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Abstract

In supersymmetric Grand Unified Theories, proton decay medi-
ated by the color–triplet higgsino is generally problematic and requires
some fine–tuning of parameters. We present a mechanism which nat-
urally suppresses such dimension 5 operators in the context of SUSY
SO(10). The mechanism, which implements natural doublet–triplet
splitting using the adjoint higgs, converts these dimension 5 opera-
tors effectively into dimension 6. By explicitly computing the higgs
spectrum and the resulting threshold uncertainties we show that the
successful prediction of sin2

θW is maintained as a prediction in this
scheme. It is argued that only a weak suppression of the higgsino me-
diated proton decay is achievable within SUSY SU(5) without fine–
tuning, in contrast to a strong suppression in SUSY SO(10).

∗Supported in part by Department of Energy Grant #DE-FG02-91ER406267

1

http://arXiv.org/abs/hep-ph/9306242v1


1. Introduction

The dramatically precise unification of couplings1 that occurs in the minimal

supersymmetric SU(5) model has been much touted, and indeed is strik-

ing. A fit2 to all W,Z, and neutral current data (using mt = 138GeV and

mH = MZ) gives sin2 θW (MZ) = 0.2324 ± 0.0003, while in SUSY SU(5) one

has2 sin2 θW (MZ) = 0.2334±0.0036 (we have combined the uncertainties due

to αs(MZ), α(MZ), sparticle thresholds, mt, mh0
, high-scale thresholds and

non-renormalizable operators). As a measure of how significant this agree-

ment is consider that the addition of just one extra pair of light higgs doublet

supermultiplets would increase the SUSY GUT prediction of sin2 θW (MZ) to

about 0.256, leading to a discrepancy of over six standard deviations.

At the same time SUSY SU(5) suffers from a problem3 with proton decay

arising from dimension-5 operators caused by the exchange of color-triplet

higgsinos in the same SUSY-SU(5) multiplet with the light higgs doublets,

H and H ′. For ‘central values’ of the model parameters the predicted proton

life-time mediated by the dimension-5 operators4,5 is shorter than the current

experimental limits.6 A certain amount of adjustment is then required for

consistency, which pushes parameters to the corner of their allowed region.

For short we will henceforth refer to this as the ‘higgsino-mediated proton

decay (HMPD) problem’.

It would seem that one cannot take seriously the unification of couplings

of SUSY-GUTs, however impressive, in the absence of satisfactory mecha-

nism that suppresses higgsino-mediated proton decay. Two requirements for

a ‘satisfactory’ mechanism that we will impose are that it involves no ‘fine-
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tuning’ or artificial adjustments of parameters, and that the unification of

couplings is maintained as a prediction. (We emphasize that word because a

discrepancy in sin2 θW can often be remedied by introducing ad hoc new par-

ticles, threshold effects, etc; but we would not regard the resulting agreement

as being in any sense a prediction.)

The higgsino-mediated proton decay problem3 is easily described. In

SUSY SU(5) models there exists a pair of higgs super-multiplets, that we

will denote 5H+5̄′H . Under the standard model group, GS = SU(3)×SU(2)×
U(1), these decompose as 5H = {(1, 2, +1

2
) + (3, 1,−1

3
)} ≡ {2H + 3H}, and

5̄′H = {(1, 2,−1
2
) + (3̄, 1, +1

3
)} ≡ {2̄′H + 3̄′H}. The 2H and 2̄′H are just the

familiar H and H ′ of the supersymmetric standard model, and their cou-

plings to the light quarks and leptons are therefore fixed in terms of their

vacuum expectation values and the light fermion masses. Then by SU(5) the

Yukawa couplings of the 3H and 3̄′H are fixed as well. If there is a Dirac mass

term connecting the higgsinos in 3H and 3̄′H to each other, i.e., a term of

the form M(3H 3̄′H), then the diagram shown in figure 1 exists, which depicts

a baryon-number violating process mediated by colored higgsino exchange.

The higgsino, of course, converts the quarks and leptons to their scalar part-

ners, so figure 1 needs to be ‘dressed’ for it to correspond to proton decay.

Dressing by W -ino exchange is by far the most dominant, the resulting life-

time for p → K+ν̄µ for example (the anti-symmetry of the relevant operator

causes the change in flavor) has been estimated4 to be

3



τ(p → K+ν̄µ) = 6.9 × 1028yr ×
∣

∣
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(
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) (
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) (
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)

(
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)

TeV −1

f(u,d)+f(u,e)

∣

∣

∣

2
.

(1)

Here β is the relevant nuclear matrix element which lies in the range β =

(0.003 − 0.03)GeV 3. As is the short-distance renormalization factor (As ≃
0.6), tan βH = 〈H〉 / 〈H ′〉, and ytk parametrizes the contribution of the top

family relative to the first two (0.1 <| ytk |< 1.3 for mt = 100GeV ). The

functions f arise from the one-loop integrals and f(u, d) ≃ mW̃±/m2
Q̃

for

mW̃± ≪ mQ̃.

The prediction (1) is to be compared with the present experimental lower

limit τ(p → K+ν̄µ) >∼ 1×1032 yr.6 There is already, as can be seen, somewhat

of a difficulty reconciling these numbers. At least several of the following

conditions should be fulfilled: (a) The nuclear matrix element β is near

the lower end, β ≃ 0.003 GeV 3, (b) tanβH is not too large, (c) either the

W̃± is significantly lighter than the squark Q̃ or vice versa, (d) the colored

higgsino mass should exceed the GUT scale significantly (MHc
>∼ 1017GeV ),

(e) there is some cancellation in (1 + ytk) between the third family and the

first two family contributions. Obviously this pushes almost all parameters

to their corners. Although not excluded, the problem begs for a more elegant

explanation.

The necessity of the Dirac mass term M(3H 3̄′H) for obtaining the D = 5

baryon-violating operator is a crucial point. A quartic term in the chiral

superfields will be suppressed by 1
MGUT

or 1
M2

GUT

depending on whether it is an

F -term or a D-term. To get an F -term all the left-handed chiral superfields
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must be coming into the diagram (or out of it). This requires the chirality-

flipping mass insertion coming from the M(3H 3̄′H) term as shown in fig. 1.

