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Natural variation of macrophage activation as
disease-relevant phenotype predictive of
inflammation and cancer survival
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Charles D. Mills3,z, Aldons J. Lusis2 & Klaus Ley1

Although mouse models exist for many immune-based diseases, the clinical translation

remains challenging. Most basic and translational studies utilize only a single inbred mouse

strain. However, basal and diseased immune states in humans show vast inter-individual

variability. Here, focusing on macrophage responses to lipopolysaccharide (LPS), we use the

hybrid mouse diversity panel (HMDP) of 83 inbred strains as a surrogate for human natural

immune variation. Since conventional bioinformatics fail to analyse a population spectrum,

we highlight how gene signatures for LPS responsiveness can be derived based on an

Interleukin-12b and arginase expression ratio. Compared to published signatures, these gene

markers are more robust to identify susceptibility or resilience to several macrophage-related

disorders in humans, including survival prediction across many tumours. This study highlights

natural activation diversity as a disease-relevant dimension in macrophage biology, and

suggests the HMDP as a viable tool to increase translatability of mouse data to clinical

settings.
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C
linical and pharmaceutical researchers are concerned with
the lack of relevance and low reproducibility of findings
obtained in standard mouse models1–3. The translation

of mouse data from bench to bedside is challenging4–8 and
clinical trial success rates continue to be low1,9. Among the
possible reasons, the large inter-individual variation of immune
system variables in human populations is cited10,11. This natural
variation has been shown to broadly impact on pathophysiology,
for example, disease resilience, tolerance12–14 and vaccination
responses10,15. System level analyses of identical twins find both
environmental and genetic components of variability16. Recently,
inbred mouse strains were placed in a more natural, ‘dirty’
environment leading to greater variation of immune cell
populations17. Here, we focus on how introducing genetic
diversity into mouse research reveals a much broader spectrum
of innate immune responses.

Macrophages are widely distributed throughout the body and
are hence one of the first cells to react to a perturbation of
homoeostasis. Their functional programs are highly context-
dependent and mostly influenced by pathogens, cellular origin
(monocyte-derived or embryonic) and tissue cues (including
cytokines)18,19. Among a continuum of stimulus-dependent
polarization states18,20–23, most with unknown function, M1
reflects a pro-inflammatory phenotype with pathogen killing
abilities and can be induced by lipopolysaccharide (LPS), and M2
reflects the default state of tissue macrophages that promotes
homeostasis and wound healing. These macrophages metabolize
arginine to citrulline and nitric oxide through inducible nitric
oxide synthase (iNOS, Nos2). The production of the macrophage
cytokine Interleukin-12 (IL-12) is a hallmark of M1 and promotes
a Th1 response24,25. M2 macrophages can metabolize arginine to
ornithine, a precursor of polyamine and hydroxyproline, and urea
through Arginase (Arg1), which promotes wound healing,
angiogenesis and tissue homoeostasis24,25. iNOS is a crucial
regulator in mouse M1 macrophages, but its relevance in human
macrophages is still debated26,27. Importantly, genetic variation
has been shown to affect macrophage activation by hierarchical
functions of lineage-determining transcription factors28. While
significant differences in Th1/2 polarization propensity in healthy
individuals has been shown29, little is known about natural
diversity of macrophage polarization in health and disease.

The hybrid mouse diversity panel (HMDP) is a panel of about
100 inbred mouse strains developed for performing association
studies with adequate statistical power and resolution for
mapping of complex traits30,31. It has been successfully used
for investigating gene-environment interaction in activated
macrophages32, insulin sensitivity33, and susceptibility to
atherosclerosis34. Here, we employ the HMDP as a surrogate
model for human immune diversity and investigate how
meaningful gene signatures of macrophage activation can be
extracted from a heterogeneous population. We demonstrate that
these signatures are highly robust in predicting disease
susceptibility and outcomes in humans, suggesting that immune
diversity is a critical parameter in translational medicine.

