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Abstract
State-of-the-art end-to-end speech synthesis models have

reached levels of quality close to human capabilities. However,
there is still room for improvement in terms of naturalness, re-
lated to prosody, which is essential for human-machine inter-
action. Therefore, part of current research has shift its focus
on improving this aspect with many solutions, which mainly
involve prosody adaptability or control. In this work, we ex-
plored a way to include linguistic features into the sequence-
to-sequence Tacotron2 system to improve the naturalness of
the generated voice. That is, making the prosody of the syn-
thesis looking more like the real human speaker. Specifically
we embedded with an additional encoder part-of-speech tags
and punctuation mark locations of the input text to condition
Tacotron2 generation. We propose two different architectures
for this parallel encoder: one based on a stack of convolutional
plus recurrent layers, and another formed by a stack of bidi-
rectional recurrent plus linear layers. To evaluate the similarity
between real read-speech and synthesis, we carried out an ob-
jective test using signal processing metrics and a perceptual test.
The presented results show that we achieved an improvement in
naturalness.
Index Terms: naturalness, prosody adaptation, end-to-end,
sequence-to-sequence, text-to-speech.

1. Introduction
Parametric speech synthesis has reached human-like attributes,
which are essential for many applications such as automatic di-
alogue or storytelling, through the use of current deep learn-
ing architectures and techniques. Most of these models are
based on a combination of two architectures: a text-to-feature
sequence-to-sequence (seq2seq), and a feature-to-wave model.
The text-to-feature seq2seq maps input text to acoustic features
[1, 2, 3, 4], while the feature-to-wave model —also known as
neural vocoder [5, 6, 7]—, generates audio waveform from pre-
dicted features. A concatenation of a feature mapping and a
neural vocoder, or also systems that englobe both of them [8],
are commonly called end-to-end text-to-speech (E2E-TTS) sys-
tems.

Although E2E-TTS systems become more and more lighter
and with faster synthesis response, there is still room for im-
provement in terms of generating natural prosody variability
—conveyed through intonation, rhythm and stress—. During
decades, natural prosody variation has been studied in paramet-
ric speech synthesis, using mainly rule or explicit labeled-based
systems [9, 10]. More recent works have performed rule-based
modifications to enhance TTS naturalness [11]. Nowadays, cur-
rent research is focused on finding ways to compact prosody
information. In one of the first works on prosody style embed-
ding, the authors compressed acoustic features in the training
stage to condition decoder output states [12]. Later, another

related work was presented, where the use of global style to-
kens (GST) allowed the creation of soft labels that modify out-
put prosody style [13]. And even more recently, an approach
using variational auto-encoders (VAE), permits controlling spe-
cific latent prosody attributes found in acoustic features [14].
After that, some other proposed methods are even able to adapt
prosody attributes at phoneme level [15]. The main disadvan-
tage in most of these approaches, such as in VAE, is that the user
has to select a specific acoustic embedding in order to obtain the
desired prosody variability in the output.

Besides, prediction of prosody variability from linguistic
features is also gaining interest. Recent works, such as [16],
restate the tight relationship between syntax and prosody. Ac-
tually, the use of linguistics also helps to solve the mentioned
disadvantage of acoustic embedding selection approaches [17].
In this paper, we present another approach to encode linguistic
information in parallel with character sequence in an E2E-TTS
system. More concretely, we extracted part-of-speech (POS)
and, instead of keeping punctuation marks in the input sequence
like in the baseline model —that is, period, comma, semi-
colon, exclamation, question mark, etc.—, we removed them
but stored their locations. A similar objective is previously
shown in [18], where the authors used syntactic word relation-
ships as part of the input features to improve naturalness. With
the same goal, paragraph cues and discourse relations have been
explored with the premise that they are also strongly correlated
with prosody attributes [19, 20, 21]. Other works, such as in
[22], present models with hierarchical architectures to represent
word, syllable, phone and frame-level.

The authors of [18] concatenated syntactic features with
embedded sequence after passing them through a pre-net lin-
ear layer, whereas our approach is more focused on locality
using more basic sentence structure features. Specifically, we
gave POS labels and punctuation marks location a binary ma-
trix shape, where each column is associated to a character of
the input sequence and a row represents a POS or a punctua-
tion mark category. Thus, an activation (value 1) indicates that
a character belongs to a POS category and whether it has or
not a specific punctuation mark next to it. We also propose two
different architectures to process that binary matrix in order to
condition the input of the Tacotron2 [4] decoder, which is the
sequence of embedded characters. Therefore, we expected the
model to take additional effort to focus on the sentence structure
to provide more natural speech.

