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Abstract— Because of the difficulty of interpreting laser data
in a meaningful way, safe navigation in vegetated terrain is still a
daunting challenge. In this paper, we focus on the segmentation
of ladar data using local 3-D point statistics into three classes:
clutter to capture grass and tree canopy, linear to capture thin
objects like wires or tree branches, and finally surface to capture
solid objects like ground terrain surface, rocks or tree trunks. We
present the details of the method proposed, the modifications we
made to implement it on-board an autonomous ground vehicle.
Finally, we present results from field tests using this rover and
results produced from different stationary laser sensors.

I. INTRODUCTION

Autonomous robot navigation in vegetated terrain remains

a considerable challenge because of the difficulty in capturing

and representing the variability of the environment. Although

it is not a trivial task, it is possible to build models of smooth

3-D terrains like bare ground. But it is much more difficult to

cope with areas that cannot be described by piecewise smooth

surface like grass, bushes, or the tree canopy. Because they

exhibit porous surfaces and random medium of propagation in

their interior they are more naturally described by 3-D texture

rather than by smooth surfaces.

In this paper, we present a method to segment 3-D point

clouds, acquired by a laser radar, into three classes: surface

(ground bare terrain surface, solid object, large tree trunk),

linear structures (wires, thin branches) and scatter (tree canopy,

grass). Similar points are then grouped into consensus region

corresponding to large pieces of surfaces. Our method does

not rely on a specific sensor geometry or scanning pattern.

In particular the internal representation is updated every time

a new data point is acquired by the sensor, irrespective

of the order of acquisition. We use statistical classification

techniques, and we learn most of our method parameters using

training data sets manually label, reducing the amount of hand

tuning. We presented in [1] results produced off-line using

data coming from different laser radar sensors in a variety

of environments. In this paper we present results from on-

board processing on the General Dynamics Robotic Systems

eXperimental Unmanned Vehicle (GDRS XUV) as well as

additional results from stationary laser radars.

Because of its importance for obstacle detection and en-

vironment modeling, the issue of detecting and segmenting

vegetation has been explored in the past. The use of spectral

data has received a lot of attention compared to the use

of geometric information. A few approaches, pioneered by

Mumford [2], considered single point statistics of range image

of natural environments. But to characterize texture we need

local statistics on range, derivative of ranges and frequency

components. In robotics, Matthies [3] presented results on

single point statistics computed from data from a single

point laser range finder, to differentiate between vegetation

and solid surface like rocks. In [4], he presented a more

geometric approach to this problem. A large literature exists

on the recovery of the ground terrain surface from airborne

laser sensor, see [5] for a review and comparison of the

methods. This includes the filtering of the vegetation and the

interpolation of the terrain surface. In robotics, Lacaze [6]

measured the permeability of the scene to detect vegetation.

A similar approach is used by Wellington in [7], in addition

to other methods, to recover the load bearing surface.

Below we present our approach to the problem of 3-D data

segmentation, the implementation we produce to run on-board

the XUV and finally results from different stationary sensors

and results from field test with the XUV.

II. APPROACH

Our approach is based on 3-D points statistics to compute

saliency features that capture the spatial distribution of points

in a local neighborhood. The saliencies distribution are cap-

tured by a Gaussian Mixture Model (GMM) automatically

using the Expectation Maximization (EM) algorithm. Given

such a model, produced off-line, we can classify on-line new

data with a Bayesian classifier [8].

A. Local point statistic

The saliency features we use are inspired by the tensor

voting approach [9]. But instead of using the distribution of

surface orientation, we use the distribution of the 3-D points

directly. The distribution is captured by the decomposition

into principal components of the covariance matrix of the 3-D

points computed in a local neighborhood, the support region.

The size of the neighborhood considered defines the scale of

the features. The symmetric covariance matrix for a set of N

3-D points {Xi} = {(xi,yi,zi)} with X = 1

N ∑Xi is defined in

equation 1.

1

N
∑(Xi −X)(Xi −X)T (1)

The matrix is decomposed into principal components or-

dered by decreasing eigenvalues. e0, e1, e2 are the eigenvectors



corresponding respectively to the eigenvalues λ0, λ1, λ2 where

λ0 ≥ λ1 ≥ λ2.