Results
Natural variation of LPS activation in macrophages. LPS is
found in gram-negative bacterial membranes and elicits strong
inflammatory immune responses, mainly via Toll-like receptor
(TLR) 4 that induces activation of the NF-kB pathway35.
To estimate the inter-individual variation of macrophage
LPS responses in a diverse population we compared the
transcriptional activation patterns in humans and mice. In
human alveolar macrophages exposed to LPS in vivo we
observed large intrinsic variation in inter-individual genetic
responses, for example, NF-kB and TLR pathway activities

(Fig. 1a,b). In thioglycollate-elicited peritoneal macrophages of
HMDP strains exposed to LPS, we found a similarly large range
of pathway activations (Fig. 1c,d). Notably, LPS incubation
was short (4 h), and reflects an early state of macrophage
activation. Variation of gene expression in technical and
biological replicates was low and did not explain the observed
findings (Supplementary Fig. 1, and Orozco et al.32). Moreover,
RNA deconvolution indicates that the peritoneal cavity was
repopulated with inflammatory macrophages after thioglycollate
treatment in all strains (Supplementary Fig. 2).

We analysed the gene expression levels of key polarization
genes in human alveolar macrophages and found considerable
variation among healthy volunteers under homoeostatic condi-
tions (Fig. 1e, left column; an additional data set of 70 humans
is shown in Supplementary Fig. 3). After LPS treatment, iNOS,
arginase and IL-12b were variably upregulated among indivi-
duals. Strikingly, IL-12b showed a wide range of upregulation
between 1.4-fold and 64-fold (Fig. 1e, bottom right). Similarly,
using 26 classical inbred strains of the HMDP, we found a
comparable diversity in peritoneal macrophage transcriptome
data. At baseline, arginase expression showed a large variation
across all strains, whereas iNOS and IL-12b were expressed at low
levels (Fig. 1f, left column). After LPS treatment, the range of
IL-12b upregulation between strains was large (0.4-fold to
64-fold). Other key macrophage genes such as MRC1 (CD206),
MGL1, MGL2, FIZZ1 and IL-10 as well the housekeeping
gene ACTB (b-actin) did not change in response to LPS
(Supplementary Fig. 4). IL-6 was variably upregulated across
the HMDP, and highly correlated with IL-12b (Supplementary
Fig. 4). We confirmed expression differences between strains at
the protein level showing great variation in IL-12 p70 levels in
supernatants of LPS-stimulated peritoneal macrophages and
varying iNOS and arginase induction patterns using intracellular
flow cytometry (Supplementary Fig. 5). For the protein level data,
we developed a representative panel of 13 strains that largely
resemble gene expression profiles of the entire HDMP with
regard to Arg1, iNOS and IL-12b transcription (Supplementary
Fig. 5). Altogether, these data suggest that inter-individual
differences in macrophage activation responses can be found
both in human populations and strains of the HMDP.

Global map of LPS responsiveness in 83 mouse strains. Most
bioinformatics tools are not designed to dissect a spectral dis-
tribution in a heterogeneous population. Analysis of commonly
regulated genes after LPS treatment among all 83 strains
fails (Supplementary Fig. 6), suggesting inter-strain variations
of the macrophage LPS response. To overcome this problem,
we established a gene expression based factor that represents
the degree of LPS-induced polarization (polarization factor).
Historically, the LPS-induced polarization was defined by the
arginine metabolism: M2 is Arg1high iNOSlow; M1 is Arg1low

iNOShigh36. We calculated polarization factors based on both
iNOS and IL-12b. By dividing iNOS or IL-12b by arginase-1 gene
expression values averaged to the mean of the HMDP (for details
see Method section), 83 mouse strains were ranked to show their
LPS responsiveness. We found that there is a continuous
spectrum of LPS-induced activation strength; thus, identifying
inherent LPS non/low- and -high responders (for example,
FVB/NJ, CE/J and KK/HIJ, PL/J, respectively) (Supplementary
Data 1). IL-12b- and iNOS-based rankings of mouse strains are
highly correlated (Supplementary Fig. 7). In agreement with this
ranking, analysis of amino acid levels in supernatant before
and after LPS stimulation showed LPS high-responder strains
producing less ornithine and more citrulline (Supplementary
Fig. 8). Since the IL-12b based polarization factor has a higher
resolution due to a more robust upregulation (Fig. 2c,d;
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Supplementary Fig. 7) and iNOS relevance is controversial in
human macrophages26,27, the IL-12b based polarization factor
was used in subsequent analyses.