The structure of this paper unfolds as follows. Section 2 de-
scribes the extraction and representation of linguistic features.
Details about proposed parallel encoder architectures and the
baseline E2E-TTS model are detailed in Section 3. Objective
and perceptual evaluations as well as discussion of the results
can be found in Section 4; and finally, the conclusions and fu-
ture work are drawn in Section 5.
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Figure 1: Complete outline of the model.

2. POS and punctuation information
It has been proven since decades that there is correlation be-
tween prosody and the structure of the sentence. Prominence,
pauses and pitch range are factors that depend on word rela-
tionships and punctuation. That is why we implemented an
additional pre-processing stage to extract mark delimiters and
part-of-speech (POS) tags, which we think they are structure
information basics. We worked only with the punctuation mark
set found in the database we used for training (details about
database and training in the following subsections). English
POS tagger was taken from NLTK library. Recent works on
deep syntactic parsers have explored POS tags as part of the
input features [23]. Thus, we expected that the implemented
parallel encoder could find some implicit relationships between
words and punctuation.

2.1. Database

We used the public domain LJ Speech Dataset 1 from Lib-
riVox project. It consists of 13,000 short audio clips of a single
speaker reading passages from 7 non-fiction books with tran-
scriptions. Clips vary in length from 1 to 10 seconds and have a
total length of approximately 24 hours. From the total number
of utterances, we used 12,500 to train the model and 100 for the
validation set, which was performed every 1,000 training steps.
Due to variable-length sequences, we padded with zeroes text
and spectrogram sequences.

2.2. Binary location matrix

We propose a binary matrix, which we will call location ma-
trix, as a way to insert POS tags and punctuation marks. The
reason is that we can represent locality by setting up as many
columns as number of input characters or phonemes, while each
row represents a POS tag or a punctuation category. Then, we
can active with value 1 the matrix cell associated to the char-
acter or characters that belong to a POS tag and/or to any mark
delimiter that exists next to it (see Figure 3). The NLTK library2

was used to extract POS from input sequences with a tagset of
35 different labels. As POS taggs are word level categories, all
columns that belong to a same tag (i.e. characters of the same
word) are 1. After studying LJSpeech text dataset we detected

1https://keithito.com/LJ-Speech-Dataset/
2https://www.nltk.org/

Figure 2: Parallel encoder architectures explored in this work.

11 different punctuation mark categories:

• Endings: ’.’, ’?’, ’!’

• Separations: ’,’, ’;’, ’:’

• Word containers: ’( )’, ’{ } ’

• Statements: ’-’

• Dialogue: ’ ” ’

• Others: ’ \’
Marks such as endings and separations, which are placed

next to a character, were located in the column associated to
that closest character. However, activation of word containers
and dialogues were upsampled to all characters placed between
the pair of symbols, as we consider a change of prosody when
it comes to clarification or a dialogue inside a container.

In total, we collected 46 categories. In order to avoid in-
formation redundancy, apart from the conventional text normal-
ization pre-processing, we removed any punctuation category
from input sequence before entering the model. Hence, for a
sentence like

In the street, Joseph played for 3 hours.

the actual input to the model was:

in the street joseph played for three hours

We presume that encoding of syntax and punctuation in
parallel could be beneficial for Tacotron2 baseline model be-
cause, then, it could be focused on the generic articulation of
phonemes, while our parallel encoder could look more for the
specific structure of the sentence and condition the decoding to-
wards a more natural speech.

3. Model
3.1. E2E-TTS

Our baseline E2E-TTS is the concatenation of the seq2seq
Tacotron2 [4] together with the neural vocoder MelGAN [7].
The latter was already trained with the same dataset we used in
this work. We chose Tacotron2 architecture because overcomes
its antecesor in terms of quality and complexity. Moreover, we
have also adapted and test it in other languages [24]. Further-
more, MelGAN is one of the latest vocoder models based on
generative adversarial networks, much more lighter and faster
than previous models such as WaveNet and WaveGlow, while
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Figure 3: Location matrix: POS tags and punctuation marks
locations, at character-level, represented in a binary matrix.

reaching a close level of quality. Essentially, we attached to
Tacotron2 model a structure that encodes the location matrix
in parallel. The output of this parallel encoder was summed
to the output hidden states of the Tacotron2 encoder, thus, we
could say they were biased (Figure 1). We were inspired by the
approach in [13], where the authors tried different ways to in-
troduce the style embedding resulting from global style tokens
to the Tacotron model, getting the best results by summing it to
the encoder outputs.

