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Natural ZMP Trajectories for Biped
Robot Reference Generation
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Abstract—The control of a biped humanoid is a challenging
task due to the hard-to-stabilize dynamics. Walking reference
trajectory generation is a key problem. Linear Inverted Pendulum
Model (LIPM) and Zero Moment Point (ZMP) Criterion-based
approaches in stable walking reference generation are reported.
In these methods, generally, the ZMP reference during a stepping
motion is kept fixed in the middle of the supporting foot sole. This
kind of reference generation lacks naturalness, in that the ZMP in
the human walk does not stay fixed, but it moves forward under
the supporting foot. This paper proposes a reference generation
algorithm based on the LIPM and moving support foot ZMP ref-
erences. The application of Fourier series approximation simplifies
the solution, and it generates a smooth ZMP reference. A simple
inverse kinematics-based joint space controller is used for the tests
of the developed reference trajectory through full-dynamics 3-D
simulation. A 12-DOF biped robot model is used in the simula-
tions. Simulation studies suggest that the moving ZMP references
are more energy efficient than the ones with fixed ZMP under the
supporting foot. The results are promising for implementations.

Index Terms—Humanoid robot walking reference generation,
legged locomotion, Zero Moment Point (ZMP).

I. INTRODUCTION

HUMANOID robotics have attracted the attention of many
researchers in the past 35 years. It is currently one of the

most exciting topics in the field of robotics, and there are many
projects on this topic [1]–[7]. The motivation of the research
is the suitability of the biped structure for tasks in the human
environment, and the goal of the studies in this area is to reach
the human walking dexterity, efficiency, stability, effectiveness,
and flexibility.

The control of a biped humanoid is a challenging task due
to the many degrees of freedom involved and the nonlinear
and hard-to-stabilize dynamics [8], [9]. Walking reference
trajectory generation is a key problem. Methods ranging from
trial and error to the use of optimization techniques with
energy, or control effort minimization constraints are applied
as solutions. A very intuitive criterion used for the reference
generation is that the reference trajectory should be suitable
to be followed by the robot with its natural dynamics, without
the use of extensive control intervention. Reference generation
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techniques with the Linear Inverted Pendulum Model (LIPM)
are based on this idea [10]–[12]. Simply stated, the walking
cycle is achieved by letting the robot start falling into the
walking direction and to switch supporting legs to avoid the
complete falling of the robot.

Yet, another intuitive demand for the biped robot reference
generation is that the reference trajectory should be a stable
one, in the sense that it should not lead to unrecoverable
falling motion. The Zero Moment Point (ZMP) Criterion [8]
introduced to the robotics literature in early 1970s is widely em-
ployed in the stability analysis of biped robot walk. Improved
versions of the LIPM-based reference generation, obtained by
applying the ZMP criterion in the design process, are reported
too [13]–[16]. The ZMP criterion can be applied to generate
reference trajectories for more complicated motion scenarios
too [17]–[20]. In creating walking trajectories, the ZMP during
a stepping motion is kept fixed in the middle of the supporting
foot sole for the stability, while the robot center of mass (CoM)
follows the Linear Inverted Pendulum path.

Although reference generation with the LIPM and fixed ZMP
reference positions is successfully employed, this kind of refer-
ence generation lacks naturalness at one point. Investigations
revealed that the ZMP in the human walk does not stay fixed
under the supporting foot. Rather, it moves forward from the
heel to the toe direction [21]–[24]. It should, however, be noted
that the discussion of naturalness of a gait is not an easy one.
The forward moving ZMP constitutes a part in naturalness,
but it does not necessarily create a fully natural looking walk.
The definition of a natural walk is sought not only for legged
robot locomotion, but also in the field of human perception
research. The work reported in [25] indicates that perceived
naturalness of a gait can be influenced by the motion of any
limb segment, and primarily determined by the movements
of the lower leg. The relationship between the motion phase
analysis and a subjective description of gait, such as a normal
gait versus a tired gait is investigated in [26]. The fact that
humans walk in an energy efficient manner [27] can be used
as a measure of naturalness of a robot walk too.

