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Abstract

Recent findings on the effect of aluminium (Al) on the functioning of legumes and their associated microsymbionts are reviewed
here. Al represents 7% of solid matter in the Earth’s crust and is an important abiotic factor that alters microbial and plant
functioning at very early stages. The trivalent Al (Al3+) dominates at pH < 5 in soils and becomes a constraint to legume
productivity through its lethal effect on rhizobia, the host plant and their interaction. Al3+ has lethal effects on many aspects of
the rhizobia/legume symbiosis, which include a decrease in root elongation and root hair formation, lowered soil rhizobial
population, and suppression of nitrogen metabolism involving nitrate reduction, nitrite reduction, nitrogenase activity and the
functioning of uptake of hydrogenases (Hup), ultimately impairing the N2 fixation process. At the molecular level, Al is known to
suppress the expression of nodulation genes in symbiotic rhizobia, as well as the induction of genes for the formation of
hexokinase, phosphodiesterase, phosphooxidase and acid/alkaline phosphatase. Al toxicity can also induce the accumulation
of reactive oxygen species and callose, in addition to lipoperoxidation in the legume root elongation zone. Al tolerance in plants
can be achieved through over-expression of citrate synthase gene in roots and/or the synthesis and release of organic acids that
reverse Al-induced changes in proteins, as well as metabolic regulation by plant-secreted microRNAs. In contrast, Al tolerance in
symbiotic rhizobia is attained via the production of exopolysaccharides, the synthesis of siderophores that reduce Al uptake,
induction of efflux pumps resistant to heavy metals and the expression of metal-inducible (dmeRF) gene clusters in symbiotic
Rhizobiaceae. In soils, Al toxicity is usually ameliorated through liming, organic matter supply and use of Al-tolerant species.
Our current understanding of crop productivity in high Al soils suggests that a much greater future accumulation of Al is likely to
occur in agricultural soils globally if crop irrigation is increased under a changing climate.
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Introduction

Food legumes contribute significantly to human diets, espe-
cially of poor people around the world. Legumes, therefore,
play a major role in reducing poverty, improving human

health and nutrition and enhancing ecosystem functioning.
With more than 78.3 million ha of land planted to legumes,
these species provide over 35% of the world’s protein intake
(Werner and Newton 2005; http://www.fao.org/).

Uniquely, legumes together with Parasponia (Lafay et al.
2006) are the only plant species that can form root nodules
with soil rhizobia and convert atmospheric N2 into NH3.

Biological nitrogen fixation (BNF) by legumes is therefore a
major source of N for agriculture (Zahran 1999) and is the
most important biological process on Earth, after photosyn-
thesis and organic matter decomposition (Unkovich et al.
2008). As a result, BNF is the most critical and key process
to sustainable land management, especially where N is the
nutrient limiting crop production (Hungria and Vargas
2000). The legume-rhizobia symbiosis is therefore the most
important contributor of symbiotic N in natural and agricul-
tural ecosystems, as it accounts for approximately 80% of
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biologically fixed N in agricultural systems (Zahran 1999).
According to Herridge et al. (2008), N2-fixing plants contrib-
ute approximately 50–70 million t of biologically fixed N
annually to agricultural systems, of which 12–25 million t
come from pasture and fodder legumes, 5 million t from rice,
0.5 million t from sugar cane, < 4 million t from non-legume
crop land and < 14million t from existing savannas. However,
the amount of N fixed can vary between species and locations
due to differences in soil factors, legume genotype, rhizobial
strain and cropping pattern (Dakora and Keya 1997). Unlike
chemical N fertilisers, BNF is a cheap, readily available and
eco-friendly source of N (Dakora and Keya 1997), the use of
which reduces environmental pollution (Ferreira et al. 2012).