In the case of scattered points, we have λ0 ⋍ λ1 ⋍ λ2

and no dominant direction can be found. In the case of a

linear structure, the principal direction will lie in a plane with

λ0,λ1 ≫ λ2. Finally in the case of a solid surface, the principal

direction is aligned with the surface normal with λ0 ≫ λ1,λ2

We use a linear combination of the eigenvalues, see equation

2, to represent the three saliencies we named as point-ness,

curve-ness and surface-ness.

saliencies =





point-ness
curve-ness
surface-ness



 =





λ2

λ0 −λ1

λ1 −λ2



 (2)

In practice, it is not feasible to hand-tune thresholds to use

directly those saliencies to perform classification because those

values may vary considerably depending on the type of terrain,

the type of sensor, and the configuration of the sensor and the

vehicle. A standard way of doing this is to learn a classifier

that maximizes the probability of correct classification on a

training data set. This is the object of the next two sections.

B. Learning

We learn a parametric model of the saliencies distribution

by fitting a Gaussians mixture model (GMM) using the

Expectation-Maximization (EM) algorithm on a hand labeled

training data set. See [10] for practical details on the EM

algorithm. The resulting density probability model for each

class is the sum of ng Gaussians with weight, mean and

covariance matrices {(ωi,µi,Σi)}i=1...ng .

In order to capture the variability of the terrain we ensure

that we have at least data from flat surfaces, rough bare

surfaces and short grass terrains; from thin branches and power

line wires; from dense and sparse tree canopy and finally tall

grass. We set arbitrarily at 15 cm in diameter the limit between

linear and surface structure for tree trunk and branches. The

tedious labeling process is performed using 3D Studio Max

which allows to select 3-D points individually. We enforce a

balanced labeled data set between the three different classes.

In order to capture the influence of the clutter, we compute the

saliencies only for the selected points but the support region

includes all the points. Thus saliencies of branches will capture

the influence of the leaves for example.

We evaluated experimentally the optimal number of Gaus-

sians necessary to capture the distribution without over-fitting

the training data set. We fitted from one to six Gaussians per

class model and compared the classification rate with such

model, using different test data set. We achieve the best results

with 3 Gaussians per class. We also confirmed the correct

convergence of the EM algorithm.

This labeling and model fitting is performed off-line and

only once for each sensor. The next section will discuss the

classification method.

C. Classification

Let call Mk = {(ωk
i ,µ

k
i ,Σ

k
i )}i=1...nk

g
the GMM of the kth class.

Let S = (Ssur f ,Spoint ,Scurve) be the saliency features of a new

point we want to classify on-line. The conditional probability
of the new point to pertain to the kth class is given by

p(S|Mk) = ∑
i=1...nk

g
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d is the number of saliency features. The class is chosen as

argmax
k

{p(S|Mk)} (4)

The normalized confidence of the classification is defined
as

max
k

{p(S|Mk)}

max
k

{p(S|Mk)}−min
k
{p(S|Mk)}

(5)

The next section describes the implementation in the details.

III. ROVER IMPLEMENTATION

The method presented above cannot be used directly on-

board a mobile robot. We present the reasons below for

that. We then detail the modification we did to achieve fast

processing of the information on-board the XUV.

A. Issues

As mentioned earlier our task is to have the method pre-

sented above running on-board the GDRS XUV while the

robot is navigating in natural environment. A similar platform

was used in the Demo III XUV program [11]. The robot is

equipped with the GDRS mobility laser. This rugged laser

radar provides 180×32 pixels range images at 20 Hz, up to

80 m. The laser is mounted on a turret controlled by the

navigation system to build a terrain model used for local

obstacle avoidance. In our context we face several challenges:

• The high acquisition rate of the laser, producing more

than 100,000 points per second.

• Because the turret and the robot are in motion, the same

area of the scene will be perceived several times under

different viewpoints and at different distances. This is an

advantage in term of coverage of the environment, but

it implies incorporating the new data continuously in the

existing data structure and recomputing the classification

for already perceived scene areas.

• If the robot is stationary for some time, there is no need

to accumulate a huge amount of data of the scene from

the same viewpoint.

• The method requires the use of data in a support region

around the point of interest, which is a time consuming

range search procedure.

• For each new point added the saliency features and

classification need to be recomputed. But we need to do

so for each new point falling into the neighborhood of an

existing point.

In the rest of this section we present the solution we have

implemented to deal with such problems.



B. Practical implementation

In [1] we directly use the points produced by the laser stored

in a dense data representation. This approach is too expensive

for on-board processing because of the number of individual

3-D points to consider for update and classification, and also

because of the size of the data structure to maintain while

the robot is in motion. Using the data we collected during

our experiments, we estimated that the percentage of voxels

occupied in a dense data representation varies between 2 %

and 12 % when the voxel size varies between 10 cm and

1 m in edge length. As a result, we decide to implement a

sparse voxel data representation. We call each basic element,

10x10x10 cm in size, a prototype point. Each prototype point

maintains a set of intermediate results, computed using the raw

3-D data falling inside its bounds, and necessary to evaluate

the saliency feature incrementally. No data is discarded and

we can achieve significant reduction in the data size kept in

memory. We store the complete set of prototype points in a

structure we call a prototype volume. It allows us to access the

prototype point efficiently via a hashing function to do range

searches.

