Natural transformations of higher order cotangent bundle functors

by Jan Kurek (Lublin)

Abstract

We determine all natural transformations of the r th order cotangent bundle functor $T^{r *}$ into $T^{s *}$ in the following cases: $r=s, r<s, r>s$. We deduce that all natural transformations of $T^{r *}$ into itself form an r-parameter family linearly generated by the p th power transformations with $p=1, \ldots, r$.

Using general methods developed in [2]-[5], we deduce that all natural transformations of the r th order cotangent bundle functor $T^{r *}$ into itself form an r-parameter family generated by the p th power transformations $A_{p}^{r, r}$ with $p=1, \ldots, r$.

Then we deduce that all natural transformations of $T^{r *}$ into $T^{(r+q) *}$ form an r-parameter family generated by the generalized p th power transformations $A_{p}^{r, r+q}$ with $p=q+1, \ldots, q+r$.

Moreover, we deduce that all natural transformations of $T^{r *}$ into $T^{(r-q) *}$ form an $(r-q)$-parameter family generated by the generalized p th power transformations $A_{p}^{r, r-q}$ with $p=1, \ldots, r-q$.

The author is grateful to Professor I. Kolář for suggesting the problem and for valuable remarks and useful discussions.

1. Let M be a smooth n-dimensional manifold. Let $T^{r *} M=J^{r}(M, \mathbb{R})_{0}$ be the space of all r-jets $j_{x}^{r} f$ of smooth functions $f: M \rightarrow \mathbb{R}$ with source at $x \in M$ and target at $0 \in \mathbb{R}$. The fibre bundle $\pi_{M}: T^{r *} M \rightarrow M$ with source r-jet projection $\pi_{M}: j_{x}^{r} f \mapsto x$ has a canonical structure of a vector bundle with

$$
\begin{equation*}
j_{x}^{r} f+j_{x}^{r} g=j_{x}^{r}(f+g), \quad k \cdot j_{x}^{r} f=j_{x}^{r}(k \cdot f) \tag{1.1}
\end{equation*}
$$

for $x \in M$ and $k \in \mathbb{R}[1]$.

The vector bundle $\pi_{M}: T^{r *} M \rightarrow M$ is called the r-th cotangent bundle over M.

Every local diffeomorphism $\varphi: M \rightarrow N$ is extended to a vector bundle morphism $T^{r *} \varphi: T^{r *} M \rightarrow T^{r *} N, j_{x}^{r} f \mapsto j_{\varphi(x)}^{r}\left(f \circ \varphi^{-1}\right)$, where φ^{-1} is locally defined. Hence, the r th cotangent bundle functor $T^{r *}$ is defined on the category $\mathcal{M} f_{n}$ of smooth n-dimensional manifolds with local diffeomorphisms as morphisms and has values in the category $\mathcal{V B}$ of vector bundles.

If $\left(x^{i}\right)$ are local coordinates on M, then we have the induced fibre coordinates $\left(u_{i}, u_{i_{1} i_{2}}, \ldots, u_{i_{1} \ldots i_{r}}\right)$ on $T^{r *} M$ (symmetric in all indices):

$$
\begin{gather*}
u_{i}\left(j_{x}^{r} f\right)=\left.\frac{\partial f}{\partial x^{i}}\right|_{(x)}, \quad u_{i_{1} i_{2}}\left(j_{x}^{r} f\right)=\left.\frac{\partial^{2} f}{\partial x^{i_{1}} \partial x^{i_{2}}}\right|_{(x)}, \ldots, \tag{1.2}\\
u_{i_{1} \ldots i_{r}}\left(j_{x}^{r} f\right)=\left.\frac{\partial^{r} f}{\partial x^{i_{1}} \ldots \partial x^{i_{r}}}\right|_{(x)}
\end{gather*}
$$

Since the functor $T^{r *}$ takes values in the category $\mathcal{V B}$ of vector bundles, we may define natural transformations $A_{p}^{r, r}$ of $T^{r *}$ into itself for $p=1, \ldots, r$.

