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Abstract

Since the olden times, infectious diseases have largely affected human existence. The newly emerged infections are exces-

sively caused by viruses that are largely associated with mammal reservoirs. The casualties of these emergencies are signifi-

cantly influenced by the way human beings interact with the reservoirs, especially the animal ones. In our review we will 

consider the evolutionary and the ecological scales of such infections and their consequences on the public health, with a 

focus on the pathogenic influenza A virus. The nutraceutical properties of fungal and plant terpene-like molecules will be 

linked to their ability to lessen the symptoms of viral infections and shed light on their potential use in the development of 

new drugs. New challenging methods in antiviral discovery will also be discussed in this review. The authors believe that 

pharmacognosy is the “wave of future pharmaceuticals”, as it can be continually produced and scaled up under eco-friendly 

requirements. Further diagnostic methods and strategies however are required to standardise those naturally occurring 

resources.
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1 Introduction

A glimpse at the preoccupation of yet to spread pathogens, 

may suggest unfounded safety precautions, however, the 

huge public health consequences of measles, malaria, tuber-

culosis exemplified the influence of late underpinnings of 

new disease [1]. Although, not all new infections have had 

huge health problems as the above mentioned examples, the 

outbreak and the devastating effect of HIV on human popu-

lation, is an obvious counterargument of the possibility of 

novel infections impact on public health and their subse-

quent economic catastrophe [2].

The infection process of most emerging diseases involves 

two steps: introduction and adoption. Firstly, the infection 

agent invades a new host (regardless of its origin, environ-

ment, or different species), and secondly the agent’s estab-

lishment inside the host [3]. Although, first incidents of pan-

demics are thousands of years back, the emergence of new 

epidemics or the re-emergence of known infections, continue 

as the interaction between humans and animals including 

their niches increases. There are many reasons for global 

disease outbreaks, individual movements for example, can 

spread previously controlled infections in developed coun-

tries to others with poor health systems. Microbial adapta-

tion to environmental changes, such as developing resist-

ance to antibiotics—which is a consequence of antibiotics 

overuse in animal farming and food processing—increases 

the chances of the emergence of new strains of pathogens. 

Ecological changes such as deforestation, can also increase 

the likelihood of indirect contact with different types of 

insect vectors and mammalian reservoirs. The infection of 

some diseases can increase during the cold season, like influ-

enza in winter. As well as the ease in the international travel 

of goods, animals, and humans, made the transmission of 

diseases or their vectors much easier yet more difficult to 

control [4]. Above all, shortage of public health facilities, 

such as drinkable water, educational programmes and lack of 

living expense can participate largely in disease outbreak as 
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well as the re-emerging of previously contained contagions 

[5]. Since the 1940s, the human lifespan has been greatly 

improved by the introduction into the drug discovery field 

of naturally produced fungal bioactive molecules, as well as 

of their semisynthetic derivatives and synthetic analogues 

inspired by natural products. However, nowadays we simul-

taneously face a challenging rise in antimicrobial resistance, 

and a dramatic decrease in drug innovation. The chemical 

constituents that are responsible for the bioactivities of fungi 

are mostly terpene derivatives, some of which (monoterpe-

nes and sesquiterpenes) are volatile in their nature. These 

compounds are overly broad in their pharmacokinetic spec-

trum, and often inspired structure-based drug design, par-

ticularly in oncogenic and contagious diseases. Insightful 

knowledge of the chemistry, biogenetic and biotechnology 

associated to them, will fruitfully increase the application of 

their native producers—mushroom forming fungi [6].

It is therefore important to better our understanding of the 

geographical and natural evolution of infectious diseases, as 

well as of the bioactive metabolites made by living organ-

isms such as mushroom-forming fungi, to develop new tools 

to defeat future microbial threats, through effective coordi-

nated global interactions.