Gene signatures correlated with LPS responsiveness. Next,
genes of the peritoneal macrophage transcriptomes of all HMDP

strains were correlated with the polarization factor, resulting
in a ranked list of 1,276 LPS-positive responder genes and 2,619
LPS negative-responder genes at a false discovery rate (FDR)
o5% (Benjamini Hochberg) and Po0.0001 (Pearson) (Fig. 3a,c;
Supplementary Data 2). These lists were termed M(LPS)þ and
M(LPS)� , according to a recent nomenclature proposal20.
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Figure 1 | Natural variation of macrophage activation in response to LPS in humans and inbred mouse strains. (a) Human alveolar macrophages were

RNA sequenced after intrabronchial instillation of LPS or saline in seven healthy individuals. The fold change gene expression between LPS and control of

key genes (columns) of the Toll-like receptor- (total 69 genes) and NF-kB signalling (total 155 genes) pathways are plotted for each volunteer (rows) using

Ingenuity. Data derived from GSE40885. (b) Activity score (z score) was calculated by Ingenuity based on matched and predicted induction of downstream

gene expression after LPS treatment in the NF-kB and TLR pathway. Data sorted ascendingly by NF-kB activity score. (c,d) Thioglycollate-elicited peritoneal

macrophages of 11 mouse strains of the hybrid mouse diversity panel were treated with LPS or PBS and their transcriptome was analysed by Affymetrix

Array. Pathway analysis similar to aþ b. (e) Arginase (Arg-1), iNOS (Nos-2) and IL-12b (p40) gene expression as RMA (robust multi-array average:

quantile normalized, background-corrected, log2 transformed intensities) of human alveolar macrophages of 23 healthy human volunteers at baseline.

The induction of gene expression (log2 fold change) after LPS treatment is shown in the bar chart. The dashed lines indicate the median. Baseline data from

GSE27002, LPS-data from GSE40885. (f) Thioglycollate-elicited peritoneal macrophages (baseline and LPS-treated) of 26 classical recombinant mouse

strains were analysed as described in e.
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M(LPS)þ genes were positively correlated with the polarization
factor, for example, IRF5 (ref. 37) and VCAM1, and M(LPS)�

genes were negatively correlated, for example, SUMO3 (ref. 38)
and NRD1 (Fig. 3b). We compared these lists with several
published M1 macrophage gene signatures (LPS-treated; based on
one mouse strain or pooled samples), and found only little
overlap (Supplementary Fig. 9; Supplementary Table 1),
suggesting that a population spectrum-based approach yields
different results.

A functional classification based on Ingenuity’s pathway
categories showed enrichment for leukocyte migration, chemo-
taxis, inflammatory response and lymphocyte proliferation in
M(LPS)þ genes, whereas in M(LPS)� genes, apoptosis, DNA

repair, cell cycle progression and metabolic genes were dominant
(Fig. 3d). Gene lists contained 42 and 227 transcription factors in
LPS positive-responders and negative-responders, respectively,
providing a comprehensive map of the transcription factor
landscape associated with LPS responsiveness. Known M1
transcription factors such as IRF5, HIF1A, CEBPE and STAT6
were validated39, and new candidates with high significance are
proposed, for example, TRIM24, KDM5A and TP53
(Supplementary Data 3; Fig. 3e).

Activation states of murine tissue-resident macrophages. The
diversity of gene expression profiles of murine tissue-resident
macrophages has been reported previously19,40. We extended this
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Figure 2 | Inter-strain differences of LPS-induced macrophage activation across 83 mouse strains of the HMDP. (a,b) Thioglycollate-elicited peritoneal

macrophages were harvested from 83 mouse strains of the HMDP without (baseline, cyan) and with LPS (purple) treatment for 4 h in vitro and the

genome-wide transcriptome was analysed. The polarization factor is based on the iNOS (a,c) or IL-12b (b,d) divided by Arg-1 gene expression ratio and

determines the overall polarization state of each mouse strain in response to LPS (see Method section for details). The vertical dashed line indicates the

median at baseline. Ranking details and strain names are provided in Supplementary Data 1. (c,d) Frequency histogram of LPS-induced macrophage

polarization factor across 83 mouse strains at baseline (cyan) or after 4 h LPS (purple).
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data by determining the degree of activation at steady state using
gene set enrichment analysis (GSEA)41. As expected, all tissue-
resident macrophages are not predominantly M(LPS)þ enriched.