The flowchart of the current system implementation is

presented Figure 1. It shows two asynchronous processes: the

update of the intermediate saliency features done continuously

and the classification of the data done on request or at regular

intervals. The update consists in incorporating the new 3-D

point either by creating a new prototype point or by updating

an existing one. The classification of a given prototype point

consists of recovering the intermediate results of the saliency

feature in the support region, a range search, merging those

pieces of information to compute the actual saliency features,

and doing the classification as described in section II-C.

Class models

New data point from ladar

Hashing function

Prototype point exists ?

Create new prototype point

Update prototype point state

N

Y

Update

Address of nearest neighbooring point

Classification

Prototype point

Hashing function

Active neighboring prototype point

Compute sum of state of all the

neighboring prototype points

Compute saliency features

Classify

Classification label and confidence

Fig. 1. Flowchart of the current system implementation

The intermediate saliency features are computed incremen-

tally at the rate of 1,000,000 of points per second. The

classification is performed at the rate of 6,600 prototype points

per second for a 45 cm radius support region. This approach

allows us to incorporate the data in real time as it comes from

the ladar.

We also implemented a partial update strategy. The method

calls for the (re)computation of the saliency features each time

a new prototype point is created or each time a prototype

point is updated: the prototype points that include the new

or modified prototype points need to be updated. We showed

that because of the size of the prototype point, this step can be

skipped with an acceptable loss of classification performances

compared to the gain in processing time. In the worst case

scenario, the classification error rate increases by 15 percent

but the processing time is reduced by a factor of ten.

C. Interface

The architecture of the robot is the NIST 4D/RCS [12] and

the communicate between processes is performed using the

Neutral Message Language (NML). The laser radar data is

stored and updated continuously in a NML buffer, in one

of the robot boards running VxWorks. Our code runs on

a linux laptop and we communication with the robot using

NML buffers via an ethernet cable. Laser data can be saved

in a native file format. To test our method we modified two

software packages developed by GDRS: one to read ladar data

from a file and to create a NML buffer, like the robot would

do with live data, and one to process laser data and display the

raw data as well as the results. This step allows us to move

directly to the robot without additional effort.

IV. RESULTS

In this section, we present results from data collected by

two stationary sensors, Sick and Z+F, and one mobile sensor

mounted on a unmanned ground vehicle.

A. Stationary sensor

In order to demonstrate the sensor independence of our

approach, we present here results produced with two sensors.

1) CMU laser: Results 1 presented in Figure 2 are produced

using data collected by a Sick LMS291 attached to a custom

made scanning mount similar to the sensor found in [7]. The

laser can be seen in the picture Figure 2-(c). The laser collects

60,000 points per scan. The angular separation between laser

beams is 1

4
degree over 100 degrees field of view. The angular

separation between laser sweeps is 2

3
of a degree over 115

degrees. Figure 2 shows three examples of classification for

a scene with isolated wires, a scene with wires adjacent to

the tree canopy and a scene with bare trees. The results are

visually accurate but one can denote a border effect at the

edge of the ground surface where points are misclassified as

linear. This problem can be reduced by selecting carefully the

training data set but this would introduce artifacts in other

scene. We are looking at other methods to address this issue.

We have observed misclassification of ground points as

linear because of the scanning pattern of the sensor. Two

consecutive scan lines project far from each other in one

dimension only on the ground plane. The spacing between

1In this paper, we use the red/blue/green colors to display information
concerning surface/linear/scatter classification results or features. Points are
enlarged to assure proper rendering in a print version of the paper



(a) Isolated wires: scene (b) Wires adjacent to clutter: scene (c) Bare tree: scene

(d) Isolated wires: segmentation (e) Wires adjacent to clutter: segmentation (f) Bare tree: segmentation

Fig. 2. Examples of classification with the Sick laser. Points in red (blue,green) represent surface (curve,scatter) structures. In sub-Figure (d) color are
saturated. In sub-Figure (e) and (f) the level of saturation of the color represents the classification confidence.

(a) Scene (b) Segmentation (c) Largest connected components

Fig. 3. Complementary example of classification with the Sick laser. In sub-Figure (b), points in red (blue,green) represent surface (curve,scatter) structures.
In sub-Figure (c), each component has a unique color

laser points within each scan line remains close to each other.

Our method cannot deal with such artifact currently and we

are looking at a geometric method to deal with it.