2  In�uenza Viruses

2.1  Evolution of Influenza Viruses

Influenza viruses are a group of microbes belonging to the 

family Orthomyxoviridae. They are negative single stranded 

RNA viruses, causing severe emerging and re-emerging res-

piratory infections in human, due to their ability to alter their 

genomes continuously (Fig. 1).

They are classified into four main types: Alpha influenza 

(A), Beta influenza (B), Gamma influenza (C) and Delta 

influenza (D) [7]. A and B are known as seasonal viruses 

or the so called “human influenza”, they mainly cause sea-

sonal flu epidemics, yet influenza type A is the only one 

that has caused influenza pandemics to date—epidemics 

develop to pandemics when new strains of microbes infect 

people and can spread globally. While type C is responsible 

for mild symptoms in human, with limited spread ability, 

type D mainly infect cattle [8]. According to proteins Neu-

raminidase (N) and hemagglutinin (H) that are attached to 

their surface, viruses can be divided into many subgroups. 

N includes 11 subtypes and H includes 18 subtypes. Nearly 

198 subtypes of influenza virus A have been predicted, of 

which 131 subtypes have been confirmed. Types that fre-

quently infect people are, influenza A(H1N1) and influenza 

A(H3N2). The latter has the tendency to change its genetic 

material rapidly. Like type A, influenza type B is classi-

fied into two subgroups; Yamagata and Victoria which are 

further divided into many subclades (Fig. 2). Cases of co-

circulation of both subgroups were reported around the 

world, however, with variable geographical distribution of 

each subgroup. Generally, the genetic material of type B is 

more stable than type A in terms of rate of changes/muta-

tions [9].

The annual infection rates of influenza A and B in humans 

range from 5 to 15%, of which children represent the higher 

percentage (nearly a third) of infection incidences. Since the 

human immune system cannot save the memory of previous 

influenza viruses for a lifetime, individuals are at risk of 

recurrent infections. This reflects the fact that the immune 

system of every adult has a history of viral infections [10].

The first detection of influenza viruses dates back to the 

sixteenth century, during the Russian influenza pandemic. 

Generally, influenza viruses transmit from their primitive 

hosts to their intermediate ones to ensure better evolution 

and subsequent transmission. Not long ago, the infection 

landscape of influenza has expanded widely to include pre-

viously unhabituated hosts such as whales, seals, and bats. 

Influenza A for example, affects a wide range of mamma-

lians including pigs, dogs, seals, cats and humans, where 

the latter become an intermediate host for numerous viruses 

[11]. Viral infections largely take two routes: the first one 

is the isolated route or the unsustainable infection, where 

the microbe fails to adapt or evolve in its new host such as 

Hantavirus Pulmonary Syndrome and Ebola disease. In the 

second route the virus (e.g. influenza) adapts in the interme-

diate host, and successfully transmits to a new environment, 

Fig. 1  Structure of influenza A virus. The viral genome consists of 

eight RNA connected genes, surrounded by the lipid envelope, to 

which the neuraminidase and hemagglutinin proteins are attached in 

addition to the matrix and the membrane proteins
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leading to durable establishment that can resist any harsh 

environment posed by the end host [4]. There are many fac-

tors—viral and host—that influence an effective transmis-

sion and sustainability of any infection. Viral factors include 

the ability to produce adaptive mutation proteins, such as 

HA glycoprotein, PB2, NP and NS1 proteins. Other viral 

factors are its interconnectivity and population size. Host 

determinant factors represented by the presence of target 

receptors or the availability of innate immune response fac-

tors [12]. Avian influenza polymerase protein for example, 

has a limited influence in human infections, therefore, host-

based genetic mutation occurred within its units as a result 

of natural evolution, leading to successful adaptation in 

human host [13].

2.2  Pathogenic Properties of Influenza Viruses

Almost all human respiratory infections come from influ-

enza viruses, which have been around since the middle ages. 

They infect infants, people with chronic diseases, causing 

them high illness and demise. For example, in 1957 in a 

seasonal epidemic of influenza A, nearly two hundred thou-

sand Americans were hospitalized, of which 15% died [14]. 