Definition 1. The natural transformation $A_{p}^{r, r}$ of the r th cotangent bundle functor $T^{r *}$ into itself defined by

$$
\begin{equation*}
A_{p}^{r, r}: j_{x}^{r} f \mapsto j_{x}^{r}(f)^{p}, \tag{1.3}
\end{equation*}
$$

where $(f)^{p}$ denotes the p th power of f, is called the p-th power transformation.

Definition 2. The natural transformation $A_{p}^{r, s}$ of $T^{r *}$ into $T^{s *}$ defined by

$$
\begin{equation*}
A_{p}^{r, s}: j_{x}^{r} f \mapsto j_{x}^{s}(f)^{p} \tag{1.4}
\end{equation*}
$$

is called the generalized p-th power transformation.
We note that in the case $s=r+q$ this definition is correct only for $p=q+1, \ldots, q+r$.

Definition 3. The natural transformation $P^{r, r-q}$ of $T^{r *}$ into $T^{(r-q) *}$ defined by

$$
\begin{equation*}
P^{r, r-q}: j_{x}^{r} f \mapsto j_{x}^{r-q} f \tag{1.5}
\end{equation*}
$$

is called a projection.
Note that

$$
\begin{equation*}
A_{p}^{r, r-q}=A_{p}^{r-q, r-q} \circ P^{r, r-q} \quad \text { for } p=1, \ldots, r-q \tag{1.6}
\end{equation*}
$$

2. In this part we determine, by induction on r, all natural transformations of $T^{r *}$ into itself.

Theorem 1. All natural transformations $A: T^{r *} \rightarrow T^{r *}$ form the rparameter family

$$
\begin{equation*}
A=k_{1} A_{1}^{r, r}+k_{2} A_{2}^{r, r}+\ldots+k_{r} A_{r}^{r, r} \tag{2.1}
\end{equation*}
$$

with any real parameters $k_{1}, k_{2}, \ldots, k_{r} \in \mathbb{R}$.
Proof. The functor $T^{r *}$ is defined on the category $\mathcal{M} f_{n}$ of n-dimensional smooth manifolds with local diffeomorphisms as morphisms and is of order r. Thus, its standard fibre $S=\left(T^{r *} \mathbb{R}^{n}\right)_{0}$ is a G_{n}^{r}-space, where G_{n}^{r} is the group of all invertible r-jets from \mathbb{R}^{n} into \mathbb{R}^{n} with source and target at 0 .

According to general standard methods [2]-[5], the natural transformations $A: T^{r *} \rightarrow T^{r *}$ are in bijection with the G_{n}^{r}-equivariant maps $f^{r, r}:\left(T^{r *} \mathbb{R}^{n}\right)_{0} \rightarrow\left(T^{r *} \mathbb{R}^{n}\right)_{0}$ of the standard fibres.

Let $\widetilde{a}=a^{-1}$ denote the inverse element in G_{n}^{r} and let

$$
\begin{equation*}
t_{\left(i_{1} \ldots i_{r}\right)}=\frac{1}{r!} \sum_{\sigma \in S_{r}} t_{i_{\sigma(1)} \ldots i_{\sigma(r)}} \tag{2.2}
\end{equation*}
$$

denote the symmetrization of a tensor with components $t_{i_{1} \ldots i_{r}}$.
By (1.2) the action of an element $\left(a_{j_{1}}^{i}, a_{j_{1} j_{2}}^{i}, \ldots, a_{j_{1} \ldots j_{r}}^{i}\right) \in G_{n}^{r}$ on $\left(u_{i_{1}}, u_{i_{1} i_{2}}, \ldots, u_{i_{1} \ldots i_{r}}\right) \in\left(T^{r *} \mathbb{R}^{n}\right)_{0}$ is given by

