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The various types of the nonstandard Lagrangian can be added to the standard Lagrangian with the
invariant of the equation of motion in the low energy limit. In this paper, we construct the multiplicative
Lagrangian of a complex scalar field giving the approximated Klein-Gordon equation from the inverse
problem of the calculus of variation. Then, this multiplicative Lagrangian with arbitrary high cutoff is
applied to the toy model of the Higgs mechanism in U(1)-gauge symmetry in order to study the simple
effects in the Higgs physics. We show that, after spontaneous symmetry breaking happens, the Higgs
vacuum expectation value is free from the Fermi-coupling constant and the Higgs field gets the natural
cutoff in TeV scale. The other relevant coupling constants, the UV sensitivity of Higgs mass due to the loop
correction, some applications on the strong CP problem as well as anomalous small fermion mass, and the
cosmological constant problem are also discussed.
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I. INTRODUCTION

The renormalizability of the Standard Model (SM) is the
successful description to unify the three fundamental
forces: electromagnetic force, weak force, and strong force
[1–7]. From the unitarity, stability, and triviality [8–11], this
model can be valid up to the Planck scale. The ultraviolet
(UV) cutoff ΛUV from the loop corrections can possibly set
into arbitrary high energy scale and can be absorbed into
the counterterms. However, many phenomena cannot be
included in the SM prediction such as the quantum gravity,
the nonvanishing neutrino mass [12–15], the strong CP
problem [16–19] etc., [20–22]. Hence, it is reasonable to
interpret the SM as the effective theory below the unknown
energy scale. For this reason, the concept of naturalness
comes to play an essential role for specifying the mass scale
of new physics [23–28]. The successful cases are the
prediction of the mass scale of the charm quark and the
rho meson before they were discovered. The warning sign
from the existence of the new physics in the effective
field theory is that the unitarity of the scattering amplitude
is violated by some particular scale of the parameter
ΛUV. Here, the notion naturalness can be defined as the
autonomy of the physical scale of the effective theory [25].

Namely, the parameters in the effective field theory should
not sensitive to the physics in the UV scale. For example, in
the case of effective theory of fermion, the radiative
correction to mass of the fermion (M) is proportional to
the mass itself: M logðΛ2

UV=M
2Þ. The UV cutoff in the

logarithmic function leads to a small quantum correction
although the Λ is higher thanM many orders of magnitude
and, hence, the fermion mass is not sensitive to the physics
at the UV scale. Therefore, the fermion is natural in this
sense. On the other hand, in the case of the scalar field, the
radiative correction to scalar mass (m) is proportional to the
quadratic UV cutoff Λ2

UV. The mass parameter of scalar
field is sensitive to the physics at the UV scale. This causes
the scalar field theory to be unnatural and might not be
the elementary particle [23]. To restore the naturalness
of the scalar field, the bare mass and the physical mass are
required in the same order magnitude as the UV cutoff
mphysical ∼m ∼ ΛUV [23]. Here, the naturalness problem of
scalar field is in an unpleasant situation after the elementary
scalar particle: a Higgs boson with a mass 125 GeV [29,30]
was discovered at LHC. The unnatural situation appears in
the Higgs sector in the SM. The radiative correction to the
bare Higgs mass parameter μ is proportional to the UV
cutoff ΛUV

M2
Higgs;physical ¼ 2μ2 þ cΛ2

UV þ � � � ; ð1Þ

whereMHiggs;physical ≈ 125 GeV is an observed Higgs mass,
c contains the linear combination of the square mass of the
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particle in the SM, and the rest contains the logarithmic
term and a series of the inverse UV cutoff. If the SM is
assumed to be valid below the quantum gravity scale, it is
reasonable to take the UV cutoff to be the Planck mass. The
fine-tuning problem around 36 orders of decimals is required
to get the small physical mass ð102Þ2 ≈ ð1036Þ–ð1036Þ.
Therefore, the mass parameter of scalar boson is sensitive
to UV physics. To avoid the fine-tuning problem, artificially
lowering cutoff energy down to the early TeV scale is a
simple solution. This situation leads to a question:Why is the
cutoff energy so low comparing to the Planck scale, if the
quantum gravity is a single extended part of the SM? This
problem is famously known as the hierarchy problem
[24,27]. Therefore, if the notion of the naturalness is still
applicable, the SM should be replaced or gets the contribu-
tions by the newphysics atTeVscale.The famous scheme for
searching the new physics beyond the SM from the bottom-
up point of view is the StandardModel effective theory. This
model is assumed that there exist heavy particles, coupling
to the SM particle, in arbitrary high energy scale. By
integrating out these overall heavy particles, the SM
Lagrangian should consist of the higher dimension operators
Od with the cutoff Λ as