Historically, every decade, influenza viruses’ pandemics 

emerge to infect more than half of the world population of 

which 1–2% die. On the other hand, influenza B and C, cause 

periodic epidemics and endemics with no pandemic records 

to date [7]. In terms of pathogenicity, influenza A, has the 

riskiest consequences on human health. However, associated 

health conditions (bacterial pneumonias) of infected popula-

tion, seems to vary from infections to infections. The 1918 

influenza pandemic for example, has caused high fatality 

frequency in young adults compared to elderly people, con-

trasting the two previous pandemics, where high mortality 

rate occurred in elder people and cases with chronic disease 

history [15]. The recent outbreak of coronavirus (COVID-

19) makes revising previous influenza pandemics valuable. 

Largely, influenza viruses adapt to new environments via 

changing their surface proteins. These changes are either 

accumulative or straightway. The former occurs due to lim-

ited mutations in hemagglutinin (HA) and neuraminidase 

(NA) antigens [16]. Accumulative changes happen every 

time the virus replicates, and normally produce types that 

are closely related to the original one, therefore they have 

analogous antigenic properties, that trigger similar response 

from the host immune system, resulting in cross protection. 

However, over time this process can result in strains that are 

antigenically diverse. A small mutation in one important 

domain that has a huge impact on virus antigenic properties, 

can lead to antigenic deviation. This will change the virus to 

the point that the body’s immune system cannot recognize 

these newer antigens, and ultimately become susceptible to 

infection again. This is one of the main reasons why one 

can be infected with influenza virus many times [17]. On 

the other hand, straightway changes or shift changes that 

cause the creation of novel NA and HA proteins, resulting in 

newer types of influenza A. Such shifts happen when viruses 

from different hosts (e.g. mammalians) acquire new viru-

lence ability to infect the human body, which has no immune 

defence against such virus types due to differences in their 

antigenic proteins. The H1N1 virus pandemic in 2009 is an 

example of this sort of shift, when it moved from its original 

host swine to humans. However, such intraspecies changes 

are less frequent compared to the interspecies ones [18, 19].

However, unfortunately, very few analyses concerning 

fatal cases of H5N1 have been published so far. One study 

demonstrated that the fatality of H5N1 is due to the unique 

hypercytokinemia, another study proposed the ability of 

H5N1 to replicate outside the respiratory paths [20]. How-

ever, the possibility of other pathological reasons remains 

unclear.

Fig. 2  Main two causes of human seasonal flu; influenza viruses A & B. These are further classified into groups and subgroups
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3  The Potential Role of Terpenoid Natural 
Products in Viral Infection Treatment

Although recent flu epidemics were less incurable compared 

to past epidemics, there is still an urgent need to search for 

new approaches to prevent flu pandemics, especially the 

ones caused by the influenza A. Unlike bacteria, viruses 

cannot reproduce in the absence of a living host. Once they 

are inside the host cell, they hijack its replication machinery, 

and some of them start replicating, then they eventually burst 

open the cell and infect more host cells [21]. Targeting the 

virus replication is easy, meanwhile, avoiding the disruption 

of the host cell replication is the hard process. One effective 

way would be the synthesis of multitarget molecules, that 

can inhibit multiple phases of the virus life cycle [16].

Volatile natural products have shown their efficiency 

as antibacterial agents, and investigation of their antiviral 

activity is vital. The experimental improvement of influenza 

symptoms such as headache, runny nose and malaise during 

the co-use of volatile oils with synthetic medicines, suggests 

that volatile compounds can have an impact in lessening 

influenza consequent spread [22].