Reference [23] proposes the idea of using variable ZMP to
generate a dynamically stable gait in terms of linear inverted
pendulum approach. They consider it to follow first-order func-
tions from the heel to toe of the supporting foot in single support
phase.

This paper takes an approach similar to [24] and proposes a
reference generation technique based on the LIPM and moving
support foot ZMP references. As in [28], the application of
Fourier series approximation to the solutions of the Linear In-
verted Pendulum dynamics equations simplifies the procedure.
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Fig. 1. Typical kinematic arrangement of a biped robot. It resembles an
inverted pendulum in single support phases.

ZMP reference for the double support phase is generated by
smoothing techniques. Robot CoM reference is obtained from
the desired ZMP trajectory. The computation of smooth swing
foot trajectories completes the reference generation for loco-
motion. A simple inverse kinematics-based independent joint
position controller is employed, and the reference generation
techniques are tested in a 3-D full dynamics simulation and
animation environment with a 12-DOF biped robot model. For
comparison purposes, simulations are carried out with fixed
single support ZMP reference trajectories too.

The reference generation with natural moving ZMP trajecto-
ries and the control of locomotion are discussed in Sections II
and III, respectively. Section IV presents the simulation results
and their analysis. Finally, in Section V we conclude with some
remarks.

II. REFERENCE GENERATION WITH

NATURAL ZMP TRAJECTORIES

This section first introduces the LIPM and derives a relation-
ship between the ZMP and the location of the robot CoM. Dis-
cussion of suitable ZMP references and methods for obtaining
CoM reference trajectories from given ZMP references follow.

A. LIMP and ZMP

The discussion is independent from the kinematic arrange-
ment of the legged robot. The LIPM derivations are even
independent from the number of the legs.

The only assumption is that the mass of the legs should
be much less than the robot mass. In fact, the method is
still applicable with heavy legs, but with a degradation of
relative stability of the walk. Although there is no limitation
on the kinematic arrangement for the ZMP and CoM reference
generation discussions, there is a limitation for the control
structure described in this paper. This is, the legs should have

Fig. 2. Linear inverted pendulum.

at least 6 DOF. The sketch in Fig. 1 shows an example of a
robot structure for which the reference generation and control
algorithms presented below can be applied: A biped robot with
6-DOF legs.

The full dynamics description for a robot structure like the
one shown in Fig. 1 is highly nonlinear multiple degree of
freedom and coupled. Its motion equation can be expressed as

⎡
⎣H11 H12 H13

H21 H22 H23

H31 H32 H33

⎤
⎦
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0
τ

⎞
⎠

(1)

where Hij for (i, j) ∈ {1, 2, 3} are submatrices of the robot
inertia matrix. vB is the linear velocity of the robot body
coordinate frame center with respect to a fixed world coordinate
frame, ωB is the angular velocity of the robot body coordinate
frame with respect to a fixed world coordinate frame, and θ
is the vector of joint displacements of the biped. The vector
formed by augmenting c1, c2, and c3 is termed as the bias vector
in this dynamics equation. uE1 is the net force effect, and uE2

is the net torque effect of the reaction forces on the robot body.
uE3 stands for the effect of reaction forces on the robot joints.
Reactive forces are generated by environmental interaction. τ is
the generalized joint control vector, typically consisting of joint
actuation torques for a robot with revolute joints. H11, H12,
H21, and H22 are 3 × 3 matrices. For a 12-DOF robot with
6 DOF at each leg, as described in the previous section, H13 is
3 × 12, H23 is 3 × 12, H31 is 12 × 3, H32 is 12 × 3, and H33 is
12 × 12 [29]. The closed form solutions of the matrices in this
expression are very difficult to obtain. Rather, Newton–Euler
recursive formulations are used in their computation [30], [31].

