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Abstract Many strategies have been exploited for the task of feature selection, in an effort
to identify more compact and better quality feature subsets. A number of evaluation metrics
have been developed recently that can judge the quality of a given feature subset as a whole,
rather than assessing the qualities of individual features. Effective techniques of stochastic
nature have also emerged, allowing good quality solutions to be discovered without resorting
to exhaustive search. This paper provides a comprehensive review of the most recent methods
for feature selection that originated from nature inspired meta-heuristics, where the more
classic approaches such as genetic algorithms and ant colony optimisation are also included
for comparison. A good number of the reviewed methodologies have been significantly
modified in the present, in order to systematically support generic subset-based evaluators
and higher dimensional problems. Such modifications are carried out because the original
studies either work exclusively with certain subset evaluators (e.g., rough set-based methods),
or are limited to specific problem domains. A total of ten different algorithms are examined,
and their mechanisms and work flows are summarised in an unified manner. The performance
of the reviewed approaches are compared using high dimensional, real-valued benchmark
data sets. The selected feature subsets are also used to build classification models, in an effort
to further validate their efficacies.

Keywords Feature selection · Dimensionality reduction · Nature inspired optimisation ·
Stochastic search

1 Introduction

The main aim of feature selection (FS) is to discover a minimal feature subset from a problem
domain while retaining a suitably high accuracy in representing the original data (Dash
and Liu, 1997). When analysing data that has a very large number of features (Xing et al,
2001), it is uneasy to identify and extract patterns or rules due to the high inter-dependency
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amongst individual features, or the behaviour of combined features, the so-called “curse-of-
dimensionality” (Bellman, 1957). Techniques to perform tasks such as text processing, data
classification and systems control (Mac Parthaláin et al, 2010a; ming Lee et al, 2001; Shang
and Barnes, 2013; Karzynski et al, 2003; Shen and Jensen, 2004) can benefit greatly from FS,
once the noisy, irrelevant, redundant or misleading features are removed (Jensen and Shen,
2009a).

Given a data set with N features, the task of FS can be seen as a search for “optimal”
feature subsets through the competing 2N candidates. Optimality is often subjective depending
on the problem at hand. A subset that is selected as optimal using one particular evaluation
function may not be equivalent to that of a subset selected by another. Various techniques
have been developed in the literature to judge the quality of discovered feature subsets,
several of which rank the features based on a certain importance measure (Kononenko et al,
1997), e.g., chi-square analysis (Zheng et al, 2004), rough set and fuzzy-rough set-based
dependency (Jensen and Shen, 2007, 2008), information gain, and symmetrical uncertainty
(Senthamarai Kannan and Ramaraj, 2010).

Recent trends in developing FS methods focus on evaluating a feature subset as a whole,
forming an alternative type of approach to the aforementioned. Popular methods include the
group-based fuzzy-rough FS (FRFS) (Jensen and Shen, 2009b; Mac Parthaláin et al, 2010b),
probabilistic consistency-based FS (PCFS) (Dash and Liu, 2003), and correlation-based FS
(CFS) (Hall, 1998). These techniques (together with the individual feature-based methods)
are often collectively classified as the filter-based techniques. They are typically used as a
preprocessing step, and is independent of any learning algorithm that may be subsequently
employed. In contrast, wrapper-based (Hsu et al, 2002; Kohavi and John, 1997) and hybrid
algorithms (Zhu et al, 2007) are used in conjunction with a learning or data mining algorithm,
which is employed in place of an evaluation metric as used in the filter-based approach.

Independent of the learning mechanism, a common issue that all FS methods need to
address is how to search for the “optimal” feature subsets. To this end, an exhaustive method
may be used, however it is often impractical for most data sets. Alternatively, hill-climbing-
based approaches are exploited where features are added or removed one at a time until
there is no further improvement to the current candidate solution. Although generally fast to
converge, these methods may lead to the discovery of sub-optimal subsets (both in terms of the
evaluation score and the subset size) (Diao and Shen, 2012; Liu and Motoda, 2007). To avoid
such short-comings, nature inspired meta-heuristics (NIMs) (Brownlee, 2011; Yang, 2008)
such as genetic algorithms (Leardi et al, 1992; Wróblewski, 2001), genetic programming
(Muni et al, 2006), simulated annealing (Debuse and Rayward-Smith, 1997), and particle
swarm optimisation (Wang et al, 2007) have been utilised with varying degrees of success.
Most of these algorithms are originally proposed to solve function optimisation problems
and thus, require mapping concepts or internal mechanisms into the field of FS.