Despite the enormous benefits of BNF to agricultural pro-
duction, its exploitation has been limited by abiotic factors
such as salinity, extreme temperatures and aluminium (Al)
stress (Igual et al. 1997; Lima et al. 2009), which can all affect
the legume host, the microsymbiont or both (Dakora and Keya
1997). Due to its widespread distribution, Al is a major con-
straint to crop production (Kochian et al. 2004).
Approximately 50% of the world’s arable land is considered
acidic with an underlying problem of Al toxicity (Kochian
et al. 2015; Ligaba et al. 2004; Lin et al. 2012; Simões et al.
2012). In fact, Al toxicity has been reported in 67% of the
world’s acidic soils (Lin et al. 2012). In addition to identifying
new niches for nitrogen fixation and legume production for
increased food security (Unkovich et al. 2008), legumes and
rhizobia should be screened for tolerance of Al stress for use in
Al-rich soils (Abdel-Salam et al. 2010). This review summa-
rises the nature and mechanisms of Al toxicity, tolerance and
amelioration in symbiotic legumes and their associated bacte-
rial symbionts.

Nature of aluminium stress

Al is the third most abundant element, after oxygen and sili-
con, and forms approximately 7% of the total solid matter in
soils (Arunakumara et al. 2013; Frankowski 2016; Ma et al.
2001; Roy and Chakrabartty 2000). Soil Al is either bound to
ligands (Yu et al. 2012) or occurs in harmless forms such as
precipitates and aluminosilicates (Ma et al. 2001; Zhou et al.
2011) and constitutes about 1 to 25% of the soil depending on
the parent rock and soil type (Barabasz et al. 2002). However,
under acidic conditions, mineral Al solubilises into trivalent
Al3+, which is highly toxic to animals, plants and microbes
(Ma et al. 2001; Zioła-Frankowska and Frankowski 2018).
About 40% of the world’s potential arable land is already
acidic; therefore, any further increase in soil acidity from an-
thropogenic activity and/or acid rain can only further enhance
the problem of Al toxicity and reduce agricultural
productivity.

Forms of aluminium in soils

In the soil environment, Al exists mainly as inorganic, soluble
and/or organic forms. Inorganic Al is exchangeable in soil but
can also be bound to silicate clays, hydrous oxides, sulphates
and phosphates (Violante et al. 2010). In acidic soils (pH ≤

5.5), these mineral forms of aluminium can dissolve and re-
lease Al ions into the soil solution (Koenig et al. 2011; Zhou
et al. 2011). The rate of dissolution of Al-bearing minerals is
pH-dependent; therefore, Al ions tend to increase with de-
creasing soil pH (Violante et al. 2010). Aluminium can adsorb
non-specifically to negatively charged sites on clay minerals
and hydrous oxides of iron, aluminium and manganese via
electrostatic forces (Violante et al. 2010). However, it can also
adsorb specifically to hydrous oxides containing variably
charged sites, as well as to the edges of clay minerals and in
between layers of silicate clays.

The soluble forms of Al consist of a multitude of Al species
produced from hydrolysis, and these include Al3+, Al(OH)2+,
Al(OH)2

+, Al(OH)3 and Al(OH)4
− (Nordstrom and May

1996). However, trivalent Al3+ tends to dominate in soils at
pH < 5, while Al(OH)2+ and Al(OH)2

+ species are formed as
the soil pH increases (Violante et al. 2010). While gibbsite
[Al(OH)3] occurs at neutral pH, aluminate [Al(OH)4

−] domi-
nates under alkaline conditions (Haynes and Mokolobate
2001; Ma et al. 2001).

Organic Al is formed when exchangeable Al binds to or-
ganic ligands in the soil to produce stable complexes
(Delhaize and Ryan 1995). These include mobile and ex-
changeable aluminium, assimilable aluminium and
Al3+cations in water-soluble compounds. The highest mobil-
ity of Al occurs between pH 4.0 and 4.5 (Barabasz et al.
2002). In soil, Al affects every aspect of legume N2 fixation,
including the host plant, the rhizobia and their interaction.