$$
\begin{aligned}
& \bar{u}_{i_{1}}=u_{j_{1}} \widetilde{a}_{i_{1}}^{j_{1}}, \quad \bar{u}_{i_{1} i_{2}}=u_{j_{1} j_{2}} \widetilde{a}_{i_{1}}^{j_{1}} \widetilde{a}_{i_{2}}^{j_{2}}+u_{j_{1}} \widetilde{a}_{i_{1} i_{2}}^{j_{1}}, \ldots, \\
& \bar{u}_{i_{1} \ldots i_{r}}=u_{j_{1} \ldots j_{r}} \widetilde{a}_{i_{1}}^{j_{1}} \ldots \widetilde{a}_{i_{r}}^{j_{r}}+u_{j_{1} \ldots j_{r-1}} \frac{r!}{(r-2)!2!} \widetilde{a}_{\left(i_{1}\right.}^{j_{1}} \ldots \widetilde{a}_{i_{r-2}}^{j_{r-2}} \widetilde{a}_{\left.i_{r-1} i_{r}\right)}^{j_{r-1}}+\ldots
\end{aligned}
$$

$$
\begin{align*}
& +u_{j_{1} \ldots j_{r-s}}\left[\frac{r!}{(r-s-1)!(s+1)!} \widetilde{a}_{\left(i_{1}\right.}^{j_{1}} \ldots \widetilde{a}_{i_{r-s-1}}^{j_{r-s-1}} \widetilde{a}_{\left.i_{r-s} \ldots i_{r}\right)}^{j r-s}+\ldots\right] \tag{2.3}\\
& +u_{j_{1} j_{2}}\left[\frac{r!}{(r-1)!1!} \widetilde{a}_{\left(i_{1}\right.}^{j_{1}} \widetilde{a}_{\left.i_{2} \ldots i_{r}\right)}^{j_{2}}+\ldots\right]+u_{j_{1}} \widetilde{a}_{i_{1} \ldots i_{r}}^{j_{1}} .
\end{align*}
$$

I. Consider the case $r=2$. The equivariance of a G_{n}^{2}-equivariant map $f^{2,2}=\left(f_{i}, f_{i j}\right)$ of $\left(T^{2 *} \mathbb{R}^{n}\right)_{0}$ into itself with respect to homotheties in G_{n}^{2} : $\widetilde{a}_{j}^{i}=k \delta_{j}^{i}, \widetilde{a}_{j_{1} j_{2}}^{i}=0$, gives the homogeneity conditions

$$
\begin{equation*}
k f_{i}\left(u_{i}, u_{i j}\right)=f_{i}\left(k u_{i}, k^{2} u_{i j}\right), \quad k^{2} f_{i j}\left(u_{i}, u_{i j}\right)=f_{i j}\left(k u_{i}, k^{2} u_{i j}\right) \tag{2.4}
\end{equation*}
$$

By the homogeneous function theorem [2]-[5], we deduce that, first, the f_{i} are linear in u_{i} and independent of $u_{i j}$, and secondly, the $f_{i j}$ are linear in $u_{i j}$ and quadratic in u_{i}. Using the invariant tensor theorem for G_{n}^{1} [2]-[5], we obtain $f^{2,2}$ in the form

$$
\begin{equation*}
f_{i}=k_{1} u_{i}, \quad f_{i j}=k_{2} u_{i} u_{j}+k_{3} u_{i j} \tag{2.5}
\end{equation*}
$$

with any real parameters $k_{1}, k_{2}, k_{3} \in \mathbb{R}$.

The equivariance of $f^{2,2}$ of the form (2.5) with respect to the kernel of the projection $G_{n}^{2} \rightarrow G_{n}^{1}: \widetilde{a}_{j}^{i}=\delta_{j}^{i}$ and $\widetilde{a}_{j k}^{i}$ arbitrary, gives

$$
\begin{equation*}
k_{3}=k_{1} . \tag{2.6}
\end{equation*}
$$

This proves our theorem for $r=2$.
II. Suppose that the theorem holds for $r-1$ and the G_{n}^{r-1}-equivariant maps $f^{r-1, r-1}$ of $\left(T^{(r-1) *} \mathbb{R}^{n}\right)_{0}$ into itself define the $(r-1)$-parameter family $\bar{A}=k_{1} A_{1}^{r-1, r-1}+\ldots+k_{r-1} A_{r-1}^{r-1, r-1}$ with any real parameters k_{1}, \ldots, k_{r-1} $\in \mathbb{R}$.

