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Abstract. This paper is a survey on recent results obtained in collaboration with M.T.K.
Abbassi and D. Perrone. Let (M, g) be a compact Riemannian manifold. If we equip the tan-
gent bundle TM with the Sasaki metric gs, the only vector fields defining harmonic maps
from (M, g) to (TM, gs) are the parallel ones, as Nouhaud [14] and Ishihara [10] proved in-
dependently. The Sasaki metric is just a particular example of Riemannian g-natural metric.
Equipping TM with an arbitrary Riemannian g-natural metric G and investigating the har-
monicity of a vector field V of M , thought as a map from (M, g) to (TM,G), several interesting
behaviours are found.

If V is a unit vector field, then it also defines a smooth map from M to the unit tangent
sphere bundle T1M . Being T1M an hypersurface of TM , any Riemannian metric on TM in-
duces one on the unit tangent sphere bundle. Denoted by g̃s the Sasaki metric on T1M (the one
induced on it by gs), Han and Yim [11] characterized unit vector fields which define harmonic
maps from (M, g) to (T1M, egs). The variational problem related to the energy restricted to
unit vector fields, E : X1(M) → �, V �→ E(V ), has been studied by Wood in [18]. We equipped
T1M with an arbitrary Riemannian metric G̃ induced by a Riemannian g-natural metric G on
TM , and we studied harmonicity properties of the map V : (M, g) → (T1M, G̃) corresponding
to a unit vector field.
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Introduction

Let (M,g) be an n-dimensional Riemannian manifold. The so called Sasaki
metric gs is by far the simplest and most investigated among all possible Rie-
mannian metrics on the tangent bundle TM .

In particular, as concerns harmonicity problems, any vector field V ∈ X(M)
over a compact Riemannian manifold (M,g) defines a smooth map from M to
TM and so, it is natural to investigate the harmonicity of such a map from
(M,g) to (TM, gs). Nouhaud [14] found the expression of the energy associated
to V and proved that parallel vector fields are all and the ones defining harmonic
maps. Ishihara [10] obtained independently the same result, giving also the
explicit expression of the tension field associated to a vector field V . More
recently, Gil-Medrano [9] proved that critical points of the energy functional
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108 G. Calvaruso

restricted to vector fields are again parallel vector fields. These results clearly
show a very rigid behaviour of the Sasaki metric under the point of view of
harmonicity of vector fields.

On the other hand, the Sasaki metric gs is only one possible choice inside
a wide family of Riemannian metrics on TM , known as Riemannian g-natural
metrics, which are described by means of six independent smooth functions from
�+ to � [5]. As their name suggests, these metrics arise from a very ”natural”
construction starting from a Riemannian metric g over M . The introduction
of g-natural metrics moves from the classification of natural transformations
of Riemannian metrics on manifolds to metrics on tangent bundles [13], or
equivalently, from the description of all first order natural operators D : S2

+T ∗ �
(S2T ∗)T , transforming Riemannian metrics on manifolds into metrics on their
tangent bundles [12].

The rigidity of the Sasaki metric and its being g-natural make interesting
to investigate harmonicity properties of a vector field V , when gs is replaced by
an arbitrary Riemannian g-natural metric G. This study has been made in [1]
and permitted to find new examples of harmonic maps from M to TM , defined
by non-parallel vector fields. Some of the main results are presented here in
Section 2. Whenever it is possible, these results are compared to corresponding
theorems about the Sasaki metric.

Consider now the set X1(M) of all unit smooth vector fields on M , which
we suppose to be non-empty (this implies the vanishing of the Euler-Poincaré
characteristic of M). We denote by g̃s the Sasaki metric induced by gs on the
unit tangent sphere bundle T1M .

Any V ∈ X1(M) defines a smooth map from (M,g) to (T1M, g̃s). Han
and Yim [11] characterized unit vector fields which define harmonic maps from
(M,g) to (T1M, g̃s), by determining the associated tension field. Wood [18] de-
termined the Euler-Lagrange equation for the variational problem related to
the energy E : X1(M) → �, V �→ E(V ), where E(V ) is the energy of the cor-
responding map V : (M,g) → (T1M, g̃s). Previously, Wiegmink [16] already
considered the variational problem related to the total bending of V which, up
to a constant, coincides with the energy of V .

By definition, a g-natural metric G̃ on T1M is nothing but the restriction
of a g-natural metric G on TM to its hypersurface T1M . Although g-natural
metrics on T1M possess a simpler form than the ones on TM , they form a quite
big class of metrics, depending on four independent real parameters (satisfying
some inequalities in order to be Riemannian). Moreover, classic examples of
Riemannian metrics on T1M , like the Sasaki metric g̃s itself and the Cheeger-
Gromoll metric gCG, are special examples of Riemannian g-natural metrics.

Equipping T1M with an arbitrary Riemannian g-natural metric G̃, in [2] we
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Naturally Harmonic Vector Fields 109

investigated when a unit vector field V ∈ X1(M) determines a harmonic map
V : (M,g) → (T1M, G̃), and other problems related to the harmonicity of this
map. In Section 4 below, the main results of [2] are reported.

1 Riemannian g-natural metrics on TM

Let (M,g) be an n-dimensional Riemannian manifold and ∇ its Levi-Civita
connection. At any point (x, u) of its tangent bundle TM , the tangent space of
TM splits into the horizontal and vertical subspaces with respect to ∇:

(TM)(x,u) = H(x,u) ⊕ V(x,u).

For any vector X ∈ Mx, there exists a unique vector Xh ∈ H(x,u) (the
horizontal lift of X to (x, u) ∈ TM), such that π∗Xh = X, where π : TM →M
is the natural projection. The vertical lift of a vector X ∈ Mx to (x, u) ∈ TM
is a vector Xv ∈ V(x,u) such that Xv(df) = Xf , for all functions f on M . The
map X → Xh is an isomorphism between the vector spaces Mx and H(x,u).
Similarly, the map X → Xv is an isomorphism between Mx and V(x,u). Each
tangent vector Z̃ ∈ (TM)(x,u) can be written in the form Z̃ = Xh + Y v, where
X,Y ∈Mx are uniquely determined vectors.

Kolář, Michor and Slovák introduced a large class of metrics, known as g-
natural metrics, on the tangent bundle TM of a Riemannian manifold (M,g).
The introduction of these metrics moves from the description of all first order
natural operators D : S2

+T ∗ � (S2T ∗)T , transforming Riemannian metrics
on manifolds into metrics on their tangent bundles, where S2

+T ∗ and S2T ∗

denote the bundle functors of all Riemannian metrics and all symmetric (0, 2)-
tensors over n-manifolds respectively. Details about the concept of naturality
and related notions can be found in [12].

