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Abstract
The manipulation and characterization of light polarization states are essential for many applications in quantum

communication and computing, spectroscopy, bioinspired navigation, and imaging. Chiral metamaterials and

metasurfaces facilitate ultracompact devices for circularly polarized light generation, manipulation, and detection.

Herein, we report bioinspired chiral metasurfaces with both strong chiral optical effects and low insertion loss. We

experimentally demonstrated submicron-thick circularly polarized light filters with peak extinction ratios up to 35 and

maximum transmission efficiencies close to 80% at near-infrared wavelengths (the best operational wavelengths can

be engineered in the range of 1.3–1.6 µm). We also monolithically integrated the microscale circular polarization filters

with linear polarization filters to perform full-Stokes polarimetric measurements of light with arbitrary polarization

states. With the advantages of easy on-chip integration, ultracompact footprints, scalability, and broad wavelength

coverage, our designs hold great promise for facilitating chip-integrated polarimeters and polarimetric imaging

systems for quantum-based optical computing and information processing, circular dichroism spectroscopy,

biomedical diagnosis, and remote sensing applications.

Introduction
Circularly polarized light (CPL) has been widely used in

quantum communication1, quantum computing2,3, cir-

cular dichroism (CD) spectroscopy4, and polarimetric

imaging and sensing5–7. Traditionally, CP light detection

requires multiple bulky optical elements such as polar-

izers, waveplates, and mechanically rotating components8,

which poses fundamental limitations for device minia-

turization, robust system integration, and high-speed

operation. Organic chiral molecules have been proposed

for miniaturization of CPL detection devices, such as

liquid crystals (LCs)9,10, chiral dyes11, and helicene-based

chiral semiconductor transistors12. Recent developments

in nanotechnology and nanophotonics have enabled

ultracompact solid-state CPL detection13–23 (see Supple-

mentary Table S1). Compared with organic chiral mole-

cules, nanostructure-based devices generally exhibit

superior stability in ambient conditions, fast response

time, and high fidelity. For example, artificial three-

dimensional (3D) metamaterials have been produced

based on chiral L-shaped22, helical20,24–26, and spiral21

nanostructures to differentiate the handedness of CPL.

However, the fabrication of these complex 3D structures

requires stringent process control, and scalability is

challenging. More recently, planar (or 2D) chiral plas-

monic metasurface structures composed of gamma-

dions16, Z-shaped antennas17, spiral slots18, and even

stacks of twisted planar and achiral structures (crosses14,

nanorods15,23, etc.) with chiro-optical responses have been

reported. Compared with 3D chiral metamaterials,
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metasurface structures are easier to fabricate and more

compatible with on-chip manufacturing technologies;

however, the chiral plasmonic metasurfaces experimen-

tally demonstrated so far usually suffer from low circular

polarization extinction ratios (CPERs) (less than ~ 5) and

limited optical efficiency in experiments (20–50%). To

improve the optical efficiency, chiral dielectric metasur-

face structures have been achieved in experiments13,19

with optical efficiencies as high as 90%. However, the

CPERs of these surfaces are still limited (up to eight). To

date, the realization of ultracompact CPL detection

devices with simultaneously high extinction ratios and

optical efficiencies is still challenging.

In addition to CPL detection, ultracompact polarimetric

detection and imaging systems are highly desirable for full

polarization state measurements in various applications

such as communication27,28, remote sensing29, polariza-

tion imaging30, and biological diagnostics31–33. Among

different polarimeter designs (Table 1), plasmonics-based

polarimetric detecting devices have been reported with

unprecedented compactness based on phase-gradient

birefringent metagratings34, diffracting plasmonic meta-

surfaces35, and graphene-integrated anisotropic meta-

surfaces36. However, these devices operate in reflection

mode and hence are not compatible with direct on-chip

integration in photodetectors or imaging sensors.