Our aim is to obtain the general form of any G_{n}^{r}-equivariant map of $\left(T^{r *} \mathbb{R}^{n}\right)_{0}$ into itself.

Let $\left(u_{1}, u_{2}, \ldots, u_{r}\right):=\left(u_{i_{1}}, u_{i_{1} i_{2}}, \ldots, u_{i_{1} \ldots i_{r}}\right)$ denote the fibre coordinates on $T^{r *} M$. We assume that a G_{n}^{r}-equivariant map $f^{r, r}$ is of the general form $f^{r, r}=\left(f_{1}, \ldots, f_{r-1}, f_{r}\right)$ and the given map $f^{r-1, r-1}$ defines the first $r-1$ components $\left(f_{1}, \ldots, f_{r-1}\right)$ of $f^{r, r}$.

Considering the equivariance of $f^{r, r}$ with respect to the homotheties $\widetilde{a}_{j}^{i}=k \delta_{j}^{i}, \widetilde{a}_{j_{1} j_{2}}^{i}=0, \ldots, \widetilde{a}_{j_{1} \ldots j_{r}}^{i}=0$ in G_{n}^{r}, for the r th component f_{r} we obtain the homogeneity condition

$$
\begin{equation*}
k^{r} f_{r}\left(u_{1}, u_{2}, \ldots, u_{r}\right)=f_{r}\left(k u_{1}, k^{2} u_{2}, \ldots, k^{r} u_{r}\right) \tag{2.7}
\end{equation*}
$$

By the homogeneous function theorem [2]-[5], f_{r} is of the general form

$$
\begin{align*}
f_{i_{1} \ldots i_{r}}= & h_{r} u_{i_{1}} \cdot \ldots \cdot u_{i_{r}}+h_{r-1} u_{\left(i_{1} \ldots u_{i_{r-2}} u_{\left.i_{r-1} i_{r}\right)}\right.} \tag{2.8}\\
& +\ldots+h_{2,1} u_{\left(i_{1}\right.} u_{\left.i_{2} \ldots i_{r}\right)}+h_{2,2} u_{\left(i_{1} i_{2}\right.} u_{\left.i_{3} \ldots i_{r}\right)}+\ldots+h_{1} u_{i_{1} \ldots i_{r}}
\end{align*}
$$

with any real parameters $h_{1}, h_{2,1}, h_{2,2}, \ldots, h_{r-1}, h_{r} \in \mathbb{R}$. The equivariance of $f^{r, r}$ with respect to the kernel of the projection $G_{n}^{r} \rightarrow G_{n}^{r-1}: \widetilde{a}_{j}^{i}=\delta_{j}^{i}$, $\widetilde{a}_{j_{1} j_{2}}^{i}=0, \ldots, \widetilde{a}_{j_{1} \ldots j_{r-1}}^{i}=0$ and $\widetilde{a}_{j_{1} \ldots j_{r}}^{i}$ arbitrary, gives

$$
\begin{equation*}
h_{1}=k_{1} . \tag{2.9}
\end{equation*}
$$

Thus, we obtain the 1st power transformation $A_{1}^{r, r}$.
Now, considering the equivariance of $A-k_{1} A_{1}^{r, r}$ with respect to the kernel of the projection $G_{n}^{r-1} \rightarrow G_{n}^{1}: \widetilde{a}_{j}^{i}=\delta_{j}^{i}$ and $\widetilde{a}_{j_{1} j_{2}}^{i}, \ldots, \widetilde{a}_{j_{1} \ldots j_{r-1}}^{i}$ arbitrary, we obtain

$$
\begin{equation*}
h_{2,1}=\frac{r!}{1!(r-1)!} k_{2}, \quad h_{2,2}=\frac{r!}{2!(r-2)!} k_{2}, \quad \ldots \tag{2.10}
\end{equation*}
$$