L ¼ LSM þ Ô5

Λ
þ Ô6

Λ2
þ � � � : ð2Þ

If these terms make the unitarity violation of the scattering
amplitude at the energy scale E ∼ Λ, then the UV cutoff can
be defined at the same scale with the parameter Λ. From the
notion of naturalness, this ends up with the expectation of Λ
in a scale of a few TeV. However, the various observations
show that the cutoff scale of the effective operators is higher
than the expectation value from naturalness argument
[31,32]. Furthermore, the most famous solution, supersym-
metry, was proposed to protect themass ofHiggs boson from
the UV sensitivity. The quadratic UV cutoff is canceled by
the supersymmetric particles in mass scale of a few TeV. The
remaining is theUVcutoff in the logarithmic function,which
is roughly of order unity. Therefore, the naturalness problem
is elegantly solved from the supersymmetric theory.
However, no sign of supersymmetric particles has been
observed at the Large Hardron Collider (LHC) [33–36].
We focus on the contribution terms from an important

theorem in the Lagrangian mechanism, known as the
nonuniqueness of Lagrangian, to fulfil the notion of
the naturalness. Briefly, the Lagrangian mechanics is the
mathematical tool to provide the equation of motion (EOM)
ranging from the point particle system to the field theory. In
the standard scheme, the Lagrangian function is written as
the additive form of the kinetic T and potential V function,
LStandard ¼ T − V. However, the inverse problem of the
calculus of variation shows that we could possibly have
various fascinating forms of the Lagrangian in order to
explain the evolution of the system [37–40]. Many non-
standard forms of Lagrangians, which are frequently seen

in the cosmology [41–43], are proposed to explain the
nature. For example, the k essence and Dirac-Born-Infeld
Lagrangians can provide the standard relativistic motion of
field, the Klein-Gordon equation, added with the extra
terms from the high energy effect. In general, we expect
that every nonstandard Lagrangian of scalar field could be
reduced to the Klein-Gordon equation in low energy limit.
In this work, we hypothesize that the Lagrangian of the
Higgs field may not be in either the pure standard-additive
form or pure nonstandard form. The Lagrangian might be
written in the linear combination of many possible forms

Lϕ ¼ α0LStandard þ
X
i

αiLi;Nonstandard; ð3Þ

where αi is a dimensionless coefficient. The EOM from
Lagrangian (3) will be approximately the Klein-Gordon
equation

EOMðLϕÞ ≈
�
∂μ∂

μϕþ ∂V
∂ϕ�

�
¼ 0: ð4Þ

If the interaction from the nonstandard Lagrangian could
not be matched with the physical phenomena or exper-
imental observation, then we can set αi ¼ 0. We then
consider the contribution from the multiplicative form of
Lagrangian [42–44], constructing from the inverse problem
of the calculus of variation [45–47], in the complex scalar
field model. Now, let us give an overview what we are
going to do. We aim to show that when the contribution
terms from the multiplicative Lagrangian with the cutoff at
arbitrary high energy scale (ΛH) are added to the standard
Lagrangian, the natural cutoff scale of the Higgs field (h)
after spontaneous symmetry breaking (SSB) can be tuned
down into the TeV scale

1

Λ2
H
O6ðϕÞ →

1

Λ2
TeV

O6ðhÞ; ð5Þ

where ΛH may possibly be set to be the Planck scale
(Mp ¼ 2.44 × 1018 GeV). This then could reconcile the
size of the radiative correction automatically. We would
like to emphasize that the result in this paper will not be
used to solve the UV sensitivity of the Higgs mass from the
heavy particles beyond SM. But we rather show that the
cutoff of the Higgs field can be possibly and naturally low.
This paper is organized as follows. In Sec. II, we rewrite

the Lagrangian of the complex scalar field model in the
nonstandard form. The nonuniqueness principle of the
Lagrangian and the inverse calculus variation are applied
to construct the Lagrangian producing the Klein-Gordon
equation in arbitrary potential. In Sec. III, we do not work
on the full SM Lagrangian to avoid abundant terms that do
not answer our research problem. We apply the contribu-
tion from the multiplicative Lagrangian to study the toy
model of the Higgs mechanism in U(1) gauge symmetry
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breaking and analogize some parameters to the electroweak
theory. The cutoff energy in the Higgs sector both before
and after SSB is analyzed. In Sec. IV, we discuss on the
coupling constants of the relevant operator, some applica-
tions, and the cosmological constant term.

II. THE MULTIPLICATIVE LAGRANGIAN
OF COMPLEX SCALAR FIELD

We consider the multiplicative form of Lagrangian for
the complex scalar field model given by

L ¼ Fð∂μϕ�
∂
μϕÞfðϕ�ϕÞ; ð6Þ

where ϕ is the complex scalar field and ∂μϕ
�
∂
μϕ is the

kinetic energy of the complex scalar field. The functions
Fð∂μϕ�

∂
μϕÞ and fðϕ�ϕÞ are unknown and to be deter-

mined. To apply this Lagrangian as the complex scalar field
in the relativistic theory, we require that the EOM from
Eq. (6) is the approximated Klein-Gordon equation in the
potential V as

∂μ∂
μϕþ ∂V

∂ϕ� ≈ 0; ð7Þ

where V ¼ Vðϕ�ϕÞ is the potential of the complex scalar
field with the global U(1) symmetry. We follow the scheme
from [44] to find the expressions of F and f using
separation variable method. The functions F and f can
be solved by the inverse calculus of variation from the
Euler-Lagrange equation

0 ¼ ∂L
∂ϕ� − ∂μ

∂L
∂∂μϕ

� : ð8Þ

Substituting Eq. (6) into (8) and applying the chain rule to
reorganize the spacetime derivative, ∂μ, we have

0 ¼ F
∂f
∂ϕ� − ∂μ∂

μϕf
∂F
∂X

− X
∂f
∂ϕ�

∂F
∂X

− ∂μϕ∂
μϕ

∂f
∂ϕ

∂F
∂X

− ∂μX∂μϕf
∂
2F
∂X2

; ð9Þ

where we have defined X ¼ ∂μϕ
�
∂
μϕ. The ∂μ∂

μϕ can be
reorganized into the function of ϕ by the EOM. However,
the problematic terms ∂μϕ∂