This paper presents an up-to-date survey of nature inspired approaches to FS. It establishes
unified algorithmic notations to describe the procedures of the reviewed methods, and
provides a common ground for comparing the performances of these algorithms, especially
for high dimensional data sets, and computationally complex feature subset evaluators. The
rest of the paper is structured as follows. Section 2 first formulates the problem domain of FS,
and categorises the algorithms by their underlying inspirations. This section also points out a
number of common concepts and terminologies that are used by various NIMs. Section 3
summarises the principles of the reviewed algorithms, and details the modifications made to
several methods that allow them to work with more general types of evaluation mechanism.
Pseudo-codes are also included in this section to unify the representation of the underlying
algorithms. Section 4 compares the reviewed algorithms via systematic experimentation,
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three feature subset-based evaluators of different characteristics are employed to demonstrate
the efficacies of these approaches. Section 5 concludes the paper and suggests several future
directions.

2 Background

2.1 Feature Selection

In the context of FS, an information system is a couple (X ,Y ), where X is a non-empty set of
finite objects (the universe), and Y is a non-empty, finite set of features. For decision systems,
Y = {A∪Z} where A = {a1, · · · ,a|A|} is the set of input features, and Z is the set of decision
features. Features can be either qualitative (discrete-valued) or quantitative (real-valued). The
ultimate aim of a feature subset search algorithm is to determine a set of features B ⊆ A,
which has the highest evaluation score f (B), and minimum subset size |B|, such that B
may encapsulate the original concept to the maximum extend, and be able to distinguish
the training instances into their respective classes. Here f : B→ R is a subset evaluation
function, which maps a set of feature subsets onto the set of real numbers (the evaluation
scores). Several existing techniques such as CFS, PCFS, or FRFS output a normalised score
f (B) ∈ [0,1], f ( /0) = 0, where higher scores indicate better quality subsets. For a given data
set, multiple subsets may exist that are equally (or almost equally) optimal, when judged by
a subset evaluator, i.e., f (Bp) = f (Bq) (or f (Bp)' f (Bq)), Bp 6= Bq, where p and q denote
the indices of two of the possible solutions.

2.2 Taxonomy of Algorithms

Following a taxonomy concerning these NIMs in their base form (Brownlee, 2011), the
existing nature inspired FS approaches can be classified into a number of categories, as shown
in Fig. 1. Considering that a few categories have not yet attracted sufficient applications in the
area of FS, e.g., the immune systems and physical/social algorithms, three major categories
are established here in order to improve the organisation of the reviewed methods. The
biologically-inspired approaches include the genetic algorithm (GA) (Siedlecki and Sklansky,
1989; Sklansky and Vriesenga, 1996; Yang and Honavar, 1998), genetic programming (GP)
(Muni et al, 2006), memetic algorithm (MA) (Yang et al, 2008; Zhu and Ong, 2007), and
the clonal selection algorithm (CSA) (Shojaie and Moradi, 2008) from immune systems;
the physical, social and stochastic algorithms include harmony search (HS) (Diao and Shen,
2012), simulated annealing (SA) (Ekbal et al, 2011; Meiri and Zahavi, 2006), random search
(RS) (Stracuzzi and Utgoff, 2004), scatter search (SS) (Lpez et al, 2006), and tabu search
(TS) (Hedar et al, 2008); and the swarm-based techniques include artificial bee colony (ABC)
(Palanisamy and S, 2012), ant colony optimisation (ACO) (Chen et al, 2010; Jensen and
Shen, 2005; Kabir et al, 2012; Ke et al, 2008), bat algorithm (BA) (Nakamura et al, 2012),
bee colony optimisation (BCO), and particle swarm optimisation (PSO), etc. Most of the
above mentioned algorithms are described in detail in the following sections.

