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Natural swarms in 3.99 dimensions

Andrea Cavagna1,2,3, Luca Di Carlo1,2 , Irene Giardina1,2,3, Tomás S. Grigera4,5,6, 
Stefania Melillo    1,2, Leonardo Parisi    1,2, Giulia Pisegna1,2  &  
Mattia Scandolo    1,2 

The renormalization group is a key set of ideas and quantitative tools of 
statistical physics that allow for the calculation of universal quantities that 
encompass the behaviour of different kinds of collective systems. Extension 
of the predictive power of the renormalization group to collective biological 
systems would greatly strengthen the effort to put physical biology on a firm 
basis. Here we present a step in that direction by calculating the dynamical 
critical exponent z of natural swarms of insects using the renormalization 
group to order ϵ = 4 − d. We report the emergence of a novel fixed point, 
where both activity and inertia are relevant. In three dimensions, the 
critical exponent at the new fixed point is z = 1.35, in agreement with both 
experiments (1.37 ± 0.11) and numerical simulations (1.35 ± 0.04). Our 
results probe the power of the renormalization group for the quantitative 
description of collective behaviour, and suggest that universality may also 
play a decisive role in strongly correlated biological systems.

Collective behaviour is found in a great variety of biological sys-
tems, from bacterial clusters and cell colonies, to insect swarms, 
bird flocks and vertebrate groups. A unifying ingredient, which also 
provides an insightful connection with statistical physics, is the 
presence of strong correlations. The correlation length, ξ, is often 
substantially larger than the microscopic scales1–7, and in some 
instances ξ grows with the system size, giving rise to scale-free cor-
relations1,6,8. In the case of natural swarms of insects, a second key 
hallmark of statistical physics has been verified, namely dynamic 
scaling9. This is noteworthy, as dynamical scaling entangles spatial 
and temporal relaxation into one law, known as critical slowing 
down10: the collective relaxation time grows as a power of the corre-
lation length, τ ~ ξz, thus defining the dynamical critical exponent, z.  
Strong correlations and scaling laws are the two essential prereq-
uisites of the renormalization group (RG)11,12. By coarse-graining 
short-wavelength fluctuations, the parameters of different sys-
tems flow towards few fixed points ruling their large-scale behav-
iour; RG fixed points therefore organize into universality classes 
the macroscopic behaviour of strongly correlated systems, thus 
providing parameter-free predictions of the critical exponents.  

The emergence of scale-free correlations and scaling laws also calls 
for an exploration of the RG path in collective biological systems.

In the broader field of active matter13, RG is already a key tool. The 
pioneering hydrodynamic theory of Toner and Tu14,15 has been studied 
via the RG both in the polarized16,17 and near-ordering phase18,19, with 
applications in systems with nematic or polar order20–22. RG has also 
been employed to study motility-induced phase separation23,24, active 
membranes25, bacterial chemotaxis26 and cellular growth27. Direct 
comparisons with experiments are few: although the exponent of 
giant number fluctuations in d = 2 (refs. 15,17) has been confirmed in 
experiments on vibrated polar disks28, in ref. 29 the exponents of the 
Vicsek model in the ordered phase were found to be incompatible with 
those conjectured by Toner and Tu14. Other RG exponents have been 
checked in numerical simulations30–33. Comparisons with biological 
experiments are scarcer. Experiments studying giant number fluctua-
tions in swimming filamentous bacteria displaying long-range nematic 
order34 found an exponent in disagreement with RG predictions of 
active nematic21 and polar17 systems. To the best of our knowledge, 
there is yet no successful test of an RG prediction against experiments 
on living active systems.
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G of ref. 35). Note that, in model A, two-loop corrections to the one loop 
z = 2 value are very small35, but in models E/F/G, z = d/2 is an exact result 
for all d ≤ 4 (ref. 38). Overall, this scenario suggests that the combined 
effect of activity and inertia may account for the experimental expo-
nent of natural swarms. In this article we perform an RG study of this 
theory, and find z = 1.34(8) in d = 3, a value in agreement with experi-
ments on real swarms, zexp = 1.37 ± 0.11, and also numerical simulations, 
zsim = 1.35 ± 0.04. The RG result is a parameter-free prediction, with no 
input beyond the information that both activity and inertia must be 
part of the theory.

A hydrodynamic theory of active matter with reversible inertial 
couplings requires three fields—velocity, spin and density39,40—making 
the calculation technically unfeasible. To make progress, following 
ref. 18, we eliminate the density field by imposing incompressibility, 
∇ · v(x, t) = 0. Beyond its technical inevitability, this is a reasonable 
physical assumption. In compressible active systems the transition is 
first-order41, a framework that would make RG pointless and would rule 
out scaling. However, dynamic scaling is observed in natural swarms, 
suggesting a more complex scenario: in the absence of density fluc-
tuations, the transition becomes second-order, and recent studies42–44 
suggest the existence of a crossover from a finite-size regime, where 
density fluctuations are weak and second-order physics is observed, to 
a infinite-size regime, where density fluctuations dominate, rendering 
the transition first-order. Weak density fluctuations and scaling laws in 
natural swarms9 suggest then that the dynamics of these finite-size sys-
tems can be studied through an incompressible second-order theory.