Thus, we obtain the 2nd power transformation $A_{2}^{r, r}$.
Then, considering the equivariance of $A-k_{1} A_{1}^{r, r}-k_{2} A_{2}^{r, r}$ with respect to the kernel of the projection $G_{n}^{r-2} \rightarrow G_{n}^{1}$, we obtain the general form of the 3 rd power transformation $A_{3}^{r, r}$. Continuing this procedure gives the next power transformations $A_{3}^{r, r}, \ldots, A_{r-2}^{r, r}$. The equivariance of $A-k_{1} A_{1}^{r, r}-$ $k_{2} A_{2}^{r, r}-\ldots-k_{r-2} A_{r-2}^{r, r}$ with respect to the kernel of the projection $G_{n}^{2} \rightarrow G_{n}^{1}$:
$\widetilde{a}_{j}^{i}=\delta_{j}^{i}$ and $\widetilde{a}_{j k}^{i}$ arbitrary, leads to the next relation

$$
\begin{equation*}
h_{r-1}=\frac{r!}{(r-2)!2!} k_{r-1} \tag{2.11}
\end{equation*}
$$

Thus, we obtain the $(r-1)$ th power transformation $A_{r-1}^{r, r}$.
Finally, the G_{n}^{r}-equivariant map

$$
\begin{equation*}
A-k_{1} A_{1}^{r, r}-k_{2} A_{2}^{r, r}-\ldots-k_{r-1} A_{r-1}^{r, r}=h_{r} A_{r}^{r, r} \tag{2.12}
\end{equation*}
$$

is defined by the r th power transformation with any real parameter $h_{r} \in \mathbb{R}$. If we put $h_{r}=k_{r}$, this proves our theorem.
3. In this part we determine all natural transformations $T^{r *} \rightarrow T^{s *}$ in two cases: $r<s$ and $r>s$.

TheOrem 2. All natural transformations $A: T^{r *} \rightarrow T^{(r+q) *}$ form the r-parameter family

$$
\begin{equation*}
A=k_{q+1} A_{q+1}^{r, r+q}+k_{q+2} A_{q+2}^{r, r+q}+\ldots+k_{q+r} A_{q+r}^{r, r+q} \tag{3.1}
\end{equation*}
$$

with any real parameters $k_{q+1}, k_{q+2}, \ldots, k_{q+r} \in \mathbb{R}$.
Proof. We apply induction on q.
I. Consider the case $q=1$. According to general standard methods [2][5], the natural transformations $A: T^{r *} \rightarrow T^{(r+1) *}$ are in bijection with the G_{n}^{r+1}-equivariant maps of the standard fibres $f^{r, r+1}:\left(T^{r *} \mathbb{R}^{n}\right)_{0} \rightarrow$ $\left(T^{(r+1) *} \mathbb{R}^{n}\right)_{0}$.

Considering the equivariance of $f^{r, r+1}=\left(f_{1}, \ldots, f_{r}, f_{r+1}\right)$ with respect to homotheties: $\widetilde{a}_{j}^{i}=k \delta_{j}^{i}, \widetilde{a}_{j_{1} j_{2}}^{i}=0, \ldots, \widetilde{a}_{j_{1} \ldots j_{r+1}}^{i}=0$, we obtain the homogeneity conditions

$$
\begin{align*}
& k f_{1}\left(u_{1}, u_{2}, \ldots, u_{r}\right)=f_{1}\left(k u_{1}, k^{2} u_{2}, \ldots, k^{r} u_{r}\right), \ldots \\
& k^{r} f_{r}\left(u_{1}, u_{2}, \ldots, u_{r}\right)=f_{r}\left(k u_{1}, k^{2} u_{2}, \ldots, k^{r} u_{r}\right) \tag{3.2}\\
& k^{r+1} f_{r+1}\left(u_{1}, u_{2}, \ldots, u_{r}\right)=f_{r+1}\left(k u_{1}, k^{2} u_{2}, \ldots, k^{r} u_{r}\right) .
\end{align*}
$$