Fundamentally speaking, putting the underlying analogies aside, nature inspired FS
approaches are a collection of techniques of stochastic nature, for the purpose of discovering
and improving good candidate solutions. Several recent studies combined these algorithms
together, adopting a given algorithm’s strong point to complement another’s weakness. In so
doing, a number of hybrid methods have emerged, including GA-PSO (Atyabi et al, 2012),
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Fig. 1 Taxonomy of Nature Inspired Approaches

ACO-GA (Nemati et al, 2009), ACO-neural networks (Sivagaminathan and Ramakrishnan,
2007), PSO-catfish (Chuang et al, 2011), etc. Moreover, there also exist several approaches
that have embedded local search procedures (Kabir et al, 2011; Oh et al, 2004).

2.3 Common Notions and Mechanisms

Table 1 Notions Used in Pseudo-codes

Notion Meaning

pi ∈ P A Population P of individuals pi

Bpi ∈ B Set of candidate feature subsets Bpi
maintained by pi

Ḃ Current best subset
B̃ A subset of randomly selected features

bBpi

j ∈ {0,1} Selection state (0: not selected, 1: selected) of the jth feature in Bpi

f (B) Evaluation score of B
g Current generation/iteration
gmax Maximum number of generations/iterations
r A random number or a stochastic component
T A temporary solution

Despite having distinctive characteristics and work flows, the stochastic-based search
techniques share many similarities, which are summarised in Table 1. The population-based
NIMs employ a group P of individuals pi, each actively maintains an emerging feature subset
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Bpi
. Internally, most algorithms represent a given feature subset Bpi

in a binary manner,

where a string bBpi
of length |A| is used. The jth position of bBpi

is set to 1 (bBpi

j = 1) if its

corresponding feature is being selected, i.e., a j ∈ Bpi
, and bBpi

j = 0 if a j is not selected in
the candidate feature subset. The current best solution (amongst the entire population) is
represented by Ḃ, and a randomly generated feature subset is denoted by B̃. To simply the
representation, random components other than B̃ are denoted by the use of r. For example,
c = rc,0≤ rc ≤ 1 indicates that the value of a certain parameter c is a randomly generated
number drawn from the value range 0 to 1; and ar ∈ A,r ∈ {1, · · · , |A|} denotes a feature
randomly picked out of a pool of original features A. These notations will be used extensively
in the pseudo codes hereafter, in order to illustrate the work flows of the reviewed NIMs in
an unified representation that eases comparison.

2.3.1 Random Initialisation

One of the key advantages of nature inspired approaches is the insensitivity of initial states.
The population at the start of the search (often referred to as the initial population) is
generally a randomly generated pool. In stochastic FS, a random subset B̃ can be constructed
by randomly setting r bits, where r itself may be a pre-determined size, or random: r ∈
{1, · · · , |A|}.

for i = 1 to |P| do Bpi
= B̃

2.3.2 Solution Adjustment

The candidate solutions are modified constantly during the search process. The most common
adjustment procedure is the random addition or removal of rm number of features, such
as the mutation operator used by many evolutionary algorithms. rm may be pre-defined, or
dynamically determined according to certain states of the algorithm. If a binary representation
bB is used, this adjustment may be achieved by randomly flipping rm bits:

for i = 1 to rm do bB
r = ¬bB

r , ar ∈ A

Several swarm-based algorithms (Karaboga and Akay, 2009) exploit the notion of move-
ment, from a given candidate solution Bpi

towards another possibly better quality feature
subset, say Bp j

, aiming to eventually reach the true global best solution. For conventional
numerical optimisation problems, this process derives new values for the function variables
according to pre-defined formulae, and new solution vectors may be constructed which
are interpolated in between the source and target vectors. However for FS problems, this
is less applicable, since binary values are generally employed, and the variables represent
independent features. In the literature, movement is implemented by first determining the
distance between the two subsets:

d(Bpi
,Bp j

) = |Bpi ⊕Bp j | (1)

which is equal to the number of bit differences. The amount of movement v, v ∈ [0,vmax],
or the number of bits that Bpi

should copy from Bp j
, is then calculated with regards to the

absolute distance, as demonstrated in Algorithm 1. Note that for algorithms such as PSO and
FA, the feature subset being improved generally moves towards the current best solution Ḃ.
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1 if v≤ d(Bpi
,Bp j