Although obtaining such a model is very useful for the sim-
ulation and test of reference generation and control methods,
the structure in (1) is too complex to serve as an intuitive
model which can help in developing guidelines and basics
for the walking control. Simpler models are more suitable for
controller synthesis. The inverted pendulum model is such a
simple model. The body (trunk) is approximated by a point
mass concentrated at the CoM of the robot. This point mass is
linked to a stable (not sliding) contact point on the ground via a
massless rod, which is the idealized model of a supporting leg.
The swing leg is assumed to be massless too. Fig. 2 shows an
inverted pendulum. In this figure, c = ( cx cy cz )T stands
for the coordinates of this point mass. Although much simpler
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than (1), the equations of motion of the inverted pendulum
model are still coupled and nonlinear. One more assumption,
however, yields a linear system which is uncoupled in the
x- and y-directions. This is the assumption of fixed height of
the CoM. This model is called LIPM, and it is simple enough to
work on and devise algorithms for reference generation [12].
The equations of motion of the CoM with the LIPM are as
follows:

c̈x =
g

zc
x +

1
mzc

up (2)

c̈y =
g

zc
y − 1

mzc
ur. (3)

In this equation, m is the mass of the body (point mass), zc is
the height of the plane on which the motion of the point mass is
constrained, and g is the gravity constant (9.806 m/s2). up and
ur are the pitch (about y-axis) and roll (about x-axis) control
torques, respectively. These act at the support point (origin in
Fig. 2) of the linear inverted pendulum.

The idea that the energy efficient references should allow the
robot to move in compliance with the natural fall due to the
gravity (without too large control effort by the joint actuators)
can be employed with this model. References consisting of
freely falling (tilting aside) segments are developed in [12] with
the LIPM.

Since the solutions of (2) and (3) in the unactuated case
(up = ur = 0) are unbounded functions, and therefore, the
computation of a reference trajectory from freely falling seg-
ments should carefully be carried out in order to obtain a stable
reference. Stability of the walk is trivially the most wanted
feature of a reference trajectory. In biped robotics, the most
widely accepted criterion for stability is based on the location of
the ZMP [8]. For the arrangement in Fig. 2, the ZMP is defined
as the point on the x−y plane about which no horizontal torque
components exist.

The expressions for the ZMP coordinates px and py for the
point mass structure in Fig. 2 are [28]

px = cx − zc

g
c̈x (4)

py = cy − zc

g
c̈y. (5)

The result in (4) can be obtained by a torque balance equation
in the x−z plane, as shown in Fig. 3.

In order to have zero net moment at the “pivot point” in
Fig. 3, the torque due to gravity (Δxmg) should be balanced
by the torque generated by the reaction force due to the accel-
eration of the point mass in the x-direction (zcmẍ). This gives
a solution for Δx and, hence, the touching point px for the zero
moment condition. A similar discussion for the y−z plane can
yield (5).

B. Fixed and Moving ZMP References

Equations (4) and (5) are equations relating the ZMP and the
CoM. For reference generation purposes, a suitable ZMP tra-
jectory can be assigned without difficulty. The only constraint
for stability of the robot is that the ZMP should always lie in

Fig. 3. Diagram for torque balance in the x−z plane.

the supporting polygon defined by the foot or feet touching
the ground. The most intuitive choice for the ZMP location
is the middle of the supporting foot sole. Choi et al. [28] created
the reference ZMP trajectory shown in Fig. 4 with this idea. In
this figure, A is the distance between the foot centers in the
y-direction, B is the step size, and T is half of the walking
period. As can be observed from Fig. 4, firstly, step locations
are determined.

The selection of the step locations can be based on the size of
the robot and the nature of the task performed by the robot. The
staircaselike pz and the square-wave structured py curves are
fully defined by the selection of support foot locations if the half
period T is given too. Similar to the step size, the step period
can also be determined by the physical size and properties of
the robot and by the application.

However, the naturalness of the walk is not addressed in [28].
As previously mentioned, the starting point of the reference
ZMP curves in that work is the choice that ZMP stays at a
fixed point under the sole, although investigations [21], [22]
of the human ZMP revealed that it moves forward under the
sole (Fig. 5). Furthermore, the curves in Fig. 4 imply that the
transition from left single support phase to the right support
phase is instantaneous, without a double support phase.