If the mass M vanished, one could only write superfield diagrams like fig.

2, which clearly give D-terms and therefore are suppressed by 1
M2

GUT

. (The

F -terms correspond to higgsino exchange, the D-terms to higgs exchange.)

The foregoing considerations have suggested to several authors7,8 an ap-

proach to suppressing higgsino-mediated proton decay by imposing a (Peccei-

Quinn type) symmetry that suppresses the Dirac mass between the 3H and

3̄′H . However, this approach leads to a dilemma. In the simplest SUSY SU(5)

model it is precisely the M(3H 3̄′H) Dirac term that gives to the 3H and 3̄′H

the superlarge mass that they must have (else even the D = 6 operators

would cause a disaster). How, then, can the 3H and 3̄′H be made superheavy

and yet not have a large Dirac mass connecting them to each other? To

resolve this, one ends up introducing new color-triplet higgs superfields, a

3̄H to mate with the 3H and a 3′H to mate with the 3̄′H , so that all color

triplets become heavy while still leaving the unprimed and primed sectors

disconnected. That means having four instead of the minimal two 5-plets of

higgs. The situation can be represented diagrammatically as follows

(

3
2

) (

3̄
2̄

) (

3′

2′

) (

3̄′

2̄′

)

‖ ‖ ‖ ‖

5H 5̄H 5′H 5̄′H

(2)

where the solid horizontal lines representing superlarge Dirac masses. The 2

and 2̄′ are the usual light H and H ′ of the MSSM. But now it is to be noticed
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that there are two additional light doublets, 2̄ and 2′. As noted above, this is

unacceptable if the dramatic unification of gauge couplings is to be preserved

as a prediction.

One could remove the extra pair of Higgs(ino) doublets to superlarge

scales by introducing a mass term M(5̄H5′H), indicated by the dashed line

in eq. (2). This, of course, would reintroduce the higgsino-mediated proton

decay as shown in fig. 3. The parameter M would then control both the

higgsino-mediated proton decay and the mass of the pair of extra doublets.

As we shall see in the later sections, this situation is typical of mech-

anisms that naturally suppress higgsino-mediated proton decay: (a) there

is a doubling of the higgs sector, (b) there is the consequent danger to the

unification of couplings of extra light fields in incomplete multiplets, and (c)

there is a parameter M which controls both proton decay and the mass of

these extra fields.

Two approaches, therefore, appear to be possible. (1) Weak suppression

of higgsino-mediated proton decay, resulting from M being of order – but

slightly less than – MGUT . For example, with M = 1
10

MGUT higgsino-

mediated proton decay is suppressed by a factor of 10−2 while at the same

time those extra fields whose mass is given by M will only lead to small

threshold corrections to sin2 θW . In this case the suppression of higgsino-

mediated proton decay is just numerical; there is no symmetry or other

qualitative explanation of it. One would have no a priori reason therefore to

expect the suppression to be particularly large. A hope would therefore exist

that p → K+ν̄µ, n → K◦ν̄, etc. might be seen at super-Kamiokande. (2)

Strong suppression of higgsino-mediated proton decay would result if (due to
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some approximate symmetry perhaps) M were much less than MGUT , say,

O(MW ). In that case it is imperative that there be no ‘extra’ fields (i.e.,

beyond the minimal supersymmetric standard model) in incomplete SU(5)

multiplets whose mass is proportional to M , or else the unification of cou-

plings would be destroyed. To achieve this without fine-tuning turns out

to be a non-trivial problem. One of the main conclusions of this paper is

that such a strong suppression of proton decay can only be achieved in a

satisfactory way in SO(10) (or larger groups).

The whole problem of higgsino-mediated proton decay is of course inti-

mately connected to the well known question of ‘doublet-triplet’ splitting.9−13

We will show that the most satisfactory treatments of this problem make use

of an old but somewhat neglected idea for doublet-triplet splitting in SO(10)

using the adjoint higgs due to Dimopoulos and Wilczek.13

Our paper is organized as follows. In section II we review the Dimopoulos-

Wilczek idea for doublet-triplet splitting and show how both weak suppres-

sion and strong suppression of HMPD can be achieved naturally in SUSY

SO(10). In section III we consider SUSY SU(5) and show that only weak

suppression of HMPD can be achieved without fine-tuning parameters. In

section IV we discuss flipped SU(5). In section V a closer examination of

the Dimopoulos-Wilczek mechanism in SO(10) is undertaken, and we show

that it can be made viable and consistent. Our conclusions are summarized

in section VI. In appendix A we give the details of the minimization of a

realistic SO(10) superpotential. There we show that the gauge symmetry

breaking can be achieved consistent with supersymmetry without generating

pseudo goldstone bosons. Appendix B deals with the threshold corrections
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to sin2 θW .

2. Suppressing Proton Decay in SUSY SO(10)

The problem with doublet-triplet splitting arises in SU(5) because of the

tracelessness of its irreducible representations. Suppose the superpotential

contains the term λ15̄
′
H24H5H and 〈24H〉 = diag(x, x, x, y, y), then the 3H

and 3̄′H higgsinos get a Dirac mass of λ1x and the doublets 2H and 2̄′H get a

mass λ1y. We need λ1x ∼ MGUT and λ1y ∼ MW but this is impossible since,

by the tracelessness of 24, y = −3
2
x. This can be remedied by introducing

a singlet superfield, 1H , with the coupling λ25̄
′
H1H5H and 〈1H〉 ≡ z (or

equivalently by a bare mass term), but only by tuning the parameters so

that (−3
2
λ1x + λ2z)

<∼ 10−14(λ1x + λ2z).

In SO(10) such fine adjustment of parameters can be avoided because

the analogue of the tracelessness condition does not exist.13 The 24, which is

the adjoint of SU(5), is contained in the 45 which is the adjoint of SO(10).