3.2. Parallel unsupervised encoder

We proposed two different architectures (Figure 2) to carry out
our research (Figure 1). One was inspired by Tacotron2 en-
coder architecture, which plays the role of the language model
of a TTS. Its structure basically consists of a stack of convolu-
tional plus a bidirectional long short-term memory (BiLSTM)
layers. Our goal was to see the location matrix as a sparse spec-
trogram representation, such as a MIDI piano notes represen-
tation. Moreover, state-of-the-art signal processing works have
presented CNN+RNN architectures for spectrogram processing
[25]. Therefore, we implemented a stack of 3 2D convolution-
als (2DConv) with kernel size of 3, 7 and 11 by 3 and 8, 16
and 16 channels, respectively. We included batch normaliza-
tion, dropout of 50% and ReLU activation function on every
convolutional layer. Outputs of the BiLSTM were 512D matrix
shape, resulting the same dimensionality as Tacotron2 encoder
output. Hence, both matrices could be summed before passing
to the decoder. In addition, we put some background normal
noise to the location matrix.

In the second approach we aimed at performing a more
compact model by reducing Tacotron2’s character and encoder
embedding to 256. The second architecture proposed is formed
by two bi-directional gated recurrent unit (BiGRU) plus two
fully connected linear layers, returning only a single vector of
256 dimensions. Thus, we upsampled the latter to sum it to all
character embeddings, just as in [13]. The stack of BiGRU re-
turns a 92D state, the first linear layer upgrades the vector to
128, and finally, the second linear layer outputs a 256 vector.
We used tanh as activation function of linear layers. No back-
ground noise was added for this architecture, and we considered
location matrix as a concatenation of categorical vectors.

4. Implementation and evaluation
In the following subsections we describe the details of the train-
ing phase, evaluation of the system performed through both ob-

jective metrics and a perception test, and the discussion of the
evaluation results.

4.1. Training

In total, we trained three different versions of Tacotron2 model:
Tacotron2 baseline (BS), Tacotron2 with the first parallel en-
coder version (2DConv+BiLSTM) attached and Tacotron2 with
the second parallel encoder version (BiGRU+Linear). All the
models were trained using a batch size of 32 and a learning
rate of 0.001. The training set had 12500 samples, and valida-
tion was processed every 1000 steps with 100 samples. Only in
the BiGRU+Linear version the word embedding was reduced
to 256 dimensions. The parallel encoder was not pre-trained,
but randomly initialized. We did not modified the Tacotron2’s
objective function, thus parallel encoders were trained unsuper-
visedly.

4.2. Objective test

We performed an objective test with the aim to quantify the
similarity between target and generated speech. To do so, we
took four signal processing metrics to compare F0 behavior and
spectrogram. These were already used in previous works such
as [12], where authors compared the pitch contour from gener-
ated samples with a reference one.

4.2.1. Similarity metrics

The similarity metrics used in the objective test are the follow-
ing: (1) Voicing Decision Error (VDE), (2) Gross Pitch Error
(GPE), (3) F0 Frame Error (FFE), and (4) Mel Cepstral Distor-
tion (MCD).

The VDE computes the error when choosing voiced or un-
voiced frame as follows:

V DE =
NV oiceUnvoice +NUnvoiceV oice

N
× 100% (1)

The GPE computes the difference of pitch values in
matched voiced frames:

GPE =
NF0Error

NV oiceV oice
× 100% (2)

where NF0Error is the number of frames for which∣∣∣∣F0i,estimated

F0i,reference
− 1

∣∣∣∣ > δ% (3)

where i is the frame number, and δ is a threshold which is
typically 20.

The FFE is the combination of these two metrics into one,
proposed by [26]:

FFE =
NV U +NUV +NF0Err

N
× 100% (4)

Finally, we also computed the mel cepstral distortion
(MCD) of the first 20 coefficients to compare the overall spec-
trogram. In order to align generated and target pitch curves,
both were forced to start with their first non-zero value, and the
shorter one was filled with zeros until reaching the same length.
We were aware that time differences would penalize synthesis;
for this reason, we computed MCD using dynamic time warping
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Table 1: Table of comparisons between Tacotron2 baseline and our two approaches with parallel encoders.

