evaluations of E. laurentianus performed on C. albicans infected rats resulted in an increased
survival rate with a protective effect against renal damage caused by C. albicans [159].

Olawuwo et al. investigated the in vitro antibiofilm activity of Acalypha wilkesiana,
Alchornea laxiflora, Ficus exasperata, Jatropha gossypiifolia, Morinda lucida, and Ocimum gratissi-
mum plant extracts against poultry pathogens (Aspergillus flavus, A. fumigatus, C. albicans,
Campylobacter spp., Salmonella spp., E. coli, S. aureus, and Enterococcus faecalis). All plant
extracts showed effective biofilm inhibition of approximately >50% against the tested
micro-organisms [160]. Fathi et al. determined the antibiofilm potential of Malva sylvestris
methanolic extract against some human pathogens, such as E. coli, S. aureus, P. aeruginosa, E.
faecalis, and K. pneumoniae. The highest biofilm inhibition was examined against S. aureus
(89.19%), K. pneumoniae (95.46%), and E. faecalis (98.79%) with 40 µg/mL MIC [161].

Priyanto et al. studied the antibiofilm potential of leaf extract of Paederia foetida against
E. coli, Mycobacterium smegmatis with 30–50% inhibition, respectively [162]. Panjaitan et al.
evaluated the in vitro antibiofilm potential of ethanol extract of Cinnamomum buramanii
against periodontal pathogens, such as Aggregatibacter actinomycetemcomitans and Porphy-
romonas gingivalis. The outcomes revealed that all C. buramanii concentrations showed
effective antibiofilm activity against both periodontal pathogens [163].

Plescia et al. determined the antibiofilm potential of Artemisia arborescens plant extracts
against S. aureus (ATCC 25923), E. coli (ATCC 25922), P. aeruginosa (ATCC 15442), E. faecalis
(29212), and C. albicans (10231). The hot methanol extract showed the highest antibiofilm
activity against S. aureus, E. coli, and C. albicans with 58–67% inhibition [164]. Rhimi
et al. investigated the in vitro antibiofilm activity of EOs of Cymbopogon spp. (Cymbopogon
proximus and Cymbopogon citratus) against Malassezia furfur and Candida spp. The EOs of C.
proximus and C. citratus showed significant biofilm inhibition ranging from 27.65 ± 11.7 to
96.39 ± 2.8 against all the tested organisms. Based on the reported results, the EOs of both
Cymbopogon spp. can be used for the prevention of Malassezia and Candida infections [165].

Nazzaro et al. determined the antibiofilm activity of EOs of aerial parts and bulbs of
two different cultivars of Allium sativum (Bianco del Veneto, Staravec) against nosocomial
and food pathogens S. aureus, E. coli, L. monocytogenes, and Acinetobacter baumannii. The
EOs from the bulbs and aerial parts of Bianco del Veneto showed significant inhibitory
activity against all tested bacteria, more prominently against L. monocytogenes 64.29–60.55%,
respectively. The EOs from the aerial parts of Staravec exhibited effective inhibition more
effectively against Acinetobacter baumannii (45.61%), while EOs from the bulbs of Staravec
showed no inhibition. The outcomes revealed their potential application as potential
antibiofilm agents in the food industry and health sector as well [166].

Gamal El-Din et al. investigated the in vitro antibiofilm potential of EOs of three
species of Jatropha flowering plant. The EOs were obtained from J. intigrimma, J. gossypiifolia,
and J. roseae. The 7.81, 15.63, 31.25, 62.5, 125, 250, 500, and 1000 µg/mL concentrations
were used to evaluate the antibiofilm activity. J. intigrimma EO exhibited 100% biofilm
inhibitory activity at 31.25 µg/mL. J. roseae EO showed 100% inhibition at 250 µg/mL, while
J. gossypiifolia EO revealed less effective biofilm inhibition even at 1000 µg/mL. However, it
can be suggested that J. intigrimma and J. roseae EOs can be used as promising antibiofilms
and furthering in vivo investigations is also highly recommended [167]. Djebilli et al.
determined the composition profile, antioxidant, and antibiofilm efficacy of EOs from
Algerian aromatic plants, including Thymus algeriensis, Eucalyptus globulus, and Origanum
glandulosum. The EOs from all three plants showed significant antibiofilm activity with low
minimum inhibitory concentrations (MICs) ranging between 0.078–1.25 µg/mL against C.
albicans, E. coli, E. faecalis, L. monocytogenes, S. aureus, and S. Typhimurium. The order of
biofilm inhibition against the tested bacteria was revealed as T. algeriensis > O. glandulosum >
E. globulus EOs. The T. algeriensis EO showed the highest inhibition against L. monocytogenes
(80.95%), and E. coli (77.83%) at MICs [168]. Some other biofilm inhibiting plant extracts
and essential oils are listed in Table 6.
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Table 6. Antibiofilm activity of some plant extracts and essential oils.