45 is a rank-2 antisymmetric tensor and the VEV of 45H can be brought to

the canonical form

〈45H〉 = η ⊗ diag(x1, x2, x3, x4, x5),

η ≡
(

0
−1

1
0

)

,
(3)

which corresponds to the U(5) matrix diag(x1, x2, x3, x4, x5). Because this

is a U(5) rather than an SU(5) matrix its trace need not vanish. One can

therefore have the VEV of 〈45H〉 take the form
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〈45H〉 = η ⊗ diag(a, a, a, 0, 0, ). (4)

This is just what is needed to give mass to the SU(3)C - triplet higgs(inos)

and not the SU(2)L - doublet ones. This is what we call the Dimopoulos-

Wilczek mechanism.

There is another group–theoretical explanation for the doublet-triplet

splitting in SO(10). Under its maximal subgroup SU(2)L×SU(2)R×SU(4)C ,

the standard model singlets of 45 which could acquire GUT-scale VEVs are

contained in the (1, 1, 15) and (1, 3, 1) multiplets. The 10 of Higgs decom-

poses as (2, 2, 1) + (1, 1, 6). If only the (1, 1, 15) of 45 acquires a VEV,

it gives the color triplets of (1, 1, 6) a mass and not the doublets of (2, 2,

1). If the (1, 3, 1) acquires a VEV, it will supply a super-large mass to the

doublets - and not to the triplets. (We shall shortly make use of the second

property to suppress proton decay and at the same time preserve sin2 θW as

a prediction.) Such options are not available in SU(5), since SU(5) has no

intermediate symmetries, even for the sake of classification.

Consider the following coupling in the superpotential of a SUSY-SO(10)

model:

W ⊃ λ101H45H102H . (5)

One must introduce two 10’s of Higgs(ino) fields because with just one the

term 10H45H10H would vanish by the antisymmetry of the 45. As we noted in

the introduction, and shall see more clearly later, such a doubling is actually

a useful thing from the point of view of suppressing higgsino-mediated proton
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decay. This is another appealing feature of SO(10).

When the 45H gets the VEV shown in eq (4) all of the triplet Higgs(ino)

fields in 101H and 102H get superlarge masses. The situation can be repre-

sented schematically as follows

(

31

21

) (

3̄2

2̄2

) (

32

22

) (

3̄1

2̄1

)

‖ ‖ ‖ ‖

51H 5̄2H 52H 5̄1H

(6)

where under SO(10) → SU(5), 101H = 5̄1H +51H , and 102H = 5̄2H +52H . By

comparison with the scheme shown in eq. (2) one sees that the ‘unprimed

sector’ consists of 51H and 5̄2H , while the ‘primed sector’ consists of 52H and

5̄1H . One can then identify H ≡ 21H and H ′ = 2̄1H .

Now we face the problem of generating mass for the ‘extra’ doublets which

reside in 52H + 5̄2H = 102H . The simplest possibility is just to introduce into

the superpotential, W , the term M(102H102H), with M/MGUT being less

than - but not much smaller than - one. The resulting threshold correction to

sin2 θW is +3α(MZ )
10π

ℓn(MGUT /M) ≈ 10−3. For proton decay to be suppressed

it is also necessary that only 101H but not 102H couple to light quarks and

leptons with usual strength. All of this (including the absence of a (101H)2

term in W ) can be enforced by a global symmetry. For example, one could

have a symmetry under which 102H → +102H , 101H → −101H , 45H → −45H ,

and 16j → i16j (the light families, with j = 1, 2, 3).

The above appears to us to be the simplest way of achieving weak sup-

pression of proton decay. (For comparison with SU(5) see the next section.)
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However, in SO(10), but not in SU(5), it is actually possible to achieve a

strong suppression in a satisfactory way. To do this we need to give 22H and

2̄2H a superheavy Dirac mass (so as to not mess up sin2 θW ) without having

a superheavy Dirac mass connecting 32H and 3̄2H (which could produce ex-

cessive proton decay). But this is just a doublet-triplet splitting problem –

but upside down to the familiar one! Here the doublets but not the triplets

need a mass term. This will prove to be not doable in SU(5) without tuning,

but in SO(10) it can be done. What is required is another 45H with a VEV

〈45′H〉 = η ⊗ diag(0, 0, 0, a′, a′) . (7)

As already noted, this is just as achievable as the VEV given in eq. (4). (See

section V for the demonstration.)

There is a slight hitch in that we cannot, because of the antisymmetry of

45′H , simply write down 102H45′H102H to give mass to 22H and 2̄2H . However,

this can be overcome by introducing an additional 10 of Higgs(ino) fields.

Consider a superpotential containing

W ⊃ λ101H45H102H + λ′102H45′H103H

+ M103H103H

+
∑3

i,j=1 fij16i16j101H

(8)

with 〈45H〉 and 〈45′H〉 being given by eqs. (4) and (7). Then the superheavy

mass matrices of the color-triplet and weak-doublet higgs(inos) are

11



(2̄1, 2̄2, 2̄3)

















0 0 0

0 0 λ′a′

0 −λ′a′ M

































21

22

23

















(9)

and

(3̄1, 3̄2, 3̄3)

















0 λa 0

−λa 0 0

0 0 M

































31

32

33

















. (10)

The doublet matrix is rank-two leaving a single pair of light doublets H ≡ 21H

and H ′ ≡ 2̄1H . All triplets get superheavy mass; however, there is no mixing

between 31H and 3̄1H that would permit the diagrams shown in figures 1 or

3.

There are several questions to be answered concerning the SO(10) ap-

proaches to the proton decay problem. (1) Can the VEVs in eqs (4) and (7)

arise from an actual (super) potential?14 (2) Can SO(10) be broken all the

way to SU(3)×SU(2)×U(1) without destabilizing these VEVs? and (3), are

the threshold corrections in such an SO(10) model likely to be small enough

not to vitiate the successful prediction of sin2 θW ? We will show in section V

that the answer to all these questions is ‘yes’. But first we will examine the

possibilities that exist in SU(5) and flipped SU(5).
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3. Suppressing Proton Decay in SUSY SU(5)

The only viable method of doublet-triplet splitting in SUSY SU(5) that does

not involve fine tuning of parameters is the ‘missing partner mechanism’.9,10

The so-called sliding-singlet mechanism11 has the problem in SU(5) that

radiative corrections destroy the gauge hierarchy.12 For the missing partner

mechanism in SU(5) one requires (at least) the set 5 + 5̄ + 50 + 50 + 75 of

Higgs supermultiplets. In the 50(50) there is a color 3(3̄) but no weak 2(2̄).