) then
2 for j = 1 to v do
3 bBpi

r = ¬bBpi

r , ar ∈ Bpi ⊕Bp j

4 else
5 Bpi

= Bp j

6 for j = 1 to (v−d(Bpi
,Bp j

)) do
7 bBpi

r = ¬bBpi

r , ar /∈ Bp j

Algorithm 1: Move Bpi
towards Bp j

by a distance v

2.3.3 Subset Quality Comparison

FS is essentially a bi-objective optimisation task. A good quality feature subset should
both achieve a high score in terms of evaluation (of its fit for purpose), and maintain a
low cardinality. Having an ordered solution space enables higher quality solutions to be
discovered. Algorithms such as CSA and HS use a scheme where two given candidate
solutions are compared first based on evaluation scores, and the cardinalities of the subsets
are then used as a tie breaker:

Bpi
> Bp j ⇔ f (Bpi

)> f (Bp j
) ∨

f (Bpi
) == f (Bp j

)∧|Bpi |< |Bp j | (2)

Algorithms including FF, PSO, and SA require a single numerical difference between can-
didate solutions, so that the internal parameters can be calculated. In this case, evaluation
score and subset size are integrated together via weighted aggregation, in order to reflect the
influence of both the evaluation score f (B) and subset size (normalised using |B||A| ) of a given
feature subset B. The weighting parameters α and β may be equal or biased:

Bpi
> Bp j ⇔ α f (Bpi

)+β
|Bpi |
|A|

> α f (Bp j
)+β

|Bp j |
|A|

(3)

Alternative aggregation methods may also be employed of course. Note that multi-objective
evolutionary algorithms (Emmanouilidis et al, 2000; Freitas, 2008; Srinivasan and Ramakr-
ishnan, 2011) have also been exploited to facilitate simultaneous optimisation of both criteria,
but they are outside within the scope of this paper.

2.3.4 Current Best Solution Tracking

Due to the stochastic behaviour of the search algorithms concerned, it is often necessary to
keep a record of the best quality feature subset Ḃ discovered so far, as the algorithm may
explore other (possibly sub-optimal) solution regions later on. The procedure of updating Ḃ
invokes the previously mentioned comparison process (Eqn. 2), and the quality of the current
best solution is compared against those of all of the emerging subsets Bpi

, which are being
maintained by the individuals pi ∈ P at every iteration:
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1 for i = 1 to |P| do
2 if Bpi

> Ḃ then Ḃ = Bpi

Algorithm 2: Update current best solution Ḃ

2.3.5 Local Search

Algorithm 3 details one of the local search procedures (Aha and Bankert, 1996), commonly
used by techniques such as MA (Yang et al, 2008; Zhu and Ong, 2007) and hybrid search
methods (Kabir et al, 2011; Oh et al, 2004). It is a greedy mechanism that evaluates all
unselected features, and adds the most informative candidate (the feature that provides the
most improvement in evaluation score) to the current feature subset. The hill climbing (HC)
algorithm works in a similar fashion, which continues to select features until the score cannot
be improved further. This mechanism can also be used backward to eliminate the least
important feature from a subset.

1 repeat
2 f ′ = f (B)
3 t =−1
4 for i = 1 to |A|, ai /∈ B do
5 bB

i = 1
6 if f (B)> f ′ then
7 f ′ = f (B)
8 t = i

9 bB
i = 0

10 if t 6=−1 then bB
i = 1

11 until t ==−1
Algorithm 3: Local search B

3 Nature Inspired FS Meta-heuristics

This section introduces the reviewed NIMs, organised by their underlying concepts. Pseudo-
codes are given to better illustrate the procedures of these algorithms.

3.1 Biologically-Inspired Algorithms

3.1.1 Genetic Algorithm

Genetic algorithm (GA) mimics the process of natural evolution by simulating events such
as inheritance, mutation, selection, and crossover. A considerable amount of investigation
(Siedlecki and Sklansky, 1989; Sklansky and Vriesenga, 1996) has been carried out in order
to explore the feasibility of applying GA to FS, much of this has been summarised and
compared in the literature (Freitas, 2008). In GA, a feature subset is generally represented
by a binary string called a chromosome. A population P of such chromosomes is randomly
initialised and maintained, and those with higher fitness values are propagated into the later
generations.
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The reproduction process is typically achieved by the use of two operators: crossover and
mutation. As shown in Algorithm 4, the standard one-point crossover operator exchanges and
recombines a pair of parent chromosomes, Bp and Bq. It first locates a certain crossover point
rc along the length of the binary string, and then generates two children with all features
beyond rc swapped between the two parents. The mutation operator produces a modified
subset by randomly adding or removing features from the original subset. By allowing the
survival and reproduction of the fittest chromosomes, the algorithm effectively optimises
the quality of the selected feature subset. The parameters c and m that control the rate of
crossover and mutation require careful consideration, in order to allow the chromosomes to
sufficiently explore the solution space, and to prevent premature convergence towards a local
optimal subset.