Plant Extracts,
Compounds or
Essential Oils (EOs)

Plant Source Bacterial Species Inhibition
Concentration

Biofilm
Inhibition (%) Ref.

Leaf extract Cochlospermum
regium MRSA 2000 µg/mL 100 [169]

5-
Hydroxymethylfurfural Musa acuminata P. aeruginosa 10 µg/mL 83 [170]

Syringopicroside Syringa oblata Streptococcus suis 1.28 µg/mL 92 [171]

Xanthohumol Humulus lupulus S. aureus 9.8 µg/mL 100 [172]

Sotetsuflavone Cycas media R. Br E. faecalis - 60.87–21.74 [173]

Lemon grass EO
Cymbopogon
citratus

S. aureus 250 µg/mL

50
[174]P. aeruginosa -

Citral
P. aeruginosa 0.40 µg/mL

S. aureus >107 µg/mL

EO

Cinnamomum
verum

Acinetobacter baumanii,
Citrobacter freundii
Corynebacterium striatum, E. coli,
Klebsiella spp., S. aureus,
Salmonella spp., P. aeruginosa

10 µg/mL

97

[175]Thymus vulgaris 88

Eugenia
caryophyllata 91

Ethanol extract

Azadirachta indica MRSA 2000 µg/mL 43.0

[176]

Moringa oleifera MRSA 2000 µg/mL 51.4

Murraya koenigii MRSA 2000 µg/mL 44.9

Psidium guajava MRSA 2000 µg/mL 80

Petroleum ether
extract

Azadirachta indica MRSA 2000 µg/mL 83.8

Moringa oleifera MRSA 2000 µg/mL 59.9

Murraya koenigii MRSA 2000 µg/mL 63.7

Psidium guajava MRSA 2000 µg/mL 62.9

Aqueous extract Acacia nilotica

K. pneumoniae 13,300 µg/mL 59

[177]
E.coli 13,300 µg/mL 63

P. aeruginosa 15,000 µg/mL 39

Proteus mirabilis 16,700 µg/mL 49

EO

Cinnamomum
zeylanicum

E. coli 2000 µg/mL 82.76

[178]

S. epidermidis 83.33

Citrus grandis E. coli 2000 µg/mL 58.62

S. epidermidis 46.67

Citrus hystrix E. coli 2000 µg/mL 75.86

S. epidermidis 83.33

Citrus reticulata
E. coli 2000 µg/mL 82.76

S. epidermidis 83.33

Psiadia argute E. coli 2000 µg/mL 90

S. epidermidis

Psiadia terebinthina
E. coli 2000 µg/mL 93.67

S. epidermidis 90
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Table 6. Cont.

Plant Extracts,
Compounds or
Essential Oils (EOs)

Plant Source Bacterial Species Inhibition
Concentration

Biofilm
Inhibition (%) Ref.

Vanilic acid Vaccinium
macrocarpon Aiton
(Cranberry)

E. coli

23.78 mM

100 [179]Protocaterchuic 25.95 mM

Catechin 55.12, 68.9 mM

Pulp extract Euterpe oleracea S. aureus 250 µg/mL 100 [180]

Leaf extract Juglans regia P. aeruginosa 16,000 µg/mL 60 [181]

Leaf extract Tetradenia riparia MRSA - 50

[182]Rosmarinus
officinalis MRSA 30 µg/mL 50

Extract Tagetes minuta Bacillus sp. Mcn4 100 µg/mL 50

[183]
Extract

Tessaria
absinthioides

Bacillus spp. 100 µg/mL 66

Staphylococcus sp. Mcr1 10–50 µg/mL 55–62

Sesquiterpene lactones Acanthospermum
hispidum P. aeruginosa 0.25–2.5 µg/mL 69–77 [184]

Bee products are effectively being studied for their wide range of antibacterial, an-
tioxidant, antiviral, antifungal, and anticancerous activities. Honey and its bioactive
components are well recognized for their potential antibacterial effects against a wide range
of bacteria and even against several antibiotic-resistant bacteria [185–187].