Toxicity and tolerance of aluminium
in symbiotic partners

Plant species differ in their response to Al. For example,
Meso-American common bean genotypes have been found
to be less resistant to Al than Andean common bean genotypes
(Blair et al. 2009). Nodulated legumes are also reportedly
more sensitive to Al toxicity than plants receiving mineral N
(Hungria and Vargas 2000; see Fig. 1). Although soybean
growth was decreased by 54% at 10 μMAl, rhizobial growth
was inhibited at 50 μM Al (Arora et al. 2010; Kopittke et al.
2015), confirming that the microsymbiont and the infection
process are less sensitive to Al toxicity than host plant growth
(Table 1). Al-dependent acid pectin production can also in-
crease cell wall thickening and rigidity of infection threads
(Sujkowska-Rybkowska and Borucki 2015), leading ultimate-
ly to altered infection thread formation and nodule
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development. It is these subtle effects of Al that cause the
commonly observed reduction in nodule number and/or com-
plete nodulation failure in temperate and tropical legumes ex-
posed to Al (Mendoza-Soto et al. 2015; Paudyal et al. 2007),
in addition to Al suppression of nod gene induction in symbi-
otic rhizobia (Richardson et al. 1988). But the activity of the
nitrogenase enzyme itself is reduced when Al accumulates in
the bacteria-infected zone of root nodules (Mendoza-Soto
et al. 2015). That notwithstanding, some rhizobial strains are

resistant to Al (Zahran 1999), but how these resistant strains
avoid suppression of nod gene induction by Al (Richardson
et al. 1988) remains to be determined.

Recently, 28 Al toxic-response miRNAs have been identi-
fied in common bean nodules (Mendoza-Soto et al. 2015).
Whether this is an indication of their broader involvement in
alleviating Al stress remains to be assessed. It has however
been reported that miRNA target genes can code for stress-
response proteins that affect plant functioning during metal

Rhizobium in soil sensitive to
- Acidity

- Aluminium

Infection and established nodules

sensitive to

-Acidity

-Aluminium

Stress responses

H
+

Al
+3

Al
+3

Al
+3

Al
+3

Al
+3

Fig. 1 Effect of aluminium on
legume nodulation under acidic
conditions

Table 1 Effect of Al concentration on rhizobia, legume and their interaction

Nodulate Al susceptibility (μM) Reference

Strain

Bradyrhizobium BMP1 Mucuna pruriens > 100 Arora et al. (2010)

Sinorhizobium RMP5 Mucuna pruriens > 50 Arora et al. (2010)

Rhizobium UFLA04-195,
UFLA04-173, UFLA04-202

Phaseolus vulgaris > 2000 Ferreira et al. (2012)

Bradyrhizobium Acacia > 50 Vargas et al. (2007)

Legume

Andean Phaseolus vulgaris > 25 Blair et al. (2009)

Glycine max > 4.7 Silva et al. (2001)

Pisum sativum > 50 Sujkowska-Rybkowska (2012)

Interaction

Clover-Rhizobium < 25,000 Jarvis and Hatch (1985)
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toxicity (Gupta et al. 2014; Zeng et al. 2014). But again, the
mechanism underlying the relief of Al stress by miRNAs is
still not understood. Furthermore, we still do not know wheth-
er miRNAs also play a role in bacterial tolerance of Al
toxicity.

Root secretion of Krebs cycle intermediates has been
regarded as a major feature of Al tolerance in land plants.
The effect of Al3+ on alfalfa root tips and nodules was en-
hanced by the synthesis of the enzymes malate dehydrogenase
(MDH) and phosphoenol pyruvate carboxylase (PEPC),
which catalyse the formation of carboxylic acids (Tesfaye
et al. 2001). In transgenic alfalfa, Al3+ tolerance in root tips
was greatly enhanced by the over-expression of bacterial cit-
rate synthase in roots (Barone et al. 2008). Furthermore, the
results of in vitro experiments showed that organic acids are
able to reverse Al-induced conformational changes in the reg-
ulatory protein and calmodulin and restore its activity.
Rhizosphere increase in pH via extrusion of hydroxyl ions
by root apices is another way to precipitate Al and reduce cell
damage (Delhaize and Ryan 1995). This probably explains the
alkalisation in the rhizosphere of Rooibos tea legume,
Aspalathus linearis subsp. linearis, when grown at pH 3
(Muofhe and Dakora 1998). Al tolerance in plants has there-
fore been associated with increased accumulation of Al3+ in
the rhizosphere and roots but reduced concentration in photo-
synthetic shoots.

The mechanism of Al resistance in symbiotic rhizobia is
much less understood relative to the host plant. Nevertheless,
rhizobia can vary in their tolerance of Al (Kingsley and
Bohlool 1992), and both Al-sensitive and Al-tolerant rhizobia
have the potential to bind with Al3+ (Ferreira et al. 2012). The
DNA of rhizobial strains could be a possible site of action for
Al as a DNA repair mechanism appears to exist in tolerant
strains of Mesorhizobium loti and DNA synthesis in Al-
tolerant strains was not affected by Al3+ supply (Johnson
and Wood 1990).