The polarization field, ψ, is defined by the relation, 
v(x, t) = v0ψ(x, t), where v0 is the microscopic speed. Having v0 as an 
explicit parameter is useful so as to take the zero-activity limit, v0 → 0, 
and compare it with equilibrium calculations45–47. The generator of 
the rotations of ψ(x, t) is the spin, s(x, t). In d = 3 the spin is a vector; 
however, incompressibility requires ψ to have the same dimension as 
space, and because RG entails an expansion in powers of ϵ = 4 − d, we 

In this article we apply the RG to the dynamics of insect swarms. 
Swarms of midges in the field are near-critical, strongly correlated 
systems8 with short-range interactions4, obey dynamic scaling9 with 
an experimental exponent of zexp = 1.37 ± 0.11, which is substantially 
smaller than the value z ≈ 2 of standard ferromagnets35. This large 
gap indicates that fundamental new physics is required. Although 
the relation τ ~ ξz is not merely a dispersion law, smaller z nevertheless 
suggests that fluctuations are more swiftly transported across the 
system. Hence, the effort to match theory with experiments in natural 
swarms must look for more efficient mechanisms of information trans-
fer. Activity is the first obvious candidate, as it allows fluctuations to 
propagate not only thanks to the inter-individual interaction, but also 
through the self-propelled motion of the particles14. Incompressible, 
near-critical active matter was first studied in ref. 18, where an RG 
analysis found that activity lowers z from 2 to 1.73. This was an impor-
tant step towards bridging the gap between experiments and theory in 
natural swarms, although the chasm with the experimental exponent 
remains substantial.

The second ingredient known to foster information propagation 
is inertia. Behavioural inertia in the rotations of individual velocities 
was first introduced to explain the propagation of collective turns in 
bird flocks36,37, but experiments also found clear evidence of under-
damped inertial relaxation in natural swarms of midges9. At the general 
level, inertial dynamics stems from the existence of a reversible cou-
pling between the primary field (playing the role of the generalized 
coordinate) and the generator of the symmetry (playing the role of 
the generalized momentum); in the case at hand, the symmetry is 
the rotation of the primary field, so we call ‘spin’ its generator. In the 
absence of explicit dissipation, this coupling leads to global conserva-
tion of the spin, a conservation law that is known—at equilibrium—to 
significantly decrease the dynamical exponent, from the z ≈ 2 of stand-
ard ferromagnets (model A in the classification of ref. 35) to z = 1.5 in 
superfluid helium and quantum antiferromagnets (models E/F and  
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Fig. 1 | RG flow. a, Flow in the conservative case. The novel fixed point (red circle), 
with non-zero off-equilibrium activity and non-zero inertial coupling, is the only 
stable one, with a dynamical critical exponent z = 1.35 in d = 3. The equilibrium 
non-inertial fixed point (black square), z = 2.0, corresponds to standard 
ferromagnets (model A of ref. 35). The equilibrium inertial fixed point (blue 
diamond), z = 1.5, corresponds to superfluids and quantum antiferromagnets 
(models E and G of ref. 35). Finally, the active non-inertial fixed point (green 
triangle), z = 1.73, corresponds to active matter without reversible coupling 
between velocity and spin18. This last fixed point is not connected to the active 
inertial one onto this plane. b, Flow with spin dissipation. Spin dissipation, η, is a 
relevant parameter that brings the flow out of the conservative plane. Because  
η grows up to infinity with the RG iterations, it is convenient to use the reduced 

dissipation η̂ = η/(1+ η) to represent the flow. If we perturb the active inertial 
fixed point, z = 1.35, with some dissipation, the RG flow leaves the η̂ = 0 plane, 
until it eventually reaches the active overdamped fixed point for η̂ = 1 (green 
pyramid), where z = 1.73. When η̂ ≠ 0 it is better to represent the flow through the 
reduced inertial coupling, ̂f = (1− η̂)f , instead of f, so that in the overdamped 
limit, η̂ = 1, we have one less parameter, as the inertial coupling drops out of the 
calculation. The overdamped fixed point, z = 1.73, is best seen as belonging to the 
overdamped η̂ = 1 line, rather than to the conservative but non-inertial line, 
η = 0, f = 0. Even though the value of ̂f  is the same on the two lines, only the first 
corresponds to the correct overdamped limit. All flow lines are actual numerical 
solutions of the RG equations.
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need a generic spin in d dimensions, which is a d × d anti-symmetric 
tensor. Reversible inertial dynamics arises from the Poisson brackets35:

{sαβ (x, t) ,ψγ (x′, t)} = 2g 𝕀𝕀αβγρψρ(x, t)δ(d)(x − x′), (1)

stating that sαβ (x) is the generator of the rotational symmetry, thus 
leading to conservation of the total spin, Sαβ(t) = ∫ddx sαβ (x, t). The 
crucial constant g is the reversible coupling regulating this symplectic 
structure35. Finally, 𝕀𝕀αβγν = (δαγδβν − δανδβγ)/2  is the identity in the  
space of sαβ.

The dynamical field theory we study combines the irreversible 
off-equilibrium hydrodynamic approach of Toner and Tu14,15,18 with the 
reversible conservative structure used to describe superfluid helium 
and quantum antiferromagnets (models E/F and G of ref. 35). The equa-
tions of motion are given by

Dtψα = −Γ δℋ
δψα

+ gψβ
δℋ
δsαβ

− ∂α𝒫𝒫 + θα, (2)

Dtsαβ = −Λαβγν
δℋ
δsγν

+ 2g 𝕀𝕀αβγνψγ
δℋ
δψν

+ ζαβ, (3)

where the material derivatives are defined as

Dtψα = ∂tψα + γvv0 ψν∂νψα,

Dtsαβ = ∂tsαβ + γsv0 ψν∂νsαβ.
(4)

Activity breaks Galilean invariance15, so that the couplings γv and γs  
can be different from 1 and from each other. ℋ  is the classic Landau–
Ginzburg coarse-grained Hamiltonian14:

ℋ =∫ddx [ 12∂βψα∂βψα +
r
2ψ

2 + u
4ψ

4 + 1
2 s

2]. (5)

The ψ-dependent part of ℋ is the standard alignment interaction, while 
s2/2 is the ‘kinetic’ term35. Because natural swarms have scale-free cor-
relations8, we will perform the calculation on the critical manifold, 
r = 0.