Polarization-dependent surface plasmon polariton (SPP)

structures have been demonstrated with feasibility for

direct integration in detectors or imaging sensors37–39;

however, these devices suffer from low efficiency. Very

recently, a highly efficient phase-gradient all-dielectric

metasurface polarimeter40 was reported with a high effi-

ciency (60–65%). This approach enables splitting and

focusing of light in three different polarization bases in

transmission mode and provides a feasible method to

realize on-chip polarimetric imaging arrays. However, the

polarization measurement accuracy is fundamentally

limited by the crosstalk between different polarization

states and noticeably degrades as the super-pixel size

becomes smaller than 7.2 µm.

Inspired by the compound eyes of stomatopods41,42, in

this paper, we theoretically and experimentally demon-

strated double-layer chiral metasurface structures for

near-infrared wavelength polarimetric detection with

CPERs as high as 35 and transmission efficiencies >80%.

The structure consists of a low-loss dielectric metasur-

face, an oxide spacer layer, and a nanowire polarizer, with

a total thickness of less than 1 µm. In addition to CPL

detection units, we integrated the chiral metasurface

structures on the same chip with linear polarization (LP)

filters to perform full-Stokes polarimetric detection. Our

designs are advantageous due to the feasibility of direct

and scalable integration onto existing imaging sensors,

high extinction ratios, high transmission efficiencies,

ultracompact footprint (subwavelength thickness, micro-

meter scale in the lateral dimension), and robustness;

thus, these designs are ideal for ultracompact imaging,

sensing, communication, and navigation systems.

Table 1 Full-Stokes polarimetric imaging techniques

Structure design Operation mode Operational

wavelength

Efficiency Error of Stokes parameters (average)

Plasmonic metagrating34 Reflection, diffraction 700–1000 nm <50% ~10%

Diffracting integrated plasmonic

metasurfaces35
Reflection, diffraction 500–700 nm 36–55%

(numerical)

NA

Graphene-integrated anisotropic

metasurfaces36
Reflection 6.7–6.8 μm ~10% >3.9% (S1), >6.5% (S2), >2.5% (S3)

SPP excitation by X-shaped aperture

array38
Transmission 750–1050 nm <4% 7.3–12.3% (S1), 7.2–27.4% (S2),

5.2–17.7% (S3)

Integrated plasmonic polarimeter39 Absorption ~ 830 nm NA ~45%

Metasurface in-line polarimeter37 Scattering 1500–1565 nm NA 6% (S1), 5.8% (S2), 4.7% (S3)

Spin–orbit interaction of light with

scatterers50
Transmission 1.5–1.6 μm NA 7.4% (S1), 15.6% (S2), 11.4% (S3)

Dielectric metasurface40 Transmission,

diffraction

845–855 nm 60–65% 7.5–15%

This proposal: metal-dielectric

hybrid (ODLM)

Transmission 1.4–1.55 μm ~80% 1.9% (S1), 2.7% (S2), 7.2% (S3)

Reported errors for the Stokes parameters are the arithmetic mean (Ra) extracted from the data presented in each article
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Results
Design

In nature, stomatopods (or mantis shrimps) possess

extraordinary circular polarization vision due to the

unique ommatidium designs in the midband of their

eyes42,43. Each ommatidium, as shown in Fig. 1a, has a top

retinular cell (R8) and seven bottom retinular cells

(R1–7). The R8 cell acts as a quarter waveplate (QWP) to

convert CPL to linearly polarized light (LPL). The

microvilli of the R1–7 cells function as wire-grid polar-

izers that are oriented 45° with respect to the long axis of

the R8 cell to discriminate converted LPL of different

orientations. Inspired by this unique natural design, we

created vertically integrated double-layer metasurface

designs that mimic the ommatidium of stomatopods to

distinguish CPL with different handedness. The ommati-

dium-like double-layer metasurface (ODLM) design is

composed of a nanostructured birefringent metasurface

acting as a QWP44, a linear polarizing nanograting, and a

dielectric spacer layer between these components, as

shown in Fig. 1b. The birefringence of the metasurface is

achieved with an optically isotropic material, e.g., silicon,

by patterning this material into nanostructures with

structural anisotropy. Importantly, although neither the

top metasurface nor the bottom linear polarizer is chiral,

the combination of the two materials results in a hybrid

chiral metasurface structure with no inversion center or

reflection symmetry. Here, we introduce an angle of ±45°

between the fast axis of the metasurface QWP and the

axis of the lower polarizing nanograting; thus, the mirror

symmetry is broken in these double-layer chiral meta-

surface structures.