μϕ and ∂μX∂μϕ lead to the
failure of the separation variable method (SVM). Thus, it
seems to suggest that if the SVM is still applicable, then this
particular term must vanish

∂
2F
∂X2

¼ 0; ð10Þ

and the fourth term can be interpreted as the extra
interaction from the nonstandard Lagrangian. Now, we

ignore the extra interaction for a moment and we expect to
obtain the Klein-Gordon equation from the first three terms
in Eq. (9). From the SVM, we have

dF
dX

¼ 1

ϵΛ4

�
F − X

dF
dX

�
; ð11Þ

df
dϕ� ¼ −

1

ϵΛ4

∂V
∂ϕ� f; ð12Þ

where Λ4 is an arbitrary positive constant and ϵ ¼ �1. By
solving Eqs. (11) and (12), the functions F and f are
expressed as

FðXÞ ¼ ϵΛ4 þ X; ð13Þ

fðϕ�ϕÞ ¼ e−
Vðϕ�ϕÞ
ϵΛ4 : ð14Þ

Therefore, the multiplicative form of the Lagrangian of the
complex scalar field is given by

LΛ ¼ ðϵΛ4 þ ∂μϕ
�
∂
μϕÞe−Vðϕ�ϕÞ

ϵΛ4 : ð15Þ

Here, from the dimensional analysis, Λ is a constant with
the mass dimension ½Λ� ¼ 1. The Λ can be interpreted
in two different ways. First, let us consider the Λ in the
exponential function. The Λ can be interpreted as the
effective cutoff energy of the complex scalar field, ϕ.
Second, by considering the Λ in the bracket, the Λ can be
interpreted as the classical value of the vacuum energy
density when we take ϕ → 0.
One can show that the EOM of this Lagrangian (15) is

the Klein-Gordon equation, with the extra interaction,
multiplying with the exponential function�

∂μ∂
μϕþ ∂V

∂ϕ� þ
∂μϕ∂

μϕ

ϵΛ4

∂V
∂ϕ

�
e−

V
Λ4 ¼ 0: ð16Þ

In the limit Λ4 ≫ ∂μϕ∂
μϕ, the Klein-Gordon equation is

recovered �
∂μ∂

μϕþ ∂V
∂ϕ�

�
e−

V
Λ4 ≈ 0: ð17Þ

It is obvious that this Lagrangian can be another choice to
explain the complex scalar field in the relativistic theory.
As a consequence, the Lagrangian of the complex scalar
field can be written in more general form allowed by
the nonuniqueness theorem of the Lagrangian. From our
hypothesis in Eq. (3), one can consider a linear combination
between the multiplicative Lagrangian and the linear
Lagrangian

Lϕ ¼ ∂μϕ
�
∂
μϕ − V þ αðϵΛ4 þ ∂μϕ

�
∂
μϕÞe− V

ϵΛ4 ; ð18Þ
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while the EOM is still invariant in the limit Λ4 ≫ ∂μϕ∂
μϕ.

Here, the parameter α can be �1. In a classical level, in the
limit Λ4 ≫ ∂μϕ∂

μϕ, the solution of field does not change.
However, the multiplicative Lagrangian in Eq. (18) can be
interpreted and promoted as a boundary term of the
UV-cutoff energy of the scalar particle. For example, in
the case of a standard massive free scalar field (α ¼ 0) with
V ¼ m2ϕ�ϕ,

∂μϕ
�
∂
μϕ −m2ϕ�ϕ; ð19Þ

the highest energy of the scalar particle is not bounded in
the perturbative theory and can be set into arbitrary high
energy or infinity. Here, in case of added multiplicative
Lagrangian, there are the contribution terms from the
dimension-six operator such as

m6

Λ8
ðϕ�ϕÞ3: ð20Þ

This term gives us the amplitude proportional to the energy
of scalar particle (denoted by E) as

A ∼
m6E2

Λ8
: ð21Þ

The unitarity of amplitude violates at the energy scale
E > Λ4=m3. Obviously, the highest energy of scalar
particle cannot be infinite in the perturbative calculation.
The UV cutoff ΛUV is obtained in the scale ΛUV ∼ Λ4=m3.
Therefore, mathematically, the UV cutoff of the free scalar
particle is given by the added multiplicative Lagrangian.
In the next section, we apply this Lagrangian (18) to

study the toy model of Higgs mechanism in U(1) gauge
symmetry breaking and analogize some parameters to the
electroweak theory.

III. THE TOY MODEL: HIGGS MECHANISM
WITH THE MULTIPLICATIVE LAGRANGIAN

The potential V in Eq. (18) is defined as the Higgs
potential in the Ginzberg-Landau type

V ¼ −μ2ϕ�ϕþ λðϕ�ϕÞ2; ð22Þ

where ϕ is an analogy of the Higgs field, μ is the mass
parameter, and λ is a dimensionless coupling constant.
Substituting Eq. (22) into Eq. (18), one obtains

Lϕ ¼ ∂μϕ
�
∂
μϕþ μ2ϕ�ϕ − λðϕ�ϕÞ2

þ αðϵΛ4 þ ∂μϕ
�
∂
μϕÞe−−μ2ϕ�ϕþλðϕ�ϕÞ2

ϵΛ4 : ð23Þ

The EOM of ϕ from the Lagrangian (23) is given by

∂μ∂
μϕ − μ2ϕþ 2λðϕ�ϕÞϕ

¼ α

ϵ

−μ2ϕþ 2λðϕ�ϕÞϕ
1þ αe−

−μ2ϕ�ϕþλðϕ�ϕÞ2
ϵΛ4

∂μϕ∂
μϕ

Λ4
e−

−μ2ϕ�ϕþλðϕ�ϕÞ2
ϵΛ4 : ð24Þ

The vacuum solution of field, which relates to the tree-level
Higgs vacuum expectation value (VEV), can be obtained
by setting ∂μϕ ¼ 0 in the EOM [48]

