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Heme oxygenase (HO) is the primary antioxidant enzyme involved in heme group

degradation. A variety of stimuli triggers the expression of the inducible HO-1 isoform,

which is modulated by its substrate and cellular stressors. A major anti-inflammatory

role has been assigned to the HO-1 activity. Therefore, in recent years HO-1 induction

has been employed as an approach to treating several disorders displaying some

immune alterations components, such as exacerbated inflammation or self-reactivity.

Many natural compounds have shown to be effective inductors of HO-1 without cytotoxic

effects; among them, most are chemicals present in plants used as food, flavoring,

and medicine. Here we discuss some naturally derived compounds involved in HO-1

induction, their impact in the immune response modulation, and the beneficial effect in

diverse autoimmune disorders. We conclude that the use of some compounds from

natural sources able to induce HO-1 is an attractive lifestyle toward promoting human

health. This review opens a new outlook on the investigation of naturally derived HO-1

inducers, mainly concerning autoimmunity.
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INTRODUCTION

Heme oxygenase (HO, EC 1.14.99.3) is a microsomal enzyme first described in 1968 (1) with
a primary antioxidant and anti-inflammatory role involved in heme group degradation yielding
carbon monoxide (CO), biliverdin, and free iron (2). To date, three HO isoenzymes (HO-1, HO-
2, and HO-3) have been reported in mammals. Of these three isoenzymes, only HO-1 has been
demonstrated to be inducible in response to a variety of stimuli (3, 4). The beneficial effect of HO-1
induction in inflammation has been associated not only with the degradation of the heme group
but also with its anti-inflammatory products, biliverdin, and CO (5, 6).

Importantly, HO-1 induction is triggered by its substrate heme and by biological, chemical, and
physiological stress conditions caused by toxic concentrations of drugs or metals (7). Therefore,
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HO-1 induction is actively involved in the oxidative response,
and its induction has been used as an approach for the treatment
of inflammatory diseases (8–11).

Many natural compounds have shown an effective induction
of HO-1 without cytotoxic effects. Most of them are chemicals
present in plants used as food, spices, flavoring, and medicine
(7). In this review article, we will discuss some naturally derived
compounds known to up-regulate the expression of HO-1,
the molecular mechanisms involved in HO-1 induction, and
the beneficial effects of these natural compounds in different
autoimmune disorders.

MOLECULAR MECHANISM OF HO-1
INDUCTION

Heme oxygenase 1 has great therapeutic potential value given
that in several conditions and diseases, there are stress factors
that induce the expression of HO-1 activity, reducing the
inflammation. Therefore, it seems essential to better know the
molecular mechanisms involved in the induction of the HO-1
expression and the regulation of its activity. In this section, we
discuss the role of transcription factors and upstream signaling
molecules in the modulation of HO-1 expression.

Transcription Factors
The HO-1 gene (hmox1) is often activated under a wide
range of stressful conditions. The transcriptional control of
hmox1 is determined by inducible regulatory elements localized
in the 5′ region of the promoter (4, 12). Distal enhancers
regions identifying upstream hmox1 (13, 14) are critical in
HO-1 induction by different stimuli and contain several stress-
responsive elements with binding sites for regulatory proteins
(15, 16). Several redox-sensitive transcription factors bind to
these elements, and some of them will be discussed below.

Nuclear Factor–Erythroid 2–Related Factor 2
Nuclear factor–erythroid 2–related factor 2 (Nrf2) is a
transcription factor that regulates the expression of proteins
functionally related to detoxification, reduction of oxidized

Abbreviations: HO-1, Heme oxygenase 1; CO, Carbon monoxide; StRE, Stress-
responsive elements; DCs, Dendritic cells; NFκB, Nuclear factor κB; NF-E2,
Nuclear factor–erythroid 2; Nrf2, NF-E2-related factor 2; AP-1/2, Activador
protein 1/2 families; ARE, Antioxidant response element; Keap1, Kelch-like
ECH-associated protein 1; MAPKs, Mitogen-activated protein kinases; PKA,
Protein kinase A; PKC, Protein kinase C; PI3K, Phosphatidylinositol 3-kinase;
EGCG, Epigallocatechin gallate; ROS, Reactive oxygen species; SLE, Systemic
lupus erythematosus; RA, Rheumatoid arthritis; CAPE, Caffeic acid phenethyl
ester; DADS, Diallyl disulfide; DATS, Diallyl trisulfide; NQO1, NAD(P)H-
quinone oxidoreductase; CIA, Collagen-induced arthritis; ITC, Isothiocyanate;
SFN, Sulforaphane; ERK, Extracellular regulated kinases; JNK, c-Jun N-terminal
kinases; HDAC2, Histone deacetylase-2; CA, Carnosic acid; T1D, Type 1 diabetes;
NOD, Non-obese diabetic; STZ, Streptozotocin; CoPP, Cobalt (III) protoporphyrin
IX; IBD, Inflammatory bowel disease; CD, Crohn’s disease; UC, Ulcerative
colitis; DSS, Dextran sulfate sodium; MARE, Maf recognition elements; LPS,
Lipopolysaccharide; cAMP, Cyclic adenosine monophosphate; cGMP, Cyclic
guanidine monophosphate; IRF-3, Interferon regulatory factor-3; C3G, Cyanidin-
3-glucoside; ZnPP, Zinc protoporphyrin; MPP+, 1-methyl-4-phenyl pyridine ion;
EAE, Experimental autoimmune encephalomyelitis; CNS, Central nervous system;
MS,Multiple sclerosis; DMF, Dimethylfumarate; tolDC, Tolerogenic dendritic cell.

proteins, and the elimination of end products derived from
reactive oxygen species (ROS) (17). Nuclear factor–erythroid
2–related factor 2 binds to small Maf protein forming a
heterodimer, and then this dimer can bind to the antioxidant
response element (ARE) or Maf recognition elements (MAREs)
(18). These sequences are present at the HO-1 promoter;
thus, the Nrf2-Maf dimer binding induces the transcriptional
expression of HO-1 mRNA (19).

The activity of Nrf2 is normally repressed by the repressor
Kelch-like ECH-associated protein 1 (Keap1), which sequestrate
Nrf2 in the cytoplasm (20). Some electrophilic agents and ROS
alter the interaction of Nrf2-Keap1 and liberate Nrf2 activity
from repression (21). Moreover, Bach1, another transcriptional
repressor, competes for binding, and forming heterodimers with
small Maf proteins. These dimers bind to MAREs at the DNA
repressing HO-1 transcription (22). However, an inductor such
as heme binds to four cysteine–proline motifs in the C-terminal
region of Bach and inhibits the DNA-binding activity of Bach1–
Maf heterodimers resulting in HO-1 induction (23).

Activator Protein 1
The activator protein 1 (AP-1) transcription factor is a dimer of
Jun and Fos family proteins (24). Activator protein 1 is involved
in the induction of immune responses in a great diversity of
ways, including different tissues and immune or non-immune
cell types (25, 26). Interestingly enough, AP-1 homodimers or
heterodimers bind to enhancers flanking the promoter region of
hmox1 (14). The induction of HO-1 expression requires AP-1
activation to respond to some oxidative inducers (27, 28), such
as lipopolysaccharide (LPS) (29).