Every section G : TM → (S2T ∗)TM is called a (possibly degenerate) met-
ric. As Kowalski and Sekizawa proved in [13], there is a bijective correspondence
between the triples of so called first order natural F -metrics and first order nat-
ural (possibly degenerate) metrics G on the tangent bundle. This fundamental
result makes possible to classify explicitly g-natural metrics on TM . In fact,
it turns out that all g-natural metrics on the tangent bundle of a Riemannian
manifold (M,g) are completely determined as follows:

1 Proposition ([5]). Let (M,g) be a Riemannian manifold and G be a g-
natural metric on TM . Then there are six smooth functions αi, βi : �+ → �,
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110 G. Calvaruso

i = 1, 2, 3, such that for every u, X, Y ∈Mx, we have⎧⎨⎩
G(x,u)(Xh, Y h) = (α1 + α3)(r2)gx(X,Y ) + (β1 + β3)(r2)gx(X,u)gx(Y, u),
G(x,u)(Xh, Y v) = α2(r2)gx(X,Y ) + β2(r2)gx(X,u)gx(Y, u),
G(x,u)(Xv , Y v) = α1(r2)gx(X,Y ) + β1(r2)gx(X,u)gx(Y, u),

(1)
where r2 = gx(u, u). For n = 1, the same holds with βi = 0, i = 1, 2, 3.

In the sequel, we shall use the following notations:

• φi(t) = αi(t) + tβi(t),

• α(t) = α1(t)(α1 + α3)(t)− α2
2(t),

• φ(t) = φ1(t)(φ1 + φ3)(t)− φ2
2(t), for all t ∈ �+.

Taking into account notations above, the following result holds:
2 Proposition. [5] A g-natural metric G on the tangent bundle of a Rie-

mannian manifold (M,g) is Riemannian if and only if the following inequalities
hold for all t ∈ �+:

α1(t) > 0, φ1(t) > 0, α(t) > 0, φ(t) > 0. (2)

Note that the Sasaki metric gs is the Riemannian g-natural metric uniquely
determined by

α1(t) = 1, α2(t) = α3(t) = β1(t) = β2(t) = β3(t) = 0. (3)

2 Harmonicity properties of V : (M, g)→ (TM, G)

Let f : (M,g) → (M ′, g′) be a smooth map between Riemannian manifolds,
with M compact. The energy of f is defined as the integral

E(f) :=
∫
M

e(f)dvg

where e(f) = 1
2 ||f∗||2 = 1

2 trgf∗g′ is the so-called energy density of f . With
respect to a local orthonormal basis of vector fields {e1, .., en} on M , it is possible
to express the energy density as e(f) = 1

2

∑n
i=1 g′(f∗ei, f∗ei). Critical points of

the energy functional on C∞(M,M ′) are known as harmonic maps. They have
been characterized in [8] as maps whose tension field τ(f) = tr∇df vanishes.
When (M,g) is a general Riemannian manifold (including the non-compact
case), a map f : (M,g) → (M ′, g′) is said to be harmonic if τ(f) = 0. For
further details about the energy functional, we can refer to [7].
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Let now (M,g) be a compact Riemannian manifold of dimension n and
(TM,G) its tangent bundle, equipped with an arbitrary Riemannian g-natural
metric G. Each vector field V ∈ X(M) defines a smooth map V : (M,g) →
(TM,G), p �→ Vp. By definition, the energy E(V ) of V is the energy associated
to this map. Therefore, E(V ) =

∫
M e(V )dvg, where the density function e(V )

is given by

ep(V ) =
1
2
||V∗p||2 =

1
2
trg(V ∗ G)p =

1
2

n∑
i=1

(V ∗G)p(ei, ei), (4)

{e1, .., en} being any local orthonormal basis of vector fields defined in a neigh-
borhood of p. Explicitly, we get

e(V ) =
1
2

{
n(α1 + α3)(r2) + (β1 + β3)(r2)r2 + 2α2(r2)div(V ) (5)

+2β2(r2)V (r2) + α1(r2)||∇V ||2 +
1
4
β1(r2)||grad r2||2

}
,

where r = ||V ||. In the special case when G = gs, by (3) it easily follows that
(5) reduces to the well known formula

e(V ) =
n

2
+

1
2
||∇V ||2. (6)

2.1 Absolute minima for the energy

Let M be compact. It is well known that when TM is equipped with the
Sasaki metric gs, parallel vector fields are all and the ones absolute minima for
the energy functional. In fact, integrating (6), one easily finds that the energy
associated to the map V : (M,g) → (TM, gs) admits the following very simple
expression [14]:

E(V ) =
n

2
vol(M) +

1
2

∫
M
||∇V ||2dvg.

Up to a constant, expression above also corresponds to the total bending of V
[16]. For any constant ρ > 0, we now put Xρ(M) = {V ∈ X(M) : ||V ||2 = ρ}.
We then equip TM with an arbitrary Riemannian g-natural metric G and write
E(V ) =

∫
M e(V )dvg for V ∈ Xρ(M). Integrating (5) we have that the energy of

V is given by

E(V ) =
1
2
[(n−1)(α1 +α3)+φ1+φ3](ρ) ·vol(M,g)+

1
2
α1(ρ) ·

∫
M
||∇V ||2dvg (7)

and so, we have the following
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3 Theorem. Let (M,g) be a compact Riemannian manifold. Equipping TM
with an arbitrary Riemannian g-natural metric G, a vector field V ∈ Xρ(M) is
an absolute minimum for the energy E : Xρ(M) → � restricted to Xρ(M) if and
only if V is parallel.

Note that a parallel vector field V necessarily has constant length.

2.2 The tension field associated to V : (M, g)→ (TM, G)

Let (M,g) be a Riemannian manifold and V ∈ X(M). By definition, the
tension field associated to the map V : (M,g) → (TM,G), is given by

τ(V ) : M → V −1(TTM),
p �→ tr(∇dV )p.

The tension field τ(V ) associated to V : (M,g) → (TM,G) is rather complicated
and has been calculated in [1]. It depends on functions determining the Levi-
Civita connection of an arbitrary Riemannian g-natural metric G on TM . The
explicit expression of τ(V ) is the following:

τp(V ) =

{
− 2A1QV + 2C1tr[R(∇·V, V )·] + C3

n∑
i=1

ei(r2)ei

+ 2C2∇V V + E1

n∑
i=1

ei(r2)∇eiV +
[
2A2 −A3g(QV, V ) + nA4

+ A5r
2 + 2C4g(tr[R(∇·V, V )·], V ) + 2C5divV + C6V (r2)

+E2||∇V ||2 +
1
4
E3

n∑
i=1

[ei(r2)]2
]
V

}h

p

+

{
− ∆̄V −B1QV + 2D1tr[R(∇·V, V )·] + D3

n∑
i=1

ei(r2)ei

+ 2D2∇V V + F1

n∑
i=1

ei(r2)∇eiV +
[
2B3 −B4g(QV, V ) + nB5

+ B6r
2 + 2D4g(tr[R(∇·V, V )·], V ) + 2D5divV + D6V (r2)