−μ2ϕþ 2λðϕ�ϕÞϕ ¼ 0: ð25Þ

The Higgs VEV is nonzero given by

2hϕ�ϕi ¼ v2 ¼ μ2

λ
: ð26Þ

Here, the nonderivative term in Eq. (24) can be interpreted
as the field derivative of potential

∂VHiggs

∂ϕ� ¼ −μ2ϕþ 2λðϕ�ϕÞϕ: ð27Þ

We shall discuss about the shape of the full Higgs potential
and the energy density of theory after we fit the parameter
and obtain the UV cutoff of Higgs field in the discussion
section. Then, we assume that the Lagrangians of the other
particles are in the standard form. We add the U(1) gauge
field (Aμ), Wely fermion (ψ), and the Uð1Þ covariant
derivative to the Lagrangian (18)

L ¼ −
1

4
FμνFμν þDμϕ

�Dμϕþ μ2ϕ�ϕ − λðϕ�ϕÞ2

þ αðϵΛ4 þDμϕ
�DμϕÞe−−μ2ϕ�ϕþλðϕ�ϕÞ2

ϵΛ4

þ iψL=DψL þ iψ̄R=DψR − λfðϕψ̄LψR þ ϕ�ψ̄RψLÞ;
ð28Þ

where Dμ ¼ ∂μ − igAμ, Fμν ¼ ∂μAν − ∂νAμ, and λf is the
Yukawa-coupling constant. The U(1) symmetry is in the
metastable state. This then results in the existence of
the spontaneous symmetry breaking. We expand the
Higgs field around the VEV as

ϕðxÞ ¼ vþ hðxÞffiffiffi
2

p eiξðxÞ; ð29Þ

where hðxÞ and ξðxÞ are the fluctuation of field in the radial
part and the angular part in the complex plan. We apply the
unitary gauge ξðxÞ ¼ 0 and, consequently, the Goldstone
mode can be ignored. After SSB, the kinetic energy term of
Higgs field is in the noncanonical form scaling by the
function GðhÞ as

1

2
GðhÞ∂μh∂μh; ð30Þ
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where

GðhÞ ¼ 1þ αe−
λðhþvÞ4−2μ2ðhþvÞ2

4ϵΛ4 ; ð31Þ

which contains the exponential factor. We can reorganize
this term into the canonical renormalized form by redefin-
ing the field as

h → βhþ αβ5
μ2

6Λ4ϵ
e
μ2v2

4Λ4ϵh3 þOðh5Þ; ð32Þ

where

β ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ αe

μ2v2

4Λ4ϵ

q : ð33Þ

The Lagrangian in Eq. (28) after SSB can be expressed as

L ¼ −ρHiggs þ
1

2
∂μh∂μh −

M2
h

2
h2 −

λ3
3!
h3 −

λ4
4!
h4

−
4π

Λ5

h5 −
ð4πÞ2
Λ6

h6 þOðhÞ7

−
1

4
FμνFμν −

1

2
M2

AAμAμ þ ghAAhAμAμ þOðhÞ2

þ iψ̄L=∂ψL þ iψ̄R=∂ψR −Mfðψ̄LψR þ ψ̄RψLÞ
− yhðψ̄LψR þ ψ̄RψLÞ þ Lfermion−gauge: ð34Þ

Here, we have reorganized the coefficients in front of the
higher dimension operators in the form of naive dimen-
sional analysis power-counting formula [49,50]. The coef-
ficients are defined as

Mh ¼
ffiffiffi
2

p
μ; Mf ¼ λfvffiffiffi

2
p ; M2

A ¼ β−2g2v2;

y ¼ βλfffiffiffi
2

p ; λ3 ¼
6βμ2

v
; ghAA ¼ β−1e2v

λ4 ¼
2β4μ2ðαeμ2v2

4Λ4ϵð3Λ4ϵ − 2μ2v2Þ þ 3Λ4ϵÞ
Λ4v2ϵ

;

Λ5 ¼
16πβ−5Λ4vϵe−

μ2v2

4Λ4ϵ

αμ4

Λ6 ¼
24

ffiffiffiffiffi
10

p
πβ−4ϵvΛ4e−

μ2v2

8Λ4ϵ

μ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð8ðβ−2 − 4Þμ2v2 þ 57β−2Λ4ϵÞ

p ;

ρHiggs ¼ −
μ2v2

4
− ϵαΛ4e

μ2v2

4Λ4ϵ: ð35Þ

WhenΛ is taken to be infinity, all parameters are reduced to
the prediction in the standard theory of U(1)-Higgs mecha-
nism. Then, we specify the Higgs VEV by fitting the tree-
level parameters to the Fermi coupling constant (GF) as the
traditional scheme. By integrating out of the gauge boson in

the ff → ff scattering amplitude, the Fermi-coupling
constant can be written as

GFffiffiffi
2

p ¼ e2

8M2
A
: ð36Þ

This expression is the same as the standard theory due
to nonmodification in the gauge-fermion interaction in
Eq. (28). Substituting the parameter MA from Eq. (35) into
Eq. (36), we have

GF ¼ 1

4
ffiffiffi
2

p
v2ð1þ αe

μ2v2

4Λ4ϵÞ
: ð37Þ

Now, the GF cannot be applied to specify the observed
value of v. This parameter depends on two free parameters
v and Λ while μ is analogized to be Higgs mass parameter.
To match this model to the four-fermion theory, we can tune
the value of v and Λ as follows

Λ4 ¼ ð−1Þ
ϵ

v2M2
h

8 log ð− αv2

v2−v2SM
Þ ; ð38Þ

where we have parametrized GF in terms of vSM, which
vSM is the VEV in the standard theory defined from Eq. (37)
at Λ → ∞, as the following equation v2SM ¼ 1=4

ffiffiffi
2

p
GF.