However, they show differences in the strength of M(LPS)� gene
expression (Fig. 4a). Microglia have the strongest M(LPS)�

enrichment, whereas lung-resident macrophages also express
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M(LPS)þ genes (Fig. 4a,b). This likely reflects the natural
exposure of lung-resident macrophages but not microglia to
organisms of the commensal microbiota.

Prediction of inflammatory disease in humans. To apply our
mouse findings to humans, we first tested whether the M(LPS)þ

and M(LPS)� gene lists sufficiently mapped to the human
transcriptome. Human alveolar macrophages expressed about
70% of the mouse-derived gene lists (135 of the top 200 M(LPS)þ

genes; 142 of the top 200 M(LPS)� genes). As expected, resting
human alveolar macrophages showed no significant M(LPS)þ

gene enrichment under baseline conditions and but a strong shift
to M(LPS)þ after LPS treatment (Fig. 4c; Supplementary Fig. 10).
Similar enrichment was observed using human CD14þ

monocyte-derived macrophages with Listeria monocytogenes
infection or mouse microglia with LPS challenge (Supplementary
Fig. 10).

As polarized macrophages are known to critically shape
pathophysiology of many inflammatory diseases18, we tested

whether LPS responsiveness indicated by these gene signatures
correlates with disease in humans. Peripheral blood leukocytes of
systemic inflammatory response syndrome (SIRS) and sepsis
patients both at day 1 and 3 after clinical diagnosis demonstrate
gradually increasing M(LPS)þ enrichment scores demonstrating
sensitivity to infection severity (Fig. 4d). Isolated healthy human
synovial macrophages were enriched in M(LPS)� genes, whereas
macrophages from rheumatoid arthritis patients were strongly
skewed towards an M(LPS)þ phenotype (Fig. 4e). In lupus
erythematodes, macrophages accumulate in the glomerula of the
kidney and fuel disease progression42. Laser-dissected glomerula
were M(LPS)þ enriched in lupus nephritis, but not in healthy
conditions (Fig. 4f). Importantly, in these data sets each
individual patient showed varying degrees of gene enrichment.
These findings suggest that the HMDP-derived gene signatures
are applicable across species and in many tissues.

Inter-individual activation state predicts tumour survival.
Tumour-associated macrophages (TAM) are of key importance
in the tumour microenvironment that is known to reinforce M2
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Figure 4 | Macrophage activation phenotypes in mice and humans under homoeostatic and disease conditions. (a) Homoeostatic tissue-resident

macrophage populations of C57BL/6J mice were compared in their expression of the M(LPS)þ and M(LPS)� signature using GSEA. Bone-marrow derived

macrophages (BMDM)þ LPS served as M1-skewed control. All data from the Immgen project (GSE15907 with n¼ 2–3 averaged per cell type) and

BMDMþ LPS from GSM1151665. (b) Classification of tissue-resident macrophages (C57BL/6J mice) in the M(LPS)þ /� activation axis by dividing the

GSEA normalized enrichment score (NES) for M(LPS)þ and M(LPS)� genes for each data set. Numbers greater or smaller than 0 indicate high and low

LPS responsiveness, respectively. BMDM-M-CSF from GSM1150712. Source of other data indicated in a. (c) GSEA of M(LPS)þ /� signatures (top 200

genes) in human alveolar macrophages obtained by bronchoscopic lavage before (bottom panel) and after LPS (top panel) instillation. All genes of the

control and LPS data set are ranked by differential expression. Vertical lines indicate a match of genes with the respective signature. Data from GSE40885.