2) Z+F laser: In Figure 4 we present results produced

using data from a Z+F LARA 21400 3-D imaging sensor.

It has a maximum range of 21.4 m with mm accuracy, a

3600×±35o FOV; it produces 8000×1400 range and intensity

measurements per scan [13]. We positioned the laser on a trail

in densely vegetated terrain: the flat ground was covered by

thick vegetation and the trail crossed a densely forested area.

Figure 4-(a) shows a picture a the scene. Figure 4-(b) shows

the 3-D data where the elevation is color-coded from blue to

red for low to high elevation. Figure 4-(c) shows a close-up

view of the segmentation results of one the scene area. We

used two classes, surface and scatter-linear, but we separated

the ground surface class points from other surface class points

using a geometric method presented in [14].

B. XUV field test results

In May 2003 we tested our software on-board GDRS XUV

at the Army Research Lab field test site at Fort Indiantown Gap

(FITG). The vehicle drove, at 2 m/s, a cumulative distance of

1579 m in natural environment while the robot was classifying

the data. We performed real-time update continuously, and

classification every 3 seconds or 7 meters traversed. The

test was intended to evaluate the communication mechanism

with the robot, the scrolling mechanism to maintain a con-

sistent environment representation as the robot move over

long distances. Figure 5-(a) shows the XUV vehicle during

a traverse. Note the turret and the laser locate at the front

of the vehicle. Figure 5-(b) shows the path of the vehicle



(a) Scene (b) 3-D color elevation (c) Segmented scene

Fig. 4. Example of classification results with the laser Z+F laser. In sub-Figure (c), points in red (blue,green) represent non-ground surface (ground
surface,scatter) structures

(blue line) and the positions at which the classification was

performed (red points). Figure 5-(c) shows the classification

processing time as a function of the number of prototype

points. The processing was performed on a IBM T23 thinkpad,

with 750 MB of RAM and a 1.2 GHz Pentium III CPU. The

processing was done using laser3d, a graphic interface used

for vizualization and debugging purposes.

(a) XUV traverse
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Fig. 5. FITG experiment

Shortly after, we conducted an additional set of tests at

GDRS facility in Westminster. The objective was to test a

stand-alone version of the code, without the graphic interface,

and to process and log the results. Figure 6 shows a two-

classe classification result. The scene is composed of two

areas: 1) a rough terrain covered by tall grass unevenly

distributed and bordered by tall trees, half left of Figure 6-

(a)/(b) and a parking lot with trees. Saliency features update

and intermediate classication results were performed as the

robot moved and the final classification result was stored. The

classification is consistent with the scene observed.

C. Toward target detection in clutter

In order to assess the performance of the algorithm for

detecting hidden targets in vegetation, we use synthetic data

to perform controlled experiments. We draw random points

to produce a 5×5 m plate with a non null thickness and a

20 mtimes20 m point cloud. For each experiment, we varied

the number of point for each elements: we reduce the number

of point on the plate and increase the number of point for the

clutter. The are able to achieve a 8 percent global error rate.

Figure 7 shows one of the scene and classification result. The

confusion matrix is presented in table I shows the number of

prototype points correctly or incorrectly classified compared

to the ground truth.

(a) Raw data (b) Classified data

Fig. 7. Synthetic data simulating a planar target hidden in vegetation

TABLE I

CONFUSION MATRIX FOR THE PLANE IN CLUTTER

Surface Point Line

Surface 1210 345 3

Point 215 5605 35

Line 0 0 0



(a) Top view (b) Side view

Fig. 6. XUV results from Westminster test. In red/blue prototype points classified as surface/other.

V. SUMMARY AND FUTURE WORK

In this paper we presented a method to perform 3-D data

segmentation for terrain classification in vegetated environ-

ment. Our method uses local point distribution statistics to

produce saliency features that capture the surface-ness, curve-

ness and point-ness of local area. We use statistical classifi-

cation techniques to capture the variability of the scenes and

the sensor characteristics (scanning pattern, range resolution,

noise level). We fit a Gaussian mixture models to a training

data set and use this parametric model to perform Bayesian

classification. We implemented and tested our approach on

a autonomous mobile robot, the GDRS XUV. We presented

classification results from a static Z+F and Sick laser in

addition to the results obtained on the XUV. With those

examples we show the versatility and the limitations of our

current method and implementation.

Future work will focus on improving the processing time

on reducing the classification error rate by dealing with border

effects and isolated range measurements. We will also pay

more attention to the formal numerical assessment of our

method and to the problem of target hidden in vegetation. We

also plan to implement opportunistic data processing of the

ladar data, classifying data for obstacle detection only where

the robot plans to drive.
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