Upstream Signaling Molecules
The activation of the transcription factors mentioned
above can be indirectly modulated by various proteins
with (de)phosphorylation or reduction–oxidation activity,
such as the mitogen-activated protein kinases (MAPKs),
phosphatidylinositol 3-kinase (PI3K), and other protein kinases,
leading to HO-1 regulation. These signaling pathways and their
association to the immune response will be described below.

Mitogen-Activated Protein Kinases
The activation of MAPKs has been suggested to play a critical
role in HO-1 up-regulation (4). Among them, three major
subfamilies of MAPKs have been described in HO-1 expression
modulation: the extracellular regulated kinases (ERK), c-Jun
N-terminal kinases (JNK), or stress-activated kinases, and p38
(4, 30). Thus, p38 function has been involved in the HO-
1 induction by isoproterenol (31), ethanol extract of Inula
helenium (32), and tetrahydroisoquinoline alkaloid THI-28 (33)
in RAW 264.7 macrophages. In addition, khayandirobilide
A, an anti-inflammatory compound from Khaya senegalensis,
induces HO-1 expression by p38 MAPK/Nrf2 signaling in RAW
264.7 macrophages and BV-2 microglial cells (34). Besides,
p38 inhibition has been reported to induce HO-1 expression
mediated by Nrf2 in monocytes, (35) human leukocytes (36), and
RAW 264.7 macrophages (37).
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On the other hand, the induction of HO-1 expression by
cadmium has been reported to be JNK and ERK pathway-
mediated in the lymphocyte B-cell line BJAB cells in a
dose-dependent manner (38). Moreover, inhibition of the
JNK pathway is involved in the anti-inflammatory effects
of kalopanaxsaponin A from Kalopanax pictus (39) and
sulforaphane (SFN) (40) in LPS-stimulated microglia. Also,
ethanol-treated rat Kupffer cells display increased mRNA
expression of HO-1 mediated by Nrf2, hypoxia-inducible factor
1α, and JNK-1 (41). Moreover, HO-1 is induced in microglia
by the activation of Nrf2 via the ERK signaling pathway
under astragaloside IV (42) and artesunate treatment (43).
Accordingly, the MAPK pathway involved HO-1 up-regulation,
which probably is dependent on the cell type and inducer. Hence,
more studies should be performed to improve the understanding
of themechanisms underlying the regulation of HO-1 expression.

Phosphatidylinositol 3-Kinase
In diverse models, it has been shown that HO-1 expression could
be up-regulated via PI3K/Akt pathway and Nfr2 (44, 45). Most
of the studies report the induction of HO-1–mediated via PI3K
in immune cells described in cells from the innate system. Heme
oxygenase 1 induction has also been reported to be PI3kmediated
in RAW 264.7 macrophages after isoproterenol treatment (31).
The anti-inflammatory effects of schisandrin from Schisandra
chinensis in LPS-stimulated RAW 264.7 have been due to the
induction of HO-1 expression through Nrf-2 and PI3K/Akt
activation. Interestingly, the down-regulation of the PI3K/Akt
signaling pathway increases Nrf2/HO-1 and inhibits mast cell
degranulation (46). Besides, edaravone (a radical scavenging
agent) reduces experimental autoimmune thyroiditis severity in
a PI3K/Akt pathway-dependent way by inducing HO-1 (47).

Others Protein Kinases
Heme oxygenase 1 expression can involve different upstream
signaling according to the cell type evaluated, as was mentioned
before. Thus, several signaling cascades have been associated
with HO-1 up-regulation, including protein kinase A (PKA),
and C (PKC). For example, in LPS-mature dendritic cells (DCs)
from a mouse model of Parkinson disease, HO-1 is regulated via
AMPK (48). Also, morin (a flavonoid from fruits) down-regulates
MAPK and PI3K/Akt pathways, while it induces PKA/CREB and
Nrf2/HO-1 signaling in LPS-stimulated microglia (49). Besides,
PKG signaling and PKC signaling show to be part of the up-
regulation of HO-1 expression (50). For example, PKC α/β II is
an upstream molecule of Nrf-2, required for HO-1 expression
after coniferaldehyde treatment in LPS-stimulated RAW 264.7
macrophages (51). Besides, as was described above, cadmium
induces HO-1 expression mediated by the PKC pathway in the
BJAB cells (38). In addition, oxidized phospholipids induce HO-
1 expression in human endothelial cells by the activation of PKC,
PKA, and MAPK (52), and similarly, tumor necrosis factor α

(TNF-α) and interleukin 1α (IL-1α) induce HO-1 expression by
PKC activity (53). On the other hand, an increase in cAMP and
cGMP also induces the expression of HO-1 (54). Accordingly,
PKA has been studied as an upstream signal for HO-1 induction,
because a large number of extracellular stimuli are capable of

increasing cAMP or cGMP in the intracellular space, and this
increase up-regulates HO-1 expression (55).

Epigenetic Modulation
Gene expression can also be regulated by chromatin changes in
response to environmental signals through histone modifications
(56). Although the epigenetic regulation of hmox1 is poorly
studied, deacetylation and phosphorylation have been observed
to be involved in the modulation of its transcription (57–
59). Thus, the reduction in histone acetylation can inhibit the
Mn-induced Nrf2 translocation to the nucleus and the HO-1
expression in nerve cells (57). Additionally, histone deacetylase
2 (HDAC2) has been reported to inhibit the Nfr2/HO-1
pathway in cystic fibrosis epithelial cells (58). Interestingly, the
indirect involvement of histone deacetylase 6 (HDAC6) in HO-
1 expression has also been reported, although the epigenetic
modification on hmox1 was not directly evaluated (60).

On the other hand, the environmental inorganic arsenite
induces Nrf2/HO-1 expression in human hepatocytes (61). That
occurs by the increase in serine 10 phosphorylation in histone H3
(H3S10) in the promoter region of the gene hmox1, activating its
transcription in HaCat keratinocytes (59). Thus, although there
is little information about the epigenetic modulation of HO-1,
its expression also could, directly and indirectly, be regulated by
epigenetic modifications.

HO-1 MECHANISMS OF IMMUNE
MODULATION

The HO-1 activity has been reported to impact both innate
and adaptive immune responses, contributing to resolve early
inflammation and limiting subsequent tissue damage (62). The
function of HO-1 in the immune system is evidenced in part
by the alterations reported in knockout mice. Splenomegaly,
lymphadenopathy, and changes in the number of CD4+ T cells,
as well as increased immunoglobulin M level, are observed in
hmox1−/− mice (62, 63).