Here, vSM is analogized to the Higgs VEV from the
Standard Model, vSM ¼ 246 GeV [51]. The important
remark is that v2SM is not the Higgs VEV but it is just
the parametrization of the inverse Fermi coupling constant.
According to the previous section, the definition of the
parameter Λ4 is a positive constant, see Eqs. (11) and (12),
so Eq. (38) holds if ϵ ¼ −1 is a required choice. Then, we
consider a possible value of the parameter α in Eq. (38). If
v > vSM, then the term −v2=ðv2 − v2SMÞ is obviously
negative. Thus, one requires α ¼ −1 to satisfy the defi-
nition of positive Λ4. It is not difficult to see that, on the
other hand, if v < vSM the value of the parameter α must
be þ1.
In the large VEV limit, Λ4 in Eq. (38) is reorganized in

the following form

Λ4 ≃
v4M2

h

8v2SM
: ð39Þ

To obtain the precise regime of the Higgs mass, the Dirac
naturalness [52] requires the dimensionless ratio v=Λ from
Eq. (39) to be of order unity

v
Λ
≃

ffiffiffiffiffiffiffiffi
vSM
Mh

r
∼Oð1Þ; ð40Þ

it obviously implies that the Higgs mass should be around
the order of the inverse Fermi coupling, vSM ∼ 102 GeV,
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Mh ∼ vSM: ð41Þ

Equation (41) compatibly matches with the observed value
of Mh ¼

ffiffiffi
2

p
μ ≈ 125 GeV [29,30].

To determine the value of v, we consider the dimension-6
operator contributing to the Higgs potential

λμ2

Λ4
ðϕ�ϕÞ3: ð42Þ

This operator provides the unitarity violation of amplitude
at the energy E > Λ2=

ffiffiffi
λ

p
μ. Therefore, the UV cutoff can

be specified at ΛUV ∼ Λ2=
ffiffiffi
λ

p
μ. If we assume that this

model is an effective theory below the Planck scale, then it
is reasonable to take the ΛUV to be the reduced Planck mass
(Mp ¼ 2.44 × 1018 GeV). We have

M2
p ¼ Λ4

λμ2
: ð43Þ

Substituting Eq. (35) into Eq. (43) then applying the limit
v ≫ vSM, the VEV is given by

v ≃ ð
ffiffiffi
2

p
vSMMhMpÞ1=3 ∼ 107 GeV: ð44Þ

We shall discuss the implication of the modified value of
the Higgs VEV in the next section. Here, the structure of the
Higgs potential in this model is different from the standard
theory because the dimensionless coupling constant in our
model is λ ¼ M2

h=2v
2 ∼ 10−11 while in the standard theory

is λ ¼ M2
h=2v

2
SM ∼ 10−1. The local minimum point of the

Higgs potential, which is defined from the EOM, is shifted
from the electroweak scale to a new scale at 107 GeV,
shown in Fig. 1.
However, by substituting Λ into Eq. (35), these

parameters

MA ¼ evSM; y¼ Mf

2vSM
; λ3 ¼

3M2
h

vSM
; ghhA ¼ e2vSM;

ð45Þ

identically remain the same with the standard theory. The
result of the Yukawa coupling is the same form with the SM
and also agrees with the experimental observation [53–58].
Therefore, the Higgs VEV can be set into arbitrary high-
energy scale without the sensitivity to these parameters in
tree level.
Then, we come to a major point of this research. We

consider the UV cutoff energy of Higgs particle after SSB.
In the case of multiple values of the cutoff scale of higher
dimension operators,

h5

Λ5

þ h6

Λ2
6

þOðh7Þ; ð46Þ

the ΛUV would be determined from the minimal value of Λi
[49,50,59–61] to preserve the whole amplitude in the
traditional perturbation theory. We find that Λ5 ≫ Λ6 so
ΛUV can be effectively defined from Λ6. Substituting Λ in
Eq. (38) into Λ6 in Eq. (35) and considering the limit
v ≫ vSM, we find that the UV cutoff of Higgs boson after
SSB is given by

ΛUV ≃
24πffiffiffiffiffi
37

p
�
vSM
Mh

�
vSM þOðv−1Þ ∼ 103 GeV; ð47Þ

The UV cutoff in the broken phase depends solely on the
Fermi-coupling constant. Therefore, it is insensitive to the
large scale of the Higgs VEV. Here, from Eq. (47), the ratio
of the physical Higgs mass and the UV cutoff in the broken
phase is naturally of order unity

M2
h

Λ2
UV

∼Oð1Þ: ð48Þ

This result respects to the notion of naturalness. Obviously,
the radiative correction from the SM particles to the Higgs
mass, Eq. (1), does not require the fine-tuning.
In conclusion, the UV cutoff before the SSB at the

Planck scale (43) or arbitrary high energy scale can be
tuned down exponentially to the TeV scale through the
exponential constant factor, see Eq. (33).