Generally, antiviral drugs have been designed to stop 

viruses from inserting their viral genomes into the host cell, 

as well as to avert the new copies from infecting other host 

cells. Ganciclovir and acyclovir, for example, are designed 

to inhibit the synthesis of the viral DNA of cytomegalovi-

rus and simplex virus, respectively [23, 24]. However, those 

DNA inhibitors are not effective against viral RNA such as 

hepatitis and influenza viruses. Besides that, many species 

of influenza virus have developed resistance to the currently 

used medications, as such, more viral genome specific drugs 

are needed, to kill a specific virus, or control the spread of 

similar ones [25]. Aromatics or natural oils are a chemi-

cally diverse group of bioactive substances; thus, they have 

the potential to become novel antivirals, that can effectively 

interrupt virus development or block their invasion [26, 27].

3.1  Fungal Antivirals

Over the last decades, tens of thousands of metabolites have 

been described from the fungal kingdom, many of which 

possess diverse medicinal properties including antibacte-

rial, antifungal, antiviral, and antitumor. However, fungal 

natural products with antiviral properties were less lengthily 

investigated. Nevertheless, the number of fungal antiviral 

studies is gradually increasing, particularly, those that are 

related to medicinal mushrooms [28]. Although, many of the 

selected molecules in the below table (Table 1) have a wide 

range of bioactivities, we focused our scope on their antiviral 

properties. The described chemicals, belong to an array of 

fungal terpenes, and they were selected through an extensive 

literature search. 6-epi-ophiobolin K is a member of the 

ophiobolins group of sesterterpenoids, having a molecular 

formula  C25H36O3. It is produced by a strain of a Neosar-

torya sp, and it showed HIV-1-integrase inhibitory activity 

[29]. 6β,9α-dihydroxy-14-p-nitrobenzoylcinnamolide is a 

rare sesquiterpenoid molecule (formula  C22H25NO8) with 

antiviral activity against H3N2 and EV71, and it is pro-

duced by the marine-derived ascomycete fungus Aspergillus 

ochraceus [30]. Equisetin is a tetramic acid like compound 

isolated from Fusarium equiseti, with substituted aliphatic 

bicyclic ring, having molecular formula  C22H31NO4 and 

shows inhibition activity on HIV-1 integrase [31]. Integra-

cide A  (C32H50O8S) and integracide D  (C36H58O8) also show 

inhibition of the HIV-1 integrase [32], and are tetracyclic 

triterpenoids made by Fusarium sp. The oblongolides are 

tricyclic compounds derived from the fungus Phomopsis sp. 

BCC 9789 and display anti-HSV-1 activity [33]. The last 

two compounds derived from ascomycete fungi included in 

Table 1 are stachyflin, with molecular formula  C23H31NO4, 

and stachybotrylactam,  C23H31NO4, sesquiterpene deriva-

tives isolated from the Stachybotrys sp. that exhibit inhibi-

tion on HSV-1, H1N1 and H2N2 [34–36]. The table also 

includes molecules characterised from basidiomycete spe-

cies such as the sesquiterpene Illudin S,  C15H20O4, which 

is a highly reactive molecule that can bind to the DNA 

and cause its damage and was first isolated from the Jack 

o’ Lantern mushroom Omphalotus illudens, showing inhi-

bition of HSV-1 [37]. The bis-sesquiterpene agrocybone, 

molecular formula  C30H36O5, has an eight-ring structure 

derived from the binding of two molecules of illudane via 

Diels–Alder reaction and shows weak antiviral properties 

against the respiratory syncytial virus (RSV) [38]. Triterpe-

noids with antiviral activity have been abundantly described 

as being isolated from the fruiting bodies of Ganoderma 

lucidum mushrooms, such as the lanosterol derived triter-

penoid ganoderic acid Y, molecular formula  C30H46O3, as 

well as many closely related triterpenoids, including the oxi-

dized lanostane triterpenoids lucidenic acid P,  C29H44O7, 

lucidumol B,  C30H50O3, and ganolucidic acid A,  C30H44O6 

[39–41]. Ganoderma colossum produces the lanostane trit-

erpenes schisanlactone A, formula  C30H40O4, colossolactone 

E,  C32H54O6, and colossolactone V,  C35H54O9, which show 

anti-HIV-1 protease activity [42]. Another species of the 

Ganoderma genus, Ganoderma pfeifferi, produces antivi-

ral triterpenoids such as lucidadiol,  C30H48O3, ganoderone 

A, with molecular formula  C30H46O3, applanoxidic acid G, 

 C30H40O8, and lucialdehyde B,  C30H44O3 [43, 44].