+F2||∇V ||2 +
1
4
F3

n∑
i=1

[ei(r2)]2
]
V

}v

p

, (8)

where r = ||V ||, Ai, . . . Fi are evaluated at r2 and

∆̄V = −tr∇2V =
∑
i

(
∇ei∇eiV −∇∇ei

eiV
)
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is the so called rough Laplacian of (M,g) calculated at V . Functions Ai, . . . Fi
appearing in (8) come from the Levi-Civita connection of the Riemannian g-
natural metric G and depend on αi, βi how explained in the following

4 Proposition. [5] Let (M,g) be a Riemannian manifold,∇ its Levi-Civita
connection and R its curvature tensor. Let G be a Riemannian g-natural metric
on TM . Then the Levi-Civita connection ∇̄ of (TM,G) is characterized by

(i) (∇̄XhY h)(x,u) = (∇XY )h(x,u) + h{A(u;Xx, Yx)}+ v{B(u;Xx, Yx)},
(ii) (∇̄XhY v)(x,u) = (∇XY )v(x,u) + h{C(u;Xx, Yx)}+ v{D(u;Xx, Yx)},

(iii) (∇̄XvY h)(x,u) = h{C(u;Yx,Xx)}+ v{D(u;Yx,Xx)},
(iv) (∇̄XvY v)(x,u) = h{E(u;Xx, Yx)}+ v{F (u;Xx, Yx)},

for all vector fields X, Y on M and (x, u) ∈ TM . Here, h{·} and v{·} respectively
denote the horizontal and vertical lifts of a vector tangent to M and, for all
x ∈ M and vectors u, Xx, Yx tangent to M at x, A, B, C, D, E and F are
defined as follows:

A(u;Xx, Yx) = A1[Rx(Xx, u)Yx + Rx(Yx, u)Xx] + A2[gx(Yx, u)Xx

+gx(Xx, u)Yx] + A3gx(Rx(Xx, u)Yx, u)u + A4gx(Xx, Yx)u

+A5gx(Xx, u)gx(Yx, u)u,

where

A1 = −α1α2

2α
,

A2 =
α2(β1 + β3)

2α
,

A3 =
α2{α1[φ1(β1 + β3)− φ2β2] + α2(β1α2 − β2α1)}

αφ
,

A4 =
φ2(α1 + α3)′

φ
,

A5 =
αφ2(β1 + β3)′ + (β1 + β3){α2[φ2β2 − φ1(β1 + β3)]

αφ

+
(α1 + α3)(α1β2 − α2β1)}

αφ
,

(9)

B(u;Xx, Yx) = B1Rx(Xx, u)Yx + B2Rx(Xx, Yx)u + B3[gx(Yx, u)Xx

+gx(Xx, u)Yx] + B4gx(Rx(Xx, u)Yx, u)u + B5gx(Xx, Yx)u

+B6gx(Xx, u)gx(Yx, u)u,
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where

B1 =
α2

2

α
,

B2 = −α1(α1 + α3)
2α

,

B3 = −(α1 + α3)(β1 + β3)
2α

,

B4 =
α2{α2[φ2β2 − φ1(β1 + β3)] + (α1 + α3)(β2α1 − β1α2)}

αφ
,

B5 = −(φ1 + φ3)(α1 + α3)′

φ
,

B6 =
−α(φ1 + φ3)(β1 + β3)′ + (β1 + β3){(α1 + α3)[(φ1 + φ3)β1 − φ2β2]

αφ

+
α2[α2(β1 + β3)− (α1 + α3)β2]}

αφ
,

(10)

C(u;Xx, Yx) = C1R(Yx, u)Xx + C2gx(Xx, u)Yx + C3gx(Yx, u)Xx

+C4gx(Rx(Xx, u)Yx, u)u + C5gx(Xx, Yx)u

+C6gx(Xx, u)gx(Yx, u)u,

where

C1 = −α2
1

2α ,

C2 = −α1(β1+β3)
2α ,

C3 = α1(α1+α3)′−α2(α′
2−β2

2
)

α ,

C4 = α1{α2(α2β1−α1β2)+α1[φ1(β1+β3)−φ2β2]}
2αφ ,

C5 = φ1(β1+β3)+φ2(2α′
2−β2)

2φ ,

C6 = αφ1(β1+β3)′+{α2(α1β2−α2β1)+α1[φ2β2−(β1+β3)φ1]}[(α1+α3)′+ β1+β3
2

]

αφ

+{α2[β1(φ1+φ3)−β2φ2]−α1[β2(α1+α3)−α2(β1+β3)]}(α′
2−β2

2
)

αφ

D(u;Xx, Yx) = D1Rx(Yx, u)Xx + D2gx(Xx, u)Yx + D3gx(Yx, u)Xx

+D4gx(Rx(Xx, u)Yx, u)u + D5gx(Xx, Yx)u

+D6gx(Xx, u)gx(Yx, u)u,
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where

D1 = α1α2
2α ,

D2 = α2(β1+β3)
2α ,

D3 = −α2(α1+α3)′+(α1+α3)(α′
2−β2

2
)

α ,

D4 = α1{(α1+α3)(α1β2−α2β1)+α2[φ2β2−φ1(β1+β3)]}
2αφ

D5 = −φ2(β1+β3)+(φ1+φ3)(2α′
2−β2)

2αφ ,

D6 = −αφ2(β1+β3)′+{(α1+α3)(α2β1−α1β2)+α2[φ1(β1+β3)−φ2β2]}[(α1+α3)′+ β1+β3
2

]

αφ

+{(α1+α3)[β2φ2−β1(φ1+φ3)]+α2[β2(α1+α3)−α2(β1+β3)]}(α′
2−β2

2
)

αφ

E(u;Xx, Yx) = E1[gx(Yx, u)Xx + gx(Xx, u)Yx] + E2gx(Xx, Yx)u

+E3gx(Xx, u)gx(Yx, u)u

where

E1 = α1(α′
2+

β2
2

)−α2α′
1

α ,

E2 = φ1β2−φ2(β1−α′
1)

φ ,

E3 = α(2φ1β′
2−φ2β′

1)+2α′
1{α1[α2(β1+β3)−β2(α1+α3)]+α2[β1(φ1+φ3)−β2φ2]}

αφ

+ (2α′
2+β2){α1[φ2β2−φ1(β1+β3)]+α2(α1β2−α2β1)}

αφ

F (u;Xx, Yx) = F1[gx(Yx, u)Xx + gx(Xx, u)Yx] + F2gx(Xx, Yx)u

+F3gx(Xx, u)gx(Yx, u)u

where

F1 = −α2(α′
2+

β2
2

)+(α1+α3)α′
1

α ,

F2 = (φ1+φ3)(β1−α′
1)−φ2β2

φ ,

F3 = α[(φ1+φ3)β′
1−2φ2β′

2]+2α′
1{α2[β2(α1+α3)−α2(β1+β3)]+(α1+α3)[β2φ2−β1(φ1+φ3)]}

αφ

+ (2α′
2+β2){α2[φ1(β1+β3)−φ2β2]+(α1+α3)(α2β1−α1β2)}

αφ .
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Now, a vector field V ∈ X(M) defines a harmonic map V : (M,g) →
(TM,G) if and only if τh(V ) = τv(V ) = 0, that is, the horizontal and verti-
cal components of the tension field associated to V : (M,g) → (TM,G) vanish.