Bouchelaghem et al. collected propolis from six Hungarian regions and evaluated the
in vitro antibiofilm activity by using ethanolic extract (EEP) alone and in combination with
vancomycin against MSSA and MRSA. The EEP significantly prevented planktonic growth.
The EEP in combination with vancomycin synergistically showed effective inhibition
and degradation against biofilm formation and maturation, respectively. The EEP at a
concentration of 200 µg/mL against MSSA and MRSA showed 47–87% biofilm degradation,
respectively [188]. Alandejani et al. have determined the antibiofilm activity of four
different kinds of honey: Manuka honey (from New Zealand), Buckwheat and Canadian
clover honey (from Canada), and Sidr honey (from Yemen). All these honey samples
have shown considerable bactericidal activity against P. aeruginosa, methicillin-resistant
S. aureus (MRSA), and methicillin-sensitive S. aureus (MSSA) biofilms. Manuka and Sidr
honey have notably more effective antibiofilm activities against P. aeruginosa, MSSA, and
MRSA, ranging from 91%, 63–82%, and 63–73%, respectively [189]. Manuka honey has
also shown effective results against some Gram-negative bacteria, including extended-
spectrum β-lactamase (ESBL) and carbapenemase-producing K. pneumoniae [190–192],
ESBL-producing E. coli [191,193], multidrug-resistant (MDR) P. aeruginosa [191], antibiotic-
resistant Ureaplasma urealyticum, and Ureaplasma parvum [194].

Fadl et al. reported the antibiofilm potential of bee venom against biofilm-forming
MDR bacteria, such as S. aureus, vancomycin-resistant S. aureus (VRSA), P. aeruginosa,
Enterobacter cloacae, and S. haemolyticus. Bee venom showed a considerable reduction in
biofilm formation, ranging between 63.8–92% [195]. Bouchelaghem et al. determined the
anti-biofilm impact of Hungarian propolis. The ethanolic extract of propolis (EEP) was
used to evaluate the antibiofilm effect against MSSA and MRSA by applying a crystal violet
assay. The EEP alone and in combination with vancomycin were tested against MSSA and
MRSA. The EEP significantly inhibited biofilm development and degraded MSSA and
MRSA mature biofilms. The EEP, combined with vancomycin, synergistically enhanced the
antibiofilm activity against MRSA [188].
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8.2. Nanotechnology and Phyto-Nanotechnology

Nanotechnology-based nanomaterials (NMs) are very small in size (<100 nm) with a
large surface area and may provide several biological, chemical, and biomedical applica-
tions [196]. NMs can easily enter into the outer membrane (EPS) to release the antimicrobials
to targeted sites without damage. Several NM types have been designed and evaluated to
inhibit or eradicate microbial biofilms. Nanoparticles are mainly categorized into two cate-
gories: organic nanoparticles (NPs) (including polymers, cyclodextrins (CDs), liposomes,
dendrimers, and solid lipid NPs) and inorganic NPs (including metal oxides, quantum dots,
metallic NPs, and fullerene) [197]. NMs provide potential microbicidal activity alone or in
combination with encapsulated drugs [198]. The NMs are reported to provide a promising
therapeutic potential for developing significant antibiofilm action [199]. The development
of plant-derived nanoparticles (NPs) has emerged as an innovative approach in the era
of nanotechnology by synthesizing environmentally friendly substances with little to no
toxicity [200]. Several researchers have significantly reported the green synthesis of NPs
and their antimicrobial potential against different bacterial biofilms.