Bioactive compounds are organic molecules with nor-

mally small molecular weight that can be produced by both 

Ascomycetes and Basidiomycetes. Literature reports on 

fungal antiviral sources reveal that most known bioactive 

molecules have been isolated from Ascomycetes and Basidi-

omycetes, providing insights into the competence of those 
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two phyla as producers of therapeutic compounds [45–48]. 

The studies indicated also that the biosynthetic gene clusters 

of the bioactive metabolites’ dominance are generally lower 

in number in basidiomycetes compared to the ascomycetes. 

However, this difference reflects the bias from the use of 

different techniques and tools in isolating and characterising 

the bioactive compounds, and not their genuine productiv-

ity of biologically active metabolites [49]. Current reports 

on fungal diversity prediction, suggested that less than 10% 

of fungal species are described, which again demonstrates 

the great potential of fungi as a source of antivirals [50]. 

Above that, medicinal mushrooms played an important role 

in natural remedies, their healing power has been subjected 

to vast scientific research, such as the edible mushroom 

shiitake. Many other species of mushroom-forming fungi 

exhibited potential to produce natural antivirals. Reports on 

mushrooms bioactivities, linked their ability in defeating 

viral infections to the presence of two types of chemicals: 

polysaccharides and terpene like compounds [51]. However, 

other types of biologically important molecules have been 

reported from mushrooms, implying the potential content 

of structurally diverse biomolecules that are awaiting dis-

covery [52]. Historically, terpene derivatives are one of the 

most widespread naturally occurring products, that are pre-

dominantly found in the form of aromatic oils. Such prod-

ucts were mainly used, for instance, for religious reasons in 

the olden Egypt. Camphor (a terpene isolated from essen-

tial oils of camphor tree) for example, was first introduced 

to Europe by Arabian traders ten centuries ago. In 1818 

researchers were able to analyse turpentine oils and then 

propose the term “terpene” instead of camphor, which was 

used to describe extracted crystalline oxygenated molecules 

from essential oils. Further analysis by other researchers has 

resulted in the description of the building block “isoprenic” 

of this molecule [53]. The role of mevalonic acid in choles-

terol biosynthesis and its incorporation in the synthesis of 

many terpene compounds was defined in 1956. Following 

this, thousands of terpenoids were structurally and function-

ally characterised. Apart from their antimicrobial activities, 

terpenes have also been reported as hormones and photosyn-

thetic pigments [54].

3.2  Aromatic Natural Oils

Research on essential oils extracted from plants, demon-

strated the dominance of terpene-like compounds. particu-

larly monoterpenes and triterpenes, as they represented 

more than 95% of the chemical constituents of those oils 

[55]. We, therefore, further searched for promising anti-

viral terpenes characterised in plants and presented them 

in Table  2. These include eugenol (molecular formula 

 C10H12O2), a volatile phenolic compound with antiviral 

properties, which represents an essential constituent of 

clove oil [56, 57]. Germacrone, formula  C15H22O, is the 

sesquiterpene constituent of the essential oil of many glob-

ally distributed plants and shows inhibition activity on the 

influenza virus [58, 59]. Patchouol, formula  C15H26O, is a 

sesquiterpene alcohol mainly found in patchouli plant leaves, 

and has shown promising results as an inhibitor of influenza 

viruses [59–62]. Interestingly, this compound is also used 

as a precursor in the synthesis of the anticancer compound 

taxol. β-santalol, formula  C15H24O, is another example of 

a sesquiterpene type compound, found in Santalum album, 

in which it represents one fifth of the total plant essential 

oil [63]. Terpinen-4-ol and α‐terpineol, both with chemi-

cal formula  C10H18O, are components of the essential oil of 

the tea tree and many other aromatic plants, and they show 

antiviral activity [64–66]. Terpinolene belongs to the group 

of monoterpenes, with chemical formula  C10H16, and can be 

naturally sourced from different plants, such as cardamom.