To obtain a quantitative description of the device

working principles without tedious full-wave simulations,

we set up a simplified model of the proposed ODLM

structure based on Jones matrices and obtained the

transmissions corresponding to left-handed (LCP Jones
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where Δφ is the phase retardation introduced by the QWP

(note the fast axis is oriented −45° with respect to the x-

axis) and γf and γs are the transmission coefficients of the

QWP for the electric field components along the fast and

slow axes, respectively. γV=H
x and γV=H

y are the transmis-

sion coefficients of the polarizing nanograting for the

electric field components along the x and y axes, corre-

sponding to the vertical (V) or horizontal (H) nanograting

orientation, respectively. We apply equation (1) to cal-

culate the dependence of the CPER on the performance of
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Fig. 1 Bioinspired chiral metasurface design. a Anatomical schematic of ommatidium in the compound eye of mantis shrimp responsible for

circularly polarized light detection. Left side shows the longitudinal cross section of the midband in the compound eye. Right side shows the

transverse cross section of the R8 and R1–7 cells along the dashed line in the longitudinal cross section. b Schematics of ommatidium-like double-

layer metamaterial (ODLM) design, where the dielectric metasurface behaves as artificial R8 cells and the nanogratings behave as R1–7 microvilli that

differentiate the linear polarization perpendicular or parallel to the microvilli axis. c Theoretically calculated CPER based on Jones calculus, as a

function of the relative phase difference between the fast and slow axes of the metasurface QWP and LPER of the polarizing nanograting. a was

adapted with permission from Nature Publishing Group42
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the QWP and linear polarizer, as shown in Fig. 1c. The

results indicate that the maximum CPER occurs at Δφ ¼
π
2
and is ultimately limited by the extinction ratio of the

linear polarizer (LPER ¼ γ
V=H
i =γ

V=H
j for gratings oriented

along the j-axis, i, j= x, y). Therefore, to achieve a high

CPER, we need to maximize the LPER and design a per-

fect QWP with Δφ ¼ π
2.

We choose dielectric metasurfaces composed of silicon

nanopillars with geometrically induced birefringence (Fig.

2a) to realize QWPs with accurate phase retardation

control and high transmission efficiency. The Si nano-

pillars are designed with subwavelength dimensions

(length 480 nm, width 160 nm, and height 700 nm) to

avoid Mie resonance. The birefringence of the silicon

nanopillar array results from the distinct near-field dis-

tributions for different incident light polarization45–47, as

illustrated in Fig. 2b. For incident LP light polarized along

the slow axis (U-axis) of the metasurface QWP, the elec-

tric field intensity is mostly localized in silicon (top panel

in Fig. 2b). In contrast, for incident light polarized along

the fast axis (V-axis) of the metasurface QWP, the electric

field intensity is mostly located in the air gaps between the

Si pillars (bottom panel in Fig. 2b). As a result, the

metasurface QWP phase retardation between the fast and

slow axes can be precisely engineered by adjusting the

metasurface geometry to be exactly π/2 at the operation

wavelength, e.g., at 1.47 µm, as shown in Fig. 2c. Moreover,

the transmission coefficients are designed to be the same

for the LP components along both the fast and slow axes,

with a total transmission efficiency over 90% around the

operation wavelength. The linear polarizer design is

composed of gold nanowires with optimized dimensions

(period 230 nm, duty cycle 37%, and thickness 195 nm) to

achieve an LPER greater than 200 and transmission effi-

ciency >85% for the wavelength range from 1 to 2 µm (Fig.

2d). More details about the dependence of the nanograting

performance on the geometric parameters is included in

the Supplementary Information (Fig. S2).