In some special cases, it is easy to rewrite τh(V ) and τv(V ) more explicitly in
terms of functions αi, βi which determine G. When G = gs is the Sasaki metric,
we obtain as a very particular case the following well known result:

5 Theorem ([10]). V : (M,g) → (TM, gs) is a harmonic map if and only
if

(i) tr[R(∇·V, V )·] = 0 and

(ii) ∆̄V = 0.

In particular, when M is compact, integrating condition (ii) in Theorem 5 one
gets at once that V : (M,g) → (TM, gs) is a harmonic map if and only if
∇V = 0, that is, V is a parallel vector field.

We applied the expression of τh(V ) and τv(V ) given in (8) to investigate
relationships between harmonicity of maps defined by some special vector fields
and properties of g-natural metrics. In particular, for parallel vector fields we
obtained the following

6 Theorem. A parallel vector field V defines a harmonic map V : (M,g) →
(TM,G) if and only if its constant length ρ = ||V ||2 is a critical point of the
function

(n− 1)(α1 + α3) + φ1 + φ3. (11)

In particular:

(i) For any Riemannian g-natural metric G on TM such that (n− 1)(α1 +
α3) + φ1 + φ3 is constant, all parallel vector fields define harmonic maps from
(M,g) to (TM,G).

(ii) For any Riemannian g-natural metric G on TM such that [(n−1)(α1 +
α3) + φ1 + φ3]′(t) 	= 0 for all t, parallel vector fields do not define harmonic
maps from (M,g) to (TM,G).

By (3) it easily follows that case (i) of Theorem 6 applies to gs.
Except when V is parallel, equations τh(V ) = 0 and τv(V ) = 0 remain

rather difficult to manage in full generality, even for vector fields of constant
length. For this reason, we considered the special case of a Riemannian g-natural
metric G for which α2(ρ) = β2(ρ) = 0. Note that α2 = β2 = 0 has a clear
geometric meaning, since it characterizes g-natural metrics on TM with respect
to which horizontal and vertical distributions are mutually orthogonal. Under
this assumption, writing down the horizontal and vertical components of the

___________________________________________________________________________________



Naturally Harmonic Vector Fields 117

tension field, we respectively get

α1

2(α1 + α3)
(ρ)tr[R(∇·V, V )·] +

β1 + β3

2(α1 + α3)
(ρ)∇V V

−
[

α1(β1 + β3)
2(α1 + α3)(φ1 + φ3)

(ρ)g(tr[R(∇·V, V )·], V ) +
β1 + β3

2(φ1 + φ3)
(ρ)divV

]
V = 0

(12)
and

∆̄V +
(

(β1 + β3)
α1

(ρ) + n
(α1 + α3)′

φ1
(ρ) + ρ

α1(β1 + β3)′ − β1(β1 + β3)
α1φ1

(ρ)

+
α′

1 − β1

φ1
(ρ)||∇V ||2

)
V = 0. (13)

In particular, (13) implies at once that ∆̄V is collinear with V . Therefore, V
is an eigenvector for the rough Laplacian ∆̄ and, since

√
ρ = ||V || is a constant,

we have ∆̄V = 1
ρ ||∇V ||2V and (13) implies(

1
ρ
α1 + α′

1

)
(ρ)||∇V ||2 + [(n− 1)(α1 + α3) + φ1 + φ3]

′ (ρ) = 0. (14)

Now, by (12) and (13) it follows that very different behaviours occur for different
Riemannian g-natural metrics, concerning the harmonicity of vector fields of
constant length. The results are resumed in the following

7 Theorem. Let (M,g) be a Riemannian manifold and G a Riemannian
g-natural metric on TM satisfying α2(ρ) = β2(ρ) = 0, where ρ > 0. Then, a
vector field V ∈ Xρ(M) defines a harmonic map V : (M,g) → (TM,G) if and
only if it satisfies (12) and (13). In particular:

(i) If
(

1
ρα1 + α′

1

)
(ρ) = [(n− 1)(α1 + α3) + φ1 + φ3]

′ (ρ) = 0, then V :
(M,g) → (TM,G) is a harmonic map if and only if V is an eigenvector of
∆̄ and (12) holds.

(ii) If
(

1
ρα1 + α′

1

)
(ρ) 	= 0 = [(n− 1)(α1 + α3) + φ1 + φ3]

′ (ρ), then V :
(M,g) → (TM,G) is a harmonic map if and only if V is parallel.

(iii) If
(

1
ρα1 + α′

1

)
(ρ) = 0 	= [(n − 1)(α1 + α3) + φ1 + φ3]

′ (ρ), then no vec-

tor fields V ∈ Xρ(M) define harmonic maps from (M,g) to (TM, Ḡ).

(iv) If
(

1
ρα1 + α′

1

)
(ρ) 	= 0 	= [(n − 1)(α1 + α3) + φ1 + φ3]

′ (ρ), then V :

(M,g) → (TM,G) is a harmonic map if and only if (12) holds, ∆̄V is collinear
to V and (14) holds.
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The point we want to stress is that since a general Riemannian g-natural
metric G depends on six different smooth functions αi, βi (satisfying inequalities
(2)), in each of cases (i)-(iv) listed in Theorem 7, there are plenty of Riemannian
g-natural metrics which furnish examples. Some explicit examples have been
illustrated in [1]. Such a variety of different behaviours is rather surprising,
when compared with the fact that the tension field of V : (M,g) → (TM, gs)
vanishes only when V is parallel [10].

2.3 Critical points for the energy restricted to vector fields

Given a compact Riemannian manifold (M,g), we want to investigate con-
ditions under which the map V : (M,g) → (TM,G) associated to a vector field
V ∈ X(M), is a critical point for the energy functional E : X(M) → �, that is,
only considering variations among maps defined by vector fields. Gil-Medrano
solved the corresponding problem when TM is equipped with the Sasaki metric,
proving the following

8 Theorem ([9]). V : (M,g) → (TM, gs) is a critical point for the energy
functional E : X(M) → � if and only if V is parallel.

We equipped TM with an arbitrary Riemannian g-natural metric G and
considered a vector field V ∈ X(M) and an arbitrary smooth variation {Vt} ⊂
X(M) of V , with |t| < ε and V0 = V . We proved that V is a critical point for
E : X(M) → � if and only if

T (V ) := α2τh(V ) + β2g(τh(V ), V )V + α1τv(V ) + β1g(τv(V ), V )V = 0, (15)

where, following the notations introduced in the previous subsection, τh(V ) and
τv(V ) respectively denote the horizontal and vertical components of the tension
field associated to V : (M,g) → (TM,G).