Swidan et al. investigated the biofilm inhibition of Ag NPs against enterococcal clinical
isolates of the urinary tract (biofilm producing). Three types of Ag NPs were prepared to
investigate the antibiofilm activity, including cinnamon Ag NPs synthesized by Cinnamon
cassia, ginger Ag NPs synthesized by Zingiber officinale, and the chemically synthesized
Ag NPs. The outcomes demonstrated that the chemical and ginger Ag NPs decreased
the biofilm formation to 65.32% and 39.14%, and the adhesion to the catheter surface to
69.84% and 42.73%, respectively, and the cinnamon Ag NPs were not as significant. The
ginger Ag NPs showed the most effective antibacterial and antiadhesion effects against
the enterococcal clinical isolates that can also produce biofilms [201]. Muthulakshmi et al.
synthesized the Ag NPs using Terminalia catappa plant leaves and evaluated the in vitro and
in vivo antibiofilm potential against the foodborne pathogen L. monocytogenes. The in vitro
analysis showed 33–45.5% biofilm inhibition at 50–100 µg/mL, respectively. The in vivo
evaluation of Ag NPs using Caenorhabditis Elegans revealed 90% antiadherent activity
against L. monocytogenes [202]. Salem et al. synthesized and characterized selenium NPs
with orange peel. The biosynthesized Se NPs were used to evaluate the antibiofilm potential
against S. aureus, K. pneumonia, and P. aeruginosa. The Se NPs at 0.5 µg/mL concentration
showed 95, 88, and 75.5% biofilm inhibition against K. pneumonia, S. aureus, and P. aeruginosa,
respectively [203]. Some plant-based NPs, along with their biofilm inhibitory actions, are
summarized in Table 7.
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Table 7. Biofilm inhibition of some plant-based nanoparticles.

Nanoparticles Plant Species Bacteria Inhibition
Concentration

Biofilm
Inhibition (%) Ref.

Ag NPs Morinda citrifolia S. aureus 60 µg/mL 96 [204]

Glochidion lanceolarium P. aeruginosa, E. coli, S.
aureus 68.9, 12.9, 23.4 µg/mL 99 [205]

Semecarpus anacardium P. aeruginosa, E. coli, S.
aureus 45.5, 23.4, 64.1 µg/mL

>99

Bridelia retusa P. aeruginosa, E. coli, S.
aureus 52.5, 33.8, 32.7 µg/mL

Malus domestica
K. pneumoniae 24.6 µg/mL 34

[206]
Enterobacter aerogenes 35.6 µg/mL 72

Piper betle P. aeruginosa 8 µg/mL 78 [207]

BER-RHE NPs

Coptis chinensis
(Berberine),
Rheum palmatum L.
(Rhein)

S. aureus 0.1 mmol/mL 96 [208]

CA-BBR NPs

Coptidis rhizome
(Berberine)
Cinnamomi cortex
(Cinnamic acid)

MRSA 0.1 µmol/mL 64 [209]

Cu NPs
Cymbopogon citratus

E. coli
2000 µg/mL

49
[210]

MRSA 33

Crotalaria candicans MRSA 1 µg/mL >75 [211]

ZnO NPs Myristica fragrans
E. coli 1000 µg/mL 24

[212]
MRSA 1500 µg/mL 51

8.2.1. Liposomes

Liposomes can significantly enhance the interaction with bacterial membranes and
mediate penetration into mature biofilms due to their high biocompatibility. The fusogenic
liposome can be significantly employed to encapsulate drugs or antimicrobial agents with
optimized release to increase the antibiofilm efficacy (Figure 5). Vancomycin encapsulated
with fusogenic liposomes (able to fuse with bacterial membranes) enhanced the bactericidal
efficacy against S. aureus biofilms [213]. Meropenem-loaded nanoliposome with a dosage
of ≥1.5 µg/mL entirely eradicated the P. aeruginosa biofilm [214]. The drug encapsulated in
liposomes showed more effective results than the pristine drug. Liposomes as nanocarriers
allow optimized drug release and inhibit biofilm growth.
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8.2.2. Solid Lipid NPs

Solid lipid NPs (SLNs) containing surfactants stabilized lipid cores are spherical
colloidal NMs (with 10–1000 nm diameters) [215]. Cefuroxime axetil-containing SLNs
(CA-SLNs) were designed and analyzed against S. aureus biofilms. CA-SLNs showed a
two-fold higher anti-biofilm activity against S. aureus biofilm. Ninety-seven percent of
the free CA was released in 2 h, while it takes 12 h to reach 96% release when it is in the
encapsulated form [216].