1 pi ∈ P, i = 1 to |P| group of chromosomes

2 Bpi ∈ B, i = 1 to |P| subsets associated with pi

3 c, crossover rate
4 m, mutation rate

5 Randomly initialise P
6 for g = 1 to gmax do
7 for i = 1 to |P| do

8 T i = Bpi
with a probability of f (Bpi

)

∑
∀Bpi∈B

f (Bpi
)

9 T i+1 = Bp j
with a probability of f (Bp j

)

∑
∀Bp j ∈B

f (Bp j
)

10 if T i == T i+1 then
11 bT i

r = ¬bT i
r ,ar ∈ A

12 else
// Crossover

13 if r < c then
14 rc ∈ {1, ..., |A|/2}
15 for k = 1 to rc do
16 T i+1

k = Bpi

k , T i
k = Bp j

k

// Mutation
17 for j = 1 to |A| do
18 0≤ rm ≤ 1

19 if rm < m then bT i
j = ¬bT i

j

20 if rm < m then bT i+1
j = ¬bT i+1

j

21 i = i+2

22 for i = 1 to P do Bpi
= T i

23 Update Ḃ

Algorithm 4: Genetic Algorithm

A GA-based FS algorithm is simple in concept, it may be implemented to achieve a great
efficiency and obtain quality feature subsets. Being a randomised algorithm, however, there
is no guarantee that a top quality feature subset (if not the global best solution) can be found
in a reasonable or fixed amount of time. Its optimisation response time and solution quality
are not constant. These drawbacks may limit GA’s potential in the more demanding scenarios,
such as on-line steaming FS (Wu et al, 2013). It is also challenging to identify a suitable set
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of required parameter values, since the problem domain generally has very little linkage to
the evolutionary concepts of GA.

3.1.2 Memetic Algorithm

Memetic algorithm (Hart et al, 2004; Ong et al, 2007) (MA) signifies several recent advances
in evolutionary computation. It is commonly used to refer to any population-based evolution-
ary approach with a separate individual learning process (a local improvement procedure),
and alternatively being referred to as hybrid GA, parallel GA, or genetic local search in the
literature (Chen et al, 2011). When applied to the FS domain, the key research question is
how the local search should be implemented. Such an approach typically follows a similar
improvement process as Algorithm 3, except that the features being considered for addition
are from a randomly selected subset, rather than from the complete set of the original features
(Yang et al, 2008).

1 pi, i = 1 to |P| group of chromosomes

2 Bpi ∈ B, i = 1 to |P| subsets associated with pi

3 s, number of best individuals kept for reproduction
4 c, crossover rate
5 m, mutation rate

6 for i = 1 to |P| do
7 Bpi

= Local search(B̃)

8 for g = 1 to gmax do
9 for i = 1 to s do

10 T i = Bpi
with a probability of f (Bpi

)

∑
∀Bpi∈B

f (Bpi
)

11 T i+1 = Bp j
with a probability of f (Bp j

)

∑
∀Bp j ∈B

f (Bp j
)

12 if T i == T i+1 then
13 bT i

r = ¬bT i
r ,ar ∈ A

14 else
15 if r < c then
16 rc ∈ {1, ..., |A|/2}
17 for k = 1 to rc do
18 T i+1

k = Bpi

k , T i
k = Bp j

k

19 for j = 1 to |A| do
20 0≤ rm ≤ 1

21 if rm < m then bT i
j = ¬bT i

j

22 if rm < m then bT i+1
j = ¬bT i+1

j

23 i = i+2

24 Sort B
25 for i = 1 to s do Bp|P|−i

= Local search(T i)

26 Update Ḃ

Algorithm 5: Memetic Algorithm

An alternative local improvement process (Zhu and Ong, 2007) suggests that a ranking
of features should be computed first, and the solutions may then be improved by adding
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or removing features based on the ranking information. Note that this requires the subset
evaluator employed to be able to handle feature ranking, unless the information can be
retrieved elsewhere. It has also been proposed that local search may be performed on an elite
subset of population (Yusta, 2009), as shown in Algorithm 5, and the worse solutions may
be substituted by the locally improved child solutions. The local search mechanism alters
(adding or removing) one feature that provides the greatest increase in terms of evaluation
score.