It can be noted that equation (15) has a clear geometric meaning. In fact,
it expresses the vanishing of the projection of the tension field τ(V ), made with
respect to the Riemannian g-natural metric G, into the vertical distribution.

Clearly, if V : (M,g) → (TM,G) is a harmonic map, then τh(V ) = τv(V ) = 0
and so, (15) holds. It is also worthwhile to emphasize that in the special situation
when α2 = β2 = 0, T (V ) = 0 is equivalent to requiring that τv(V ) = 0.

Since the critical point condition T (V ) = 0 has a tensorial character, it also
makes sense when (M,g) is not compact. Hence, we can give the following

9 Definition. Let (M,g) be a Riemannian manifold. A vector field V on M
is said to be X-harmonic (with respect to a fixed Riemannian g-natural metric
G on TM) if and only if it satisfies T (V ) = 0.

___________________________________________________________________________________



Naturally Harmonic Vector Fields 119

If G = gs, then T (V ) = 0 reduces to the well known formula ∆̄V = 0 and this
easily implies Theorem 8.

We now determine X-harmonic vector fields, under some special assumptions
either on the vector fields or on the Riemannian g-natural metric G.

Suppose first V ∈ X(M) is a parallel vector field. Then,

T (V ) = −[(n− 1)(α1 + α3) + φ1 + φ3]′(ρ)V.

Hence, T (V ) = 0 coincides with the necessary and sufficient condition we found
in Theorem 6 for the harmonicity of V : (M,g) → (TM,G), and in Subsection 3
for critical points of the energy E restricted to parallel vector fields. Therefore,
we obtain the following

10 Theorem. Let (M,g) be a Riemannian manifold and G any Riemannian
g-natural metric on TM . For a parallel vector field V on M , the following
statements are equivalent:

(a) V : (M,g) → (TM,G) is a harmonic map;

(b) V is X-harmonic;

(c) V is a critical point for E in the set of all parallel vector fields on M ;

(d) ρ = ||V ||2 is a critical point for the function [(n−1)(α1 +α3)+φ1 +φ3].

Theorem 10 includes as special case the Sasaki metric gs, for which (d) is
trivially satisfied and so, all parallel vector fields define harmonic maps.

Consider now a vector field V ∈ Xρ(M). Then, T (V ) = 0 if and only if

α1(ρ)∆̄V +
{
β1(ρ)g(∆̄V, V ) + [(n − 1)(α1 + α3) + φ1 + φ3]′(ρ) (16)

+(2α′
2 − β2)(ρ)divV + (α′

1 − β1)(ρ)||∇V ||2}V = 0.

By (16) it follows at once that ∆̄V is collinear to V . Therefore, since V has
constant length ||V || = √

ρ, we have ∆̄V = 1
ρ ||∇V ||2V and from (16) we get

(
1
ρ
α1 + α′

1

)
(ρ)||∇V ||2 + (2α′

2 − β2)(ρ)divV

+ [(n− 1)(α1 + α3) + φ1 + φ3]′(ρ) = 0. (17)

Thus, we have the following

11 Theorem. Let (M,g) be a Riemannian manifold and G any Riemannian
g-natural metric on TM . A vector field V ∈ Xρ(M) is X-harmonic if and only
if ∆̄V is collinear to V and (17) holds.
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Equation (17) is difficult to solve in full generality. In a special case, requiring
α2(ρ) = β2(ρ) = 0, we proved the following

12 Proposition. Let (M,g) be a Riemannian manifold and V ∈ Xρ(M).
For any Riemannian g-natural metric G on TM , satisfying α2(ρ) = α′

2(ρ) =
β2(ρ) = 0,

(i) V is X-harmonic if and only if (13) holds.
(ii) V defines a harmonic map V : (M,g) → (TM,G) if and only if it is
X-harmonic and satisfies (12).

Proposition 12 shows explicitly that for a well determined and wide class of
Riemannian g-natural metrics, X-harmonic vector fields do not necessarily define
harmonic maps (as it occurs for the Sasaki metric).

2.4 Applications to Reeb and Hopf vector fields

In some cases, a distinguished vector field plays a special role in describing
the geometry of a Riemannian manifold. This occurs for the Reeb vector field
of a contact metric manifold and, as a very special case, for Hopf vector fields
on the unit sphere. We now investigate the harmonicity of these vector fields
with respect to Riemannian g-natural metrics on the tangent bundle.

We briefly recall that given a smooth manifold M of odd dimension n =
2m + 1, a contact structure (η, ϕ, ξ) over M is composed by a global 1-form η
(the contact form) such that η ∧ (dη)m 	= 0 everywhere on M , a global vector
field ξ (the Reeb or characteristic vector field) and a global tensor ϕ, of type
(1,1), such that

η(ξ) = 1 , ϕξ = 0 , ηϕ = 0 , ϕ2 = −I + η ⊗ ξ . (18)

A Riemannian metric g is said to be associated to the contact structure (η, ϕ, ξ),
if it satisfies

η = g(ξ, ·) , dη = g(·, ϕ·) , g(·, ϕ·) = −g(ϕ·, ·) . (19)

We denote a contact metric manifold by (M,η, g) or (M,η, g, ξ, ϕ). By (18)
and (19) it follows at once that ξ ∈ X1(M). For further details, references and
information about contact metric manifolds, we can refer to [6].

In [15], D. Perrone introduced and studied H-contact spaces. They are con-
tact metric manifolds (M,η, g, ξ, ϕ), whose Reeb vector field ξ is a critical point
for the energy functional E restricted to the space X1(M) of all unit vector
fields on (M,g), considered as smooth maps from (M,g) into the unit tangent
sphere bundle T 1M , equipped with the Riemannian metric induced on T 1M by
the Sasaki metric gs of TM . In particular, the following characterization was
proved:
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13 Theorem ([15]). (M,η, g, ξ, ϕ) is H-contact if and only if ξ is an eigen-
vector of the Ricci operator.

By Theorem 13 it follows that the class of H-contact manifolds is very large.
In fact, several well studied classes of contact metric manifolds, like η-Einstein
spaces, K-contact spaces, (k, µ)-spaces and strongly locally φ-symmetric spaces
are all examples of H-contact spaces. Using the special properties of the Reeb
vector field ξ and the expression (8) for the tension field, we can derive the
following necessary condition for the harmonicity of ξ:

14 Theorem. Let (M,η, g, ξ, ϕ) be a contact metric manifold and G an
arbitrary Riemannian g-natural metric on TM . If ξ : (M,g) → (TM,G) is a
harmonic map, then (M,η, g) is H-contact.