The terms proportional to g in equations (2) and (3) are the revers-
ible forces, characterizing inertial dynamics. Instead of acting directly 
on the polarization, the alignment force δℋ/δψ acts on the spin, which 
in turns rotates ψ (ref. 37). On the other hand, the terms proportional 
to the kinetic coefficients Γ and Λ represent the irreversible forces, 
responsible for relaxation. The pressure 𝒫𝒫 enforces incompressibility, 
which in k-space translates into kαψα = 0, or P⟂

αβ
ψβ = ψα , with the 

projector P⟂
αβ
= δαβ − kαkβ/k2 . To respect this constraint, one must 

project the dynamic equation for ψ, equation (2), and its noise 
correlator18:

⟨θα (k, t)θβ (k′, t′)⟩ = (2π)d2 ̃Γ P⟂
αβ
δ(d) (k + k′)δ (t − t′)

where ̃Γ ≠ Γ  out of equilibrium. Notice that, if we write a general ani-
sotropic form of this kinetic coefficient, Γαβ = Γ

⟂P⟂
αβ
+ Γ

∥(𝕀𝕀 − P⟂
αβ
), 

only Γ⊥ survives the projection of equation (2), so that effectively Γ = Γ⊥ 
in our notation (and similarly for ̃Γ ). Further non-diagonal forms of 
the kinetic coefficient may be conceivable, but we do not study them 
here, as they would make the calculation too intricate and go beyond 
the scope of this article. On the other hand, because equation (3) is not 
projected, anisotropic corrections to Λ in k-space are generated by the 
RG47, so it is convenient to assume from the outset a general anisotropic 
form:

Λαβγν = (λ⟂ℙ⟂αβγν + λ∥(𝕀𝕀 − ℙ⟂)αβγν) k2, (6)

Underdamped
ηLz ≪ 1
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ηLz ≫ 1
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η ≠ 0

Inertial
g ≠ 0

Reversible + irreversible terms

Only irreversible terms

The spin is not dissipated
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Fig. 2 | Map of incompressible active theory. The coarse-grained dynamical 
equations may either have or not have reversible terms giving rise to inertial 
coupling between the polarization ψ (that is, the generalized coordinate) and 
the spin s (that is, the generalized momentum). In the first case (g ≠ 0) we have 
an inertial theory, with a Poisson structure expressing the fact that s is the 
generator of the rotational symmetry, thus leading to conservation of the total 
spin. In the second case (g = 0) we recover the non-inertial theory of ref. 18, where 
polarization is decoupled from the spin and the symmetry does not entail any 
Poisson structure (the equation for s becomes irrelevant). In this case z = 1.73.  
On the other hand, in the inertial theory, the irreversible kinetic coefficient of the 

spin may be either conservative or non-conservative. In the conservative case 
there is no spin dissipation (η = 0), which produces the inertial-conservative fixed 
point with z = 1.35. In the non-conservative case, the kinetic coefficient contains 
a dissipative term (η ≠ 0), although the impact of dissipation depends on how 
strong that is compared to the system size. In the underdamped regime, ηLz ≪ 1, 
collective fluctuations are still ruled by the inertial-conservative fixed point, 
so z = 1.35. This is the regime of natural swarms. Conversely, in the overdamped 
regime, ηLz ≫ 1, the Poisson structure is washed out, the spin drops out of the 
calculation, and collective fluctuations are ruled by the fully non-conservative 
fixed point, hence giving z = 1.73.
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where ℙ⟂αβγν  is the projector in the anti-symmetric space47. The fact  
that this kinetic coefficient is proportional to k2 means that the irrevers-
ible terms also conserve the total spin. Notably, thanks to the Poisson 
structure, this k2 term is generated by the RG if one tries neglecting it46. 
Finally, the spin noise has correlator

⟨ζαβ (k, t) ζγν (k′, t′)⟩ = (2π)d4Λ̃αβγνδ(d) (k + k′)δ (t − t′)

where Λ̃ has the same structure as Λ, although out of equilibrium we 
may have, λ⟂, ∥ ≠ ̃λ

⟂, ∥
. In addition to the terms discussed here, new 

interactions compatible with symmetries are generated by the RG 
transformation. To be self-consistent and closed, the RG calculation 
must take into account these new terms (Supplementary Section IC4).

Within the RG analysis it is possible to define a set of effective 
parameters and couplings that are independent of the field dimensions 
and upon which physical predictions uniquely depend (Supplementary 
Section IC5). Because the most important factors are activity and iner-
tia, we focus here on their effective coupling constants:

cv = v0 γv
̃Γ 1/2

Γ 3/2
, f = g2

̃λ
∥

λ∥
2
Γ

. (7)

cv is the effective coupling regulating activity, which vanishes for v0 → 0, 
while f quantifies the effective reversible coupling giving rise to inertial 
dynamics, and we will therefore refer to it as the inertial coupling con-
stant. The scaling dimension of all effective couplings is proportional 
to 4 − d, indicating that the upper critical dimension is dc = 4 and that an 
expansion in powers of ϵ = 4 − d is appropriate. A momentum shell RG 
calculation at one loop11,12 produces 65 Feynman diagrams (full details 
are provided in Supplementary Sections I and II). A rich fixed-point 
structure emerges, as shown in Fig. 1a.