8.2.3. QS Inhibiting NMs

Numerous QS inhibitor (QSI) NMs have been developed to inhibit or eradicate biofilm
formation [217]. These QSI-NMs have numerous benefits over conventional QSIs. NMs
can penetrate the biofilm matrix due to their smaller size and high solubility, providing
optimized and targeted drug release. A QSI entrapped inside solid-lipid NPs with an
ultra-small size (<100 nm diameter) exhibits a 7-fold higher anti-biofilm activity against P.
aeruginosa than a free QSI [217]. Tellurium (Te) and selenium (Se) NPs have been designed
and tested against P. aeruginosa biofilms. Se-NPs and Te-NPs disrupted QS signaling and
significantly reduced the bacterial biovolume, resulting in biofilm formation inhibition
of 70–80% [218]. However, they were observed to be less effective in removing mature
biofilms.

8.2.4. Cyclodextrins

Nguyen et al. investigated the anti-biofilm activity of a ubiquitous flavanone, narin-
genin (NAR), encapsulated β-CD and chitosan against the biofilm of E. coli [219]. NAR
nanoencapsulation showed an effective antibiofilm potential against E. coli. Miconazole
encapsulated CDs attached to polypropylene and polyethylene showed 87–96% inhibition
against the biofilm formation of C. albicans [220]. CDs coated with drugs covalently bind
to the surfaces and effectively inhibit C. albicans biofilm. Thymol and anidulafungin en-
capsulated cyclodextrins showed significant antibiofilm activity against the biofilms of C.
albicans with 75–64% inhibition, respectively [221].

8.2.5. Hydrogels

Many hydrogels have been developed to inhibit or eradicate several microbial biofilms.
Some of these, such as metal nanoparticle-based hydrogels [222,223], chitosan-based
hydrogels [224,225], bovine serum albumin (BSA) protein-based hydrogels [226], and
pentapeptide-based supramolecular hydrogels [227], have exhibited significant biofilm
inhibitory and eradication activities against several bacterial biofilms [228]. Some bacterio-
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phages [229,230], drugs [231], and different antimicrobials or active compounds [232] have
also been encapsulated into hydrogels, providing efficient anti-biofilm activities with the
optimized release of active compounds against different multidrug-resistant bacteria, such
as P. aeruginosa, S. aureus, Acinetobacter baumannii, etc. Hydrogels can be used as promising
biomaterials to treat and control multidrug-resistant bacterial infections. Some other NMs
have also been reported for combating bacterial biofilms (Table 8).

Table 8. Application of some significant nanomaterials for combating biofilms.

Nanomaterials Target Organism Impact on Biofilm Refs.

Cyclodextrins
S. aureus, MRSA, C. albicans,
P. aeruginosa, P. vulgaris,
E. faecalis, E. coli

Adhesion inhibition, biofilm
eradication [221,233,234]

Dendrimers MRSA, MSSA, E. coli,
K. pneumoniae, P. aeruginosa Biofilm inhibition [235]

Hydrogels P. aeruginosa, MRSA,
S. aureus, A. baumanii

Biofilm eradication, wound
healing [225,236,237]

Liposomes S. aureus, P. gingivalis Growth inhibition, biofilm
formation reduction [238,239]

Polymeric NPs E. coli, S. aureus, S. mutans,
En. Cloacae, P. aeruginosa

Growth inhibition, matrix
disruption, and eradication. [240,241]

Stimuli-responsive NPs:
Ag NPs

S. aureus, E. coli, P. aeruginosa, S.
flexneri,
K. pneumoniae, S. mutans
C. albicans, S. aureus, E. coli,
P. aeruginosa,
P. aeruginosa, H. pylori,
S. aureus, S. mutans,
M. tuberculosis

Structural alternation, inhibition,
oxidative stress. [236,242–244]

Au NPs Growth inhibition, matrix
disruption. [245–249]

SPIONs Colonization prevention, cell lysis,
oxidative stress [250–254]

Solid Lipid NPs S. aureus Growth inhibition [215,255]

Other inorganic NPs S. aureus, P. aeruginosa,
E. coli, S. epidermidis

Growth inhibition, matrix
disruption [205,256–259]

8.3. Microbes and Marine-Derived Anti-Biofilm Compounds

Many micro-organisms produce several types of bioactive molecules with anti-microbial
properties to benefit from other micro-organisms. Several investigations have determined
the various secondary metabolites with potential anti-biofilm properties extracted from dif-
ferent bacterial and fungal species. Streptomyces species are known as the most promising
sources of biofilm-controlling compounds. Methanolic compounds extracted from Strepto-
myces sp. (strain MUC 125) showed potential anti-biofilm activity against MRSA due to its
2,3-dihydroxybenzoic acid-mediated iron chelating ability [260]. Ethyl-acetate secondary
metabolites extracted from Streptomyces sp. (isolated from Iraqi marine sediment) exhibited
significant potential for designing and developing new anti-biotics for treating urinary
tract infections. The extract showed biofilm inhibition against P. mirabilis (uropathogenic
bacteria) even at sub-MIC by interrupting the QS signals [261].