Under some assumptions on the Riemannian g-natural metric G, we are able
to completely characterize harmonicity of ξ : (M,g) → (TM,G). In particular,
the following result holds:

15 Theorem. Let (M,η, g, ξ, ϕ) be a contact metric manifold and G any
Riemannian g-natural metric on TM , satisfying α2(1) = β2(1) = 0. Then ξ
defines a harmonic map ξ : (M,g) → (TM,G) if and only if M is H-contact,
tr[R(∇·ξ, ξ)·] = 0 and

(trh2 + 2m) (α1 + α′
1)(1) + [2m(α1 + α3) + φ1 + φ3]′(1) = 0, (20)

where h = 1
2Lξϕ is the Lie derivative of ϕ.

It is interesting to compare this result with the well known characteriza-
tion of unit vector fields U defining a harmonic map U : (M,g) → (T 1M,gs),
obtained by Han and Yim:

16 Theorem ([11]). A unit vector field U defines a harmonic map U :
(M,g) → (T 1M,gs) if and only if

(i) ∆̄U is collinear to U , and

(ii) tr[R(∇·U,U)·] = 0.
Therefore, by Theorems 15 and 16, for the wide class of Riemannian g-

natural metrics satisfying α2(1) = β2(1) = 0 and (20), we obtain at once the
following

17 Corollary. Let G be any Riemannian g-natural metric on TM , satis-
fying α2(1) = β2(1) = 0 and (20). Then, ξ : (M,g) → (TM,G) is a harmonic
map if and only if ξ : (M,g) → (T 1M,gs) is a harmonic map.

Sasakian manifolds are probably the most known and investigated class of
contact metric manifolds. It is then natural to investigated harmonicity of the
map defined by the Reeb vector field ξ of a Sasakian manifold (M,η, g, ξ, ϕ).
We proved the following result:
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18 Theorem. Let (M,η, g, ξ, ϕ) be a Sasakian manifold, dimM = 2m + 1
and G any Riemannian g-natural metric on TM , satisfying α2(1) = β2(1) = 0.
Then, ξ defines a harmonic map ξ : (M,g) → (TM,G) if and only if

2m(α1 + α′
1)(1) + [2m(α1 + α3) + φ1 + φ3]′(1) = 0. (21)

As concerns X-harmonicity of the Reeb vector field, calculating T (ξ) we
obtain:

19 Theorem. Let (M,η, g, ξ, ϕ) be a contact metric manifold and G an
arbitrary Riemannian g-natural metric on TM . If ξ is X-harmonic, then M is
H-contact. Conversely, if M is H-contact, then ξ is X-harmonic if and only if
(20) holds.

Note that (20) is not fulfilled by the Sasaki metric on TM , as it follows from
(3). Therefore, we have the following

20 Corollary. When (M,η, g, ξ, ϕ) is an arbitrary contact metric manifold
and TM is equipped with gs, then the Reeb vector field ξ is never X-harmonic.
In particular, ξ : (M,g) → (TM, gs) is never a harmonic map.

On the other hand, it is easy to exhibit examples of Riemannian g-natural
metrics which satisfy (20). For example, (20) holds for all Riemannian g-natural
metrics belonging to the two-parameters family satisfying⎧⎨⎩

α1(t) = k1e
−t,

α3(t) = k2 − α1(t),
α2 = β1 = β2 = β3 = 0,

where k1, k2 are positive constants.

Next, we recall that Hopf vector fields on the unit sphere S2m+1, equipped
with its canonical metric g0, are all and the ones Killing unit vector fields on
S2m+1 [17]. Moreover, a Hopf vector field ξ̄ can always be considered as the
Reeb vector field of a suitable Sasakian structure (S2m+1, η̄, go, ξ̄, ϕ̄), where η̄ =
g0(·, ξ̄) and ϕ̄ = −∇ξ̄. Rewriting results above for these special contact metric
structures, we then have

21 Corollary. For all Riemannian g-natural metrics on TS2m+1, satis-
fying α2(1) = β2(1) = 0, a Hopf vector field ξ̄ defines a harmonic map ξ̄ :
(S2m+1, g0)→ (TS2m+1, G) if and only if (21) holds.

22 Corollary. For all Riemannian g-natural metrics on TS2m+1, a Hopf
vector field ξ̄ is X-harmonic if and only if (21) holds.

Comparing Corollaries 21 and 22 we can conclude that even for Hopf vec-
tor fields, in general X-harmonicity is not sufficient for the harmonicity of the
corresponding map.
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3 Riemannian g-natural metrics on T1M

We briefly recall that the tangent sphere bundle of radius r > 0 over a
Riemannian manifold (M,g), is the hypersurface

TrM = {(x, u) ∈ TM |gx(u, u) = r2}.
The tangent space of TrM , at a point (x, u) ∈ TrM , is given by

(TrM)(x,u) = {Xh + Y v : X ∈Mx, Y ∈ {u}⊥ ⊂Mx}. (22)

When r = 1, T1M is called the unit tangent (sphere) bundle.
We call g-natural metrics on T1M the restrictions of g-natural metrics of TM

to its hypersurface T1M . These metrics possess a simpler form. Precisely, at it
was shown in [4], every Riemannian g-natural metric G̃ on T1M is necessarily
induced by a Riemannian g-natural G on TM of the special form⎧⎨⎩

G(x,u)(Xh, Y h) = (a + c) gx(X,Y ) + β gx(X,u)gx(Y, u),
G(x,u)(Xh, Y v) = b gx(X,Y ),
G(x,u)(Xv , Y v) = a gx(X,Y ),

(23)

for three real constants a, b, c and a smooth function β : [0,∞) → �. It is easily
seen that G is obtained by the general expression (1), when

α1 = a, α2 = b, α3 = c, β1 = β2 = 0, β3 = β, (24)

Such a metric G̃ on T1M only depends on the value d := β(1) of β at 1. ¿From
(2) and (24) it follows that G̃ is Riemannian if and only if

a > 0, α := a(a + c)− b2 > 0 and φ := a(a + c + d)− b2 > 0. (25)

Notice that the Sasaki metric g̃s belongs to the class of Riemannian g-natural
metrics on T1M and satisfies b = 0.

By a simple calculation, using the Schmidt’s orthonormalization process, it
is easy to check that the vector field on TM defined by

NG
(x,u) =

1√
(a + c + d)φ

[−b.uh + (a + c + d).uv ], (26)

for all (x, u) ∈ TM , is unit normal at any point of T1M .
We now define the ”tangential lift” XtG , with respect to G, of a vector

X ∈ Mx to (x, u) ∈ T1M , as the tangential projection of the vertical lift of X
to (x, u) with respect to NG, that is,

XtG = Xv−G(x,u)(X
v, NG

(x,u)) NG
(x,u) = Xv−

√
φ

a + c + d
gx(X,u) NG

(x,u). (27)
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If X ∈Mx is orthogonal to u, then XtG = Xv.
The tangent space (T1M)(x,u) of T1M at (x, u) is spanned by vectors of the

form Xh and Y tG , where X, Y ∈ Mx. Using this fact, the Riemannian metric
G̃ on T1M , induced from G, is completely determined by the identities⎧⎪⎨⎪⎩

G̃(x,u)(Xh, Y h) = (a + c) gx(X,Y ) + d gx(X,u)gx(Y, u),
G̃(x,u)(Xh, Y tG) = b gx(X,Y ),
G̃(x,u)(XtG , Y tG) = a gx(X,Y )− φ

a+c+d gx(X,u)gx(Y, u),
(28)

for all (x, u) ∈ T1M and X, Y ∈Mx. It should be noted that, by (28), horizontal
and vertical lifts are orthogonal with respect to G̃ if and only if b = 0.