(d) Human isolated peripheral blood mononuclear cells (PBMC) were sequenced from patients presenting with systemic inflammatory response syndrome

(SIRS) and sepsis at day 1 (d1) and 3 (d3) after clinical diagnosis. The transcriptome was analysed for enrichment of M(LPS)þ genes in differentially

expressed genes (disease versus healthy control) using GSEA. Data from GSE13904. (e) GSEA of M(LPS)þ signature genes in isolated human synovial

CD14þ macrophages from healthy (n¼ 3) and rheumatoid arthritis (RA) patients (n¼ 5). The top 25 leading edge genes are shown as heatmap

(red¼ upregulated, blue¼ downregulated). Data from GSE10500. (f) GSEA of M(LPS)þ signature genes in laser-dissected glomerula from healthy

controls (n¼ 14) and patients with lupus nephritis (n¼ 32). The top 25 leading edge genes are shown as heatmap for four controls and four lupus patients

(red¼ upregulated, blue¼ downregulated). Data from GSE32591.
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and suppress M1 polarization24,25,43. Specific pharmaceutical
modulation of polarization states has emerged as a new
anti-cancer therapy44,45. The monocyte/macrophage content in
solid tumours can exceed more than 50% of all leukocytes
(Fig. 5a, Supplementary Fig. 11). Using RNA deconvolution, the
M(LPS)þ /� phenotypes are readily detectable in macrophage
transcriptomes under controlled conditions (Supplementary
Fig. 11). In the tumour microenvironment using bulk tumour
biopsies, we demonstrate that most macrophages show enriched
expression of M(LPS)� genes, which substantially varies between
patients (Fig. 5b; Supplementary Fig. 11). To address the question
whether M(LPS)þ signatures can predict survival, we employed
the PRECOG database that ranks genes by overall tumour

survival46. In collapsed data from 18,000 biopsies across 39
tumours, we find that the M(LPS)þ signature correlates with
survival, whereas the M(LPS)� signature correlates with cancer
death (Fig. 5c). This pattern was found in many cancers of
different ontologic origin, for example, osteosarcoma, melanoma,
chronic lymphocytic leukaemia, Burkitt lymphoma and large-cell
lung carcinoma (Supplementary Fig. 12). Patients with high
expression of a disease-specific set of M(LPS)þ or M(LPS)�

genes show increased or decreased survival in multiple tumour
entities, respectively (Fig. 5d–f). A comparison with several
published M1 macrophage gene lists (Supplementary Fig. 9)
indicates that survival prediction by M(LPS)þ /� signatures is
more robust in all data sets (Supplementary Fig. 13).
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Discussion
Here, we showed how a spectrum of macrophage phenotypes in
many different inbred strains can be used to extract gene
signatures of LPS responsiveness. Since the analysis of commonly
LPS regulated genes in all strains failed, we established a surrogate
marker based on IL12b and Arg1 gene expression. Compared to
published signatures, the resulting gene lists are unique, yet more
robustly predictive of many human inflammatory and malignant
disorders, suggesting that accounting for immune diversity in
a heterogeneous population increases the translatability of
mouse data.

The robust correlation of a large number of genes with the
polarization factor across the HMDP reveals that the M(LPS) axis
is a major player in macrophage biology. Out of 12,980 genes
expressed, 1,276 (9.8%) and 2,619 (20.2%) are positively and
negatively correlated with the IL-12b/Arg1 polarization factor,
respectively. This is not surprising per se. However, it is
surprising that only three M(LPS)þ genes (Dpep1, Gkn2 and
Hoxd4) are found in resting (thioglycollate-elicited) peritoneal
macrophages, and only 11 M(LPS)� genes (Arg1, Tpi1, Gpi1,
Mif, Pkm, Zmynd8, Pcbp4,Myo6, Grk6, Egln1, Slc44a2) suggesting
that the LPS challenge exposes the activation propensity. Thus, it
is more accurate to speak of individuals with an M1-skewed
response to TLR challenge, rather than a priori M1-skewed
individuals.

Inter-individual variability of the LPS response in healthy
human PBMCs has been linked to profoundly different cytokine
responses47. We speculate that mice and human macrophages
evolved to either fight (LPS positive responders) or tolerate
and heal (LPS negative responders) infections48. TLR
polymorphisms49 and differences in TLR signalling pathways
are candidates for a genetic basis underlying M(LPS)þ and
M(LPS)� macrophage phenotypes. Of course, this is an
oversimplification, because it is well known that macrophage
polarizations also vary along the time axis of the infection or
disturbance18. For example, myocardial infarctions are
characterized by an initial abundance of M1 macrophages,
followed by an M2-dominate healing phase50,51. Our data could
implicate that M(LPS)þ individuals may be susceptible to
autoimmune diseases and M(LPS)� individuals may have
unfavourable outcomes if afflicted with cancer. Similarly,
individual differences in T helper cell differentiation in
healthy individuals has been linked to disease susceptibility29,52.
Multiple susceptibility genes and loci to infectious disease12,
autoimmunity53,54 and cancer55,56 have been described and
our data suggest that inter-individual variation of macrophage
activation propensity might be a confounding variable
involved.