IV. DISCUSSIONS

First, we shall discuss on the deviation of the trilinear
coupling (λ3) and quartic Higgs self-coupling (λ4) from the
standard theory. We firstly consider the parameter λ3
defined in Eq. (45),

λ3 ¼
3M2

h

v2SM
:FIG. 1. The sketch of potential defined from the EOM in

Eq. (27), where ϕðxÞ ¼ ρðxÞeiξ= ffiffiffi
2

p
.
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This parameter is not altered from the SM prediction. This
result is still available with the observed value at the ILC
and the HL-LHC with the 68% confident level [62].
However, the observed value of this parameter does not
come to the conclusion at the HL-LHC [63–73]. Then, we
consider the parameter λ4. By substitutingΛ in Eq. (38) into
λ4 in Eq. (35), we obtain

λ4 ¼
�
1 −

8ðv2 − v2SMÞ
3v2SM

log

�
v2

v2 − v2SM

��
λ4;SM; ð49Þ

where λ4;SM ¼ 3M2
h=v

2
SM as the standard parameter from

the Higgs mechanism in U(1)-gauge symmetry breaking. In
the limit v ≫ vSM, this coupling constant can be approxi-
mated as

λ4 ¼
�
−
5

3
þO

�
v2SM
v2

��
λ4;SM: ð50Þ

This result follows the unitarity bound of hh → hh,
jλ4=λ4;SMj < 68 [74,75]. The large scale of VEV does
not violate the perturbativity of scattering amplitude. Here,
the result (50) will play a major role to distinguish our
model from the other Higgs models, such as the Nambu-
Goldstone Higgs boson [76,77], the Coleman-Weinberg
Higgs boson [78–80], and the tadpole-induced Higgs boson
[81,82], which predicts various values of λ4=λ4;SM [83].
However, the measurement of the quartic Higgs self-
coupling is known to be difficult, even at a future
100 TeV hadron collider [84], and therefore the value of
λ4 is still far from the conclusion.
Second, we discuss on the UV sensitivity of the Higgs

mass due to the (heavy) particle. The ratio of the one-loop
correction from particle with mass M and the physical
Higgs mass (Δμ2=M2

h) is given by

M2

16π2M2
hv

2
SM

�
M2 log

�
1

2
þ Λ2

UV

2M2

�
þM2 − Λ2

UV

�
; ð51Þ

where ΛUV ∼ v2SM=Mh. If the contribution comes from the
SM particle such as top quark with mass M ¼ 175 GeV,
then the size of radiative correction is around 3% of the size
of physical Higgs mass. The bare mass parameter of Higgs
and the physical Higgs mass are roughly close. Thus, the
radiative correction from SM particles does not violate the
notion of naturalness. Here, if the mass of the heavy particle
is far beyond the electroweak scale M ≫ vSM, the remain-
ing term is proportional to the heavy particle mass

Δμ2

M2
h

≃
1

16π2

�
M2

M2
h

��
M2

v2SM

�
: ð52Þ

Here, ifM ≫ Mh, there exists the fine-tuning problem in the
bare Higgs mass. The notion of naturalness can preserved
under the condition: M2=M2

h ∼Oð1Þ or M2=v2SM ∼Oð1Þ.

However, if heavy fermions, coupling to the Higgs boson,
actually exist in the experimental observation, then the
radiative correction no longer satisfies the notion of natu-
ralness. The small value of the cutoff does not improvise
anything in this situation. For example, if there is the
existence of the particle with M ∼Mp, then the size of the
loop correction is around Δμ2=M2

h ∼ 1030. Then there is a
huge amount of fine-tuning in the bare parameter of Higgs
mass and, of course, the Higgs mass could get the UV
sensitivity from the high energy degree of freedom. The
framework of our model has to be replaced with more
fundamental theory. For example, supersymmetric theory or
little Higgs model, the mass of scalar field can be protected
from the large radiative correction.
Third, we discuss on the application of our framework to

provide the particularly small value of the parameter θ in
the strong CP problem [16–19]. It is well known that this
problem requires the CP-breaking term into the QCD
Lagrangian as

θ

16π2
Ga

μνG̃
μνa; ð53Þ

whereGa
μν and G̃

μνa are the QCD field strength and its dual.
The current experimental data concerning the neutron
electric dipole model introduces the upper limit of θ,
namely θ ≲ 10−10 [85–87]. In principle, this parameter
can take any value between 0 to 2π but the nature selects the
particularly small value very close to zero. The Dirac
naturalness requires the dimensionless parameter in order
unity so this situation violates the naturalness expectation
by the ten orders of magnitude. In this discussion, we study
the effect of the addition of the operators, inside and
outside, to the multiplicative Lagrangian. We try to explain
the anomalous smallness of the θ term though the scheme.
Here, we introduce the term Ga

μνG̃
μνa=16π2 with the

coefficient in the order unity, inside and outside, to the
multiplicative Lagrangian as

L ¼ −
1

4
FμνFμν þDμϕ

�Dμϕ − V þ 1

16π2
Ga

μνG̃
μνa

−
�
−Λ4 þDμϕ

�Dμϕþ 1

16π2
Ga

μνG̃
μνa

�
e

V
Λ4

þ iψ̄L=DψL þ iψ̄R=DψR − λfðϕψ̄LψR þ ϕ�ψ̄RψLÞ:
ð54Þ

When the SSB is taking place, the Higgs field can be
expanded around the background value ϕ̄ as ϕ → ϕ̄þ h,
where h is the quantum fluctuation. The CP-breaking
term depends on the background value of the Higgs field
given by