Aromatic natural oils are bio-generated via differentiated 

pathways in plants, fungi as well as some species of bacteria. 

Their main components belong to the highly variable fam-

ily of natural products—terpenes—including derivatives of 

ketones, alcohols, phenols, esters and aldehydes. Over the 

last decade, volatile chemicals regained interest as sources 

of new antimicrobials and anticancer compounds. Although, 

they were mainly used against carcinogenic and bacterial 

infections, their potential anti-inflammatory, antioxidant and 

immunomodulatory are reasonably investigated [56, 67].

Essential oils contain many functioning compounds, 

including mono- and sesquiterpenes. Many of those vola-

tile substances can be competently used in the medication 

of different types of cancers, either as antitumor or sup-

portive compounds [68]. The awareness of terpene derived 

compounds as potential antitumors started when clinical 

researches showed their distinguished biological activity and 

their non-toxic impact on human’s normal cells, as many 

of them have been stated as Generally Regarded As Safe 

(GRAS) substances, which represents key criteria for their 

use for antibiotic discovery [69].

Terpenes are a large class of natural metabolites that 

comprise over two thirds of all known secondary metab-

olites. They are biosynthesised by most living organisms 

including plants, fungi and bacteria, however many of these 

compounds investigated by scientists are from plants or 

mushroom-forming fungi [70]. Compared to the current 

knowledge of chemicals produced by fungi, little is known 

about their synthesis and function—especially for terpenes. 

The antagonistic or synergistic interactions of those natural 

substances with other chemical or biological elements, can 

negatively influence their therapeutic properties. It is, there-

fore, important to use well-defined molecules in terms of 

organism, enzymes, biosynthesis routes and activity. Since 

those biologically interesting terpenes are produced in small 

quantities by their native organisms, there is a reasonable 
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need to thoroughly investigate their synthesis via combi-

natorial pathways—as classical chemical synthesis proved 

ineffective in terms of purity and environmental impact of 

catalysts—and in the presence of selective enzymes and 

affordable simple terpenes, such as pinene and limonene 

[43, 71–73].

3.3  Biotechnological Strategies for Drugs Synthesis

Normally, terpene biosynthetic genes are customarily 

located next to each other in one biosynthetic gene cluster, 

easing their exploitation and manipulation to produce bio-

active compounds with desired quality and quantity [74]. 

Historically, more than half of the drugs in use, are sourced 

from natural substances or their derivatives. With the recent 

advancements in genomic analysis and analytical tools, new 

strategies and methods have been utilised for the exploitation 

of naturally synthesised compounds that are of biotechno-

logical importance [75]. The main aim of using such tech-

niques was to predict the genes encoding molecules with 

novel bioactivity. These techniques have further established 

the fact that the capability of mushroom forming fungi to 

synthesise bioactive molecules has been overlooked. They 

have also revealed the presence of the so called “cryptic” 

or “orphan” biosynthetic gene clusters [76]. The pressing 

need to produce new antibiotics due to the non-stop increase 

in antimicrobial resistance and the decline in efficiency of 

accessible drugs, highlights the importance of using unprec-

edented techniques such as genome mining in drug discov-

ery. This approach can simplify the biosynthesis of biologi-

cally engineered compounds via reducing their commercial 

production and use [77]. This genome mining method can 

be applied in many different ways. One way is the detec-

tion of compound’s coding genes, through “target directed 

genome mining”, which mainly consists in the identifica-

tion of biosynthetic gene clusters with unknown function 

in terms of the corresponding molecule(s) produced [78]. 