Marine-derived bacteria are well categorized as a prime microbial group found in
the marine environment. Peach et al. discovered and characterized the auromomycin
chromophore as a potential inhibitor against V. cholera biofilms at 60.1 µM (IC50). Addi-
tionally, the inhibitory effect of auromomycin was significantly enhanced by adding some
antibiotics (such as tetracycline, ciprofloxacin, and ceftazidime) at their sub-inhibitory
concentrations [262]. A red algae-halogenated furanone, Dilsea pulchra, has been reported
to have effective anti-biofilm properties [263]. Some synthetic and natural brominated fura-
nones have been reported as significant QS inhibitors against gram-negative and positive
bacterial species [264–267].

Pereira et al. determined the biofilm inhibitory effect of brominated alkylidene lac-
tams (compounds 1–6, Figure 6) against S. mutans, S. epidermidis, S. aureus, and P. aerug-
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inosa biofilms [268]. The compound-1, γ-hydroxy-γ-lactam, and the compound-2, (E)-
γ-alkylidene- γ-lactam were found to be most effective against S. epidermidis with IC50
values of 13.3 and 12.2 µg/mL, respectively. The compound-3 and 4, and (Z)-γ-alkylidene-
γ-lactam were observed to be most significant against P. aeruginosa with IC50 values of
0.7 and 0.6 µg/mL, respectively. The compound-5 was most effective against S. aureus
with 53.1% biofilm inhibition at 44 µg/mL. The compound-2, 4, and 6 inhibited the biofilm
formation of S. mutans [268]. Antibiofilm activity of natural and synthetic cembranoid com-
pounds has been analyzed against P. aeruginosa, V. harveyi, S. aureus, and Chromobacterium
violaceum [269].
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Actinobacteria are gram-positive and the most versatile bacteria in nature, ranging from
aerobic_anaerobic, motile_nonmotile, and sporing_nonsporing bacteria [270]. Actinobac-
terial spp. produces several secondary metabolites that can act as antibacterial, antiviral,
antifungal, and anticancer agents. Some of the recently reported antibiofilm actinobacteria
are listed in Table 9. Song et al. revealed that some bacterial strains derived from coral Pocil-
lopora damicornis showed anti-biofilm activity by QS inhibition. Predominantly, H12-Vibrio
alginolyticus (a coral symbiotic bacteria) inhibited the biofilm formation of P. aeruginosa
PAO1 by interfering with rhl and the las system [271].

Chen et al. isolated three bioactive compounds (benzyl benzoate, 2-methyl-N-(2’-
phenylethyl)-butyramide, and 2-methyl-N-(2’-phenylethyl)-butyramide) from a marine
bacterium Oceanobacillus sp. (XC22919) and analyzed their antibiofilm activity. All three
compounds exhibited significant biofilm inhibitory activity against P. aeruginosa biofilm in
a dose-dependent manner by inhibiting QS activity [272].



Life 2022, 12, 1618 22 of 35

Table 9. Some of the biofilm control compounds of actinobacteria.

Anti-Biofilm Compounds Source Target Organism Biofilm Inhibition Ref.

Actinobacteria

Carotenoid pigment Streptomyces parvulus C. albicans >50% [273]

Bioactive metabolites Frankia casuarinae
DDNSF-02

Candida sp.
Pseudomonas sp.