Thus the couplings λ5H50H 〈75H〉 + λ′5̄H50H 〈75H〉 give mass to the triplets

in 5H + 5̄H but not to the doublets. Schematically,







3

2













3̄

other













3

other













3̄

2̄







‖ ‖

5H 50H 50H 5̄H

(11)

The horizontal solid lines represent superheavy triplet-higgs(ino) masses aris-

ing from the 〈75H〉. As in the cases considered in previous sections, there

is the question of how to make the ‘other’ fields in the 50 + 50 superheavy.

(They contribute to the RGE at one loop the same as a pair of weak dou-

blets.) If one wanted a ‘strong suppression’ of proton decay, it would require

giving superlarge masses to all the ‘other’ fields in 50 + 50 but having the

3̄(50H) and 3(50H) not be connected by a large Dirac mass term. There is

no analogue of the missing partner mechanism that would accomplish this

in a natural way. It could only be done by fine-tuning. For example, two

different representations (1H and 24H, or 24H and 75H) could couple 50 to
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50 and be relatively adjusted to give light mass only to the 3(50H)+ 3̄(50H).

However, we have foresworn fine-tuning.

It is possible to achieve a natural weak suppression of higgsino-mediated

proton decay in SU(5) by introducing an explicit mass term M(50H50H) into

the superpotential and having M/MGUT be of order but somewhat smaller

than unity. This works as well as the weak suppression mechanism in SO(10)

discussed in section II. However, in SU(5) there is the necessity of introducing

the somewhat exotic high rank representations 50, 50 and 75, whereas in

SO(10) only the low rank representations 10, 45, and 54 are required. If one

were willing to live with multiple fine-tunings of parameters one could do

with just doubling the higgs sector in SU(5) to 5 + 5̄ + 5′ + 5̄′ as discussed

briefly in the introduction. With two fine-tunings one could make all the

triplets heavy, and achieve weak suppression of proton decay. With a third

fine-tuning one could give mass to the extra pair of doublets and yet achieve

strong suppression of proton decay. There are papers in the literature that

take this approach.7,8

4. Suppressing Proton Decay in Flipped SU(5)

As is well-known, the missing partner mechanism works much more eco-

nomically in flipped SU(5)15 than in ordinary SU(5).16 One requires for the

mechanism the SU(5) × U(1) representations 5−2
H + 5̄2

H + 101
H + 10

−1
H , and

the superpotential couplings λ5−2
H 101

H101
H + λ′5̄2

H10
−1
H 10

−1
H . The 10H(10H)

contains a color 3̄(3) but no color-singlet, weak-doublet components. The

10H and 10H get VEVs that break SU(5)×U(1) down to GS and also mate

14



the triplet higgs(inos) in the 5H + 5̄H with these in the 10H + 10H leaving

the doublets in 5H + 5̄H light. Schematically,







3

2













3̄

other













3

other













3̄

2̄







‖ ‖ ‖ ‖

5H 10H 10H 5̄H

(12)

Another beautiful feature of flipped SU(5) is that there is no necessity to

do anything else to give mass to the ‘other’ fields in the 10H + 10H : they

are all disposed of by the (super) Higgs mechanism! They are either eaten

or become superheavy with the gauge/gaugino particles. Thus, in flipped

SU(5) one can strongly suppress higgsino-mediated proton decay without

any fine-tuning and without leaving any ‘extra’ split multiplets lighter than

MGUT . We found this to be impossible in ordinary SU(5). However, there

is one major drawback: the group of flipped SU(5) is really SU(5) × U(1)

and so real unification of gauge couplings is not achieved. One has therefore

lost, or rather never had, the unification of gauge couplings as a prediction.

5. A More Detailed Examination of SO(10)

In section II certain ideas were discussed for solving the doublet-triplet split-

ting problem and for suppressing higgsino-mediated proton decay in SO(10)

that made essential use of specific patterns of VEVs, in particular those

shown in eqs. (4) and (7). The question arises whether such VEVs are nat-

ural. In ref. 14 Srednicki wrote down a superpotential for a 45 and a 54 of

Higgs that has both of these forms as possible supersymmetric minima. Let

15



us denote the 45 and 54 by A and S respectively. Then the most general

SO(10)-invariant superpotential involving just these fields has the form

W (A, S) = m1A
2 + m2S

2 + λ1S
3 + λ2A

2S . (13)

The equations for a supersymmetric minimum are

0 = FA = 2(m1 + λ2S)A

0 = FS = (2m2S + λ2A
2 + 3λ1S

2) . (14)

Suppose we choose 〈S〉 =

(

1 0
0 1

)

⊗ diag(s, s, s,−3
2
s,−3

2
s) (S is a traceless

rank-two symmetric tensor of SO(10)) and 〈A〉 =

(

0 1
−1 0

)

⊗diag(a, a, a, b, b).

Then equation (14) gives two equations:

(m1 − 3
2
λ2s)b = 0,

(m1 + λ2s)a = 0.
(15)

Either a or b or both must therefore vanish (if s 6= 0). There are therefore

three possible solutions. (1) b = 0, s = −m1/λ2; (2) a = 0, s = 2
3
m1/λ2; (3)

a = b = 0.

For doublet-triplet splitting and weak suppression of proton decay we

need only the solution (1). For strong suppression we need (at least) two ad-

joints, one with VEV corresponding to solution (1) and the other to solution

(2). (See eqs. (4) and (7)). We will examine this latter more complicated

case in greater detail. If the required pattern of VEVs can be achieved in a

realistic model for that case, then a fortiori the simpler requirements for weak
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suppression can be achieved also. The main issues are whether the VEVs

in eqs. (4) and (7) can be achieved, the group SO(10) broken completely

to SU(3) × SU(2) × U(1), and goldstone particles avoided. (The issue of

threshold corrections to sin2 θW is dealt with in Appendix B.)