Although the Jones matrix model provides an intuitive

physical model to illustrate the device physics and ana-

lytical results to assist in device design, this model is too

simplified to consider multiple reflections inside the thin

film structure and the near-field interactions between the
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metasurface QWP and polarizing nanograting. To provide

an accurate performance analysis of the ODLM-based

CPL filters proposed, we performed full-wave simulations

to obtain the transmission spectra of the ODLM structure

for LCP and RCP incident light. Figure 2e shows the

results of an ODLM-based LCP filter designed at the

operation wavelength of λ0= 1.47 µm. The maximum

CPER is greater than 400 with a transmission efficiency

greater than 85% at the operation wavelength. This design

can operate over a wavelength range of more than 100 nm

(from 1.45 to 1.55 µm) with CPER over 30 and trans-

mission efficiency over 80%. The operation wavelength λ0
of the ODLM CP filters can be tailored by changing the

design parameters. We obtain devices with operation

wavelengths from 1.1 to 1.65 μm by simply varying the

length-to-width aspect ratio of the silicon pillars, as

shown in Fig. 2f. The operation wavelength can also be

engineered by adjusting the pillar height and the silicon

volume filling factor (see Supplementary Information Fig.

S1). Such engineering flexibility can enable on-chip

wavelength multiplexing of the ODLM-based CPL filters

with optimized device performance over broadband

wavelengths.

Device fabrication

The major challenge in the fabrication of ODLM-based

CPL filters is to reliably integrate metasurface QWPs and

the polarizing nanograting without degrading the optical

performance or affecting the overall structural stability.

Moreover, the fabrication process involves multiple steps

of lithography, film deposition, and etching to form the

gratings, the spacer layer, and the QWPs and therefore

must be systematically designed to avoid structural inte-

gration issues, such as etching damage, poor film adhe-

sion, high surface roughness, and feature distortion.

Figure 3a illustrates the fabrication procedures we used to

demonstrate the ODLM structures. First, gold nanograt-

ings were fabricated on fused silica substrates by electron-

beam lithography (EBL), metal evaporation, and metal

liftoff. Then, a dielectric spacer layer (350 nm) of SiOx was

sputtered to cover the nanogratings, followed by plasma-

enhanced chemical vapor deposition (PECVD) of α-sili-

con (α-Si). The α-Si layer was patterned into nanopillars

by EBL and inductively coupled plasma reactive-ion

etching (ICP RIE) using an SiOx hard mask. The

detailed fabrication steps are presented in the “Materials

and methods” section and Supplementary Information

(Fig. S3). Figure 3b shows a scanning microscope (SEM)

image of the fabricated polarizing nanograting composed

of 120-nm-thick gold nanogratings with a 230 nm period

and 50% duty cycle. The nanogratings demonstrated were

thinner than the optimized designs due to challenges in

fabricating thicker nanogratings with low defect density.

The use of metallic nanogratings allows a high LPER but

also poses certain integration challenges because of

instability of metal under elevated temperatures, poor

adhesion to dielectrics, and rough surface. Here, we

demonstrated that the use of a sputtered SiOx dielectric

spacer layer resolves or mitigates these problems. The

nanograting samples were baked at a moderate tempera-

ture to remove the surface water molecules and in situ

sputter-cleaned to remove the contaminants on the sur-

face immediately before a room temperature sputtering

process to cover the nanogratings with an SiOx dielectric

layer. The sputtered SiOx spacer layer exhibited excellent

adhesion to the fused silica substrate, filled the trenches in

the nanogratings48, and greatly reduced the surface

roughness resulting from the embedded nanogratings. As

inspected by cross-sectional SEM (Fig. 3d) and atomic

force microscopy (Fig. 3e, f), sputtering a 350 nm silicon

oxide spacer layer onto the nanograting surface sig-

nificantly decreased the surface roughness (Ra= 11.5 nm,

as shown in Fig. 3e, f). The reduced surface roughness was

crucial to the subsequent fabrication of Si nanopillar

QWPs. Fourier transform infrared spectroscopy (FTIR)

measurements and full-wave simulation results show that

the SiOx-coated nanogratings experience only a slight

degradation of the LPER (Supplementary Information Fig.