VDE GPE FFE DTW-MCD Memory size Execution time
(%) (%) (%) (linear) (MB) (char/sec)

Baseline – TS (76k) 3.59 4.81 5.70 2.82k 330.46 0.06
Baseline – TS (64k) 3.60 4.88 5.71 2.96k

2Dconv(3)+BiLSTM(1) – TS (70k) 3.62 5.32 5.87 2.97k 354.25 0.08
2Dconv(3)+BiLSTM(1) – TS (58k) 3.83 4.63 5.67 3.13k

BiGRU(2)+Linear(2) – TS (56k) 3.58 4.82 5.67 3.30k 257.02 0.06
BiGRU(2)+Linear(2) – TS (50k) 3.45 5.33 5.68 6.66k

(DTW). Hence, we had metrics to evaluate the capability of the
model to generate natural prosody variability such as the target
with time penalization (VDE, GPE, FFE) and without (MCD).

4.2.2. Results

We applied the metrics on the LJSpeech test samples up to 50
characters. Longer ones were skipped due to the high level of
distortion that we observed in the synthesis. Consequently, we
evaluated 45 sentences in total. Moreover, this evaluation was
performed in every training checkpoint from around 45 thou-
sand training steps (TS) to 70 thousand in steps of 2000. We
obtained averaged metric values of every TS version evaluated,
which allowed us to choose the best version of each model in
terms of MCD and also in terms of VDE, GPE and FFE. The
results in Table 1 show two versions of each approach. The one
that provided, in average, the lowest DTW-MCD, and the ver-
sion that provided lowest value in one or more pitch tracking
metrics.

4.3. Perception test

Besides, we performed a MOS perception test over 14 listen-
ers to evaluate the naturalness of our parallel encoders. That
is, how natural the speaker sounds human-like according to the
sentence, which could be read by the listener. We did not evalu-
ate emotions or expressiveness, neither did the audio quality or
intelligibility. To do so, we collected a total of 16 samples from
the LJSpeech Database test set and we divided them into four
groups: human speaker, Tacotron2 baseline, Tacotron2 with
2DConv+BiLSTM and Tacotron2 with BiGRU+Linear, obtain-
ing 4 samples per group. For this test, we chose the best of the
two versions of each approach shown in Table 1. As we men-
tioned in the previous section, we evaluated sentences close to
50 characters, so the chosen samples were lower or around that
number. The resulting scores can be seen in Table 2.

Table 2: MOS scores obtained from perceputal test.

MOS

Baseline – TS(76k) 3.47
2DConv+BiLSTM –TS(58k) 3.98
BiGRU+Linear – TS(56k) 3.34

Human 4.48

4.4. Discussion

Objective and perceptual results are consistent with each other
in saying that Tacotron2 with 2dConv+BiLSTM parallel en-

coder performs the best in terms of naturalness. According
to the metrics, pitch contours seem closer to be like human
reader. However, there is a slight increase of the MCD. On the
other hand, although the model with BiGRU+Linear architec-
ture looks like almost equivalent in the objective metrics, per-
ceptual test shows that it performed the worst. This may be
due to reduction of model complexity (almost 100MB less than
other versions) and its higher level of cepstral distortion. How-
ever, we should not discard a lighter architecture for applica-
tions with a necessity of fast answer.

5. Conclusions and future work

In this paper, we have explored another way to enhance natu-
ralness of E2E-TTS synthesis with linguistic features. We have
proposed an approach in which we divided input into two: a
sequence of characters without punctuation marks, and POS
tags together with punctuation marks locations from the same
input. This information was processed by an encoder in par-
allel. The output of this encoder was summed to the hidden
outputs of the sequence-to-sequence Tacotron2 encoder. Thus,
we expected text structure information to condition the syn-
thesis. We proposed two different architectures for this task:
one based on a stack of 2D convolutionals and a bidirectional
LSTM, and another one consisting of two bidirectional GRUs
plus two linear layers. The former returned as many embed-
dings as the number of sequence characters, and the latter only
one, which was upsampled. We compared both versions and,
although both parallel encoders objectively seem to perform
better than Tacotron2 baseline model, perceptual tests shown
that, with 2DConv+BiLSTM parallel encoder, the model per-
formed the best. Therefore, convolutional layers seem to fit
better for this problem. However, we will further investigate
BiGRU+Linear architecture, and perhaps we can improve its
results with a better feature representation. In further experi-
ments we plan to explore syntactic relationships and discourse
features, and to use a bigger database to extend our evaluation.
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