To begin with we double the superpotential shown in equation (13). That

is, we have two 45’s, denoted A and A′, and two 54’s, denoted S and S ′, with

superpotential

W (A, S; A′, S ′) = m1A
2 + m2S

2 + λ1S
3 + λ2A

2S

+ m′
1A

′2 + m′
2S

′2 + λ′
1S

′3 + λ′
2A

′2S ′.
(16)

We aim to have the (A, S) sector have VEVs in solution (1), and the (A′, S ′)

sector have VEVs in solution (2).

The superpotential in (16) is certainly not enough because, for one thing,

nothing determines the relative alignment of the VEVs of the two sectors,

and so there are goldstone modes corresponding to a continuous degeneracy

whereby the sectors are rotated in SO(10)-space with respect to each other.

A second problem with eq. (16) is that 〈A〉 and 〈S〉 break SO(10) →
[SU(3) × U(1)] × SO(4), while 〈A′〉 and 〈S ′〉 break SO(10) → SO(6) ×
[SU(2) × U(1) × U(1)]. Altogether, then, the unbroken group is SU(3) ×
SU(2) × U(1) × U(1) = rank 5.

To break all the way to the standard model further Higgs fields are needed.

(They are needed for right-handed neutrino masses in any case.) The simplest

choices are 16 + 16 or 126 + 126. Let us call these C + C̄ where C = 16 or

126. One can write a superpotential that gives C + C̄ VEVs which break

SU(10) → SU(5). Together with A, S, A′, and S ′ this will complete the
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breaking of SO(10) to GS and allow νR masses.

At this point a further somewhat subtle technical problem arises. There

are certain generators of SO(10) that are broken both by C + C̄ and by

the adjoints A and A′, but not by the symmetric tensors S + S ′, specifically

the generators in SO(6)/SU(3) × U(1) and SO(4)/SU(2) × U(1) (where

SO(10) ⊃ SO(6) × SO(4)). Thus to avoid residual goldstone bosons there

must be coupling between the C + C̄ sector and the adjoints A and A′.

The technical problem is that the direct couplings C̄AC and C̄A′C would

destabilize the desired VEVs of A and A′. In particular, all the ‘diagonal’

components of 〈A〉 and 〈A′〉 (written as U(5) matrices, that is) become non-

vanishing. [This is because the VEVs of C + C̄ that break SO(10) → SU(5)

couple in C̄AC to the SU(5)-singlet combination (3a + 2b), where 〈A〉 =
(

0 1
−1 0

)

× diag(a, a, a, b, b). This leads to a mass term proportional to

(3a+2b)2 in the ordinary scalar potential, which in turn leads to cross-terms

of the form ab, destabilizing the solution a 6= 0 and b = 0. The same thing

would happen to A′.]

There are various solutions to this technical difficulty. The one we shall

study here involves the introduction of a third adjoint, which we will denote

A′′, that serves as an intermediary between the C + C̄ sector and A and A′.

The part of the superpotential that does the complete breaking to the

standard model and obviates all difficulties is given in full by
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W = m1A
2 + m2S

2 + λ1S
3 + λ2A

2S

+ m′
1A

′2 + m′
2S

′2 + λ′
1S

′3 + λ′
2A

′2S ′

+ m′′
1A

′′2 + m′′
2C̄C + λ′′

2C̄A′′C

+ λAA′A′′.

(17)

There are three sectors, (A, S), (A′, S ′), and (A′′, C̄ + C), that are coupled

together only by the last term λAA′A′′.

The term λ′′
2C̄A′′C does serve to give A′′ a VEV in the SU(5)-singlet

direction:

〈A′′〉 =

(

0 1
−1 0

)

⊗ diag(a′′, a′′, a′′, a′′, a′′). (18)

But this does not destabilize the VEVs of A and A′ which are assumed to

be of the forms given in eqs. (4) and (7). This is easily seen by examining

the λAA′A′′ term, which is the only thing linking A′′ to A and A′. Consider

the FA = 0 equation. (FA)[ab] is an antisymmetric tensor to which λAA′A′′

contributes λ(A′A′′)[ab], which vanishes when the values of 〈A′〉 and 〈A′′〉
given in eqs (7) and (18) are substituted. Similarly, at the desired minimum,

λAA′A′′ gives no contribution to the FA′ and FA′′ equations. In other words

it can be neglected in doing the minimization! However, it does contribute

to the Higgs(ino) masses, and, indeed, removes all of the possible goldstone

modes discussed above.

In Appendix A we present details of the minimization of the superpo-

tential, eq. (17), assuming C = 16. There we show explicitly that SO(10)

may be completely broken to the standard model (without breaking SUSY),
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uneaten goldstone bosons avoided, and VEVs of the desired form achieved.

The masses of the various Higgs (super) multiplets enumerated in Appendix

A will be used to estimate threshold corrections in the model.

It is conceivable that the superpotential of eq. (17) is the most general one

compatible with some discrete symmetries, although due to the supersym-

metric non-renormalization theorem one is not obliged to write all possible

terms.

We have found other superpotentials and sets of Higgs fields that allow

us to achieve the desired VEVs in a consistent and realistic way. We have

presented eq. (17) as being algebraically simple to analyze. It should also be

noted that the implementation of weak suppression of HMPD, where only a

single 45H is needed with VEV of the form in eq. (4), is a simpler task and

fewer fields are required. We have not tried to find the absolutely minimal

scheme.

At this point we wish to make an aside. If one is willing to give up

sin2 θW as a prediction, there is a much simpler way to simultaneously achieve

doublet-triplet splitting without fine-tuning and a strong suppression of hig-

gsino mediated proton decay. All we need is then one 45H of Higgs superfield

with its VEV as given in eq. (4). Suppose the relevant superpotential term

for doublet-triplet splitting is just λ101H45H102H as in eq. (5). This will

make the color triplets heavy, but one is left with 2 pairs of light doublets.