The simplest fixed point corresponds to zero activity and zero 
inertial coupling, c∗v = f∗ = 0 (black square, Fig. 1a). This equilibrium 
non-inertial fixed point describes non-active systems, such as classical 
ferromagnets, where the polarization is not coupled to the spin; here 
z = 2 at one loop (model A of ref. 35). Incompressibility is merely a 
solenoidal constraint on ψ, leading to the universality class of dipolar 
ferromagnets48. If we perturb this fixed point by adding an inertial 
coupling we reach the equilibrium inertial fixed point (blue diamond), 
which still has zero activity, but non-zero inertial coupling, 
c∗v = 0, f∗ ≠ 0. This fixed point describes equilibrium superfluids and 
antiferromagnets (models E/F and G of ref. 35) and it has z = d/2, hence 
z = 1.5 in d = 3. Here, too, incompressibility is a solenoidal constraint 
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Fig. 3 | RG crossover. a, Weak dissipation. Given the velocity correlation function, 
C(t), and its relaxation time, τ, we can define the shape function as 
h(t/τ) = − logC(t/τ)/(t/τ). In the limit t/τ → 0, h(t/τ) → 1 for overdamped 
exponential dynamics, and h(t/τ) → 0 for inertial underdamped dynamics9. 
Experiments on natural swarms (orange line) and numerical simulations of 
near-critical ISM (purple line) both show underdamped inertial relaxation. The 
Vicsek model, on the other hand, belongs to the overdamped class (green line; data 
from ref. 9). b, Strong activity. Shown are velocity (full line) and network (dashed 
line) dynamical correlation functions for natural swarms (orange) and near-critical 
ISM simulations (purple). The network correlation function measures the fraction 
of particles remaining within the nc nearest neighbours after time t 
(Supplementary Section III), so it quantifies how quickly the interaction network 
reshuffles with time. In both natural swarms and ISM, the network decorrelates on 

the same timescale as the velocity, so they are strongly active systems. Here, nc = 18, 
which is the mean number of interacting neighbours in simulations. In 
Supplementary Section III and Supplementary Fig. 15 we show that in natural 
swarms the two timescales are the same over all spatial scales. c, Crossover of the 
flow. A close up of the RG flow around the active inertial fixed point shows that 
when the flow starts at weak dissipation and strong activity, it first rapidly 
approaches the active inertial fixed point, staying in its neighbourhood for many 
RG iterations, and then it crosses over to the overdamped regime (red circles).  
d, Crossover of the critical exponent. Shown is the RG evolution of the dynamical 
critical exponent z and of the reduced dissipation, η̂ = η/(1+ η), along the 
crossover flow line depicted in c. The RG crossover from underdamped to 
overdamped fixed points corresponds to an actual crossover in real space, such 
that z = 1.35 for L≪ℛ2/z  and z = 1.73 for L≫ℛ2/z .
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on ψ, which changes the static universality class, but not the dynamical 
one47. This fixed point is unstable against activity, which leads the RG 
flow towards a novel active inertial fixed point (red circle), where both 
c∗v ≠ 0 and f* ≠ 0. The combined effect of activity and inertia signifi-
cantly lowers the dynamical critical exponent; in d = 3 we find 
z = 1.34(8). This fixed point is stable against perturbations of all the 
parameters considered so far. As we shall discuss more thoroughly 
later on, we believe this to be the fixed point describing natural swarms.

Finally, there is a fourth fixed point (green triangle), which has 
non-zero activity, c∗v ≠ 0, but zero inertial coupling, f* = 0, correspond-
ing to z = 1.73 in d = 3. Here, the inertial reversible terms are absent from 
the dynamics, so the polarization is decoupled from the spin18. This 
active non-inertial fixed point is stable against activity fluctuations, 
but as soon as we perturb it with an inertial coupling, f ≠ 0, the RG flow 
diverges (shaded area). There is a sound reason for this: the correct 
way to attain non-inertial dynamics is not to kill the reversible coupling 
between coordinate and momentum, but to introduce dissipation and 
let it take over in the overdamped limit. This is the consistency check 
our calculation must pass next.

So far, our theory has conserved the total spin, thanks to the Pois-
son structure generating the reversible terms in the dynamics and to 
the fact that the irreversible kinetic coefficient Λ is zero at k = 0. 
Although the Poisson structure has no reasons to change, Λ could—
within natural swarms we cannot exclude that some spin dissipation 

exists, not as a result of a violation of the rotational symmetry, but 
because individual midges might exchange spin with the environment 
in a way that is unaccounted for in the equations of motion. Spin dis-
sipation is produced by a k-independent term η in the kinetic coeffi-
cient, Λ ~ (λ∥ + λ⊥)k2 + η, and similarly in Λ̃. The RG calculation (reported 
in Supplementary Section IE) shows that the scaling dimension of η is 
always positive, so if we perturb the active inertial fixed point with η ≠ 0, 
the RG flow moves out of the conservative plane and eventually reaches 
a fixed point at η = ∞, where polarization decouples from the spin and 
z = 1.73 (Fig. 1b). This is the correct way to obtain the overdamped limit 
in which inertia becomes irrelevant, so we call this the active over-
damped fixed point (a hopefully clarifying map of the theory is depicted 
in Fig. 2). Yet, if the overdamped fixed point is the only asymptotically 
stable one, why should we be interested in the inertial fixed point?