Additionally, using the equivariance of $f^{r, r}=\left(f_{1}, \ldots, f_{r}\right)$ with respect to the kernel of the projection $G_{n}^{r} \rightarrow G_{n}^{1}$, we obtain, by Theorem 1 , the r parameter family of the form (2.1): $\bar{A}=k_{1} A_{1}^{r, r}+k_{2} A_{2}^{r, r}+\ldots+k_{r} A_{r}^{r, r}$ with any real parameters $k_{1}, k_{2}, \ldots, k_{r} \in \mathbb{R}$.

Moreover, by the homogeneous function theorem and the invariant tensor theorem [2]-[5], we deduce that the $(r+1)$ th component f_{r+1} is of the general form

$$
\begin{align*}
f_{i_{1} \ldots i_{r+1}}= & l_{r+1} u_{i_{1}} u_{i_{2}} \ldots u_{i_{r+1}}+l_{r} u_{\left(i_{1}\right.} \ldots u_{i_{r-1}} u_{i_{r} i_{r+1)}} \tag{3.3}\\
& +\ldots+l_{2,1} u_{\left(i_{1}\right.} u_{\left.i_{2} \ldots i_{r+1}\right)}+l_{2,2} u_{\left(i_{1} i_{2}\right.} u_{\left.i_{3} \ldots i_{r+1}\right)}+\ldots
\end{align*}
$$

with any real parameters $l_{2,1}, l_{2,2}, \ldots, l_{r}, l_{r+1} \in \mathbb{R}$.

The equivariance of $f^{r, r+1}$ with respect to the kernel of the projections $G_{n}^{r+1} \rightarrow G_{n}^{r}$ and $G_{n}^{r+1} \rightarrow G_{n}^{1}$ gives the relations

$$
\begin{align*}
& k_{1}=0 \tag{3.4}\\
& l_{2,1}=\frac{(r+1)!}{r!1!} k_{2}, \quad l_{2,2}=\frac{(r+1)!}{(r-1)!2!} k_{2}, \ldots, l_{r}=\frac{(r+1)!}{(r-1)!2!} k_{r} \tag{3.5}
\end{align*}
$$

If we put $l_{r+1}=k_{r+1}$, this gives the r-parameter family $f^{r, r+1}=$ ($f^{r, r}, f_{r+1}$) of the form

$$
\begin{equation*}
A=k_{2} A_{2}^{r, r+1}+\ldots+k_{r+1} A_{r+1}^{r, r+1} \tag{3.6}
\end{equation*}
$$

with any real parameters $k_{2}, \ldots, k_{r+1} \in \mathbb{R}$.
II. Suppose that the theorem holds for $q-1$ and the G_{n}^{r+q-1}-equivariant maps $f^{r, r+q-1}:\left(T^{r *} \mathbb{R}^{n}\right)_{0} \rightarrow\left(T^{(r+q-1) *} \mathbb{R}^{n}\right)_{0}$ define the r-parameter family

$$
\begin{equation*}
\bar{A}=k_{q} A_{q}^{r, r+q-1}+k_{q+1} A_{q+1}^{r, r+q-1}+\ldots+k_{q+r-1} A_{q+r-1}^{r, r+q-1} \tag{3.7}
\end{equation*}
$$

with any real parameters $k_{q}, k_{q+1}, \ldots, k_{q+r-1} \in \mathbb{R}$.
Consider a G_{n}^{r+q}-equivariant map $f^{r, r+q}:\left(T^{r *} \mathbb{R}^{n}\right)_{0} \rightarrow\left(T^{(r+q) *} \mathbb{R}^{n}\right)_{0}$ of the form $f^{r, r+q}=\left(f^{r, r+q-1}, f_{r+q}\right)$.