Now, if the 45H does not couple to the sector that breaks SO(10) → SU(5)

(via C+C̄ superpotential), then in addition to the extra pair of doublets, one

will have a {(3, 1, 2
3
) + H.C.} goldstone super-multiplet which remains light.

(These are the goldstones corresponding to SO(6)/SU(3)×U(1) mentioned
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earlier.) The combined effect of having an extra pair of light higgs doublets

and the charge 2
3

higgs (super) fields is to alter sin2 θW prediction to ≃ 0.215

at one loop. The unification scale also comes down by an order of magnitude

or so. If one ‘fixes’ these features by relying on particle thresholds, such a

scenario may not be inconsistent. This scenario can be tested by directly

searching for the (3, 1, 2
3
) - higgs and higgsino particles. This situation is

somewhat analogous to the case studied in ref. 17. We do not advocate

this scenario here, since our aim is to preserve the successful unification of

couplings as a prediction.

Returning to the superpotential in eq. (17), it might be imagined that

with 3(45) + 2(54) + 16 + 16 the threshold corrections might be fairly large;

large enough, perhaps to vitiate the successful ‘prediction’ of sin2 θW . Actu-

ally, this is not the case, especially if one assumes SO(10) breaks in two stages

to the standard model: SO(10) → SU(5) → SU(3)×SU(2)×U(1). SO(10)

is broken to SU(5) by the VEVs of C̄, C, and A′′ at a scale M10, while SU(5)

is broken down to SU(3)× SU(2)×U(1) by the VEVs of A, S, A′, and S ′ at

a scale M5. The masses of particles will be of the form αM10 + βM5. In the

limit that βM5/αM10 → 0 for a given multiplet its one-loop threshold cor-

rections to sin2 θW will vanish since it will become a complete and degenerate

SU(5) multiplet. Thus threshold corrections of complete SU(5)-multiplets

go as ℓn(αM10 + βM5)/(αM10) ∼= βM5/αM10 for M5 ≪ M10. Thus if M10

is assumed to be somewhat larger than M5, the GUT-scale threshold correc-

tions to sin2 θW are substantially reduced. These will be discussed explicitly

in Appendix B, where it is found that the uncertainties in sin2 θW due to

superheavy thresholds is typically in the range of 3 × 10−3 to 10−2.
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6. Conclusions

If one seeks a supersymmetric grand unified model in which proton decay

mediated by color-triplet higgsino is strongly suppressed through a mecha-

nism based on symmetry, in which there is no fine-tuning of parameters, and

in which the remarkable prediction of sin2 θW is maintained as a prediction,

then it seems that one must turn to SO(10). On the other hand, a weak sup-

pression due not to symmetry but to the smallness of a parameter is achiev-

able in both SU(5) and SO(10) without either fine-tuning or sacrificing the

sin2 θW prediction, though we believe SO(10) allows the more economical so-

lution. The SU(5) solution, being based on the ‘missing-partner mechanism’,

requires the introduction of Higgs(ino) multiplets in 50 + 50 + 75 (which are

four and five index tensors), whereas the SO(10) solution requires only the

usual (rank one and two) tensors 45, and 54, and the spinors 16 + 16.

The advantage of SO(10) is due to the possibility of exploiting the elegant

Dimopoulos-Wilczek mechanism of doublet-triplet splitting. We have studied

that mechanism and found that it can be implemented in a fully realistic way.

In our view these results constitute yet another argument in favor of

SO(10). It is already well known that SO(10) has the advantage over SU(5)

of allowing R-parity to be a gauge symmetry (that is because Higgs fields

are in tensor representations and matter fields are in spinor representations).

And, of course, SO(10) achieves greater unification of quarks and leptons

and requires the existence of right-handed neutrinos.

In any event, we have shown that higgsino-mediated proton decay is not

a serious difficulty of supersymmetric grand unification as there are quite

22



simple and natural means to suppress it without undercutting the main suc-

cess of those models. If the suppression is of the ‘weak’ type then there are

grounds to hope to see proton decay in super Kamiokande.
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Appendix A

In this Appendix, we give details of the minimization of the superpotential

of eq. (17). We shall see explicitly that (a) SO(10) breaks completely to the

standard model in the supersymmetric limit, (b) the desired forms of the

VEVs of A and A′ are achieved, and (c) there are no unwanted pseudo gold-

stone modes which could potentially ruin the successful sin2 θW prediction.

A2 in eq. (17) denotes Tr(A2), AA′A′′ denotes Tr(AA′A′′) etc. We shall

confine ourselves to the case where C + C̄ ≡ 16 + 1̄6. The term C̄A′′C is

explicitly written down as C̄σαβA′′
αβC/4, where σαβ are the generators of

SO(10) algebra.18

The VEVs for the fields are chosen as

〈A〉 = η ⊗ diag(a, a, a, 0, 0)

〈A′〉 = η ⊗ diag(0, 0, 0, a′, a′)

〈A′′〉 = η ⊗ (a′′, a′′, a′′, a′′, a′′)

〈S〉 = I ⊗ diag(s, s, s,−3
2
s,−3

2
s)

〈S ′〉 = I ⊗ diag(s′, s′, s′,−3
2
s′,−3

2
s′)

〈C〉 =
〈

C̄
〉

= c

(A.1)

where η ≡
(

0 1
−1 0

)

and I =

(

1 0
0 1

)

. The equality 〈C〉 =
〈

C̄
〉

follows

from the requirement of D-flatness. The vanishing of the F–terms lead to the

following conditions, corresponding to A, S, A′, S ′, A′′, C fields respectively:
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0 = m1 + λ2s

0 = m2s −
3

4
λ1s

2 − 1

5
λ2a

2

0 = m′
1 −

3

2
λ′

2s
′

0 = m′
2s

′ − 3

4
λ′

1s
′2 +

1

5
λ′

2a
′2

0 = m′′
1a

′′ +
λ′′

2

8
c2

0 = m′′
2 −

5

2
λ′′

2a
′′ . (A.2)

Since SUSY is unbroken, it is sufficient to investigate the Higgsino mass

spectrum. The multiplets which transform as {(3, 1, 2/3) + H.C.} under

SU(3)C × SU(2)L × U(1)Y have the following mass matrix:

M1 =

























0 2λa′′ 0 0

2λa′′ −10λ′
2b

′ −2λa 0

0 −2λa −4m′′
1 −λ′′

2c

0 0 −λ′′
2c 2λ′′

2a
′′

























. (A.3)

This matrix has one zero eigenvalue by virtue of eq. (A.2). All the other 3

states become massive.