Richardson et al. (1988) observed a reduction in nodA gene
expression in Rhizobium leguminosarum bv. trifolii strains at
7.5 μM Al3+, leading to cell death and decreased N2 fixation
as the concentration of Al increased from 25 to 50 or 80 μM
(King s l e y a nd Boh l oo l 1 992 ) . P r odu c t i o n o f
exopolysaccharides (EPS) could also be a mechanism for Al
tolerance in rhizobia, as tolerant strains are reported to pro-
duce more EPS than their sensitive counterparts (Ferreira et al.
2012). More studies are needed to confirm the role of EPS in
rhiziobial tolerance of Al. The induction of efflux pumps is
another mechanism used by bacteria to overcome heavy metal
toxicity (Nies 2003). But whether these efflux pumps and
protein transporters are involved in the Al tolerance of
rhizobia remains to be determined. Interestingly,
microsymbionts such asMesorhizobium metallidurans isolat-
ed from root nodules of Anthyllis vulneraria can naturally
tolerate high concentrations of heavy metals such as Zn (16–

32mM) and Cd (0.3–0.5 mM) (Vidal et al. 2009). But it is still
unclear whether the efflux pumps and protein transporters
found in heavy metal-tolerant bacteria also exist in symbiotic
rhizobia for Al tolerance. Furthermore, whether the resistance
of M. metallidurans to Zn and Cd is via efflux pumps or
phytostabilisation of active ions is still unknown. However,
a recent report has suggested that siderophores produced by
microbes could also be involved in the protection against the
toxic effect of Al by formation of siderophore-metal complex
(Schalk et al. 2011). The presence of the siderophores,
pyochelin and pyoverdine individually reduced the uptake of
Al by 80% in Gram-negative bacteria, which include rhizobia
(Braud et al. 2010). Furthermore, metal-inducible (dmeRF)
gene clusters have been discovered in Rhizobium

leguminosarum bv. viciae and other members of the
Rhizobiaceae that are expressed in response to heavy metal
concentrations (Rubio-Sanz et al. 2013). This could suggest
that the dmeRF gene probably plays a key role in rhizobial
tolerance of metals such as Al. Additionally, studies of heavy
metal resistance in rhizobia isolated from metallicolous le-
gumes suggest that these strains have genes that encode for
metal efflux systems (Teng et al. 2015).

Effects of Al on rhizobia

Besides plants, soil microbes are also adversely affected by
moderate to high levels of exchangeable Al present in acidic
soils (Ferreira et al. 2012; Paudyal et al. 2007). High Al3+

concentration can be detrimental to N2-fixing bacteria whether
in soil or culture medium (Arora et al. 2010; Ferreira et al.
2012; Kinraide and Sweeney 2003; Rohyadi 2006) through
changes in cellular metabolism that affect bacterial growth and
survival. Acid tolerant (pH < 5.0) rhizobia (CIAT899,
UFLA04-195, UFLA04-122, UFLA04-202, UFLA04-173,
UFLA04-155, UFLA04-226, UFLA04-228, UFLA04-229,
UFLA04-231, UFLA04-233, UFLA04-232 and UFLA04-
21) grew at 500 μM of Al3+ (Ferreira et al. 2012; Graham
et al. 1994). According to Roy and Chakrabartty (2000), about
35% reduction in rhizobial cell mass occurred in media with
1 Mm (1000 μM) Al relative to control. In one study,
Sinorhizobium meliloti strain RMP5 was more tolerant of Al
than Bradyrhizobium BMP1; the former could therefore grow
at more than 100 μM Al concentration (Arora et al. 2010).
Whatever the case, it appears that where there was sensitivity
to added Al, enzymatic function of nitrate reductase, nitrite
reductase, bacterial nitrogenase and uptake hydrogenase was
impaired by Al in both slow- and fast-growing rhizobia.
However, in another study, the growth of all test rhizobia
was impaired by 25 to 100 μM Al concentration (Paudyal
et al. 2007). Common bean-nodulating rhizobia isolated from
an Amazon soil containing > 2 mM (> 2000 μM) Al showed
retarded cell multiplication (Ferreira et al. 2012). In contrast,

312 Biol Fertil Soils (2018) 54:309–318



Vargas et al. (2007) found no effect of 50 μl Al3+ L−1 on the
growth of ten Acacia-nodulating isolates from south Brazil.
There is no well-defined mechanism reported for acid-tolerant
in bacteria yet. However, several reports have suggested that
this tolerance is due to their maintaining of a consistent cyto-
plasm pH, differences in lipopolysaccharide membrane com-
position and proton’s exclusion, polyamine accumulation and
modification in membrane lipids (Chen et al. 1993; Ferreira
et al. 2012).