Immunomodulation dependent on HO-1 activity is reported
in almost all the immune cells. This broad range of action
could be related both to the products obtained from heme
degradation reaction and the consumption of heme per se, which
all have protective effects (64). Heme, a complex of iron and
protoporphyrin IX is the prosthetic group of heme proteins. The
activity of the HO-1 is essential in the recycling of the heme
group, and this is evidenced by the anemia and iron overload
observed in hmox1−/− mice (65). Under pathogenic conditions,
the heme group released from the hemoproteins binds to
TLR4, triggering the production of proinflammatory cytokines
by macrophages (66). However, HO-1 induction in these cells
not only removes heme from circulation but also triggers a
functional switch toward the anti-inflammatory phenotype (67).
Accordingly, HO-1 up-regulation has been extensively related
to M2 polarization (68). The importance of HO-1 in cells from
the myeloid linage is highlighted by conditional hmox1−/− mice
that are prone to viral infections and inflammatory conditions
(69). Accordingly, CO inhibits TLR signaling pathway (70) and
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down-regulates the TLR4 ligand HMGB1, reducing the lethality
in endotoxemia models (71). Moreover, HO-1 modulates type I
interferon (IFN) production in macrophages and DCs, this effect
has been suggested to be mediated by direct HO-1 binding to
IFN regulatory factor 3 (IRF3) (69), as well as CO effect in IRF3
signaling (72).

On the other hand, HO-1 inhibits the LPS-induced
production of inducible nitric oxide synthase (iNOS),
cyclooxygenase 2 (COX2), proinflammatory cytokines, and
MIP-1 in macrophages by CO and MAPK signaling (67, 68, 73).
Furthermore, HO-1 induction in mast cells suppresses the
degranulation and proinflammatory cytokine production
(74). Interestingly, a suppressor role of HO-1 in T-cell
priming of adaptive responses has been suggested. Thus,
the pharmacological up-regulation of HO-1 in DCs induces a
tolerogenic profile and the consequent regulatory T (Treg) cell
induction (75, 76).

Pharmacological modulation of HO-1 alters CD4+ and CD8+

T-cell activity (77) and has been associated with CO and
biliverdin/bilirubin reactivity (78). Regulatory T-cell activity is
also modulated by HO-1, although the reported information
has been more challenging to interpret. These cells show
constitutive expression of HO-1, and its inhibition decreases
in vitro Treg cell function (79); nevertheless, hmox1−/− mice
do not show Treg functionality alterations (80). Interestingly,
HO-1 deficiency in DCs impacts Treg cell immunosuppressive
effect (81), suggesting that HO-1 could be indirectly involved in
Treg function impairment. On the other hand, biliverdin and
bilirubin interfere in CD4+ T-cell activation (82, 83), whereas CO
inhibits lymphoproliferation (78). Besides, activated Treg cells
induce a suppressive phenotype in neutrophils by initiating HO-
1 expression (84). Interestingly, it has been proposed that these
products of HO-1 activity may remotely regulate T-cell function.

Considering that the suppressing effect of HO-1 on the
immune system impacts both innate and adaptive responses,
the use of inducers of this enzyme is a promising approach
for autoimmune and autoinflammatory disease treatment (85).
Importantly, an increasing number of reports have pointed to
a regulatory effect of HO-1 and especially to its reaction end
products on immune responses. In this way, the benefit of the
clinical application of these products (CO, bilirubin/biliverdin)
might be an exciting approach. But an intensive study of dos—
effect is required because all of them possess toxic properties in
higher concentrations or chronic administration (86).

NATURALLY DERIVED HO-1 INDUCERS

As mentioned previously, high amounts of heme, which is the
natural inducer of HO-1, have strong cytotoxic effects triggering
various inflammatory events. Thus, the subsequent induction of
HO-1 enzyme is considered a negative feedback mechanism that
protects from the pathogenic effects of its inducer, maintaining
homeostasis (87). Along these lines, importance of establishing
the correct dose for each inductor has been underscored. In low
doses, the heme group has been shown to have a beneficial anti-
inflammatory effect depending on the activity of HO-1 and its

reaction products in immune disorders (88). However, at doses
that exceed the capacity of the enzyme or in individuals with
other base pathogenic conditions, the heme group could have
a detrimental impact. The same concept must be applied to
the use of other inductors, knowing that HO-1 expression can
be induced following the stimulus of several cytotoxic agents.
Among them, sodium arsenite, ultraviolet A radiation, hydrogen
peroxide, and structural analogs of heme have been described
(7, 44, 61, 89). Special attention must be assigned to establish
the correct doses of these substances to be administered (86).
This is a special issue when we evaluate compounds of natural
origin, which frequently are in the form of complex mixtures,
not available for absorption and in very low proportions. Hence,
beyond discussing the impact of a substance on immune cell
function and its therapeutic application, it is critical to consider
the bioavailability of the active component.

It is essential to highlight that, although HO-1 induction is
efficient in many scenarios as an immunomodulatory agent, its
efficiency is restricted by the availability of its substrate and the
patient’s health status, among others. Similar to what happens
with heme, the beneficial effect of CO and bilirubin/biliverdin
is observed only at low doses because they are toxic at higher
concentrations. Consequently, the doses have to be adjusted,
taking into account not only the possible toxicity of the inducer
but also the accumulation of the enzymatic-end products.

In this context, and taking into account the detailed
considerations, HO-1 inducer compounds derived from natural
sources have emerged as an exciting alternative to treat
inflammatory conditions. The induction mechanisms of HO-1 to
the compounds discussed in this review article are schematically
summarized in Figure 1. Although the bibliography describes a
wide range of pharmacological properties for these molecules,
given the scope of this review article, we will only focus on the
effects related to the immune system by HO-1 induction.

Quercetin
Quercetin (3,5,7,3′,4′-pentahydroxyflavone) is a flavonoid
commonly found in fruits and vegetables, particularly on red
onion and tea leaves (90). This phytochemical is considered
a potent antioxidant synthesized by plants as a defense to
environmental stress (91). Hence, it has been described as
an anti-inflammatory molecule by scavenging free radicals
(92). The protective antioxidant effect of quercetin has been
associated with the activation of MAPK–Keap1–Nrf2–ARE
signaling pathways (Figure 1) (93, 94). It has been shown
that quercetin induces HO-1 at transcription and translation
levels in a time- and dose-dependent manner in RAW264.7
macrophages (95) and microglia (96). Importantly, HO-1
induction in macrophages promotes the polarization toward the
anti-inflammatory M2 profile (68, 97). Thus, quercetin promotes
a phenotype switch in macrophages, which is beneficial in some
inflammatory conditions (98, 99). Importantly, it has been
reported that quercetin attenuates murine arthritis by activating
HO-1 anti-inflammatory response, modulating the TH17/Treg
balance (100), and reducing joint inflammation (101).

Importantly, in vitro results demonstrated the presence of
quercetin-related mutagenic activity, but not seen in vivo (102).
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This difference has been attributed in part to the very low
bioavailability of the quercetin. On the other hand, in vitro
oxidation of quercetin leads to the formation of components.
In contrast, the metabolism of an orally administered dose, as
well as the protective mechanisms, might render the absence
of carcinogenic effects in vivo (103). Hence, several extensive
and critical reviews conclude that quercetin is unlikely to cause
adverse effects in the long term.