S4), indicating that the dielectric layer fabrication process

only minorly impacted the nanograting performance. In

addition to the structural importance of the SiOx spacer,

the spacer helps to minimize the near-field interactions

between the nanogratings and QWPs and ensure reliable

device operation. Full-wave simulation shows that the

optimal thickness is between 300 and 400 nm for our

design in the 1.3–1.5 µm wavelength range (Supplemen-

tary Information Fig. S5).

Finally, the Si metasurface QWPs were aligned on top of

the polarizing nanogratings. The metasurface QWP is

composed of densely packed silicon nanopillars, as shown

in Fig. 3c (length 480 nm, width 160 nm, and thickness

700 nm). The nanoscale dimensions and large

height–width aspect ratios (HWAR > 4) pose significant

challenges in fabrication. We used a double-layer hard

mask (60 nm Cr on top of 160 nm of SiOx) to pattern the

silicon nanopillars with the nanoscale geometries

required. A 60-nm-thick Cr mask fabricated by EBL and

metal liftoff was used to pattern the SiOx mask. Then, the

SiOx layer served as a second hard mask for ICP RIE

etching of α-Si nanopillars with a large HWAR. More

details are provided in the “Materials and methods” sec-

tion. Noticeably, our optimized fabrication process

enabled etching of the nanopillars with steep sidewalls

(<8° tilt angle, Supplementary Information Fig. S6), a

lateral pillar gap as small as 200 nm, and an HWAR > 4

(Supplementary Information Fig. S3). To consider the

sidewall inclination angle of the silicon nanopillar, we

modified the structure dimensions in the numerical
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model and performed structure optimization accordingly

to determine the device geometries (see Supplementary

Information Fig. S7). Our theoretical analysis suggests

that an inclination angle from 0° to 10° can achieve high

CPERs (>300) at any desired operational wavelength.

Device characterization and discussion

The performance of the metasurface QWPs and linear

polarizing nanogratings were first characterized using

FTIR (see “Materials and methods” section). To char-

acterize the metasurface QWPs, LP light was directed

incident to the device under testing with the electric field

vector oriented at 45° with respect to the slow (U-) axis of

the QWP. The state of polarization (SoP) of the trans-

mitted light was measured with a rotating linear polarizer

(polarization analyzer (PA)) to extract the phase retarda-

tion. The phase retardation and transmission spectra

measured for the metasurface QWP designed within the

telecom wavelength bands are shown in Fig. 4a. At the

operation wavelength (1.47 µm), the phase retardation

between the fast (V-) and slow (U-) axes is exactly π/2, and

the transmission efficiency of the QWP is close to 90%.

The nanograting linear polarizer fabricated (width 120,

height 122, and period 230 nm as fabricated) exhibited a

LPER of 40–50 and transmission efficiency > 90 at

wavelengths of ~1.5 µm (Fig. 4b). We attribute the lower

LPER mainly to the nanograting thickness (120 nm) being

smaller than that of the optimized device designs (190 nm)

(see Fig. S2a). The chip-integrated ODLM-based CPL

polarization filters were characterized with both LCP and

RCP input light, as illustrated in the schematic in Fig. 4c

(see “Materials and methods” section). Figure 4c shows the

transmission spectra measured for three devices fabricated

on the same substrate for both LCP and RCP input light in

proximity to the operation wavelengths of the devices.

These devices were designed for different operation

wavelengths from 1.4 to 1.6 µm. The devices all have high

transmission efficiency (70–80%) for LCP light and mini-

mal transmission (2–3%) for RCP light. The maximum

CPERs (defined as ILCP/IRCP) for all three devices are over

30, as shown in Fig. 4d. All of the devices provide CPERs of

more than 10 over a wavelength range of 150 nm at

approximately the operation wavelength. Compared with

other on-chip solid-state-based CPL filters reported in the

literature, the ODLM-based CPL filters provide the best

performance when taking both CPER and efficiency in

consideration (see Supplementary Information Table S1).