Effect of Al on the legume/rhizobia symbiosis

The outcome of interaction between rhizobia and legumes
depends not only on the bacterium and the plant species, but
also on the soil supporting the growth of the symbiotic part-
ners (Ferreira et al. 2012). The early stages of the legume/
rhizobia symbioses are very sensitive to low pH and high Al
concentration, as they can both affect nod gene expression,
Nod factor production and hence nodule formation (Abd-
Alla et al. 2014). Inhibition of nodulation due to high Al
concentration has been reported for several legumes, includ-
ing Phaseolus vulgaris, Trifolium repens, Stylosanthes species
and other tropical species (Mendoza-Soto et al. 2015; Paudyal
et al. 2007). As a result, acid tolerance in a legume may not
necessarily guarantee greater yield in acidic soils because bac-
terial multiplication and survival in soils are highly affected by
the combined effect of acidity and Al. Both the interaction and
host plant growth per se are reduced by Al concentrations as
low as < 25 mM m−3 (< 25,000 μM m−3) (Jarvis and Hatch
1985; Wood et al. 1984). Both rhizobial growth and legume
root infection are restricted by low pH as well as Al toxicity
associated with acidic soils (Ferreira et al. 2012; Paudyal et al.
2007). In fact, Al inhibition of rhizobial infection, root hair
curling and nitrogenase activity have been known for a long
time (Ayanaba et al. 1983; De Manzi and Cartwright 1984;
Munns 1978; Munns et al. 1979; Wood et al. 1984). High
levels of Al can therefore reduce rhizobial populations in soil,
thus impairing the BNF process (Barabasz et al. 2002).
Nitrogen deficiency can easily develop in legumes as a result
of Al inhibition of nodule formation. The presence of Al+3

reduces Ca uptake during symbiotic process of nitrogen fixa-
tion (Andrew 1976; Munns 1970). As a result, delayed nodu-
lation has been linked to Al toxicity in acid soils with low Ca
concentrations (Schubert et al. 1990). Therefore, rhizobial in-
oculants are likely to have a lower chance of success in acidic
soils with high Al concentration (Roy and Chakrabartty
2000). In another report, Goedert (1983) and Sprent et al.
(1996) have found that certain legumes in Brazil savanna are
capable of nodulating and fixing N2 in soils with high Al.
Many Lupinus species and native soil rhizobia in the
Mediterranean regions are naturally resistant to low pH and

high Al concentration (Sprent 2009); such symbioses can
therefore be selected for use in the world’s acidic soils.

The Aspalathus linearis symbiosis: a natural
system for understanding Al tolerance
in perennial legumes and their
microsymbionts