The answer is that finite-size systems can be ruled by a partially 
stable RG fixed point if the physical parameters are close enough to it. 
Consider a ferromagnet slightly above its critical temperature Tc. The 
stable fixed point is T* = ∞, and yet, if the temperature is close enough 
to Tc, the critical fixed point governs the physics as long as the system’s 
size is smaller than the correlation length, L ≪ ξ. This is a general mecha-
nism: when the physical couplings are close to a mixed-stability fixed 
point, the RG flow remains for many iterations in the vicinity of it, and 
because iterating RG corresponds to observing at larger and larger 
scales, the flow of a finite-size system may never get out of that basin 
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Fig. 4 | Experimental and numerical results. a, Experiments. The logarithm of 
relaxation time τ is plotted versus the logarithm of the correlation length ξ in 
natural swarms (logarithms are in base 10). The critical exponent zexp is the slope 
of the linear fit. Because experimental uncertainty affects both τ and ξ, standard 
LS regression (which assumes no uncertainty on the abscissa) systematically 
underestimates the exponent. RMA regression treats uncertainty on the two 
variables in a symmetric way by minimizing the sum of the areas of the triangles 
formed by each point and the fitted line. The inset shows, for a sample point, the 
construction of the triangle whose area is given by |ΔxΔy|/2 (see Methods). RMA 
regression gives zexp = 1.37. The physical ranges for τ and ξ are 80 ms < τ < 610 ms 
and 50 mm < ξ < 250 mm (Table I of Supplementary Section VI). b, Numerical 
simulations. Plot of logτ versus log ξ  in the ISM. Numerical errors are so small that 

LS and RMA give the same result, zsim = 1.35, and the LS error is ±0.04.  
c, Experimental resampling. To estimate the error bar on the experimental 
exponent we use a resampling method. We randomly draw 107 subsets with half 
the number of points and in each subset we determine z using RMA. We report 
here three such random subsets (orange, selected point; grey, unselected point). 
Rare experimental fluctuations under resampling can produce an unphysical 
value of z smaller than 1; this, however, happens in only 0.002% of the data 
subsets. d, Final comparison. Probability distribution of the experimental critical 
exponent (orange) from the resampling method of c. The standard deviation of 
this distribution gives the error on the experimental exponent, ±0.11. The vertical 
band (purple) indicates the position and error of the numerical critical exponent, 
and coloured symbols indicate the various RG fixed-point values of z.
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of attraction. This balance is always regulated by a crossover length 
scale, ℛ, which is in general a more complicated quantity than ξ, but 
the upshot is the same: as long as L≪ ℛκ  (where κ is the crossover 
exponent), the metastable fixed point rules the system42,46. How is this 
relevant for natural swarms? The underdamped shape of the dynamic 
correlation functions in natural swarms (Fig. 3a) is solid experimental 
evidence that spin dissipation is weak. On the other hand, rewiring of 
the interaction network in swarms occurs over the same timescale as 
velocity relaxation (Fig. 3b); that is, activity is strong. Hence, the RG 
flow starts close to the conservative plane, η = 0, but far from the equi-
librium plane, cv = 0. As a result, RG rapidly leads the system in the 
vicinity of the active inertial fixed point, z = 1.35, lingering there for 
many iterations, before flowing to the overdamped fixed point  
(Fig. 3c,d). We find ℛ = √λ∥/η and κ = 2/z (Supplementary Section IE2), 
so that for L≪ (λ∥/η)1/z a finite-size system is ruled by the active inertial 
fixed point. Given that λ∥ is finite along the flow, we conclude that as 
long as ηLz ≪ 1, the underdamped inertial scenario must hold. Because 
experimental relaxation is underdamped (Fig. 3a), we conclude that 
the dynamical critical exponent in natural swarms is z = 1.35.

Critical slowing down in natural swarms was first experimentally 
observed in ref. 9, but the spatio-temporal span of the events in that 
study was somewhat too limited to obtain an accurate determination 
of z, as the largest swarm had N = 278 individuals. Here we added eight 
new swarming events to the experimental dataset, notably including 
a swarm of 780 insects. The relaxation time τ versus correlation length 
ξ is reported in Fig. 4a. In ref. 9 the exponent was determined through 
least-squares (LS) linear regression of log τ  versus log ξ . However, LS 
works under the hypothesis that the independent variable is perfectly 
determined and that all experimental uncertainty is in the dependent 
variable. When this hypothesis is violated, LS systematically underes-
timate the slope49. In our experiments, errors certainly impact both  
τ and ξ, so LS is not appropriate, and this is why z was unfortunately 
underestimated in ref. 9. Reduced major axis (RMA) regression49, on 
the other hand, treats fluctuations over x and y on the same statistical 
footing (Methods and Supplementary Section IV). When applied to 
our dataset, RMA gives zexp = 1.37 ± 0.11 (Fig. 4). The substantial error 
bar should make us cautious about the agreement between experi-
ments and theory, also considering the rather uncontrolled approxima-
tions our calculation made, most notably incompressibility and the 
first-order perturbative expansion in powers of ϵ, with ϵ = 1. For this 
reason, we make a final sanity check of our RG calculation through 
numerical simulations.

The field theory we have studied is the coarse-grained expression 
of the Inertial Spin Model (ISM37), in which the particles’ velocities are 
rotated by the spins, and the spins are acted upon by the social align-
ment forces:

dvi
dt

= 1
χ
si × vi,

dsi
dt

= vi ×
J

ni
∑
j
nij(t) vj −

η

χ
si + vi × ζi,

dri
dt

= vi,

(8)

with noise correlator ⟨ζi(t) ⋅ ζj(t′)⟩ = 2dT η δijδ(t − t′). χ is the general-
ized turning inertia, J is the alignment strength, η is the microscopic 
spin dissipation (with a small abuse of notation we called it as its mes-
oscopic counterpart), and T is the noise amplitude (or temperature). 
The adjacency matrix nij(t) is defined by a metric interaction radius, rc. 
We want to compare the numerical results with the incompressible RG 
calculation. Hence, even though we do not impose incompressibility 
in the simulation, we employ a normalized alignment strength, 
J/ni = J/∑knik, a prescription known to make alignment-based models 
less prone to phase separation50; moreover, we monitor each simula-
tion to be sure that phase separation does not occur. We run 