59–81%
65–80% [274]

Secondary metabolites Streptomyces californicus
Strain ADR1 S. aureus and MRSA 90% [275]

Melanin pigments
Nocardiopsis dassonvillei
strain JN1, Nocardiopsis sp.
JN2

Staphylococcus sp. 64.20% (JN1)
65.99% (JN2) [276]

1-hydroxy-
1norresistomycin
(HNM)

Streptomyces variabilis
V. cholera
E. coli
S. aureus

92%
96%
93%

[277]

Pyrrolo (1,2-a)
pyrazine-1,4-dione
hexahydro-3-(2-
methylpropyl)

Actinomycetes Nocardiopsis
sp. GRG 1 (KT235640)

E. coli
P. mirabilis

77%
82% [278]

Actinomycin-D S.parvulus

S. aureus
Ruegeria sp.
P. aeruginosa
Micrococcus luteus

53.72%
45.98%
37.12%
22.20%

[279]

Bacterial compounds

Secondary metabolites Streptomyces (marine
sediment) P. mirabilis 63–26% [261]

N-acyl homoserine
lactone-based QS analogs

Aqueous extract of
Rhizobium sp. NAO1 P. aeruginosa 77.9% [280]

Carolacton Extract of Sorangium
cellulosum

Streptococcus oralis,
Streptococcus gordonii,
S. mutans,
A. actinomycetemocomitans

Reduced biofilm formation [281]

CFS Clostridium butyricum A. baumannii (MDR strain) Dose-dependent biofilm
inhibition [282]

CFS Lactobacillus strains P. aeruginosa
0–64%
100% (with L. fermentum L1
and L2)

[283]

CFS Lacticasebacillus rhamnosus
GG E. coli Dose and time-dependent

biofilm disruption [284]

Fungal compounds

Diterpenoid sphaeropsidin
A Diploidia corticola P. aeruginosa (MDR strain)

MRSA
62%
53% [285]

Organic extracts Penicillium sp. P. aeruginosa Biofilm formation
reduction by QS inhibition [286]

Vulculic acid, curvulol Chaetosphaeronema achilleae S. aureus DSM 1104 91.9–96.8% [287]

Thiodiketopiperazine
derivatives Phoma sp. GG1F1 S. pyogenes

S. aureus
60.7–86%
28–57% [288]

Crude extract Alternaria alternate P. aeruginosa PAO1 65.2% [289]

Equisetin Fusarium sp. Z10 P. aeruginosa PAO1 58.3% [290]

CFS—Cell-free supernatant.
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9. Methodology
Data Collection Criteria

A bibliographic search was conducted to screen relevant scientific publications before
August 2022, on bacterial biofilm formation, resistance development mechanisms, and
biofilm control strategies. The online search engines of Google scholar, PubMed, ScienceDi-
rect, and Web of Science Core Collection databases were used. The search strategy consisted
of separate or simultaneous use, under different combination forms, of several particular
keywords including “biofilm formation”, “microbial biofilm composition”, antimicrobial
resistance”, “plant-derived anti-biofilm compounds”, “bee products”, “marine derived
compounds”, and “phyto-nanotechnology”. Firstly, all titles and abstracts of the search
results were individually examined to evaluate whether the articles met inclusion criteria,
meaning reporting results in evaluating the antibiofilm activity of plant products, bee
products, and nanomaterials against biofilm-forming bacteria with significant outcomes.
All the duplicated papers and those published in a language other than English or irrel-
evant publications that did not contribute to retrieving meaningful results in the goal of
assessing natural strategies as potential weapons against bacterial biofilms were excluded.
Furthermore, the selected articles were entirely read to obtain significant material based on
their experimental outcomes.

10. Conclusions

Over the last three decades, biofilm formation has become a potential threat in the
food and health sector. Many biofilm-forming microbial species can develop resistance to
harsh environmental conditions. Several antibiotics and different disinfectants are used
in hospitals and the food industry. Several biofilm-forming foodborne pathogens have
been found to cause outbreaks. Several chronic infections are associated with biofilm-
forming microbes. Therefore, several strategies have been designed and analyzed to inhibit
microbial growth. However, the emergence of antimicrobial and multidrug resistance
forced researchers to study all growth features of microbes and their resistance mecha-
nisms for developing effective combating strategies and significant biofilm-controlling
compounds. Many researchers are discovering and developing effective anti-biofilm com-
pounds using natural products. In this review, recent studies were reviewed, focusing
on biofilm-controlling compounds, such as natural plants, bee products, nanomaterials,
microbes, and marine-derived anti-biofilm compounds to reduce or eradicate microbial
biofilms and their associated infections as well. These antibiofilm compounds possess a
significant potential to overcome the antimicrobial resistance linked to biofilm formation.
On the basis of their potential antibiofilm properties with less to no toxicity and increased
bioavailability, they can be suggested to treat biofilm-associated infections.
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