1

16π2
ð1 − e−

ϕ̄2M2
h

8Λ4 ÞGa
μνG̃

μνa: ð55Þ
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When ϕ̄ ¼ 0, the value of the parameter θ is exact zero.
Consequently, the CP symmetry is restored at the origin.
This process satisfies the notion of the technical natural-
ness. Then, when ϕ̄ ¼ v, θ becomes

θ ¼ 1 − e−
v2M2

h
8Λ4 : ð56Þ

Substituting Eq. (38) into Eq. (56) and applying v ∼
107 GeV from Eq. (44), the θ is rewritten as

θ ¼ v2SM
v2

∼ 10−10: ð57Þ

This model can naturally give θ near the upper bound limit
of the observed value without the introduction of a new
hypothetical particle: axion [16–19]. In conclusion, the
addition of terms, with the same coefficient, inside and
outside the multiplicative Lagrangian leads to the small
coefficient after the SSB takes place. The thing is that the
Lagrangian Eq. (54) is our specific choice to explain the
anomalous smallness of θ term in the strong CP problem.
However, the other choice of the Lagrangian, containing

−
1

4π
FμνFμνe

V
Λ4 ; or λfðϕψ̄LψR þ H:c:ÞeV

Λ; ð58Þ

without any symmetry violation can be considered. We
notice that these terms do not contribute to the θ parameter
and, then, we shall ignore them. Furthermore, we are going
to show that if the Yukawa coupling, the third term in
Eq. (58), is applied in this scheme, we also obtain some
interesting context for the fermion mass parameter.
Fourth, we discuss on the application of our framework

to provide the fermion with anomalously small mass.
Suppose there is another type of fermion field χ with the
Yukawa coupling written inside and outside the multipli-
cative Lagrangian as

L ¼ −
1

4
FμνFμν þDμϕ

�Dμϕ − V

þ αðϵΛ4 þDμϕ
�Dμϕ − λχðϕχ̄LχR þ ϕ�χ̄RχLÞÞe−

V
ϵΛ4

þ iψ̄L=DψL þ iψ̄R=DψR − λfðϕψ̄LψR þ ϕ�ψ̄RψLÞ
þ iχ̄L=DχL þ iχ̄R=DχR − λχðϕχ̄LχR þ ϕ�χ̄RχLÞ: ð59Þ

After the SSB is taking place, mass of the χ field is given by

mχ ¼
vλχffiffiffi
2

p ð1 − e−
v2M2

h
8Λ4 Þ: ð60Þ

Substituting Eq. (38) into Eq. (60) and considering
v ≫ vSM, the mass of particle χ is suppressed by the large
scale of the Higgs VEV as

mχ ≈
λχv2SMffiffiffi

2
p

v
; ð61Þ

which is very small comparing with the mass of ψ (Mf)

mχ

Mf
¼
�
λχ
λf

��
v2SM
v2

�
∼ 10−10

�
λχ
λf

�
: ð62Þ

If we suppose that ψ is an electron field with mass Mf ¼
0.5 MeV and λχ=λf is of order unity (between 1–103), then
the value of mχ is around

mχ ∼ 0.0001–0.1 eV: ð63Þ

The upper bounded of mχ implicitly relates to the observed
mass scale of the electron neutrino [88–90] with λχ ∼ 103.
In our humble opinion, this toy mechanism could possibly
be used to explain the neutrino mass according to the Dirac
Naturalness λf=λχ ∼Oð1Þ.
Fifthly, we discuss the cosmological constant problem in

this model. After SSB happens, the cosmological constant
term generated from the Higgs potential is

ρHiggs ¼
1

8
M2

h

 
v2SM − v2

logð v2

v2−v2SM
Þ − v2

!
: ð64Þ

In the limit v ≫ vSM, we have

ρHiggs ¼ −
v4M2

h

8v2SM
þOðv2Þ: ð65Þ

If v ¼ 107 GeV, we obtain ρHiggs ∼ 1027 ðGeVÞ4. This is
obviously larger than the observed cosmological constant,
where the observed value is around ρvac ∼ 10−47 ðGeVÞ4
[91], about 74 orders of magnitude. The easiest possible
way to improvise this situation is an ad hoc constant term
ρX into the Lagrangian (28), as the same trick in Higgs
mechanism [92],

L0 ¼ Lþ ρX: ð66Þ

Here, we can set ρX ¼ ρHiggs − ρvac to cancel all the
tremendous contributions. However, this process leads to
a huge fine-tuning of the parameter ρX and the infinitesimal
value of the cosmological constant is not predictable.
Therefore, the linear combination between the standard
Lagrangian and the multiplicative Lagrangian could not
provide a resolution to the cosmological constant.
Last, we shall discuss on the energy density of the theory

defined from the Hamiltonian density. From the Lagrangian
(23), the Hamiltonian density (H), defined as the energy
density of the theory, is given by
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H ¼ ð1 − e
V
Λ4Þð _ϕ� _ϕþ∇ϕ� ·∇ϕÞ þ Veff ; ð67Þ

where

Veff ¼ V − Λ4e
V
Λ4 ð68Þ

will be called the effective potential. This potential has
five extremum points at jρj ¼ 0;�v;� ffiffiffi

2
p

v, where ϕðxÞ ¼
ρðxÞ expðiξðxÞÞ= ffiffiffi

2
p

. The potential start to decrease down
to −∞ when jρj > ffiffiffi

2
p

v. Therefore, the effective potential
is unbounded from below. Hence, the vacuum solution of
field from the EOM, v ¼ μ=

ffiffiffi
λ

p
, is not the true vacuum.