While the human immune system is shaped by both
environmental factors and genetics16, only the latter plays a
role in laboratory inbred mice. It remains to be investigated what
exact mechanisms account for the inter-strain differences. The
HMDP consists of 29 classic parental inbred strains, and about 80
recombinant inbred strains (BXD, CXB, BXA/AXB and BXH
panels) that are crosses between C57BL/6J, C3H/HeJ and
DBA/2J31. The TLR4-insensitivity of the C3H/HeJ strain is
therefore represented to variable degrees in its recombinant
progeny. Inter-strain differences in the Interleukin-6/Interleukin-
10/STAT3 pathway may also affect macrophage activation. After
thioglycollate, inflammatory monocyte-derived macrophages
dominate the cellular content of the peritoneal cavity in all
mouse strains (Supplementary Fig. 2). Future studies on
peritoneal and other tissue-resident macrophages in response to
various stimuli will more fully characterize macrophage immune
diversity in mice and humans. The polarization factor tool
developed here will be useful for such studies.

A striking finding of this study is that the M(LPS)þ /�

signatures are robust enough to predict cancer survival or death
from mixed-cell biopsy material, containing cancer, stromal and
inflammatory cells. This makes these gene panels well suited for
predictive tests in personalized medicine. Particularly, with new
generation cancer treatments that manipulate tumour-associated
macrophage polarization, new diagnostics are necessary to
monitor treatment efficacy43,44. A simple multiplex PCR or
RNA-sequencing run could harbour enormous predictive value,
matching or exceeding the value of traditional biomarkers,
for example, prostate specific antigen or BRCA1/2, or histo-
pathological cancer staging. Of note, in contrast to an increasing
number of disease-specific genetic tests that were developed by
gene-outcome association statistics, for example, in breast
cancer57, we extracted genes in a ‘bottom-up’ approach centring
around macrophage biology. Given the ubiquitous disease-
relevant role of macrophages18, this yielded transcriptomic
signatures with predictive value in a number of different disease
entities. Furthermore, in contrast to conventional flow cytometry-
or PCR-based estimations of macrophage polarization in ordinal
scale, the developed gene panels allow a gradual classification,
thus enabling a population-based assessment in high resolution
necessary for clinical applications.

Picking as few as 13 mouse strains is sufficient to qualitatively
represent the diversity in macrophage activation responses to
LPS. Re-evaluating the robustness of a new biological finding in a
selected, representative panel of HMDP strains may be cost
effective and prudent before embarking on a clinical drug
development programme. Of note, all HMDP strains are fully
inbred (homozygous at all loci) and commercially available30,31,
providing immediate access for research facilities and allowing
reproducibility studies. Therefore, this approach shows great
promise to improve the translation of immunological research
findings from mice to humans.

In conclusion, our population-based approach yields
(1) improved gene signatures with higher predictive power;
(2) a methodological framework to extract meaningful signatures
of data sets from heterogeneous populations, and demonstrates
(3) the usefulness of the HMDP as a valuable surrogate for
human diversity in translational research.

Methods
Mice. Male mice 6–10 weeks of age were obtained from Jackson Laboratories
(Bar Harbor, ME, USA) and housed in pathogen-free conditions on chow diet
(Ralston-Purina Co, St. Louis, MO, USA). Details on the HMDP have been
reported before30 and data is accessible online (http://systems.genetics.ucla.edu/
data). All mouse strains used in this study are listed in Supplementary Data 1.
Experimental procedures were approved by the Institutional Care and Use
Committee (IACUC) at the University of California, Los Angeles.