three-dimensional simulations in the near-ordering scale-free regime, 
where ξ ~ L (Supplementary Section VB). In the overdamped limit, η → ∞, 
and the ISM converges to the non-inertial Vicsek model37, exactly as 
our dynamical field theory converges to the non-inertial theory of  
ref. 18. However, our aim is to check that in the underdamped regime 
the dynamics of a finite-size ISM simulation is ruled by the inertial  
fixed point; hence, the dissipation η has been chosen small enough to 
yield inertial relaxation, as in natural swarms (Fig. 3a). On the other 
hand, the speed v0 = |vi|, has been chosen large enough to be in the 
active regime, namely to have a network relaxation time of the same 
order as the velocity relaxation time (Fig. 3b). Full details of the  
simulation are reported in Methods and in Supplementary Section V. 
A plot of relaxation time versus correlation length is shown in Fig. 4b. 
The numerical errors are quite small, so LS and RMA give the same 
value of z, and we can therefore calculate the error simply through 
 LS. The result is zsim = 1.35 ± 0.04, in remarkable agreement with  
the RG theoretical prediction. This consistency also validates the idea 
that the incompressible theory can indeed be used to describe 
finite-size compressible systems, as long as density fluctuations are 
not strong.

A final comment is in order. Of the two keystones of the RG, rescal-
ing and coarse-graining, only the latter produces anomalous critical 
exponents, giving rise to non-trivial collective behaviours. The techni-
cal fingerprint of coarse-graining is the presence of Feynman diagrams: 
this is the case of the present calculation, which therefore probes the 
core element of RG. The consistency between theory, simulations and 
experiments attained here strongly supports the idea that the RG—
and its most fruitful consequence, universality—may have an incisive 
impact also in biology.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
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References
1. Cavagna, A. et al. Scale-free correlations in starling flocks. Proc. 

Natl Acad. Sci. USA 107, 11865–11870 (2010).
2. Strandburg-Peshkin, A. et al. Visual sensory networks and 

effective information transfer in animal groups. Curr. Biol. 23, 
R709–R711 (2013).

3. Ginelli, F. et al. Intermittent collective dynamics emerge from 
conflicting imperatives in sheep herds. Proc. Natl Acad. Sci. USA 
112, 12729–12734 (2015).

4. Attanasi, A. et al. Collective behaviour without collective  
order in wild swarms of midges. PLoS Comput. Biol. 10,  
e1003697 (2014).

5. Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R. E. & 
Kessler, J. O. Self-concentration and large-scale coherence in 
bacterial dynamics. Phys. Rev. Lett. 93, 098103 (2004).

6. Zhang, H. P., Be’er, A., Florin, E.-L. & Swinney, H. L. Collective 
motion and density fluctuations in bacterial colonies. Proc. Natl 
Acad. Sci. USA 107, 13626–13630 (2010).

7. Tang, Q.-Y., Zhang, Y.-Y., Wang, J., Wang, W. & Chialvo, D. R. Critical 
fluctuations in the native state of proteins. Phys. Rev. Lett. 118, 
088102 (2017).

8. Attanasi, A. et al. Finite-size scaling as a way to probe 
near-criticality in natural swarms. Phys. Rev. Lett. 113,  
238102 (2014).

9. Cavagna, A. et al. Dynamic scaling in natural swarms. Nat. Phys. 
13, 914–918 (2017).

10. Halperin, B. I. & Hohenberg, P. C. Scaling laws for dynamic critical 
phenomena. Phys. Rev. 177, 952–971 (1969).

http://www.nature.com/naturephysics
https://doi.org/10.1038/s41567-023-02028-0


Nature Physics | Volume 19 | July 2023 | 1043–1049 1049

Article https://doi.org/10.1038/s41567-023-02028-0

11. Wilson, K. G. & Fisher, M. E. Critical exponents in 3.99 dimensions. 
Phys. Rev. Lett. 28, 240–243 (1972).

12. Wilson, K. G. & Kogut, J. The renormalization group and the  
ε expansion. Phys. Rep. 12, 75–199 (1974).

13. Marchetti, M. C. et al. Hydrodynamics of soft active matter.  
Rev. Mod. Phys. 85, 1143–1189 (2013).

14. Toner, J. & Tu, Y. Long-range order in a two-dimensional  
dynamical xy model: how birds fly together. Phys. Rev. Lett. 75, 
4326–4329 (1995).

15. Toner, J. & Tu, Y. Flocks, herds and schools: a quantitative theory 
of flocking. Phys. Rev. E 58, 4828–4858 (1998).

16. Chen, L., Lee, C. F. & Toner, J. Incompressible polar active  
fluids in the moving phase in dimensions d > 2. New J. Phys. 20, 
113035 (2018).

17. Toner, J. Giant number fluctuations in dry active polar fluids:  
a shocking analogy with lightning rods. J. Chem. Phys. 150, 
154120 (2019).

18. Chen, L., Toner, J. & Lee, C. F. Critical phenomenon of the 
order-disorder transition in incompressible active fluids. New J. 
Phys. 17, 042002 (2015).

19. Škultéty, V., Birnšteinová, I. C. V., Lučivjanský, T. & Honkonen, J. 
Universality in incompressible active fluid: effect of nonlocal 
shear stress. Phys. Rev. E 102, 032616 (2020).

20. Mishra, S., Simha, R. A. & Ramaswamy, S. A dynamic 
renormalization group study of active nematics. J. Stat. Mech. 
Theory Exp. 2010, P02003 (2010).

21. Ramaswamy, S. The mechanics and statistics of active matter. 
Annu. Rev. Condens. Matter Phys. 1, 323–345 (2010).

22. Toner, J., Tu, Y. & Ramaswamy, S. Hydrodynamics and phases of 
flocks. Ann. Phys. 318, 170–244 (2005).

23. Caballero, F., Nardini, C. & Cates, M. E. From bulk to 
microphase separation in scalar active matter: a perturbative 
renormalization group analysis. J. Stat. Mech. Theory Exp. 2018, 
123208 (2018).