The px reference curve shown in Fig. 6(b) is employed in this
paper. It can be noted that this figure illustrates a moving ZMP.
As previously mentioned, a complete definition of naturalness
of walk is difficult to obtain, and the curve in this figure is
not necessarily the most natural ZMP reference. However, it is
more natural than a fixed ZMP curve because it is more similar
to the human ZMP. The parameter b in the figure defines the
range of the ZMP motion under the sole. A symmetric trajec-
tory centered at the foot center is assumed here. Although b can
be interpreted as the half of the foot length, this interpretation
is not a must: ZMP may move on the line connecting the heel
with the toes without covering this line completely too.

Smooth transition between single support phases with a
double support phase is achieved by an additional smoothing
action discussed later in this section.

C. Computation of CoM References

Having defined the curves and, hence, the mathematical
functions for pref

x (t) and pref
y (t), (4), (5), and Laplace transform
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Fig. 4. Fixed ZMP references. (a) pref
y −pref

x relation on the x−y plane. ZMP
references and stepping positions overlap. (b) pref

x , the x-axis ZMP reference.
(c) pref

y , the y-axis ZMP reference.

Fig. 5. Natural ZMP trajectory.

techniques can be employed to obtain the solution for the CoM
position references cref

x (t) and cref
y (t) (cref

z (t) = zc, which is a
constant in the LIPM). After having found the required CoM
reference trajectories, a position control scheme for the robot

Fig. 6. Moving ZMP reference. (a) pref
y −pref

x relation on the x−y plane.
(b) pref

x , a natural x-axis ZMP reference. Note the difference of the x-reference
with the one shown in Fig. 4. (c) pref

y , the y-axis ZMP reference.

joints with references obtained by inverse kinematics from
these CoM locations can be obtained. Cartesian control tech-
niques can be applied for achieving desired CoM positions too.

The mathematical descriptions of the pref
x (t) and pref

y (t) in
Fig. 6 are given by

pref
x =

2b

T

(
t − T

2

)
+ (B − 2b)

∞∑
k=1

u(t − kT0) (6)

pref
y = Au(t) + 2A

∞∑
k=1

(−1)ku(t − kT0) (7)

where u(·) represents the unit step function.
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Defining ωn ≡
√

g/zc, we can rewrite (4) and (5) for the
reference variables as follows:

c̈ref
x =ω2

ncref
x − ω2

npref
x (8)

c̈ref
y =ω2

ncref
y − ω2

npref
y . (9)

Applying the Laplace transform, we can obtain

Cref
x (s)=

1
1−(1/ω2

n) s2

[
P ref

x (s)− 1
ω2

n

cref
x (0)s− 1

ω2
n

ċref
x (0)

]
(10)

Cref
y (s)=

1
1−(1/ω2

n) s2

[
P ref

y (s)− 1
ω2

n

cref
y (0)s− 1

ω2
n

ċref
y (0)

]
.

(11)

Equations (6) and (10) with zero initial conditions yield

Cref
x (s) =

1
1−(1/ω2

n) s2
P ref

x (s)

=
1

1−(1/ω2
n) s2

[
2b

T

1
s2

− b
1
s

+ (B−2b)
1
s

∞∑
k=1

e−kTs

]

=
[
1
s
− s

s2 − ω2
n

][
2b

T

1
s
− b + (B − 2b)

∞∑
k=1

e−kTs

]

=
2b

T

1
s2

− b
1
s

+ (B − 2b)
1
s

∞∑
k=1

e−kTs − 2b

T

1
s2 − ω2

n

+ b
s

s2 − ω2
n

− (B − 2b)
s

s2 − ω2
n

∞∑
k=1

e−kTs. (12)

Therefore, the time domain solution for the x-direction
reference for the CoM can be computed by inverse Laplace
transform as

cref
x (t) =

2b

T
t − b1(t) − 2b

Tωn
sinh ωnt + b cosh ωnt

+ (B − 2b)
∞∑

k=1

(1 − cosh ωn(t − kT )) 1(t − kT ). (13)