Curcumin
Curcumin (diferuloylmethane) is a polyphenol present in the
root of Curcuma (Curcuma longa). It is a bioactive pigment
responsible for the characteristic yellow color, which has been
long used as a food additive and in traditional medicine as an
anti-inflammatory compound (104). A large number of studies
have identified curcumin as a potent inductor of the expression
and activity of HO-1 in a dose- and time-dependent manner
(12). It is well-known that the HO-1 expression induced by
curcumin requires the activation of the Nrf2/ARE pathway
(Figure 1) (12). Moreover, the inhibition of HDAC2 has been
involved in HO-1 induction mediated by curcumin (58). The
HO-1 up-regulation mediated by curcumin has been described
to promote beneficial effects in several inflammatory pathologies
(105, 106). Thus, dietary curcumin induces HO-1 mRNA and
protein in DCs and impairs the differentiation of TH1/TH17
cells during experimental autoimmune encephalomyelitis (EAE)
(107). Accordingly, curcumin reduces neuroinflammation in BV-
2 microglial cells in an HO-1–dependent way (108). Besides,
other studies demonstrated that curcumin could be useful to treat
inflammatory diseases, by up-regulatingHO-1 through PI3K/Akt
signaling (109).

There are a large number of toxicological studies of
curcumin performed in various experimental models and using
different forms of curcumin (extracts, particles, suspensions,
etc.). Although most in vivo studies do not report toxic effects
(110), some in vitro studies showed mutagenic effects due to
damage to mitochondrial and nuclear DNA using high doses
(111). Although curcumin exhibits excellent anti-inflammatory
properties, and researchers have published that there is little
toxicity in vivo, their low stability, poor absorption, and rapid
metabolism have promoted the development of synthetic analogs
to be implemented in the clinic (112, 113).

Carnosic Acid and Carnosol
Carnosic acid (CA) and its oxidative product carnosol are
phenolic diterpenes extracted from Lamiaceae plants such
as rosemary (Rosmarinus officinalis) and common salvia
(Salvia officinalis) (114). Both compounds have potent anti-
inflammatory and antioxidant properties (115, 116). The HO-
1 up-regulation by carnosol treatment has been reported to be
mediated by PI3K/Akt/Nrf2 pathway, as is shown schematically
in Figure 1 (117). Besides, CA up-regulates HO-1 expression in
several cell types, such as RAW264.7 macrophages (118), and
suppresses the generation of ROS and nitric oxide (NO). On
the other hand, it has been shown that carnosol induces HO-1
expression in DCs, reducing its production of proinflammatory
cytokines and preventing the induction of T-cell responses (119).

Furthermore, in another study, the DC maturation induced by
LPS is reduced by carnosol through the up-regulation of HO-1,
via activation of AMPK (120).

Interestingly, carnosol has also been described as one of the
compounds with the best induction of HO-1/low cytotoxicity
profile in BV2 microglial cells in vitro (121). Nevertheless, a
recent study has indicated that carnosol induces DNA damage,
although this activity is associated with abnormal topoisomerase
activity in lymphoblastoid TK6 cells (122). Importantly, these
compounds have the lowest cytotoxicity when compared to other
compounds such as allyl isothiocyanate (ITC) or caffeic acid
phenethyl ester (CAPE) (121). Furthermore, although diterpenes
are well-absorbed orally, the bioavailability can be increased
by encapsulation that protects from the degradation during
digestion (123).

Resveratrol
Resveratrol (3,5,4′-trihydroxystilbene) is a polyphenol present
in many fruits and vegetables, including grapes, cocoa, peanuts,
berries, and wine (124). Among the biological properties
associated with resveratrol, antioxidant, anti-inflammatory, and
metabolic functions have been described (125). Cytoprotective
and anti-inflammatory properties of resveratrol have been related
to the inhibition of nuclear factor κB (NFκB) signaling and
PI3K/Akt pathway and HO-1 induction (126). Importantly, it
has been reported that resveratrol induces HO-1 expression
by Nrf2 activation, as schematically shown in Figure 1 (126,
127). Moreover, resveratrol induces HO-1 expression by
AMPK/Nrf2/ARE pathway-dependent Jurkat cells, which in part
renders the cytoprotective features of resveratrol in human T
cells (128).

On the other hand, it has been observed that some resveratrol
metabolites mimic some of the beneficial effects of resveratrol.
Accordingly, piceatannol also induces HO-1 expression (129)
and has similar cytotoxicity in RAW 264.7 macrophages (130).
Despite the mentioned benefits of resveratrol, its use has been
limited because of its low bioavailability (131). Thereby, several
strategies have been surged as encapsulation or conjugation
in nanotechnology-based carriers tending to increase their
pharmacokinetics effectiveness (132).

Anthocyanins
Anthocyanins are water-soluble pigments present in vegetables,
flowers, and fruits such as berries, which confers it a bright
red, blue, or purple color (133). Chemically, anthocyanins are
phenolic compounds belonging to flavonoids. It is important
to note that different effects have been reported using distinct
anthocyanins, being cyanidin-3-glucoside (C3G), cyanidin-3-
xylosylrutinoside, and cyanidin-3-rutinoside those with stronger
anti-inflammatory effect (134). On the other hand, the use
of individual, purified compounds exhibits a weaker effect
than those observed using a mixture of both (135). On
the other hand, some reports have found that antioxidant
and anti-inflammatory effects of anthocyanins are associated
with the Nfr2-mediated HO-1 induction (Figure 1) (136–
138). Importantly, anthocyanins orally administered ameliorate
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inflammatory arthritis in the CIA murine model by decreasing
the TH17 cell number and suppressing NFκB signaling (139).

Similarly, concentrated C3G-blue honeysuckle extract
administration attenuates rat arthritis symptoms and enhances
Nrf2/HO-1 expression and reduces iNOS and COX2 in
RAW264.7 cells (140). Moreover, anthocyanins induce
expression of Nrf2/HO-1 and modulate T-cell function
(141). Importantly, it has been observed that C3G has
proapoptotic and antiproliferative effects at concentrations
found in human blood. Although a toxic in vivo effect remains
to be demonstrated, diet consumption appears to be safe; it
is essential to evaluate high doses and combined treatments
(142). Importantly, anthocyanins can be absorbed all along
gastrointestinal tract and metabolized by the microbiota (143).
Thus, the bioavailability of anthocyanins has been suggested to be
underestimated by the methods used or by not considering their
metabolites (144).

Epigallocatechin Gallate
Green tea is an infusion native from China and India, which is
made from Camellia sinensis leaves that have not been oxidized
before drying. In these leaves, the presence of between 30 and
40% of polyphenols has been estimated, and among them,
epigallocatechin gallate (EGCG) or epigallocatechin-3-gallate
is the most abundant catechin (145). Additionally, EGCG
has been reported as the highest antioxidant activity among
catechins (146). Importantly, that property is more elevated
in green than black tea because of its polyphenolic content
(147). The modulatory effect of EGCG on the immune system
has been extensively reported, especially in T cells, where
EGCG suppresses T-cell proliferation (148) and TH1/TH17
differentiation (149) but increases Treg cell differentiation
(150). Although it has not been directly associated, EGCG
modulation of T-cell response could be related to the up-
regulation of HO-1 and Nfr2. Epigallocatechin gallate reduces
renal inflammation in a cisplatin-induced nephrotoxicity
model by increasing Nfr2 and HO-1 and reducing NFκB
(151). However, in immune-mediated glomerulonephritis,
EGCG ameliorates the inflammation without a change in
renal HO-1 expression (152). Therefore, EGCG-mediated
HO-1 modulation could not be involved in all pathogenic
conditions. It has been shown that EGCG induces HO-1
expression and reduces transforming growth factor β (TGF-
β) expression in macrophages (153). Furthermore, EGCG
inhibits the production of proinflammatory cytokines and
NO through HO-1 induction during adipocyte–macrophage
interaction (154).