24. Maggi, C., Gnan, N., Paoluzzi, M., Zaccarelli, E. & Crisanti, A. 
Critical active dynamics is captured by a colored-noise driven 
field theory. Commun. Phys. 5, 55 (2022).

25. Cagnetta, F., Škultéty, V., Evans, M. R. & Marenduzzo, D.  
Universal properties of active membranes. Phys. Rev. E 105, 
L012604 (2022).

26. Mahdisoltani, S., Zinati, R. B. A., Duclut, C., Gambassi, A. & 
Golestanian, R. Nonequilibrium polarity-induced chemotaxis: 
emergent Galilean symmetry and exact scaling exponents. Phys. 
Rev. Res. 3, 013100 (2021).

27. Gelimson, A. & Golestanian, R. Collective dynamics of dividing 
chemotactic cells. Phys. Rev. Lett. 114, 028101 (2015).

28. Deseigne, J., Dauchot, O. & Chaté, H. Collective motion of 
vibrated polar disks. Phys. Rev. Lett. 105, 098001 (2010).

29. Mahault, B., Ginelli, F. & Chaté, H. Quantitative assessment  
of the Toner and Tu theory of polar flocks. Phys. Rev. Lett. 123, 
218001 (2019).

30. Tu, Y., Toner, J. & Ulm, M. Sound waves and the absence  
of Galilean invariance in flocks. Phys. Rev. Lett. 80,  
4819–4822 (1998).

31. Chaté, H., Ginelli, F., Grégoire, G. & Raynaud, F. Collective  
motion of self-propelled particles interacting without cohesion. 
Phys. Rev. E 77, 046113 (2008).

32. Ginelli, F., Peruani, F., Bär, M. & Chaté, H. Large-scale collective 
properties of self-propelled rods. Phys. Rev. Lett. 104,  
184502 (2010).

33. Doostmohammadi, A., Shendruk, T. N., Thijssen, K. & Yeomans, J. M.  
Onset of meso-scale turbulence in active nematics.  
Nat. Commun. 8, 15326 (2017).

34. Nishiguchi, D., Nagai, K. H., Chaté, H. & Sano, M. Long-range 
nematic order and anomalous fluctuations in suspensions of 
swimming filamentous bacteria. Phys. Rev. E 95, 020601 (2017).

35. Hohenberg, P. C. & Halperin, B. I. Theory of dynamic critical 
phenomena. Rev. Mod. Phys. 49, 435–479 (1977).

36. Attanasi, A. et al. Information transfer and behavioural inertia in 
starling flocks. Nat. Phys. 10, 691–696 (2014).

37. Cavagna, A. et al. Flocking and turning: a new model for self- 
organized collective motion. J. Stat. Phys. 158, 601–627 (2015).

38. De Dominicis, C. & Peliti, L. Field-theory renormalization and 
critical dynamics above Tc: helium, antiferromagnets and 
liquid-gas systems. Phys. Rev. B 18, 353–376 (1978).

39. Cavagna, A. et al. Silent flocks: constraints on signal propagation 
across biological groups. Phys. Rev. Lett. 114, 218101 (2015).

40. Yang, X. & Marchetti, M. C. Hydrodynamics of turning flocks. Phys. 
Rev. Lett. 115, 258101 (2015).

41. Grégoire, G. & Chaté, H. Onset of collective and cohesive motion. 
Phys. Rev. Lett. 92, 025702 (2004).

42. Cavagna, A., Di Carlo, L., Giardina, I., Grigera, T. S. & Pisegna, G. 
Equilibrium to off-equilibrium crossover in homogeneous active 
matter. Phys. Rev. Res. 3, 013210 (2021).

43. Di Carlo, L. & Scandolo, M. Evidence of fluctuation-induced 
first-order phase transition in active matter. New J. Phys. 24, 
123032 (2022).

44. Qi, W., Tang, L.-H. & Chaté, H. Finite-size scaling and double- 
crossover critical behavior in two-dimensional incompressible 
polar active fluids. Preprint at https://arxiv.org/abs/2211.12025 
(2022).

45. Cavagna, A. et al. Dynamical renormalization group approach  
to the collective behavior of swarms. Phys. Rev. Lett. 123,  
268001 (2019).

46. Cavagna, A. et al. Renormalization group crossover in the critical 
dynamics of field theories with mode coupling terms. Phys. Rev. E 
100, 062130 (2019).

47. Cavagna, A. et al. Dynamical renormalization group for 
mode-coupling field theories with solenoidal constraint. J. Stat. 
Phys. 184, 26 (2021).

48. Bruce, A. D. & Aharony, A. Critical exponents of ferromagnets with 
dipolar interactions: second-order ϵ expansion. Phys. Rev. B 10, 
2078–2087 (1974).

49. Sokal, R. R. & Rolf, F. J. Biometry: the Principals and Practice of 
Statistics in Biology Research (W.H. Freeman, 2012).

50. Chepizhko, O., Saintillan, D. & Peruani, F. Revisiting the emergence 
of order in active matter. Soft Matter 17, 3113–3120 (2021).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons license and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2023, corrected publication 2023

http://www.nature.com/naturephysics
https://arxiv.org/abs/2211.12025
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Nature Physics

Article https://doi.org/10.1038/s41567-023-02028-0

Methods
Experiments
Data were collected in the field by acquiring video sequences using a 
multi-camera system of three synchronized cameras (IDT-M5) shooting 
at 170 frames per second. Two cameras (the stereometric pair) were at 
a distance between 3 m and 6 m depending on the swarm and on the 
environmental constraints. A third camera, placed at a distance of 25 cm 
from the first camera, was used to solve tracking ambiguities. We used 
Schneider Xenoplan 50-mm f = 2.0 lenses. Typical exposure parameters 
were aperture f = 5.6 and an exposure time of 3 ms. Recorded events 
had a time duration between 0.88 and 15.8 s (Table I of Supplementary 
Section VI). More details are availabile in ref. 4. To reconstruct the 3D 
positions and velocities of individual midges, we used the tracking 
method described in ref. 51. Our tracking method is accurate even on 
large moving groups and produces very low time fragmentation and 
very few identity switches, therefore allowing for accurate measure-
ments of time-dependent correlations.