Similarly, from (7) and (11), with zero initial conditions the
Laplace transform Cref

y (s) can be computed as

Cref
y (s)=

1
1 − (1/ω2

n) s2
P ref

y (s)

=
1

1 − (1/ω2
n) s2

[
A

1
s

+ 2A
1
s

∞∑
k=1

(−1)ke−kTs

]

=
[
1
s
− s

s2 − ω2
n

][
A + 2A

∞∑
k=1

(−1)ke−kTs

]
(14)

and inverse Laplace transformation results in the expression

cref
y = 2A

∞∑
k=1

(−1)k (1 − cosh ωn(t − kT0)) 1(t − kT0).

(15)

It can be noted that the solutions for cref
x and cref

y consist of
cosh functions (which are unbounded) and further, the result
is very sensitive to the value of g/zc(= ω2

n). Therefore, the
application of these solutions is quite difficult. Reference [28]
also indicates similar results for the reference ZMP trajectories
in Fig. 4 and proposes an approximate solution with the use of
Fourier series representation to overcome this difficulty and to
obtain CoM references suitable for robust implementation of
the reference generation.

Taking an approach similar to the one in [28], this paper
develops an approximate solution for the cx and cy references
corresponding to the moving ZMP references in Fig. 6. Note
that the y-direction ZMP reference pref

y (t) is a periodic function
with the period 2T . It is reasonable to assume that cref

y (t) is a
periodic function too and that it has the same period. Hence, it
can be approximated by a Fourier series

cref
y (t) =

a0

2
+

∞∑
k=1

ak cos
(

2πkt

2T

)
+ bk sin

(
2πkt

2T

)
. (16)

By (9) and (16), pref
y can be expressed as

pref
y (t) = cref

y − zc

g
c̈ref
y

=
a0

2
+

∞∑
k=1

ak

(
1 +

π2k2

ω2
nT 2

)
cos

(
2πkt

2T

)

+ bk

(
1 +

π2k2

ω2
nT 2

)
sin

(
2πkt

2T

)
. (17)

Noting that this expression in the form of a Fourier series for
pref

y (t), and since pref
y (t) is an odd function, we can conclude

that the coefficients a0/2 and ak(1 + (π2k2)/(ω2
nT 2)) for k =

1, 2, 3, . . . are zero. In order to compute the coefficients bk(1 +
(π2k2)/(ω2

nT 2)), we can employ the Fourier integral

bk

(
1 +

π2k2

ω2
nT 2

)
=

2
2T

2T∫
0

pref
y sin

(
2πkt

2T

)
dt. (18)

As a result, the Fourier coefficients of cref
y (t) in (16) can be

obtained as

a0 = 0

ak = 0

bk =
2AT 2ω2

n(1 − cos kπ)
kπ (T 2ω2

n + k2π2)
, k = 1, 2, 3, . . . . (19)

The second step is finding the Fourier series coefficients for
cref
x . pref

x (t) in Fig. 6 is not a periodic function. It cannot be
expressed as a Fourier series. However, it can be noted that this
function is composed of a periodic function p′refx defined by

p′refx = − (B − 2b)
T

(
t − T

2

)
for t ∈ [0, T ]

p′refx (t + T ) = p′refx (t) (20)
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Fig. 7. p′refx (t), the periodic part of the x-direction ZMP reference pref
x (t).

and a nonperiodic one ((B/T )(t − (T/2))). The periodic and
nonperiodic parts of pref

x (t) are shown in Fig. 7. It is again
a reasonable assumption that cref

x has a periodic part and
a nonperiodic part too. Furthermore, if we suppose that the
two nonperiodic parts (of pref

x (t) and cref
x ) are nonequal, then

the difference pref
x (t) − cref

x will be nonperiodic. This is not
expected in a continuous walk as the one shown in Fig. 6.