The mass matrix corresponding to {(1, 1, +1) + H.C.} is
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M2 =

























10λ2b 2λa′′ −2λa′ 0

2λa′′ 0 0 0

−2λa′ 0 −4m′′
1 −λ′′

2c

0 0 −λ′′
2c 2λ′′

2a
′′

























. (A.4)

Again, M2 has one zero eigenvalue (using (A.2)) and three non-zero eigneval-

ues.

The mass matrix for {(3, 2,−5
6
) + H.C.} is given by

M3 =



































5λ2s
√

2λ2a 0 0 −λa′

√
2λ2a 2m2 − 3

2
λ1s 0 0 0

0 0 −5λ′
2s

′ √
2λ′

2a
′ −λa

0 0
√

2λ′
2a

′ 2m′
2 − 3

2
λ′

1s
′ 0

−λa′ 0 −λa 0 −4m′′
1



































. (A.5)

Using (A.2) one sees that M3 has one of its eigenvalues equal to zero, while

the rest are all nonzero.

The corresponding matrix for {(3, 2, 1
6
) + H.C.} is given by
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M4 =













































5λ2s
√

2λ2a 2iλa′′ 0 −iλa′ 0

√
2λ2a 2m2 − 3

2
λ1s 0 0 0 0

−2iλa′′ 0 −5λ′
2b

′ √
2λ′

2a
′ iλa 0

0 0
√

2λ′
2a

′ 2m′
2 − 3

2
λ′

1s
′ 0 0

iλa′ 0 −iλa 0 −4m′′
1 λ′′

2c

0 0 0 0 λ′′
2c 2λ′′

2a
′′













































(A.6)

This has one zero and five nonzero eigenvalues.

The goldstone modes in M1,M2,M3,M4 when combined with the zero

mass mode corresponding to the phase of (C + C̄)–singlet add up to the

33 mass–less modes needed for the symmetry breaking SO(10) → SU(3) ×
SU(2) × U(1). All the remaining fields become massive. Their spectrum

looks as follows. From the (A, S) sector, we have

{(6, 1,−2

3
) + H.C.} = 2m2 + 6λ1s

{(1, 3,±1); (1, 3, 0)} = 2m2 − 9λ1s

{(1, 3, 0) + (1, 1, 0)} = 10λ2s

{(8, 1, 0)} =







0 2
√

2λ2a

2
√

2λ2a 2m2 + 6λ1s
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{(1, 1, 0)} =







0 − 4√
5
λ2a

− 4√
5
λ2a 2m2 − 3λ1s





 . (A.7)

From the (A′, S ′) sector, one finds

{(6, 1,−2

3
) + H.C.; (8, 1, 0)} = 2m′

2 + 6λ1s
′

{(8, 1, 0); (1, 1, 0)} = −4λ′
2s

′

{(1, 3,±1)} = 2m′
2 − 9λ′

1s
′

{(1, 3, 0)} =







0 −2
√

2λ′
2a

′

−2
√

2λ′
2a

′ 2m′
2 − 9λ′

1s
′







{(1, 1, 0)} =









0
√

24
5
λ′

2a
′

√

24
5
λ′

2a
′ 2m′

2 − 3λ′
1s

′









. (A.8)

Finally, from the (A′′, C + C̄) sector, one finds

{(8, 1, 0) + (1, 3, 0) + (1, 1, 0)} = −4m′′
1

{(3, 1,−1

3
) + H.C.; (1, 2,

1

2
) + H.C.} = 2m′′

2 + 3λ′′
2a

′′

{(1, 1, 0)} =









−4m′′
1 −

√

5
2
λ′′

2c

−
√

5
2
λ′′

2c m′′
2 − 5

2
λ′′

2a
′′









(A.9)

Now to reduce threshold corrections somewhat (and simplify calculations)

we assume the scale of SO(10) breaking, M10, is somewhat greater than

the scale of SU(5) breaking, M5. (This means we assume m′′
1, m

′′
2, c, a

′′ ≫
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m1, m2, m
′
1, m

′
2, a, a′, s, s′.) As explained in the text, the multiplets which

have mass O(M10) will give contributions to the threshold corrections sup-

pressed by M5/M10. Thus in Appendix B we will only need the masses of

particles which are O(M5). For sets of particles with the same GS quantum

numbers we only will need to know the products of their masses. These are

listed below.

{(3, 2, 1
6
) + h.c.} = ( 4

25
)λ2λ

′
2a

2a′2/ss′ (2 states)

{(3, 2,−5
6
) + h.c.} = ( 4

25
)(λ2λ2λ

′
2/λ

′′(a2a′a′′/ss′c2)

·[2aa′(a + a′) + 25(a′s2 + as′2)] (3 states)

{(6, 1,−2
3
) + h.c.} = (15

2
)λ1s + (2

5
)λ2a

2/s (1 state)

{(1, 3,±1); (1, 3, 0)} = −(15
2
)λ1s + (2

5
)λ2a

2/s (1 state)

{(1, 3, 0)} = 10λ2s (1 state)

{(8, 1, 0)} = 8λ2
2a

2 (2 states)

{(6, 1,−2
3
) + h.c.; (8, 1, 0)} = (15

2
)λ′

1s
′ − (2

5
)λ′

2a
′2/s′ (1 state)

{(8, 1, 0)} = −4λ′
2s

′ (1 state)

{(1, 3,±1)} = −(15
2
)λ′

1s
′ − (2

5
)λ′

2a
′2/s′ (1 state)

{(1, 3, 0)} = 8λ′2
2 a′2 (2 states)

(A.10)

We have expressed these in terms of the VEVs and Yukawa couplings and

eliminated the mass parameters, m1, m2, etc., using eqs. (A.2).
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Appendix B

Here we use the results of Appendix A to compute the threshold corrections

to sin2 θW coming from superheavy fields. We look at the full model with

three 45’s (A, A′, A′′) and two 54’s (S, S ′), and we assume SO(10) breaks to

SU(5) at a scale (M10) which is higher than the scale at which SU(5) breaks

to the standard model (M5).