Fit of the dynamic critical exponent
Dynamic scaling states that the relaxation time τk at wavelength k and 
correlation length ξ are linked by the relation τk = ξzΩ(kξ), where Ω is 
a scaling function. To infer the value of z from experimental data, we 
measured the relaxation time τk of the mode at wavelength k = ξ−1 in 
different swarming events. Experimental evaluation of τk and ξ is 
discussed in Supplementary Section IV, and follows ref. 9. Dynamic 
scaling in this case reduces to τ ~ ξz (where τ ≡ τk=ξ−1 ); hence, 
logτ = zlogξ + c. In ref. 9, z was fitted through a standard LS regression, 
which gave zexp = 1.12 ± 0.16 on the dataset of ref. 9, and zexp = 1.16 ± 0.12 
on the current larger dataset. The problem with LS, though, is that it 
assumes that experimental uncertainty is only present in the depend-
ent variable y, which is not true for our experimental data, as both  
τ and ξ are subject to experimental uncertainty. When using it on a 
dataset where the error also affects x, LS systematically underestimate 
the slope49. Therefore, LS is not a good method in our case. RMA 
regression, on the other hand, is a method that works under the 
hypothesis that both x and y are affected by uncertainties52,53. RMA 
fits a set of Gaussian variables xi and yi with homogeneous variance 
σ2x  and σ2y  to a regression line, y = f(x) = αx + β, and it determines α and 
β through minimization of the sum of the areas of the triangles formed 
between each point and the regression line with sides parallel to the 
axis (Fig. 4a, inset). For each point, the area of this triangle is given 
by, |ΔxiΔyi| /2, where

Δxi = xi − f−1(yi) =
αxi + β − yi

α
(9)

Δyi = yi − f(xi) = yi − αxi − β. (10)

The function to be minimized is therefore

Σ (α, β) = 1
N

N

∑
i=1

(yi − αxi − β)
2

|α| . (11)

The minimization equations, ∂αΣ = ∂βΣ = 0, give

α2 =
𝔼𝔼 [y2] − 𝔼𝔼[y]2

𝔼𝔼 [x2] − 𝔼𝔼[x]2
, β = 𝔼𝔼 [y] − α𝔼𝔼 [x] , (12)

where 𝔼𝔼 [g(x, y)] = 1
N
∑N

i=1 g(xi, yi). The sign of α is the same as the sign of 
the correlation between x and y. A further benefit of RMA compared 
to other methods, such as LS or effective variance (EV) (both discussed 
in Supplementary Section IVB), is that the fit is invariant under an 
interchange of variables, y(x) versus x(y). Moreover, RMA is also 

invariant under any scale change of the variables, so is not sensitive to 
the values of σx and σy, at variance with other methods. RMA is the only 
method, among those in which the fitted coefficient can be expressed 
in terms of elementary regression coefficients, that obeys both proper-
ties above53. In Supplementary Section IVB we also describe the EV 
regression method, which requires the experimental errors δτ and δξ 
as an input; we use EV with two different estimates of the (most prob-
lematic) experimental error δτ, and obtain results compatible with 
those of RMA (zexp = 1.32 ± 0.18 and zexp = 1.34 ± 0.18). Given the substan-
tial difficulties in assigning a univocal experimental error on τ to each 
swarm (Supplementary Section IVA3), we prefer to quote the RMA 
result zexp = 1.37 ± 0.11—which is error-neutral—as our most confident 
determination of the exponent.

Numerical simulations
Equations (8) of the microscopic ISM are numerically implemented 
using the RATTLE algorithm to enforce the constraint |vi(t)| = v0. Simu-
lations are performed in d = 3 in cubic boxes with periodic boundary 
conditions; the average density is fixed at ρ0 = 1 and the sizes explored 
are N = 256, 384, 512, 729, 1,024 and 2,048, with N the number of 
particles. The effective inertia is χ = 1 and the alignment strength is 
J = 18. The metric interaction range is rc = 1.6, corresponding (at this 
density) to an average number nc ~ 18 of interacting neighbours. The 
microscopic spin dissipation is η = 1 and the speed is v0 = 2; this choice 
of η and v0 ensures that the dynamics is clearly underdamped and 
active (see main text). The temperature (or noise strength) T serves 
as control parameter of the order–disorder transition; we explored 
the interval T ∈ [1: 8]. The time step of integration was chosen as 
dt = 10−4. For each size N we identify a finite-size ‘critical’ point, Tc(N). 
At every value of T we run five independent samples, initialized with 
polarized configurations, of length 6 × 105 to 8 × 105 steps, increas-
ing with system size, and we compute the susceptibility χ and take as 
Tc(N) the point where this quantity reaches a maximum. We measure 
the correlation length with the inverse of the wavenumber k = 1/ξ, 
where the static correlation function at this temperature peaks, and 
we calculate the relaxation time τ of the velocity’s C(k, t), in com-
plete analogy with the analysis of experimental data. This procedure 
ensures that the systems are always in a near-critical scaling regime, 
with the correlation length scaling linearly with the linear system’s 
size L (Supplementary Section VB).
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