4 Harmonicity properties of V : (M, g)→ (T1M, G̃)

4.1 The energy of a unit vector field

A unit vector field V also defines a map V : (M,g) → (T1M, G̃), where G̃
is the metric on T1M induced by G. However, since (T1M, G̃) is isometrically
immersed into (TM,G), the energy density of V : (M,g) → (T1M, G̃) coincides
with the one of V : (M,g) → (TM,G). The general expression for the energy
density of V : (M,g) → (TM,G) is given by (5). Let now G̃ be an arbitrary
Riemannian g-natural metric on T1M . Hence, G̃ is described by (28), where
a, b, c and d are four real numbers, satisfying (25). G̃ is induced by a Riemannian
g-natural metric G on TM which can be chosen of the special form (23). With
respect to this particular G, (5) becomes

2e(V ) = n(a + c) + d + a ||∇V ||2 + 2bdivV (29)

and integrating over M , we get

E(V ) =
1
2
[n(a + c) + d] · vol(M,g) +

a

2
·
∫
M
||∇V ||2dvg. (30)

Since a > 0, (30) implies that

E(V ) ≥ 1
2
[n(a+ c)+ d] ·vol(M,g) =

1
2
[(n− 1)(a+ c)+a+ c+ d] ·vol(M,g) > 0,

(31)
for all V ∈ X1(M). The equality holds in (31) if and only if V is parallel.
Therefore, we have the following

23 Theorem. Let (M,g) be a compact Riemannian manifold. Equipping
T1M with an arbitrary Riemannian g-natural metric G̃, a unit vector field V is
an absolute minimum for the energy E : X1(M) → � restricted to X1(M) if and
only if V is parallel.
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4.2 Critical points for the energy restricted to unit vector fields

Given a compact Riemannian manifold (M,g), a vector field V ∈ X1(M) is
said to be harmonic if and only if the corresponding map V : (M,g) → (T1M, G̃)
is a critical point for the energy functional E : X1(M) → �, that is, only
considering variations among maps defined by unit vector fields.

The critical point condition for E : X1(M) → � can be deduced directly
from (7) (we may also refer to [2] for a direct proof). The conclusion is resumed
in the following

24 Theorem. Let (M,g) be a compact Riemannian manifold. When T1M
is equipped with an arbitrary Riemannian g-natural metric G̃, a unit vector field
V is harmonic if and only if ∆̄V is collinear to V .

In literature, critical points of E : X1(M) → � have been already investi-
gated, considering T1M equipped with the Sasaki metric g̃s [16],[18]. Theorem
24 extends the same characterization to an arbitrary Riemannian g-natural met-
ric G̃. It is important to stress that the collinearity of ∆̄V and V only depends
on g and not on the particular Riemannian g-natural metric G̃ on T1M . In
particular, V is harmonic when T1M is equipped with any G̃ if and only if so
is when T1M is equipped with g̃s.

4.3 The tension field associated to V : (M, g)→ (T1M, G̃)

Taking into account the form of the Levi-Civita connection of (TM,G) when
G is a special Riemannian g-natural metric satisfying (23), via standard calcu-
lations one obtains the following

25 Theorem. Let (M,g) be a compact Riemannian manifold and V ∈
X1(M) a unit vector field. When TM is equipped with a special Riemannian g-
natural metric G satisfying (23), the tension field τ(V ) of V : (M,g) → (TM,G)
is given by

τ(V )(x) = (τh(V )(x))h + (τv(V )(x))v , (32)

with

τh(V ) =
ab

α
QV − a2

α
S(V )− ad

α
∇V V +

[
bd

α
− a2bd

αφ
(V, V )

+
αbβ′ − abd2

αφ
+

a3d

αφ
g(S(V ), V ) +

ad

φ
divV

]
V, (33)
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τv(V ) = −∆̄V − b2

α
QV +

ab

α
S(V ) +

bd

α
∇V V +

[
− (a + c)d

α
(34)

+
ab2d

αφ
(V, V ) +

b2d2 − αϕβ′

αφ
− a2bd

αφ
g(S(V ), V )− bd

φ
divV

]
V,

where we put ϕ = a+c+d and β′ is evaluated at 1. Then, V : (M,g) → (TM,G)
is a harmonic map if and only if τ(V ) = 0, that is, τh(V ) = τv(V ) = 0.

26 Remark. Since the condition τ(V ) = 0 has a tensorial character, as
usual wit can be assumed as a definition of harmonic maps even when M is not
compact, and Theorem 25 extends at once to the non-compact case.

We now denote by τ1(V ) the tension field associated to V : (M,g) →
(T1M, G̃). Since (T1M, G̃) is isometrically immersed into (TM,G) via the inclu-
sion, τ1(V ) is nothing but the tangential projection of τ(V ) on T1M . Explicitly,
we obtained in [2] the following

27 Theorem. Let (M,g) be a compact Riemannian manifold and V ∈
X1(M) a unit vector. When T1M is equipped with an arbitrary Riemannian
g-natural metric G̃, the tension field τ1(V ) of V : (M,g) → (T1M, G̃) is given
by

τ1(V )(x) = (τ1h(V )(x))h + (τ1v(V )(x))v (35)

where

τ1h(V ) =
ab

α
QV − a2

α
S(V )− ad

α
∇V V +

[
− b(ad + b2)

αϕ
(V, V )

− b

ϕ
g(∆̄V, V ) +

d

ϕ
divV +

a(ad + b2)
αϕ

g(S(V ), V )
]
V,

(36)

τ1v(V ) = −∆̄V − b2

α
QV +

ab

α
S(V ) +

bd

α
∇V V

+
[
b2

α
(V, V ) + g(∆̄V, V )− ab

α
g(S(V ), V )

]
V. (37)

Thus, V : (M,g) → (T1M, G̃) is a harmonic map if and only if τ1h(V ) =
τ1v(V ) = 0.
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Because of the tensorial character of the condition τ1(V ) = 0, we can use
it as a definition of harmonic maps (M,g) → (T1M, G̃) even when M is not
compact.