Therefore, we conclude that the nonperiodic parts of the two
functions are equal. Note that, as shown in Fig. 7, the period
of the periodic part of pref

x (t) is T , and we can make the same
statement for the period of the periodic part of cref

x . Finally, cref
x

can be expressed as

cref
x =

B

T

(
t− T

2

)
+

α0

2
+

∞∑
n=1

αn cos
(

2πnt

T

)
+βn sin

(
2πnt

T

)
.

(21)

Recalling (4), with (21), the expression for pref
x (t) with a

Fourier series is

pref
x (t) = cref

x − zc

g
c̈ref
x

=
B

T

(
t − T

2

)
+

α0

2
+

∞∑
n=1

αk

(
1 +

π2k2

ω2
nT 2

)

× cos
(

2πkt

T

)
+ βk

(
1 +

π2k2

ω2
nT 2

)
sin

(
2πkt

T

)
.

(22)

Therefore, the Fourier coefficients of p′refx (t), the periodic
part of pref

x (t), are α0/2, αk(1 + π2k2/ω2
nT 2), and βk(1 +

π2k2/ω2
nT 2) for k = 1, 2, 3, . . . The Fourier coefficients α0/2,

αk(1 + π2k2/ω2
nT 2) of p′refx (t) shown in Fig. 7 are zero be-

cause this is an odd function. The coefficients for βk(1 +
(π2k2)/(ω2

nT 2)) can be found by

βk

(
1 + π2k2/ω2

nT 2
)

=
2
T

T∫
0

p′refx (t) sin
(

2πkt

T

)
dt. (23)

This yields the result

α0/2 = 0
αk = 0

βk =
(B − 2b)T 2ω2

n

kπ (T 2ω2
n + k2π2)

for k = 1, 2, 3, . . . . (24)

Fig. 8. CoM reference curves together with the corresponding original and
Fourier approximation ZMP reference curves. (a) crefx and (b) crefy (t).

and cref
x can then be written as

cref
x =

B

T

(
t − T

2

)
+

∞∑
k=1

(B − 2b)T 2ω2
n

kπ (T 2ω2
n + k2π2)

sin
(

2πkt

T

)
.

(25)

The curves obtained for cref
x and cref

y (t) are shown in Fig. 8
together with the corresponding original (as defined in Fig. 6)
and Fourier approximation ZMP reference curves. In Fig. 8,
the following parameter values are used: A = 0.1, B = 0.1,
b = 0.02, T = 1. The infinite sums in (16), (17), (21), and (22)
are approximated by finite sums of N terms (N = 15). These
parameter values are valid for the rest of the figures in this
section too.

Fig. 9 shows the fixed ZMP [28] and moving ZMP CoM
reference curves in the x-direction. It can be seen that the
moving ZMP results in a x-direction CoM reference which
closer to a straight line. This suggests that the energy con-
sumption for locomotion is less with the moving ZMP than that
with the fixed ZMP. This is expected from a natural reference
trajectory, and this result is in parallel with the results in [23].
Section IV quantifies the difference in the energy consumption
via simulation studies.
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Fig. 9. Comparison of the fixed ZMP and moving ZMP CoM x-direction
references. The CoM reference corresponding to the moving ZMP reference
oscillates with smaller amplitude.

Fig. 10. Lanczos sigma factor values on the sinc function.

D. Reference Smoothing

The ZMP reference moving forward under the sole is intro-
duced by the discussion above. However, still missing is the
double support phase. The introduction of the double support
phase is achieved by a smoothing function in this paper. The
Lanczos sigma factors [32] are employed as a method to solve
the Gibbs phenomenon [33], i.e., nonuniform convergence of
the Fourier series (here evident from the peaks shown in Fig. 8
at the discontinuities of the approximated function). In this
paper, however, the application of the Lanczos sigma factors
has the second role of smoothing the abrupt changes in the
reference ZMP functions and creating double support phases.

The Lanczos Sigma Factor is defined as the function

sinc(kπ/N) =
sin(kπ/N)

kπ/N
(26)

where N is one more that the number of terms in a Fourier
series approximation. When applied on a Fourier series, the
series after the Lanczos Sigma smoothing can be written as

f(θ) =
φ0

2
+

N−1∑
k=1

sinc
(

kπ

N

)
[φk cos(kθ) + ψk sin(kθ)] .