Another way is “the one strain many compounds approach”, 

this method can be used to induce the expression of cryptic 

genes through controlled alteration of growth conditions. 

Many silent metabolic pathways were activated using such 

technique, including activation of the biosynthesis of poly-

peptides and polyketides with pharmaceutical applications 

[79, 80]. Metabolism regulation can also be manipulated to 

enhance the production of secondary metabolites with novel 

bioactivity. These treatments involve the use of chemicals or 

small organic molecules to modify or deregulate metabolic 

processes through the inhibition of fatty acids [81]. Exam-

ples of other techniques used concurrently with genome 

mining-based studies are the heterologous expression of 

biosynthetic gene clusters that synthesise known bioactive 

molecules. These reconstructed routes ensure the production 

of pure and easily identifiable intermediates and eliminate 

unusable by-products. Despite that many terpenes with anti-

microbial activity have been described, many more with 

potential unique derivatives are awaiting discovery [82, 83].

4  Conclusions

Even though influenza viruses are of relatively old ori-

gins and very contagious, the currently used antivirals are 

undoubtedly limited in terms of their bioactivity spectrum 

and sources. What makes things even more concerning and 

further intensifies the need for new strategies in virucide dis-

covery, is the constant increase in antimicrobial resistance. 

Typical antibiotic discovery was and still involves the isola-

tion, characterisation, and testing methods against panels 

of pathogenic bacteria, without considering the presence of 

other life-threatening germs, which are viruses in this case. 

Lately, several literature reports described the antiviral activ-

ity of a variety of volatile compounds against some viruses 

including influenza. We therefore attempted to provide a 

brief outline on influenza virus structure, evolution, patho-

genicity and then suggest terpenes as potential sources to 

develop antivirals. Our literature search showed that viruses 

can be virulent and destructive in many levels and difficult 

to control unless urgent innovative policy is made in the 

drug discovery field. It also highlighted terpenes as potential 

antivirals due to the natural sustainability they demonstrated 

when tested against many viruses.

The recent advances in genetic tools, molecules struc-

ture modelling, and large-scale screening, established the 

guidelines for the discovery of novel antibiotics against 

infectious diseases. Current strategies involve, but are not 

limited to, two approaches. One is to characterise or improve 

drugs against known microbes. Ideally this method can be 

expanded to involve different types of viruses including the 

drug resistant ones. Second, is the validation of new targets 

in both the host and the virus, to accordingly develop novel 

classes of molecules, via either structure-based molecule 

interaction, or host transport machineries. The viral poly-

merase, for example, is an internal protein that can be fur-

ther exploited according to its structure interaction with new 

molecules. Targeting the transportation system of the host 

cell, it can also provide a new avenue for virucide develop-

ment, especially for viral RNPs, however, potential intrusion 

with the metabolic system of the host should be considered.

Undoubtedly, current computational genome sequenc-

ing, have effectively pushed the medical search generally 

and infectious disease search particularly, towards further 

understanding of the interaction between the microbial or 

viral communities and the human body, and determine their 

virulence or symbiosis at the molecular level. However, 

despite this progress in the genomic era, infectious diseases 

still cause high frequency of illness and mortality among 
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populations, especially in the developing countries. It is 

therefore vital for those countries to strengthen the input of 

bioinformatics in such field of research, through more well-

designed training, internship courses and collaboration with 

more developed specialised institutions around the globe, to 

help to control the spread of contagious diseases worldwide.

Another way that bioinformatics has contributed to the 

field of infectious diseases, was the development of a new 

era of bioactive natural products research, through linking 

many bioactive natural products to their associated biosyn-

thetic gene clusters and corresponding enzymes. Although 

this approach has proven to be effective in identifying bio-

active molecules and the BGCs that are associated to them, 

they are still in their infancy and represent a new shift in sus-

tainable drug discovery, especially for plants and animals.
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