Compared with the simulation results of the optimized

device design, there is still much room for improvement

of the CPERs of the ODLM-based CPL filters. Due to the
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limitations of the nanofabrication process, the devices

experimentally demonstrated deviation from the simula-

tions in a number of aspects. In addition to the imper-

fections of the fabricated nanogratings and silicon

metasurfaces discussed previously, the alignment errors

between the metasurfaces and the nanogratings under-

neath affect the device performance. Figure 4e shows the

dependence of the CPER on the error in the rotational

alignment between the slow axis of the metasurface QWP

and the LP polarizer. From the SEM images of the sam-

ples fabricated, we estimated a degree error of less than

0.5 from the ideal value (45°) (Supplementary Information

Fig. S8). According to the results shown in Fig. 4e, this

angle deviation leads to a slight decrease (<6%) in the

CPER of the CP filter. Further, the translational dis-

placement between the silicon pillars in the QWP and the

nanowires in the linear polarizer only slightly affected the

performance of the ODLM structure design (<2%, Sup-

plementary Information Fig. S9). In addition, we studied

the dependence of the CPER on the dielectric spacer layer

thickness at the working wavelength (Fig. 4f) and found a

reasonably small degradation of the CPER (<5%) for a

deviation of 5 nm from the spacer thickness designed

(350 nm). Based on the experimental evidence and theo-

retical analysis, we conclude that the key practical lim-

itations in the double-layer integration do not significantly
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affect the CPERs of the ODLM-based CPL filters fabri-

cated. However, significant improvement of the device

performance could be achieved by improving the LPER of

the polarizing nanogratings. Our numerical simulations

reveal that a change in the nanograting thickness from

120 to ~190 nm increases the LPER from ~50 to over 400.

To demonstrate the concept of on-chip polarimetric

detection, we integrated an array of polarization filters on

the same chip, including four LP filters and two ODLM-

based CP filters, for full-Stokes polarization state mea-

surements based on a spatial division scheme8. The LP

filters (P1, P2, P3, and P4) are simply nanowire gratings

oriented in four different orientations, 0, 90, −45, and 45°,

with respect to the x-axis (Fig. 5a). The two CP filters, P5
and P6, are selectively transmitting only LCP and RCP

light, respectively (P′

5 and P′

6 are backup structures for P5
and P6). An empty cell P0 without any filters is located in

the center to measure the total light intensity I0. All the

filters and the empty cells have the same area of 80 µm ×

80 µm. The incident light is filtered with these six spatially

distributed micrometer-size polarization filters and then

measured by separately photodetectors to obtain the

polarized components. Given the light transmitted by Pi,

denoted Ii (i= 0–6), the Stokes parameters, (S0, S1, S2, and

S3), of the incident light are then calculated as follows:8

S0 ¼ I0

S1 ¼ I2 � I1

S2 ¼ I4 � I3

S3 ¼ I6 � I5

8

>

>

>

<

>

>

>

:

Notably, this design can be used to detect the SoP of any

incident light, including partially polarized light. When

the incident light is fully polarized, I0
2
= S1

2
+ S2

2
+ S3

2,

while for partially polarized light, I0
2 > S1

2
+ S2

2
+ S3

2.

To test the performance of the microscale polarization

filter array fabricated, we used FTIR with an infrared

microscope to build the measurement setup, as shown in

Fig. 5a. Unpolarized light from the FTIR internal source

was transmitted through a conventional linear polarizer

and tuneable LC waveplate, separated by a reflective

objective (also known as a condenser), to generate an
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arbitrary SoP. The reflective objective was used to focus