The equivariance of $f^{r, r+q}$ with respect to the homotheties in G_{n}^{r+q} : $\widetilde{a}_{j}^{i}=k \delta_{j}^{i}, \widetilde{a}_{j_{1} j_{2}}^{i}=0, \ldots, \widetilde{a}_{j_{1} \ldots j_{r+q}}^{i}=0$, gives for the $(r+q)$ th component f_{r+q} the homogeneity condition

$$
\begin{equation*}
k^{r+q} f_{r+q}\left(u_{1}, u_{2}, \ldots, u_{r}\right)=f_{r+q}\left(k u_{1}, k^{2} u_{2}, \ldots, k^{r} u_{r}\right) . \tag{3.8}
\end{equation*}
$$

By the homogeneous function theorem and the invariant tensor theorem [2]-[5], f_{r+q} is of the form

$$
\begin{align*}
f_{i_{1} \ldots i_{r+q}}= & l_{r+q} u_{i_{1}} \ldots u_{i_{r+q}}+l_{r+q-1} u_{\left(i_{1}\right.} \ldots u_{i_{r+q-2}} u_{\left.i_{r+q-1} i_{r+q}\right)} \tag{3.9}\\
& +\ldots+l_{q+1} u_{\left(i_{1}\right.} \ldots u_{i_{q}} u_{\left.i_{q+1} \ldots i_{q+r}\right)}
\end{align*}
$$

with any real parameters $l_{q+1}, \ldots, l_{q+r-1}, l_{q+r} \in \mathbb{R}$.
The equivariance of $f^{r, r+q}$ with respect to the kernel of the projections $G_{n}^{r+q} \rightarrow G_{n}^{r}$ and $G_{n}^{r+q} \rightarrow G_{n}^{1}$ gives the relations

$$
\begin{equation*}
k_{q}=0, \ldots, \tag{3.10}
\end{equation*}
$$

$$
\begin{equation*}
l_{q+1}=\frac{(q+r)!}{r!q!} k_{q+1}, \ldots, l_{q+r-1}=\frac{(q+r)!}{(q+r-2)!2!} k_{q+r-1} \tag{3.11}
\end{equation*}
$$

If we put $l_{q+r}=k_{q+r}$, this proves our theorem.
Theorem 3. All natural transformations $A: T^{r *} \rightarrow T^{(r-q) *}$ form the $(r-q)$-parameter family

$$
\begin{equation*}
A=k_{1} A_{1}^{r, r-q}+k_{2} A_{2}^{r, r-q}+\ldots+k_{r-q} A_{r-q}^{r, r-q} \tag{3.12}
\end{equation*}
$$

with any real parameters $k_{1}, k_{2}, \ldots, k_{r-q} \in \mathbb{R}$.
Proof. Applying the same general procedure, we conclude that each A : $T^{r *} \rightarrow T^{(r-q) *}$ is the composition of the projection $P^{r, r-q}: T^{r *} \rightarrow T^{(r-q) *}$
and a transformation \bar{A} of $T^{(r-q) *}$ into itself: $A=\bar{A} \circ P^{r, r-q}$. This proves our theorem.

References

[1] J. Gancarzewicz, Differential Geometry, PWN, Warszawa 1987 (in Polish).
[2] I. Kolář, Some natural operators in differential geometry, in: Proc. Conf. Diff. Geom. and its Applications, Brno 1986, Kluwer, Dordrecht 1987, 91-110.
[3] I. Kolář and G. Vosmanska, Natural transformations of higher order tangent bundles and jet spaces, Časopis Pěst. Mat. 114 (2) (1989), 181-186.
[4] I. Kolář, P. Michor and J. Slovak, Natural Operations in Differential Geometry, to appear.
[5] J. Kurek, On natural operators on sectorform fields, Časopis Pěst. Mat. 115 (3) (1990), 232-239.

INSTITUTE OF MATHEMATICS
MARIA CURIE-SKŁODOWSKA UNIVERSITY
PL. M. CURIE-SKŁODOWSKIEJ 1
20-031 LUBLIN, POLAND