Aspalathus linearis subsp. linearis grows naturally in the eco-
system, as well as a cultivated plant in farmers’ fields in the
sandy, highly acidic, Al rich soils of the Cape Fynbos in South
Africa. This legume is the source of ‘Rooibos tea’, a health
tonic that contributes substantially to the agric GDP of South
Africa. Aspalathus linearis is nodulated by Bradyrhizobium,
Mesorhizobium and Burkholderia species (Hassen et al.
2012). As shown in Fig. 2, this legume and its rhizobia are
capable of growing in acidic, Al-rich soils with pH 2.9 to 4.5
(Muofhe and Dakora 1998). Surprisingly, they can meet as
much as 40 to 85% of their N requirements from symbiotic
fixation under those stressful abiotic conditions (Muofhe and
Dakora 1999; Fig. 2). Here, we propose mechanisms for the
ability of A. linearis and its microsymbionts to survive and fix
abundant N2 under those harsh environmental conditions.
Firstly, this legume is reported to secrete hydroxyl ions which
increase rhizosphere pH from pH 2.9 to pH 6.6 (Muofhe and
Dakora 2000). In doing so, rhizobial infection and root nodu-
lation can occur under less harsh optimal pH conditions.
Secondly, we have found that although the levels of endoge-
nous Al can be quite high in soils supporting the growth of
A. linearis, the Al concentration in shoots is very low relative
to those in below-ground organs such as cluster roots and non-
cluster roots (Dakora et al. unpublished data). We postulate
that organic acids (OAs) secreted by roots and cluster roots
chelate with active Al to form inactive complexes in the rhi-
zosphere. We also suggest that these OAs inside roots and
cluster roots form complexes with incoming active Al ions
to form inactive Al-OA complexes that are stored in non-
toxic forms in roots and cluster roots. This model could ex-
plain why the Al concentrations in below-ground organs such
as roots and cluster roots are many folds greater than Al levels
in above-ground shoots. In our view, this constitutes the mech-
anism by which A. linearis can thrive in Al-rich, highly acidic
soils in the Cape Fynbos of South Africa. Taken together,
these biochemical subtleties in Al tolerance support
A. linearis as a natural system for studying metal tolerance
in nodulated perennial legumes (Table 2).

Furthermore, the ability of legumes such as Aspalathus

linearis to accumulate Al in mainly roots with very little
translocated to shoots has great potential for phytoremediation
which can be exploited for the ecological economy of degrad-
ed ecosystems. Some of the environmentally safe and
microbially based bioremediation approaches that can be
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tapped for ecosystem mangement include (i) the selection and
use of legume/rhizobia symbioses resistant to metals, (ii) the
use of mixed inoculants containing metal-resistant rhizobia
and plant growth-promoting rhizobacteria and (iii) plant inoc-
ulation with a mixture of rhizobia and mycorrhizae (Pajuelo
et al. 2011). For example, the combined use of Cd-tolerant
rhizobacteria (Siripornadulsil and Siripornadulsil 2013) and
Cr-resistant plant growth-promoting bacteria isolated from
contaminated soils (Rajkumar et al. 2006) has great potential

for land reclamation and phytoremediation of degraded natu-
ral ecosystems.

Interestingly, while there is evidence of acid-tolerant genes
in symbiotic rhizobia (Dilworth et al. 2001; Glenn et al. 1999;
Laranjo et al. 2014) that permit bacterial survival in Al-rich
and low-pH soils supporting growth and N2 fixation of
A. linearis (Muofhe and Dakora 1999), little is known about
Al-tolerant genes in legumes and their microsymbionts. This
is perhaps not unexpected as no crop species are yet known

Table 2 Effect of soil aluminium on legumes, their microsymbionts, nodule formation and nitrogen fixation

Effect of Al+3 toxicity on plants Reference

Prevent toxic effect of Cu and Mn Barabasz et al. (2002)
Protect plant from fungi, extreme temperature

and soil salinity

Suppress nodulation Rohyadi (2009); Zhou et al. (2011)
Reduced elongation in root hairs

Failure of root hair formation

Reduced nutrient and water uptake Haynes and Mokolobate (2001); Zhou et al. (2011)

Reduced nitrogen fixation Jarvis and Hatch (1985); Silva and Sodek (1997)

Reduced rhizobial cell mass Wood et al. (1984); Whelan and Alexander (1986)
Barabasz et al. (2002); Arora et al. (2010)

Reduced symbiotic relationship between legume
and rhizobia

Blamey et al. (1983); Jarvis and Hatch (1985);
Lesueur et al. (1993)

Inhibit curling of root hair Ayanaba et al. (1983)

Inhibit nitrogenase activity De Manzi and Cartwright (1984); Mendoza-Soto et al.
(2015)

Inhibit cell division Wood (1995); Frantzios et al. (2005)

Inhibit hexokinase, acid and alkaline phosphatase,
phosphodiesterase and phosphooxidase

Bennet and Breen (1991); Barabasz et al. (2002)

Reduced root growth Rengel and Robinson (1989); Kopittke et al. (2015);
Mendoza-Soto et al. (2015)

Fig. 2 a A. linearis plants
growing in the field in a sandy
acidic nutrient-poor soil. b
Nitrogen fixation and
concentration of Al in clustered
root, non-clustered root and shoot
of A. linearis
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that tolerate high concentrations of Al in soils. Given the many
acidic soils in the world that are already heavily loaded with
high level of Al, future studies must identify genes in both
legumes and rhizobia that control Al toxicity in the two sym-
biotic partners. That way, food/nutritional security and envi-
ronmental health would be assuredly enhanced.