Importantly, a high dose of EGCG has been indicated as
toxic to astrocytes, at least in part, by targeting mitochondria
via calcium pathway (155). On the other hand, EGCG has some
disadvantages, such as low stability and bioavailability, and its
absorption at the intestine depends on the individual microbiota
composition and its metabolism (156). All this entails a challenge
for the application of this substance as a therapeutic agent,
which is why several studies have developed and evaluated EGCG
analogs with improved properties (157, 158).

Phlorotannins
Phlorotannins are tannins found exclusively in marine brown
algae (Ochrophyta, Phaeophyceae). Interestingly, most
reports focus on phlorotannins isolated from seaweeds of
Ecklonia genera (Ecklonia cava). Since the 70’s, more than
150 phlorotannins have been extracted from several brown
seaweed, many of them with anti-inflammatories properties
(159). Thus, phlorotannins from E. cava reduce the release of
proinflammatory cytokines by RAW 264.7 macrophages (160)
and decrease the mortality of endotoxic shock (161). These
effects have been related to the activation of the Nrf2/HO-1
pathway (Figure 1), being dieckol the phlorotannin that presents
higher anti-inflammatory properties in primary macrophages
(161). Furthermore, in LPS-stimulated RAW 264.7 macrophages,
E. cava ethanolic extract treatment decreased proinflammatory
cytokine gene expression and inflammatory mediators, by
up-regulating Nrf2/HO-1 signaling (162). Similarly, Ecklonia
stolonifera ethanol extract (with phlorofucofuroeckol A and
B) inhibits the Akt/ERK/JNK1-2 and p38 MAPK signaling
in LPS-stimulated RAW 264.7 cells with anti-inflammatory
effects (163). Also, dieckol protects RAW 264.7 cells against
fine dust-induced inflammation via the HO-1/Nrf2 signaling
activation and inducing anti-inflammatory and antioxidant
mechanisms (164). Besides, dieckol up-regulates HO-1 in
LPS-stimulated macrophages, which at least in part mediates its
anti-inflammatory effect (165).

The phlorotannins have not shown toxicity following oral
administration to mice (166), but the growth-inhibition effect
has been reported in cell lines in a dose-dependent way (166).
On the other hand, phlorotannins are mainly metabolized and
absorbed in the large intestine and have been reported a great
interindividual variation in the metabolic profile (167). Hence,
more studies are needed to evaluate the effect of food matrices
and processing in phlorotannins bioavailability.

Celastrol
Celastrol, also named tripterine, is a quinone methide triterpene
used in traditional Chinese medicine, which is obtained from
the root of the Thunder God Vine (Tripterygium wilfordii)
and Celastrus regelii plant (168). Treatment with celastrol has
been demonstrated to have beneficial effects in different forms
of neurodegenerative, autoimmune, and inflammatory diseases.
Celastrol induces HO-1 expression in different cell lines and
has been suggested to be beneficial by reducing inflammation
in some chronic diseases (169). Interestingly, celastrol inhibits
proinflammatory M1 polarization in RAW264.7 macrophages
via regulating Nrf2/HO-1 (170). Besides, it has been shown that
synthetic derivatives of natural triterpenoids exposure on DCs
result in the induction of HO-1, TGF-β, and IL-10, as well as the
repression of proinflammatory cytokines (171).

On the other hand, celastrol has shown a narrow window
of therapeutic in vivo effect, low concentrations lack efficacy,
and higher levels show signs of toxicity in different models
(172, 173). Besides, infertility has been indicated as an important
side effect of celastrol administration (174). Thus, it has been
suggested that celastrol has a dual effect, suppressing oxidative
stress at low concentrations, and inducing ROS at higher
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levels (175). Importantly, celastrol is poorly absorbed after oral
administration in rats, and it is absorbed more efficiently by
female rats as compared to males. However, bioavailability
can be increased by Thunder God Vine extract administration
(176), suggesting additional components in the extract aid to
celastrol absorption. Hence, new celastrol analogs have been
developed with higher pharmacokinetics properties and lower
toxicological characteristics (175). In addition, several celastrol
derivatives have been synthesized to improve its bioavailability
for therapeutic administration (177).

Caffeic Acid Phenethyl Ester
Caffeic acid phenethyl ester is the ester of caffeic acid
extracted from honeybee propolis, which has been used for
many years in traditional medicine (178). This compound has
been characterized by its strong antioxidant and cytoprotective
properties, as well as immunomodulatory and anti-inflammatory
attributes (179). It has been described that CAPE inhibits
cytokine production by stimulated DCs (180) and suppresses
DNA synthesis of human peripheral blood mononuclear cells
(PBMCs) in response to mitogens (181). Besides, CAPE has
been identified as a potent HO-1 activator (12), which induces
Nrf2 and in turn inhibits NFκB activation in macrophages
(Figure 1) (182, 183). Caffeic acid phenethyl ester derivative
compounds promote the switch of macrophage phenotypes from
proinflammatory M1 to resolving M2. Besides, the effect is
dependent on the activation of the Nrf2/HO-1 pathway (184).
Moreover, CAPE induces HO-1 in microglia cells, reducing NO
production (185).

Interestingly, new CAPE analogs have been developed that
show a more potent HO-1 induction (186). In fact, it has
been indicated that HO-1 up-regulation plays an essential role
in the cytoprotective activity of CAPE derivatives than their
antioxidant activity (187). Besides, its bioavailability has been
shown to increase after glycosylation without affecting the CAPE
anti-inflammatory properties (188). Propolis has a low order of
acute oral toxicity (189), and importantly, no significant clinical
toxicity has been reported in animals after oral propolis extract
administration (190).

Capsaicin
Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide) is the
active ingredient of chili peppers, which is found in the
placental tissue that surrounds the seeds in Capsicum spp (191).
This pungent oleoresin has shown strong anti-inflammatory
properties (192, 193). The interaction of capsaicin with transient
receptor potential vanilloid 1 is responsible for nociceptive,
thermal, and mechanical sensations and has been shown to
induce HO-1 expression (194). This receptor is present in almost
all tissues, including the immune system. Moreover, it has been
reported that capsaicin induces the expression of antioxidant
enzymes by phosphorylation of Akt, modification of Keap1
protein, release, and translocation of Nrf2 to the nucleus and by
binding to ARE elements to induce HO-1 expression (Figure 1)
(195). Furthermore, it has been reported that capsaicin has
therapeutic potential in renal damage by attenuation of the
expression of inflammatory mediators (196). However, this effect
is entirely abrogated by the treatment with the HO inhibitor

ZnPP (197). Moreover, capsaicin increases HO-1 expression
and inhibits NO production in LPS-stimulated RAW264.7
macrophages (198).