the light onto the device, which was placed on a motor-

ized stage. By placing the tuneable LC waveplate between

the objective and the device under testing, we were able to

minimize the impact of the reflective objective on the SoP

of the light incident on the device. The light transmitted

through the sample was then collected by an infrared

objective. An aperture was used at the image plane to

select the measurement region (30 × 30 µm2) on the

device. Such a scanning imaging system allows us to

characterize the light transmitted through all seven cells

by simply changing the lateral displacement of the

motorized stage. For calibration purposes, we removed

the sample and used a rotating PA to characterize the SoP

of the incident light (see “Materials and methods” section

for more details). Figure 5b presents the polar plots for

four representative SoPs. The measured results obtained

with the on-chip polarimeter (red) are consistent with

those obtained from the PA (black). We extracted the

ellipse plots for all the SoPs to evaluate the accuracy of the

orientation and ellipticity angle measurements. Based on

all the measurement results of eight SoPs (see “results” for

the other SoPs in Supplementary Information, Fig. S11),

the average errors of the orientation and ellipticity angles

are 0.046° and 2.21°, respectively. Moreover, the handed-

ness of the light can be obtained with our technique, as

shown on the ellipse plots labeled with blue arrows, which

is not available from the measurements taken by the

rotating polarizer. Figure 5c shows a summary of the

Stokes parameters (S0, S1, S2, and S3) obtained by our

device (all the Stokes parameters were normalized by S0).

To evaluate the accuracy of the measurements, we char-

acterized each SoP with the rotating PA and the extracted

corresponding Stokes parameters (shown in Fig. 5c). The

average measurement errors of S1, S2, and S3 were 1.9%,

2.7%, and 7.2%, respectively. Based on the Stokes para-

meters measured, the measurement errors for the degree

of LP (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S21 þ S22
p

=S0) and degree of circular polarization

(S3/S0) are 3.3% and 7.9%, respectively. Compared with

other plasmonic or dielectric metasurface-based polari-

metric detection techniques reported in the literature, our

devices exhibit the best performances in measurement

accuracy and optical efficiency (Table 1). Even though we

used a scanning imaging system to perform the device

characterization in our experiment, a spatial division

measurement scheme can be employed to perform full-

Stokes polarization detection in one snapshot without

moving parts. In such a configuration, the polarization filter

array is directly integrated on the top of a photodetector

array so that the incident light filtered by each microscale

polarization filter is measured by the corresponding pho-

todetector beneath that filter. Thus, all the polarization

components can be obtained by a photodetector array

integrated with microscale polarization filters.

Discussion
Here, we reported bioinspired chiral double-layer

metasurface structures (ODLMs) with both strong chiral

optical effects and high optical efficiencies. Based on these

structures, we have experimentally demonstrated

submicron-thick CP light filters with CPER as high as 35

and maximum transmission efficiency close to 80%. The

best operational wavelengths can be tailored by varying

the design parameters from 1.3 to 1.6 µm. We attribute

the high transmission efficiency and extinction ratio to

the low insertion loss of the dielectric metasurface QWP

and the nanowire linear polarizer, the high accuracy of the

phase delay of the metasurface QWP, and the high LPER

of the nanowire linear polarizer. The proposed ODLM-

based CP filers can be very compact, with thickness less

than 1 µm and minimal lateral dimensions of 1 × 1 µm2

(to maintain a CPER greater than 20 and transmission

efficiency > 60%; see Fig. S13). Our experimental and

theoretical analyses show that the device performance

could be further enhanced by improving the fabrication

procedures and improving the performance and band-

width of the metasurface QWP49. We also monolithically

integrated the ODLM-based CP filers with LP nanograt-

ing filters for full-Stokes polarization measurements of

input light with arbitrary polarization states. Our polari-

metric detection devices demonstrate the best perfor-

mance in measurement accuracy and optical efficiency

(80%). In addition to their superior performance, the

chiral metasurface structures and polarimetric devices

presented exhibit various advantages, such as easy on-chip

integration, ultracompact footprint, manufacturing scal-

ability, and broad wavelength range. Therefore, our work

holds great promise for chip-integrated systems for

quantum-based optical computing and information pro-

cessing, CD spectroscopy, polarimetric imaging, and

sensing applications.

Materials and methods
Numerical simulations

The FDTD simulations were performed using Lume-

rical Inc. FDTD solver. The material optical properties of

the α-Si and silicon oxide were determined from ellipso-

metry measurements using a J.A. WOOLLAM system.