It will prove convenient to define the parameters M ≡ λ2s, x ≡ a/s, x′ ≡
a′/s′, y ≡ λ1/λ2, y′ ≡ λ′

1/λ
′
2, and z ≡ λ′

2s
′/λ2s. The correction to sin2 θW is

given at one loop by

∆ sin2 θW (MZ) =
α(MZ)

30π

∑

j

[

5bj
1 − 12bj

2 + 7bj
3

]

ln Mj (B.1)

where the sum is taken over multiplets of SU(3)× SU(2)×U(1). From eqs.

(A.10) one obtains

∆ sin2 θW (MZ) = α(MZ )
30π2 {−21 ln( 4

25
x2x′2zM2)

+ 3 ln(tM3) + 51 ln((15
2
y + 2

5
x2)M)

+ (−30 − 24) ln((−15
2
y + 2

5
x2)M) − 24 ln(10M)

+ 21 ln(8x2M2) + (51 + 21) ln((15
2
y′ − 2

5
x′2)zM)

+ 21 ln(4zM) − 30 ln((−15
2
y′ − 2

5
x′2)zM)

− 24 ln(8x′2z2M2)}.

(B.2)

(Here tM3 is defined to be equal to the complicated expression on the right-

hand side of the second equation of (A.10). t is of order M5/M10. However,
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the coefficient of this term is mercifully small, so that its effect is negligible.

We have not displayed the threshold effects due to the doublet and triplet

fileds of eqs. (9)-(10) as they are negligible.) All logarithms are understood to

have an absolute value in their arguments. We have used b3(3) = 1
2
, b3(6) =

5
2
, b3(8) = 3, b2(2) = 1

2
, b2(3) = 2, b1(

y
2
) = 3

5
(y/2)2.

Collecting terms,

∆ sin2 θW (MZ) ∼= α(MZ )
30π

{(18 ln 5 − 33 ln 2)

+ 3 ln t − 6 ln z − 45 ln(x′2)

+ 51 ln(15
2
y + 2

5
x2) − 54 ln(15

2
y − 2

5
x2)

+ 72 ln(15
2
y′ − 2

5
x′2) − 30 ln(15

2
y′ + 2

5
x′2)

− 3 ln M}

. (B.3)

The term −3 ln M is due to the (3, 2,−5
6
) + h.c. that get eaten when SU(5)

breaks and is present also in the minimal SU(5) model. If it were not for this

eating, all the superheavy multiplets would be complete SU(5) multiplets and

the dependence on M would disappear. (It is only splitting within multiplets

that contribute at one loop to sin2 θW . Since all masses are scaled by M, M

drops out in the ratios.) In the first term, 18 ln 5 − 33 ln 2 ∼= 6.1. All of the

logarithms can have either sign. There are five potentially large terms with

coefficients averaging about 50. If we assume the logarithms are of order one

with arbitrary signs then the typical threshold correction to sin2 θW would be

expected to be about ±(α/30π)(102) ∼ ±10−2. This is to be contrasted with

the effect of a pair of extra light Higgs doublets of ∆ sin2 θW ≃ 2.5×10−2. It

should also be compared to the theoretical uncertainties in sin2 θW in minimal
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SUSY SU(5), referred to in the opening paragraph of this paper, of about

0.36 × 10−2.

The expression in (B.2) simplifies considerably if we assume y < 4
75

x2, y′ <

4
75

x′2. Then

∆ sin2 θW ≃
(

α
30π

)

{3 ln t − 3 ln(x2) − 3 ln(x′2)

− 6 ln z + (6 ln 2 − 21 ln 5)}
. (B.4)

Since 6 ln 2 − 21 ln 5 = −29.4 one expects the threshold correction to be

negative and about −0.3 × 10−2 in this limit. We mention this limit since

it is a special solution of the superpotential of eq. (17), corresponding to

setting the parameters λ1, λ′
1 to zero. We note that this limit can be reached

naturally without giving rise to any pseudo goldstones (see Appendix A).

We conclude that the threshold correction uncertainties to sin2 θW in the

kind of SO(10) model we are discussing are likely to be a few times larger

than the total theoretical uncertainty in sin2 θW in minimal SUSY SU(5),

but several times smaller than the effect on sin2 θW of an extra pair of light

Higgs doublets. We should emphasize that if one is satisfied only to suppress

Higgsino mediated proton decay weakly, a much smaller Higgs sector may

be adequate, with correspondingly smaller threshold corrections.
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Figure Captions

1. A diagram that gives a dimension 5 baryon-number-violating opera-

tor. The arrows indicate the direction a left-handed chiral superfield is

flowing. Chirality shows this to be an F term and hence suppressed by

(Mass)−1. Chirality also implies that there must be a mass insertion

(denoted by M) on the colored higgsino line. The suppression is thus

M/M2
GUT which is naturally of order M−1

GUT in most models.

2. A diagram without the chirality-flipping mass insertion of Fig. 1 and

thus representing a D term. Such a term is effectively of dimension

6 and suppressed by M−2
GUT . It corresponds to colored higgs boson

exchange.

3. In the ‘weak suppression’ scheme discussed in section I (see eq. (2)) the

primed and unprimed Higgs(ino) sectors are connected by a Dirac mass,

M . This coupling of the two sectors allows a dimension-5, baryon-

number-violating operator to arise as shown here.
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