Interestingly, although capsaicin is highly absorbed, its half-
life in plasma is low, and therefore, novel drug delivery strategies
have been evaluated to improve bioavailability, such as the
use of capsaicin-loaded polymeric micelles (199). Importantly,
capsaicin has shown both mutagenic and carcinogenic activities,
but results are conflicting. Thus, other studies indicate that
capsaicin possesses chemoprotective activity against some
carcinogens and mutagens chemical (200). Therefore, toxicity
is determined only in animals with high median lethal dose
(LD50) values, and there are no reported cases of an overdose
in humans (201).

Garlic-Derived Organosulfur Compounds
Organosulfur are bioactive components of garlic (Allium
sativum) essential oil, mustard, asafoetida, and other food
extracts (202). Worldwide, the traditional use of garlic in
medicine is known for thousands of years, and multiple
pharmacological properties have been reported in the literature
and applied to clinical trials (203). The presence and abundance
of compounds in garlic vary according to preparation and
extraction (204), suggesting that there is also a wide variety
of immunoregulatory properties (205). Among organosulfur
present in garlic, diallyl sulfide, diallyl disulfide (DADS), and
diallyl trisulfide (DATS) are the major inducers of HO-1
expression in human hepatoma HepG2 cells (206). It has been
reported that DADS induces Nrf-2/ HO-1 signaling (Figure 1)
and reduces proinflammatory cytokine production in LPS-
stimulated RAW 264.7 macrophages (207). Moreover, S-allyl
cysteine (SAC), an organosulfur present in aged garlic extract,
has antidiabetic, antioxidant, anti-inflammatory properties, and
helps in preserving cognitive deficits in diabetic rats through
the regulation of Nrf2/NF-kB/TLR4/HO-1 signaling cascade
(208). Furthermore, aged red garlic extract reduces LPS-induced
NO production in RAW 264.7 macrophages, and this effect is
dependent on HO-1 induction (209).

Despite toxicological data of organosulfur from garlic are
limited; in vitro studies report no mutagenicity (210). Besides,
oral administration of allium extracts showed no mortality
or side effects in rats (211). Importantly, the beneficial effect
of these compounds is closely related to its bioavailability,
and therefore thermal instability of these compounds must be
considered (212).

Isothiocyanates
Naturally occurring ITCs can be found in cruciferous vegetables
(213). They have been evaluated as immunoregulatory and
antioxidant molecules in many reports (214–216). Sulforaphane,
a naturally occurring ITC from broccoli, has been demonstrated
to attenuate cell damage induced by 1-methyl-4-phenyl pyridine
ion (MPP+) in PC12 cells by reversing the reduced expression
of Nrf2, HO-1, and NAD(P)H-quinone oxidoreductase (NQO1)
(217). The beneficial effect of SFN-induced Nrf2-HO-1/NQO-1
signaling pathway activation was also demonstrated in chronic
renal allograft dysfunction (Figure 1) (218). Furthermore, SFN
suppresses TH17 response on untransformed human T cells
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by decreasing GSH and the accumulation of ROS (219).
Interestingly, SFN also inhibits the inflammatory response
by suppressing the cytokines response, NFκB activation, and
inducing HO-1 expression in cultured monocytes and the lungs
of mice (220). Besides, SFN prevents the production of NO
and cytokines by activating the Nrf2/HO-1 signal transduction
pathway and limiting iNOS activity (221). Furthermore, SFN
reduces IL-23 and IL-12 production in DCs (222).

Finally, the bioavailability of ITCs has been evaluated in
broccoli sprouts and has been reported that it is highly
influenced by the food structure and composition (223), without
metabolites accumulation (224). Importantly, although SFN is
considered safe at low doses (225), it has been reported that
high doses have proconvulsant effects and produce marked
sedation, hypothermia, impairment of motor coordination, and
deaths (226). Despite that doses are higher than found in dietary
consumption, the risk–benefit ratio of SFN administration must
be considered when the diet is supplemented.

HO-1, NATURAL COMPOUNDS, AND
IMMUNE-MEDIATED DISEASES

The beneficial role of HO-1 induction in autoimmune and
inflammatory disorders has been extensively reported in the
last decades (227). In fact, HO-1 knockout mice develop a
chronic inflammatory disease with increased peripheral blood
lymphocyte count and accumulation of polymorphonuclear cells
and monocytes/macrophages in the spleen (65). Consistently, a
polymorphism in the hmox1 promoter region, which regulates
the HO-1 induction (228), has been associated with increased
systemic lupus erythematosus (SLE) (229) and rheumatoid
arthritis (RA) susceptibility (230). On the other hand, as most
of the modulatory effects of HO-1 are described on innate cells,
it could be assumed that these inductors would be more efficient
for the treatment of autoinflammatory diseases, especially with
myeloid cell expansion. Nevertheless, HO-1 induction has also
been beneficial for the treatment of autoimmune diseases
mediated by T or B cells (10). In this sense, it is essential
to highlight that, in the first place, the conditions described
below are immersed in a scenario that involves characteristics of
both autoimmune and autoinflammatory disorders (85). Second,
the role of DCs as an interconnection between innate and
adaptive responses is critical. Hence, as mentioned previously
(Figure 2), the induction of HO-1 in DCs has been described to
induce a tolerance profile in DCs (76), which in turn is capable
of suppressing subsequent autoreactive responses. Therefore,
the induction of HO-1 expression has been proposed as a
strategy to improve autoimmune diseases (10). For this purpose,
some substances of natural origin capable of triggering the
overexpression of HO-1 in animal models have been evaluated
in recent decades (Table 1).

Multiple Sclerosis
Multiple sclerosis (MS) is a demyelinating autoimmune
pathology that affects the central nervous system (CNS) in
humans (Figure 3) (241). Interestingly, it has been observed

that HO-1 expression is reduced in PBMCs from MS patients
during exacerbation periods (242). Accordingly, CO treatment
has been suggested by several in vivo preclinical studies as an
effective treatment for MS (243). Dimethylfumarate (DMF),
a small molecule that improves psoriasis and MS, has been
reported to induce a tolerogenic profile in DCs by HO-1
expression (244). Significant contributions aiming to understand
the role of inflammation and the immune system in MS have
been made using an animal model named EAE (245). Heme
oxygenase 1 deficiency in mice that suffer EAE has been shown
to develop an aggravated disease (246). Moreover, the protective
effect of HO-1 induction has been associated with inhibition of
MHC II expression by antigen-presenting cells, including DCs,
microglia, and infiltrating macrophages. Importantly, inhibition
of CD4+ and CD8+ T cell accumulation and effector function
in CNS have also been reported (246). Besides, intraperitoneal
CAPE administration inhibits ROS production in EAE and
ameliorated clinical symptoms in rats (247). In addition, CAPE
treatment possesses antineuroinflammatory effects, which are
related, at least in part, to the increased expressions of HO-1
via AMPKα in microglial cells (185). Besides, CAPE inhibits the
expressions of iNOS, COX2, and NO production in microglia,
showing an antineuroinflammatory effect (185). Importantly,
quercetin mitigates inflammatory responses in microglial cells
inhibiting LPS-induced NO production by HO-1 induction
(96). Similarly, curcumin reduces neuroinflammation by HO-1
induction in BV-2 microglial cells and reduces iNOS and COX2
expression (108). Despite, these natural compounds have anti-
inflammatory effects mediated by HO-1 in vitro in microglia, the
HO-1 contribution in the improvement associated with natural
compounds has not been evaluated in models in vivo. Thus,
several other natural compounds have been reported to improve
MS symptoms, although a direct involvement of HO-1 induction
has not been elucidated.