This situation leads to the vacuum instability problem since
the Higgs particle can possibly tunnel from the metastable
state at v to unbounded negative energy state. This risky
situation can be improved by adding the extra potential V
term inside the multiplicative Lagrangian (28) as

L0 ¼ Lþ Ve
V
Λ4 : ð69Þ

This new Lagrangian (69) still processes the U(1) sym-
metry. Here, the effective potential (68) becomes

Veff ¼ V − ðΛ4 þ VÞe V
Λ4 : ð70Þ

Now, we have V inside and outside the multiplicative
Lagrangian, motivated from Eqs. (54) and (59). Of course,
a new EOM, obtained from Eq. (69), will come with extra
interaction terms produced by V expV=Λ4. However, the
change of the EOM does not matter at this level since only
the Lagrangian (69) will be used to analyze the physical
parameters in themodel.When the kinetic energy is zero, the
remaining terms in the energy density (67) is the potential
(70). The tree-level Higgs VEV from Eq. (70) is v2 ¼ μ2=λ.
After all parameters in the model are fit with the Fermi
coupling constant, we find that the Higgs VEV v is still free
from the parameter GF. However, in the limit v ≫ vSM, the
sign of the parametersμ2, λ, andΛ4 turns out to be negative. If
v ≃ 107 GeV, then we have μ2 ≃ −ð2.2 × 10−3Þ2 GeV2,
λ ≃ −4.7 × 10−20, and Λ4 ≃ −ð2.1 × 104Þ4 GeV4. To
reverse the negative sign to be a positive of the parameter
Λ4, the potential has to be redefined as

V → Ṽ ¼ μ̃2ϕ�ϕ − λ̃ðϕ�ϕÞ2; ð71Þ

where μ̃2 ¼ −μ2 and λ̃ ¼ −λ. The full effective potential is
rewritten as

Veff ¼ Ṽ þ Λ̃4e−
Ṽ
Λ̃4 − Ṽe−

Ṽ
Λ̃4 ; ð72Þ

where Λ̃4 ¼ −Λ4. Now, the value of parameters μ̃2, λ̃, and
Λ̃4, which their expressions are shown in the Appendix,
are all positive. When ϕ → �∞, the new effective
potential is dominated by the exponential growth term

þλ̃ðϕ�ϕÞ2 expðλ̃ðϕ�ϕÞ2=Λ̃4Þ. So, this potential is obviously
bounded from below. Therefore, no vacuum instability exists
in the tree-level analysis. We then discuss the major param-
eters in the model under the condition v ∼ 107 GeV. First,
the UV cutoff of Higgs fieldΛ6 ∼ 103 GeV is still applicable
and is still independent on v. The parameter λ3 is in the same
form but the parameter λ4 is modified as λ4=λ4;SM ≃ 6, which
is still allowed with the unitarity and the observation at the
HL-LHC. A last important point, our analysis results in the
strongCP problem and the small fermion mass is still intact.
Finally, the cosmological constant term is also modified as
ρHiggs ≃M2

hv
2=8, which is still in the realm of the cosmo-

logical constant problem. Up to this point, the multiplicative
Lagrangian (23), motivated from the inverse calculus of
variation in our major analysis, can lead to the various
predictions of the energy scale beyond SM. But, it is an
unsatisfied Lagrangian due to the vacuum instability.
However, the addition of V inside and outside the multipli-
cative Lagrangian can fix thevacuum instability problem and
the results of the rest are not spoiled.

V. CONCLUSIONS

We apply the idea of the nonuniqueness principle of the
Lagrangian to the toy model of the electroweak phase
transition. The multiplicative Lagrangian, respecting to the
approximated Klein-Gordon equation, is promoted to con-
serve the autonomy of physical scale in the scalar field. We
find that the Higgs VEV is free from the Fermi-coupling
constant and can be tuned to be an arbitrary high energy scale.
However, if our model (28) is an effective theory below the
Planck scale, it possibly seems to give the prediction of the
size of Higgs mass and the TeV cutoff scale in the broken
phase. Lastly, this framework would presumably provide a
preliminary step to alternatively explain the strong CP
problem and the neutrino mass mechanism.
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APPENDIX: LIST OF PARAMETERS IN THE
LAGRANGIAN (69)

Λ̃4 ¼ μ2v2

4 logð v2

v2−v2SM
Þ ; ðA1Þ

μ̃2 ¼ M2
hv

2
SM

2v2
þOðv−4Þ; ðA2Þ

λ̃ ¼ M2
hv

2
SM

2v4
þOðv−6Þ; ðA3Þ

λ3 ¼
3M2

h

vSM
; ðA4Þ
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λ4 ¼
19M2

h

v2SM
þOðv−2Þ; ðA5Þ

Λ5 ¼
8πv3SM
3M2

h

þOðv−2Þ; ðA6Þ

Λ6 ¼
24πv2SMffiffiffiffiffiffiffiffi
113

p
Mh

þOðv−2Þ; ðA7Þ

ρHiggs ¼
1

8
v2M2

h þ
3

16
M2

hv
2
SM þOðv−2Þ: ðA8Þ
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