(27)

Fig. 11. Effect of Lanczos sigma smoothing on the x- and y-direction (ZMP
references).

Fig. 12. Introduction of a double support phase by the modified Lanczos
sigma smoothing with factors in (28). The parameter d can be chosen for
desired double support phase duration. Longest double support period is
observed with d = 4 in the figure.

The action of this smoothing mechanism is weighting the
Fourier coefficients, and the higher the frequencies, the lower
are the weighting gains (Fig. 10).

Fig. 11 shows the effects of the Lanczos sigma factors on the
x- and y-direction ZMP references. The corresponding CoM
references (cref

x and cref
y (t)) can be found by weighting the

Fourier coefficients βk and bk in (19) and (24), respectively,
by the same corresponding Lanczos sigma factors. The double
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Fig. 13. Swing foot references are obtained from ZMP and CoM references.

Fig. 14. Leg joint position references are obtained via inverse kinematics.

support phase duration can be adjusted by an extension of the
Lanczos Sigma smoothing algorithm. This is carried out by
virtue of a double support phase parameter d. This parameter
is used in place of N (the number of summed terms +1) in the
Lanczos sigma factors in the sinc function

sinc(kπ/d). (28)

The effect of this modified Lanczos sigma smoothing is
shown in Fig. 12 for the pref

y (t). The parameter d can be chosen
for desired double support phase duration. Longest double
support period is observed with d = 4 in the figure.

This concludes the CoM reference generation section. The
next section outlines the swing foot reference generation and
locomotion control.

III. OUTLINE OF THE CONTROL ALGORITHM

The swing foot position references are obtained from ZMP
and CoM references (Fig. 13). The control algorithm is a simple
one based on independent joint PID position controllers. The
joint position references are generated through inverse kinemat-
ics from CoM and swing foot references defined in world frame
coordinates (Fig. 14). The foot orientation references used in

TABLE I
MASSES AND DIMENSIONS OF THE ROBOT LINKS

inverse kinematics are fixed, and they are computed for feet
parallel to the robot body. The PID controller gains are obtained
via trial and error. The controller structured this way, except
for the joint PID controllers, is an open-loop one. However,
it achieves walking when stable reference trajectories (like the
ones obtained in the previous section) are employed.

IV. SIMULATION RESULTS

The biped model used in this paper consists of two 6-DOF
legs and a trunk connecting them (Fig. 1). Three joint axes
are positioned at the hip. Two joints are at the ankle and one
at the knee. Link sizes and the masses of the biped are given
in Table I.
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Fig. 15. Snapshot from biped robot animation.

TABLE II
SOME OF THE IMPORTANT SIMULATION PARAMETERS

Simulations studies are carried out with this robot model,
references generated in Section II and the coordination and
control mechanism discussed in Section III. A view of the
animation window is shown in Fig. 15. The full-dynamics 3-D
simulation scheme is similar to the one in [30]. The ground
contact is modeled by an adaptive penalty-based method. The
details of the simulation algorithm and contact modeling can
be found in [31]. Parameters used for reference generation are
presented in Table II.

Fig. 16 shows the CoM position and CoM reference position
projection on the ground plane for a 11 step walk. It can be
observed that the COM reference is only roughly tracked. In the
single support phases, the deviation from the reference curve is
more pronounced. This suggests that the simple LIMP model,
concentrating on the robot trunk, and ignoring the effects of
the swing foot on the CoM of the whole robot, may encounter
problems when the leg weight is not very low. The legs weigh
15 kg. Although it is much less than the 50-kg trunk weight,
this weight significantly affects the CoM curve.

Although there are some tracking problems as discussed
above, the reference generation and control algorithms are
generally successful in keeping a stable walk and enabling
the robot move forward with an almost constant speed of
7 cm/s. This is achieved without the need for the elaborate trial
and error steps common to many other reference generation
approaches.