Type 1 Diabetes
Type 1 diabetes (T1D) is a chronic autoimmune disease
characterized by the presence of islet autoantibodies and
autoreactive T cells, pancreatic beta cell loss, and hyperglycemia
(Figure 3) (248). Up-regulation of HO-1 in DCs prevented the
increase in glycemia in non-obese diabetic (NOD) mice and a
lower T1D incidence, suggesting it as a potential therapeutic
approach for T1D treatment (249). Furthermore, a short-term
induction of HO-1 promotes the recruitment of mesenchymal
cells, M2 macrophages, and fibrocytes with repair properties,
preventing T1D development in rats (250). Interestingly, genetic
restoration of HO-1 expression in DCs from NOD mice reduces
T1D incidence highlighting their role in tolerizing autoreactive
T-cells (249). It has been shown that resveratrol administration
in drinking water attenuates biochemical changes associated with
diabetes, and this protective role is mediated by TGF-β reduction
and HO-1 induction (235).

Additionally, resveratrol administered by gavage attenuates
T1D-induced testicular oxidative stress and apoptosis by Akt-
mediated Nrf2 activation and Keap1 degradation (234). On
the other hand, curcumin administration in STZ-induced T1D
decreases the blood glucose concentration via the activation
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FIGURE 1 | Mechanisms of HO-1 induction by naturally derived compounds. Heme oxygenase 1 induction can be mediated by several transcription factors and their

upstream kinases associated, as is graphically represented in the figure. Natural compounds inhibit/activate the transcription factors, which translocate to the nucleus

promoting the HO-1 mRNA expression. Consequently, the HO-1 induced expression leads to the increment of their anti-inflammatory and antioxidant products: BV,

Fe2+, and CO.

of the Keap1–Nrf2–AREHO-1 signaling pathway, although
no immunological mechanisms were described in the study
(105). In the same model, a small dose of water-soluble
curcumin derivative orally administered has been shown to have

antidiabetic properties mediated by HO-1 induction (232). These
reports suggest that curcumin administration reduces oxidative
stress in part by HO-1 induction ameliorating symptoms in T1D
models. Finally, it has been proposed that appropriate DATS
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FIGURE 2 | The effect of the use of HO-1 inducers on the inflammatory and anti-inflammatory response is outlined. Multiple inducer pulses keep HO-1 expression

elevated over time (green line), whereas the anti-inflammatory response (blue line) increases accordingly. Consequently, the inflammatory response (red line) is reduced

in a sustained way, managing to limit tissue damage. The induction of HO-1 in immune cells promotes the polarization of macrophages toward the anti-inflammatory

M2 profile and in turn favors a tolerogenic profile in DCs, which together reduce T-cell activation and promote Treg cell differentiation.

consumption might be a cotherapy for hyperglycemia (251).
Besides, DATS perioperative intraperitoneal administration
to STZ-induced T1D rats reduces injury at least in part

by up-regulating the Nrf-2/HO-1 antioxidant signaling and
reducing myocardial apoptosis (239). Accordingly, it has
been reported that the impairment of Nrf-2/HO-1 signaling
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TABLE 1 | Natural source, evaluated model of autoimmune diseases, and reported effect of natural compounds.

Reported compound Natural source Evaluated model Reported effect References

Quercetin Fruits and vegetables

(particularly red onion and

leaves tea)

CIA mice ↑HO-1 protein in synovium,

modulation of Th17/Treg balance,

↓pro-inflammatory cytoquines

(100)

DSS-induced colitis mice ↑HO-1 protein in intestinal

macrophages, ↑IL-10, ↓TNF-α,

IFN-γ, IL17A, and IL-6, ↓intestinal

histological score

(231)

Curcumin Curcuma Longa STZ-induced T1D rats ↑HO-1 mRNA in liver, ↓blood glucose (105)

STZ-induced T1D rats ↑HO-1 mRNA and activity in

pancreas, aorta, and liver, ↓blood

glucose, ↑plasma insulin

(232)

Nephrectomized rats IBD ↑HO-1 protein in kidney, ↓TGF-β,

TNF-α, and COX2

(233)

Resveratrol Fruits and vegetables STZ-induced T1D mice ↑HO-1 mRNA and protein in

testicular tissues

(234)

STZ-induced T1D rats ↑HO-1 protein, ↓TGF-β in heart (235)

Osteoarthritis-induced rats ↑HO-1 protein in joint tissue, ↓NF-kB

protein, ↓TNF-α, IL-1β, IL-6, and

IL-18

(236)

Epigallocatechin gallate (EGCG) Green tea DNBS-induced colitis rats ↑HO-1 protein in colon, ↓MPO,

ICAM-1, and TNF-α ↓diarrhea

(237)

Caffeic acid phenethyl ester (CAPE) Honeybee propolis STZ-induced T1D rats ↑HO-1 protein, ↓blood glucose,

↑plasmatic insulin, ↓iNOS,

(238)

Garlic-derived organosulfur

compounds (DAS, DADS, DATS,

SAC, AMS)

Allium sativum, mustard, Ferula

assafoetida

STZ-induced T1D rats ↑HO-1 mRNA and protein in heart,

↓cardiac injury

(239)

Isothiocyanates (sulforaphane,

phenethyl isothiocyanate, allyl

isothiocyanate)

Cruciferous vegetables DSS-induced colitis mice ↑HO-1 mRNA in colon, ↓clinical

score, ↓TNF-α, NO, MPO, IL-1, IL-6,

and iNOS

(240)

Only studies where the HO-1 induction was evaluated are listed.

contributes to aggravatedmyocardial injury in STZ-induced T1D
mice (252). Moreover, antihyperglycemic property of CAPE used
in the STZ-induced T1D rat model has been associated to HO-1
induction (238). It is important to highlight that although various
HO-1–inducing compounds have been evaluated in the context
of T1Dmodels with promising results, more studies of their effect
on the immune response are necessary.

Rheumatoid Arthritis
Rheumatoid arthritis is a chronic autoimmune disease
characterized by articular cartilage erosion and inflammatory
cell infiltration in the joints, leading to disability (Figure 3)
(253). It has been observed that HO-1 is highly increased
in synovial fluid (254) and peripheral monocytes (255)
from RA patients, suggesting that HO-1 expression might
be an inflammation marker. In addition, HO-1 is up-
regulated in the murine collagen-induced arthritis (CIA)
(256) and the rat adjuvant-induced arthritis model (257).
Interestingly, high levels of HO-1 could be, at least in
part, an adaptive mechanism for limiting inflammation and
cytotoxicity (256).