Macrophage culture and activation. Murine peritoneal macrophages were
elicited with thioglycollate (BD, Sparks, MD, USA; same batch for all strains) for
4 days. Cells from up to 4 mice were pooled and plated at 4� 106 cellsml� 1 in
DMEMþ 20% FBSþ 1% streptomycin/penicillin in duplicates or triplicates. After
overnight culture, adherent cells were selected (adherence assay for macrophage
enrichment). RNA deconvolution shows two main populations of inflammatory
macrophages (F4/80þ , MHCII� and F4/80� , MHCIIþ ) and a small popula-
tion of neutrophils (Supplementary Fig. 2). Cells were incubated with 2 ngml� 1

LPS (List Biological, Campbell, CA, USA) or control in DMEMþ 1% FBS for 4 h
before harvest. The viability of cultured macrophages was determined for some
strains32. Briefly, macrophages were stained with 2 mM calcein AM (Molecular
Probes) and the absorbance was measured at 530 nm. Viability was 490% with no
difference between LPS-treated and untreated conditions32. Multiple replicates of
some strains allowed determination of experimental variability32.

Gene expression profiling. Total RNA was obtained using RNeasy columns
(QIAGEN, Valencia, CA, USA) with DNA digest according to manufacturer’s
instructions and subsequently hybridized to Affymetrix HT MG-430A chip
arrays. Chip signals were transformed to robust multichip average (RMA). Raw
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microarray data for peritoneal macrophages of the HMDP has been published
before32 and is deposited under the NCBI GEO accession number GSE38705.

Amino acid detection. For 13 selected mouse strains, peritoneal macrophages
were cultured in the presence of 2 ngml� 1 lipopolysaccharide in DMEMþ 1%
FBS media for 0, 4 or 24 h. Supernatant was collected and stored at � 80 �C.
Supernatant was analysed for amino acid concentration using a Hitachi L-8900
Amino Acid Analyzer.

Flow cytometry and cytometric bead array. After LPS stimulation for 0, 4 or
24 h as described above, macrophages were harvested after removal of supernatant
and washing with PBS. For flow cytometry, cells were stained with viability
dye (Ghost UV450 or Ghost Red710 Tonbo Bioscience, San Diego) using an
intracellular staining protocol (IC fixation and permeabilization staining kit,
eBioscience). Antibodies included iNOS (CXNFT, eBioscience catalogue
no. 12-5920), CD11b (M1/70, eBioscience catalogue no. 25-0112), F4/80 (BM8,
eBioscience catalogue no. 48-4801), Arginase-1 (polyclonal, R&D Systems
catalogue no. IC5868F). All antibodies were used as 1:200 dilution. Macrophages
were analysed by flow cytometry on an LSRII instrument using FACS Diva
software (BD Bioscience) and analysed using FlowJo software (Tree Star, San
Carlos, CA). The cytometric bead array (BD Bioscience) was used to determine
cytokine concentrations in macrophage supernatant after LPS treatment according
to manufacturers’ instructions.

Polarization factor and correlated genes. The polarization factor ratio (PFR)
describes the macrophage polarization state in a diverse population based on
Affymetrix-RMA gene expression values. For each mouse strain, iNOS (Nos2) or
IL-12b was divided by Arginase-1 (Arg1) and averaged to the population’s baseline
average (Equations 1 and 2). This was performed for both baseline and LPS-treated
conditions. An increase or decrease indicates a shift to M(LPS)þ or M(LPS)� ,
respectively.

PFRiNOS ¼
iNOS

Arg1
�

Arg1mean

iNOSmean
ð1Þ

Equation (1): PFR iNOS-based. Gene expression values as RMA are averaged
to the mean of a heterogenous population. iNOS¼Nos2 (inducible nitric oxide
synthetase), Arg1¼Arginase� 1.

PFRIL12b ¼
IL12b

Arg1
�

Arg1mean

IL12bmean

ð2Þ

Equation (2): PFR IL-12b-based. Gene expression values as RMA are averaged
to the mean of a heterogenous population. IL12b¼ Interleukin� 12 beta,
Arg1¼Arginase� 1.

Each transcript of the Affymetrix chip (total of 39,000 probe sets) was
correlated to the PFR (ranking from M(LPS)� to M(LPS)þ ) in 83 mouse strains.
Positive and negative correlations with Po0.0001 (Pearson) and FDR o5%
(Benjamini Hochberg) were selected as M(LPS)� and M(LPS)þ gene signature
lists, respectively (Supplementary Data 2).