Amelioration of Al toxicity

Al phytotoxicity can be amended through liming with calcium
carbonate, addition of organic matter and/or by use of Al-
tolerant species (Mokolobate and Haynes 2002). Liming stim-
ulates soil organic carbon mineralisation by increasing soil pH
and detoxification of Al and increases microbial survivability
by C use efficiency (Grover et al. 2017; Wang et al. 2016).
Liming with Ca can alleviate Al toxicity through enhancing
the ionic strength of the soil solution and thus increasing com-
petition between Al and Ca for binding sites of cell mem-
branes (Kinraide and Parker 1987). Addition of Ca to an acidic
sub-surface solution in a vertically split root system for differ-
ent soybean genotypes resulted in an improved rooting system
(Ferrufino et al. 2000). The Ca/Al activity ratio of 891 geno-
types caused a 50% reduction in tap root length. However,
lateral roots required a greater concentration of Ca2+ to over-
come inhibition of root elongation by Al. Thus, even though
tap roots might extend into acidic soil zones, development of
lateral roots for nutrient and water capture could still be lim-
ited (Ferrufino et al. 2000). More Ca was needed in Al-
sensitive genotypes to offset the toxic effects of Al on root
elongation (Silva et al. 2001).

Liming has also been found to increase Ca availability to
rhizobia and the symbiosis (Hungria and Vargas 2000).
However, this practice is not economically feasible (Foy
1988), especially for small-scale subsistence farmers and
may also not be cost-effective in sub-soils due to poor Ca
distribution during tillage (Gourley 1987). Rhizobial and
legume response to Ca supply can also be limited by
high H+ and Al+3 activities (Sanzonowicz et al. 1998).
Furthermore, Al effect on soybean root elongation was
countered by 10–50 μM Mg in culture solution where
Al had inhibited root extension (Silva et al. 2001).
Here, the Mg probably detoxified Al by reduction of
Al +3 activity at root cell plasma membrane, thus
preventing the disruption of cell expansion and cell di-
vision commonly induced by Al toxicity (Kochian
1995). Similarly, the beneficial effect of Si on Al tox-
icity has been reported for soybean (Baylis et al. 1994).
Applied Si can form hydroxyaluminosilicate complexes
with Al in the external soil solution and thus render the
Al ions inactive and non-toxic to both plants and
rhizobia (Pontigo et al. 2015).

Organic matter amendment

Organic matter can also be used to overcome Al toxicity
in plants and microbes (Foy 1984, 1988; Rohyadi 2006).
During decomposition of animal and plant debris, a whole
range of organic compounds released by soil microbes
combine with active Al ions to form complexes that are
non-toxic to both plants and rhizobia (Haynes and
Mokolobate 2001; Suthipradit et al. 1990). Furthermore,
adding organic residues to soils often results in an initial
increase in soil pH, which can potentially decrease ex-
changeable Al in the soil and thus reduce its phytotoxicity
(Haynes and Mokolobate 2001).

Conclusion

Taken together, Al stress is a major abiotic factor affecting
plant growth and productivity. With 40% of the world’s
arable land consisting of acid soils and Al toxicity being
associated with low pH, global legume production is like-
ly to be hugely constrained. This is because Al toxicity in
soils can inhibit root elongation, lateral root development,
root hair growth, rhizobial infection of the roots, Nod
factor production and nodule development, resulting in
low N2 fixation and decreased crop yield. Therefore,
selecting legume/rhizobia symbioses that are tolerant of
Al toxicity is the easiest way to increase crop yields in
Al-rich acidic soils. A better understanding of legume
exudation in response to Al toxicity and the mechanisms
underlying rhizobial tolerance of Al stress is crucial for
increas ing yield of grain and pasture legumes.
Furthermore, understanding gene expression in the pres-
ence of added Al may be a strategy for identifying rhizo-
bial genes and legume traits that permit high N2 fixation
in the presence of Al stress.
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