The therapeutic effect of quercetin administration by gavage
has been evaluated in the CIA model showing anti-inflammatory
results. Importantly, quercetin oral administration reduces

arthritic manifestations in the CIA murine model, by the
decrease in proinflammatory cytokines (TNF-α, IL-1β, IL-6,
IL-17A, IL-21) and increase in IL-10 and TGF-β and the
restoration of TH17/Treg balance. Remarkably, HO-1 siRNA
inhibits the beneficial effect of quercetin, suggesting a critical role
of HO-1–mediated anti-inflammatory response (100). Moreover,
oral resveratrol administration decreases inflammatory damage
of autoinflammatory osteoarthritis in rats via Nrf-2/HO-1
expression in joint tissue by reducing TNF-α, IL-1β, IL-6, and
IL-18 expression (236).

Although beneficial effects have been reported in RA by
administering natural compounds such as anthocyanin, celastrol,
or garlic derived organosulfur, there is no direct association with
HO-1 induction.

Systemic Lupus Erythematosus
The SLE is a chronic autoimmune disease that could affect
several organs such as kidneys, joints, skin, nervous systems,
and mucosa, among others (Figure 3) (258). This disorder
is characterized by the production of autoantibodies against
nuclear self-antigens and immune complex deposition, which
are associated with organ malfunction and injury (259). Based
on the inhibitory effects of tolerogenic DCs (tolDCs) in T-cell
priming and B-cell differentiation and the impact of these cells
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FIGURE 3 | Effect of HO-1 induction produced by natural compounds in autoimmune diseases. The use of natural inductors of HO-1 has been shown in SLE, T1D,

EAE, IBD, and AR to produce the beneficial effects listed in the figure.

in maintaining peripheral tolerance (260), tolDCs administration
has been suggested as a therapy in the progression of SLE (9, 261).
Accordingly, the transference of tolDC generated with HO-1
inductor cobalt (III) protoporphyrin IX (CoPP), dexamethasone,
and rosiglitazone improves SLE symptoms in mice, such as
decreased antinuclear antibodies, skin lesions severity, and
clinical score (262).

Moreover, HO-1 induction confers an anti-inflammatory
profile to monocytes and DCs, and accordingly, is less expressed
in monocytes from SLE patients, suggesting that HO-1
deregulation may be involved in the development or progression
of SLE (263). Therefore, CO exposure reduces the clinical
score by a decrease in the expansion of CD11b+ cells (261)
and leukocyte activation in SLE mice (6). Consequently, it
has been proposed that the application of HO-1 inducers
could be an appropriate therapy to ameliorate SLE conditions.
For example, a diet with extra virgin olive oil was shown
to improve renal damage in an SLE model in mice through
the induction of Nrf-2/HO-1 expression and reduction of

proinflammatory cytokines by splenocytes (264). Besides,
oral curcumin administration reduces renal fibrosis and
inflammation mediated by Nrf2 and HO-1 induction in
nephrectomized rats (233). However, further studies are needed
to elucidate the precise role of HO-1 in quercetin, resveratrol,
and celastrol–lupus amelioration.

Inflammatory Bowel Disease
Among chronic inflammatory bowel diseases (IBDs) are Crohn
disease (CD) and ulcerative colitis (UC), which are characterized
by symptoms of diarrhea, abdominal pain, and the presence of
blood in the stool (Figure 3). Both UC and CD are considered
polygenic autoinflammatory diseases (85). Although CD involves
inflammation at any gastrointestinal section, UC is restricted to
colonic inflammation. Recently, several studies have suggested
that HO-1 and its products could have an critical role in the
modulation and progression of IBD (11). The pharmacological
induction of HO-1 has been extensively reported to reduce
gut inflammation by anti-inflammatory cytokines (11). Thus,
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in the model of UC triggered by the administration of dextran
sulfate sodium (DSS), the induction of HO-1 by CoPP or
hydrogen-rich water reduces the intestinal histological damage
(265, 266). Thus, a significant reduction in TNF-α, IL-6, and IL-
1β proinflammatory cytokines has been reported (266). Besides,
some drugs such as tranilast, Atractylodes macrocephala, or
Taraxacum herb extracts, which ameliorate symptoms in IBD
patients and exert their effect by inducing HO-1 expression (11).

In a recent study, it was observed that oral quercetin
ameliorates T-cell–mediated UC, reduces gut inflammation,
and modulates intestinal macrophages inducing an anti-
inflammatory M2 profile and inhibiting CD4+ T cell activation
(231). Importantly, macrophage depletion partially blockades the
beneficial effect of quercetin in gut inflammation, highlighting
the role of these cells in intestinal homeostasis (231). Moreover,
curcumin protects human intestinal epithelial cell disruption
and barrier dysfunction via HO-1 induction (267). Also,
green tea administration up-regulates HO-1 expression in
the colon, which may contribute to the protective effects
in 2,4,6-dinitrobenzenesulphonic acid–induced colitis model
by reduction of colonic myeloperoxidase (MPO) and TNF-α
production (237). Interestingly, it has been reported that both
resveratrol and C3G induce HO-1 in HT-29 intestinal cells,
which may interfere with the expression of proinflammatory
enzymes (268). Thus, HO-1 induction has been suggested as
a putative molecular mechanism associated, at least in part, to
the therapeutic effect of resveratrol. On the other hand, the
gavage administration of ITCs in the DSS-induced colitis model
ameliorates the severity of the disease, mediated by Nrf2 and
HO-1 anti-inflammatory/antioxidant signaling pathway (240).
Importantly, ITC administration decreases colonic secretions
of proinflammatory TNF-α, NO, and MPO in UC, besides
reducing gene expression of IL-1, IL-6, TNF-α, and iNOS (240).
Hence, IBD characterized by self-directed inflammation, where
the activation of innate immune cells plays a critical role in
pathogenesis, appears to be a particularly promising target for the
implementation of HO-1 inducers as immunomodulators.

CONCLUDING REMARKS

Heme oxygenase 1 induction has been suggested as a therapeutic
approach to ameliorate self-directed immune diseases, including
both autoimmune and autoinflammatory diseases. Accordingly,
many dietary and herbal medicines that induce HO-1 expression

have been widely evaluated as a possible strategy to improve
autoimmunity. Thus, consumption of spicy food, tea, or red wine
might modulate immune responses. However, it is crucial to
consider the bioavailability, absorption, toxicity, and metabolism
of these compounds, as well as reported discrepancy among cell
culture assays and in vivo results. Furthermore, the whole picture
during a classical immune response, a self-reactive response, or
an exacerbated inflammation continues to be a significant debt in
HO-1 scientific research.

It is important to note that most HO-1–inducing compounds
have been associated with a certain degree of toxicity, especially
in studies in vitro. In the case of the heme group, a nocive
event leads to reduce excessive inflammation and maintain
homeostasis. Thus, and taking into account also the bivalent
immunosuppressant/toxic nature of the HO-1 reaction products,
a more exhaustive study of the inducer doses in vivo is necessary.

Experimental data evidencing worthy properties of bioactive
substances (from plants and other natural sources), which induce
HO-1 expression is continuously increasing. Nevertheless, a
critical evaluation of the literature data is essential, first because
the majority of studies are conducted on in vitro models,
and thus, it is crucial to test natural HO-1 inducers in
different in vivo models, and second, because most studies
highlight their experimental results underestimating the detailed
report in chemical obtention methods for single molecules
from food extracts, impaired reproducibility, and delay in its
wide prescription.
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