For comparison purposes, simulations with fixed support
foot ZMP references are also carried out. Exactly the same

Fig. 16. CoM position and CoM reference position projections on the x−y
plane (ground plane) with moving support foot ZMP references.

Fig. 17. CoM position and CoM reference position projections on the
x−y-plane with fixed support foot ZMP references.

independent joint position control scheme is applied without
modifications. The CoM position and CoM reference position
projections on the ground plane are shown in Fig. 17 for the
fixed ZMP reference case. Again, a steady walk is obtained.
However, the CoM trajectory deviates more from its reference
with this kind of reference generation. Our observation from
the animations is that in the simulations with fixed ZMP refer-
ences, the robot body inclines with larger angles at every step
when compared with the moving ZMP reference case. This
is mainly due to higher cyclic acceleration and deceleration
demands of the CoM reference (Fig. 9) obtained from the
fixed ZMP reference curve. This result is in parallel with
the findings in [21] and [22] supports the view that a more
natural walk can be achieved with mowing support foot ZMP
references.

As mentioned in Section I, the energy efficiency can be a
measure of the naturalness of the walk too. The two cases,
with the moving and fixed support foot ZMP references are
compared in face of energy efficiency too. For this purpose, the
energy consumed in one walk cycle (from one landing instant
of the right foot to the next landing instant of the same foot)
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TABLE III
ENERGY REQUIREMENTS FOR ONE WALK CYCLE

is computed. This computation can be carried out by different
ways. In one approach, as in [34] the integral

E1 =

t2∫
t1

θ̇Tτdt (29)

where E1 is the energy consumed in one walk cycle by the
robot and t1 and t2 are the beginning and end times of the
walk cycle, respectively. θ̇ and τ are joint velocity and joint
torque vectors, respectively, as defined for (1). Equation (29)
assumes that regenerative feedback to the supply is possible. In
the nongenerative case where the braking energy is dissipated
as heat the expression

E2 =

t2∫
t1

|θ̇Tτ |dt (30)

where | · | represents the absolute value function can be used in
the computation of the energy requirement for one walk cycle.
The θ̇ and τ histories recorded during simulation can be used
to compute the expressions in (29) and (30). The results are
tabulated in Table III, and they indicate that the moving ZMP
reference considered in this section is 25%–30% more efficient
than the fixed ZMP reference.

This result also supports the view that moving support foot
ZMP curves are more natural than the fixed ones. It is also
intuitive to think that a straight line, in place of the curved CoM
references in Fig. 9 would the best choice for energy efficiency.
Unnecessary cyclic acceleration and deceleration, which con-
sume energy, would be avoided by a linear CoM x-direction
reference. Note that a linearly increasing x-component would
mean zero CoM acceleration in the x-direction and, by (4),
the ZMP and CoM curves would coincide in the x-direction.
Hence, a linearly increasing CoM x-component corresponds
to a linearly increasing ZMP x-component. This would imply
the same and constant ZMP x-direction velocity in the single
and double support periods. Fig. 6(b) suggests that this can be
achieved by a proper selection of the parameter b(b = B/2).
This, however, is where the two ways of defining the natural-
ness of the walk (the naturalness of ZMP trajectory and the
energy efficiency) do not agree, as the experimental results in
[21] and [22] indicate that human ZMP travels faster in the
double support phase than in the single support phase.

V. CONCLUSION AND FUTURE DIRECTIONS

A trajectory generation, coordination and control approach
for biped walking robots is presented in this paper. Humanlike
ZMP reference trajectories with Fourier series approximation
techniques for the solution of LIPM dynamics equations are
employed in order to achieve naturalness in the walk. A simple

independent joint position controller structure is employed.
Simulation studies show that the reference generation without
considering the effects of the swing foot on robot ZMP can
lead to significant deviations from reference trajectories. The
walk, however, is stable and this is promising result making the
algorithm a candidate for implementation. Swing foot motion
compensation techniques and methods for the soft landing can
be applied as future work in order to improve the controller
performance. As an additional result, the comparison of the
moving and fixed support foot ZMP references indicate that bet-
ter energy efficiency can be obtained with moving references.
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