Gene signature analysis. The gene set enrichment analysis (GSEA) tool41 allows
to investigate whether a list of genes (for example, signature) is represented in
differentially expressed genes of two given conditions (for example, control versus
disease). We used the GSEA tool embedded in the GenePattern 2.0 framework58

with standard settings (weighted, 100 iterations). For enrichment in a single data
set, the pre-weighted GSEA algorithm was used. Statistical parameters as standard
GSEA output of the data sets used in this manuscript are: GSEA (Fig. 4c): Top:
normalized enrichment score (NES)¼ 1.72 , FDR¼ 0.006 , P¼ 0.004, 135 genes
matched. Bottom: NES¼ � 1.40, FDR¼ 0.192, P¼ 0.108, 142 genes matched.
GSEA (Fig. 4d): SIRS d1: P¼ 63, FDR¼ 0.142, n¼ 23; SIRS d3: 0.067, FDR¼ 0.141,
n¼ 4; sepsis d1: P¼ 0.024, FDR¼ 0.077, n¼ 32; sepsis d3: P¼ 0.004, FDR¼ 0.005,
n¼ 20. GSEA (Fig. 4e): NES¼ 1.61, Po0.001, FDR¼ 0.028, Top 100 M(LPS)þ

genes, out of which 62 genes matched. GSEA (Fig. 4f): NES¼ 1.45, P¼ 0.03,
FDR¼ 0.04, Top 100 M(LPS)þ genes, 73 genes matched.

Ingenuity’s pathway analyzer (IPA, Qiagen) was used to analyse pathway
enrichment in M(LPS) signatures. Transcription factors were extracted from these
signatures and the P value overlap and activation z score was calculated according
to pathway overlap and gene activity (inhibition versus activation) using IPA.

For bulk RNA deconvolution into cellular subsets, the CIBERSORT algorithm
was used59. Core signatures included either the provided LM22 signature of several
leukocyte subsets (for example, naive B cells, memory B cells, plasma cells, naive
CD4 T cells, CD4 memory cells, follicular helper T cells, gd T cells, NK cells,
monocytes, macrophages, dendritic cells, mast cells, eosinophils, neutrophils) or
the HMDP-derived gene lists (top 200 genes). In survival analyses, we performed
gene set enrichment analysis on the PRECOG (PREdiction of Clinical Outcomes
from Genomic Profiles) database that ranks genes by clinical survival either in a
collapsed pan-cancer or in tumour-specific data set46. Top 10 or 30 leading edge
genes of M(LPS)þ or M(LPS)� lists were subsequently used to define a tumour-
specific gene set that was used to retrospectively predict survival in published data

sets. Survival data was analysed using PROGgene2 (ref. 60) and plotted as median
without sub-cohort division in a Kaplan–Meier format. Significance was calculated
using the log rank test.

Statistics. Statistical analysis was performed using GraphPad Prism (GraphPad
Software, San Diego). Affymetrix gene chip data was normalized using the robust
multi-array average (RMA) method (¼ log2, background-corrected, quantile
normalized). Correlation analyses were based on Pearson’s correlation unless
otherwise indicated. The threshold for significant M(LPS)þ or M(LPS)� genes
was set as Po0.0001 (Pearson) and FDR o5% (Benjamini Hochberg) for the
correlation between gene expression (RMA) and PFR.

Data availability. The microarray data of the HMDP mouse strains are available
in a public repository from the NCBI website under the accession number
GSE38705. Other pre-published data sets referenced in this study can be found
under the accession numbers GSE21257 and GSE39055 (Osteosarcoma),
GSE22762 (Chronic lymphocytic leukemia), GSE11969 (lung large-cell carcinoma),
GSE4475 (Burkitt lymphoma), GSE15907 (Immgen project), GSM1151665
(BMDM þ LPS), GSM1150712 (BMDM þM-CSF), GSE10500 (rheumatoid
arthritis), GSE32591 (lupus nephritis). The SKCM-TCGA (Melanoma) data set is
available in a public repository from the cancer-genome atlas website (https://
cancergenome.nih.gov). The authors declare that all the other data supporting
the findings of this study are available within the article, its Supplementary
Information files or from the corresponding author upon reasonable request.
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