We can derive by τ1h(V ) = τ1v(V ) = 0 a set of equivalent conditions, which
permit a better understanding of the geometrical meaning of these equations,
proving the following

28 Theorem. Let (M,g) be a Riemannian manifold, V a unit vector field
and G̃ an arbitrary Riemannian g-natural metric on T1M . Then, V : (M,g) →
(T1M, G̃) is a harmonic map if and only if V is a harmonic vector field and

bQV − aS(V ) =
{
b ||∇V ||2 − ddivV

}
V + d∇V V. (38)

Under some special assumptions, condition (38) simplifies. For example, the
following result holds:

29 Corollary. Let (M,g) be a Riemannian manifold and V ∈ X1(M) a unit
vector. Suppose T1M is equipped with a Riemannian g-natural metric G̃ such
that horizontal and tangential distributions are orthogonal. Then, V : (M,g) →
(T1M, G̃) is a harmonic map if and only if

(i) S(V ) = d
a{(divV )V −∇V V }, and

(ii) ∆̄V is collinear to V .
In the special case of the Sasaki metric g̃s, by Theorem 28 we obtain at once

the already cited Theorem 16 by Han and Yim.
Moreover, Theorem 28 permits to extend the characterization given in the

case of g̃s to a two-parameter family of Riemannian g-natural metrics on T1M
(including g̃s). In fact, we have at once the following

30 Corollary. Let (M,g) be a Riemannian manifold and V ∈ X1(M). If
T1M is equipped with a Riemannian g-natural metric G̃ with b = d = 0, then
V : (M,g) → (T1M, G̃) is a harmonic map if and only if

(i) S(V ) = 0, and

(ii) ∆̄V is collinear to V .

4.4 Unit Killing vector fields characterized in terms of har-
monicity

As we shall see, natural harmonicity permits to characterize unit Killing
vector fields over a Riemannian manifold (M,g). It is well known that V ∈
X(M) is a Killing vector field if and only if the local one-parameter group of
V consists of local isometries of g. Moreover, a vector field V is Killing if and
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only if LV g = 0, where L denotes the Lie derivative. As the definition already
shows, Killing vector fields are intimately related to the Riemannian metric g.
They have been extensively studied by many authors, and have shown several
interesting applications. In [2], we provided a characterization of a unit Killing
vector field V , in terms of harmonicity of the map V : (M,g) → (T1M, G̃), by
proving the following

31 Theorem. A unit vector field V is Killing if and only if the harmonicity
of the map V : (M,g) → (T1M, G̃) depends only on g and not on the particular
Riemannian g-natural metric G̃ on T1M .

If V ∈ X1(M) is not a Killing vector field, then the harmonicity of the map
V : (M,g) → (T1M, G̃) explicitly depends on the choice of the Riemannian
g-natural metric. Examples will be given in the following Subsection, in the
framework of contact metric geometry.

4.5 Harmonicity of the Reeb vector field as unit vector field

We now consider the special case when V = ξ is the Reeb vector field of a
contact metric manifold (M,η, g).

We first recall that a K-contact manifold is a contact metric manifold such
that ξ is a Killing vector field with respect to g. Equivalently, M is K-contact
if and only if h = 0. Any Sasakian manifold is K-contact and the converse also
holds for three-dimensional spaces. For further details, references and informa-
tion about contact metric manifolds, we refer to [6].

Now, for the Reeb vector field ξ, by Theorem 28 we obtain at once the
following

32 Theorem. Let (M,η, g) be a contact metric manifold and G̃ an arbi-
trary Riemannian g-natural metric on T1M . Then, ξ : (M,g) → (T1M, G̃) is a
harmonic map if and only if

(i) a tr[R(∇·ξ, ξ)·] = −2b (trh2)ξ, and

(ii) Qξ is collinear to ξ.
In particular, Theorem 32 yields

33 Corollary. Consider a contact metric manifold (M,η, g), an arbitrary
Riemannian g-natural metric G̃ on T1M and the map ξ : (M,g) → (T1M, G̃)
defined by the Reeb vector field. Then, ξ is a harmonic map if and only if M is
H-contact and atr[R(∇·ξ, ξ)·] = −2b trh2.

In particular:

(a) when M is K-contact, ξ is a harmonic map if and only if tr[R(∇·ξ, ξ)·] = 0;

(b) when M is Sasakian, ξ is a harmonic map.
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By statement (a) of Corollary 33, if M is K-contact, then the harmonicity of
the map ξ : (M,g) → (T1M, G̃) does not depend on G̃. Indeed, this is a special
case of Theorem 31, because by definition the Reeb vector field of a K-contact
space is Killing.

If we restrict ourselves to Riemannian g-natural metrics with b = 0 (that
is, for which horizontal and tangential distributions are orthogonal), then har-
monicity of ξ : (M,g) → (T1M, G̃) does not depend on the particular G̃. More
precisely, we have the following

34 Corollary. Consider a contact metric manifold (M,η, g) and a Rieman-
nian g-natural metric G̃ on T1M with b = 0. Then, the following properties are
equivalent:

(i) ξ : (M,g) → (T1M, G̃) is a harmonic map;

(ii) tr[R(∇·ξ, ξ)·] = 0 and M is H-contact;

(iii) ξ : (M,g) → (T1M, g̃s) is a harmonic map.
35 Remark. All the results obtained for a unit vector field V , thought as

a map V : (M,g) → (T1M, G̃), can be easily adapted and rewritten for vector
fields of any constant length ρ > 0, interpreted as maps (M,g) → (TρM, G̃′).
Notice that the underlying geometry of the target space is the same, since
(TρM, G̃′) is isometric to (T1M, G̃) for a suitable Riemannian g-natural metric
G̃. Such an easy generalization is however useful and natural in some contexts.
For example, given any Riemannian g-natural metric G̃ on T1M , the geodesic
flow vector field defines a map (T1M, G̃) → (TρT1M, ˜̃G), where ˜̃G is any Rie-
mannian g-natural metric on TρT1M constructed from G̃. The study of the
harmonicity of the geodesic flow vector field has been made in [3].

References

[1] M.T.K. Abbassi, G. Calvaruso and D. Perrone, Harmonic sections of tangent bundles
equipped with g-natural Riemannian metrics, 2006, submitted. Online version: ArXiv:
0710.3668.

[2] M.T.K. Abbassi, G. Calvaruso and D. Perrone, Unit vector fields which are harmonic
maps with respect to Riemannian g-natural metrics, Diff. Geom. Appl., 27 (2009), 157–
169.

[3] M.T.K. Abbassi, G. Calvaruso and D. Perrone, Harmonic maps defined by the geodesic
flow, 2007, submitted.

[4] K.M.T. Abbassi and O. Kowalski, On g-natural metrics on unit tangent sphere bundles
of Riemannian manifolds, preprint, 2005.

[5] K.M.T. Abbassi and M. Sarih, On some hereditary properties of Riemannian g-natural
metrics on tangent bundles of Riemannian manifolds, Diff. Geom. Appl., (1) 22, 19–47,
2005.

____________________________________________________________________________________



130 G. Calvaruso

[6] D.E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Math.
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