The residual SiOx mask layer and sidewall tilting were

considered in accordance with the SEM results. Here, we

simulated one unit cell with normal plane wave source(s)

incidence, the in-plane boundary conditions were peri-

odic, and perfectly matched layers were used for the out-

of-plane boundaries. CP light was simulated by a super-

position of two linearly polarized sources with π/2 relative

phase retardance. We set a refined mesh with a minimum

mesh size of 5 nm for silicon nanopillars. We confirmed

that all the simulations converged at an auto-shutoff value

of 10–5.
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Fabrication

(1) Gold polarizing nanograting: The fused silica
substrate was spin coated with double-layer poly
(methyl methacrylate) (PMMA) (170 nm, 495 k
followed with 35 nm, 950 k) and a very thin
(~5 nm) thermally evaporated Cr layer for charge
dissipation. Then, the samples were exposed by
ebeam lithography (EBL, JEOL JBX-6000FS) and
developed in a mixture of methyl isobutyl ketone
(MIBK) and isopropanol (IPA) at a ratio 1:3. The
sample was cleaned by oxygen plasma
(PlasmaTherm 790, 5 sccm O2 with 8 mTorr
chamber pressure, 20W) for a few seconds to
remove the residual PMMA on the exposed region.
Then, a 4 nm adhesive Cr layer followed by 122 nm
of gold was deposited by thermal evaporation
(Edwards Auto 306) without breaking vacuum.
Subsequently, the Au/Cr nanogratings were lifted
off by soaking the sample in acetone for more than
12 h followed by sonication for 1 min.

(2) Spacer deposition: A 5-min oxygen plasma etch was
applied to the samples to completely remove
organic contaminants. Then, the samples were
immediately placed in the sputtering chamber
(Lesker PVD 75) and covered with a 350 nm SiOx

spacer layer (RF power 250W) at a rate of 0.6 Å/s.
(3) Si QWP fabrication: Amorphous silicon (α-Si) of

700 nm was deposited by PECVD (Oxford
Plasmalab 100, 350 °C/15W) on the SiOx spacer
layer, followed by deposition of 160 nm SiOx (350 °
C/20W) without breaking vacuum as a hard mask
layer. Another 10 nm Cr layer was deposited onto
the sample surface to avoid charging effects during
EBL fabrication. Again, a double-layer PMMA
resist (120 nm, 495 k followed with 50 nm, 950 k)
was coated on the sample, exposed with EBL, and
developed in IPA/MIBK as described earlier. Then,
60 nm of Cr was thermally evaporated onto the
sample and lifted off in acetone as described earlier
to form the Cr hard mask. Next, the 10 nm Cr
adhesion layer was etched through by ICP etching
(Advanced Vacuum Apex SLR, Cl2/O2 22/8 sccm,
20 mTorr, ICP/ bias power 400/100W) to form
isolated Cr nanostructure masks, which further
masked the anisotropic etching of the SiOx hard
mask by RIE (Plasmatherm RIE 790, CHF3/ O2 40/
3 sccm, 40 mTorr, 250W) and stopped at the α-Si
layer. Then, the Cr was removed by CR-4s
(Cyantek) etchant, and the α-Si layer was etched by
ICP RIE (ICP/bias power of 250/140W, 10 mTorr,
Cl2:Ar= 100/5 sccm) using the SiOx mask to
complete the device fabrication.

Measurements

The optical transmission measurements were per-

formed using a Bruker Vertex 70 FTIR spectrometer

connected to a Hyperion 2000 mid-IR microscope (Fig.

S10). For the QWP measurements, we used one linear

polarizer in the optical path immediately in front of the

sample under testing to ensure LP incidence. Another

linear polarizer was placed in the optical path immediately

behind the sample to analyze the polarization state of the

output light by rotating the polarizer and measuring the

transmitted light with an IR photodetector. Two 15×

objective and condenser lenses with N.A.= 0.4 were used.

For CP detection measurements and full-Stokes para-

meter measurements, we used one linear polarizer and an

LC waveplate (LCC1223-C by Thorlabs, Inc.) to generate

CP light with both handedness and arbitrary polarization

state that was incident to the device under testing. As a

calibration process, we characterized the polarization

state of the incident light with a rotating linear polarizer

and QWP. All the transmission spectra were normalized

with respect to that of the bare fused silica substrate to

eliminate the impact of the substrate.
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