Although proved beneficial in a majority of scenarios, the presence of greedy mechanisms
may have a negative impact on the quality of the feature subset returned, since the natural
stochastic evolution of the chromosomes may be disrupted by excessive executions of
local adjustments. This is because the variable values (i.e., features) are discrete rather than
continuous. It is also difficult to identify the most suitable local search mechanism, in addition
to the configuration of parameter values.

3.1.3 Clonal Selection Algorithm

Clonal selection algorithm (CSA) (de Castro and Von Zuben, 2002; Haktanirlar Ulutas and
Kulturel-Konak, 2011) is inspired by the adaptive immune response behaviour to an antigenic
stimulus. It exploits the fact that only the antibodies are selected to proliferate. The original
algorithm involves a maturation process for the selected biological cells, which improves the
affinity to the selective antibodies. A simplified implementation of CSA-based FS (Shojaie
and Moradi, 2008) has been proposed. It enables both the selection of important features,
and the optimisation of parameters for the end classifiers (which are implemented using the
support vector machines ). Although the original method integrates the two tasks together, it
is easily modifiable to support generic FS, as shown in Algorithm 6. An adaptive CSA has
also been adopted for network fault FS (Zhang et al, 2009).

1 pi ∈ P, i = 1 to |P| group of antibodies
2 0≤ f (B)≤ 1, normalised subset evaluation score
3 c, maximum number of clones per antibody
4 m, maximum number of bits per mutation
5 s, maximum number of random cells
6 T ∈ T, a set of temporary feature subsets

7 Randomly initialise P
8 for g = 1 to gmax do
9 T= /0

10 for i = 1 to |P| do
11 ci = ce f (Bpi

)− f (Ḃ)

12 for j = 1 to ci do
13 T = Bpi

14 Flip m(1− ci/c) random bits of T
15 T= T∪{T}

16 for i = 1 to s do T= T∪{B̃}
17 Sort T
18 while |T|> |P| do T= T\{T |T|}
19 B= T
20 Update Ḃ

Algorithm 6: Clonal Selection Algorithm
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The initial population is filled with randomly generated antibodies at start. At every
iteration, clones are created for each individual. The better evaluation score an antibody
achieves, the more clones are constructed. The maximum number of allowed clones can be
configured by a parameter c, with an exponential function: ce f (Bpi

)− f (Ḃ) used to calculate the
amount of copies required. The clones are then mutated by flipping bits randomly, and added
to the population. Again, the better the original antibody is, the less bit alteration will occur.
The population is further joined by a set of antibodies which are randomly selected out of the
existing population. The trim process then removes the worse antibodies in order to maintain
the size of the group |P|. The current best solution is updated per iteration, and this process
repeats until the maximum number of iterations is reached.

Despite being a much simplified version of CSA, the CSA-based FS technique still
needs to produce clones of the good candidate feature subsets (antibodies), at every iteration.
The exponential costs of generating, mutating, and evaluating such clones may become a
significant overhead, especially for higher dimensional data sets.

3.2 Physical, Social, and Stochastic Algorithms

3.2.1 Harmony Search

Harmony search (HS) (Geem, 2010; Lee and Geem, 2005) is a recently developed meta-
heuristic algorithm that mimics the improvisation process of musical players. In HS, a possible
solution vector is referred to as a harmony H. A harmony memory H holds a selection of
played harmonies, which can be more concretely represented by a two dimensional matrix.
The number of rows (harmonies) are predefined and bounded by the size of harmony memory
|H|. Each column is dedicated to one musician. It stores the good notes previously played
by the musician, and provides the pool of playable notes (referred to hereafter as the note
domain Ni for pi) for future improvisations.

Table 2 Harmony Encoded Feature Subsets

p1 p2 p3 p4 p5 p6 Represented Subset B

H1 a2 a1 a3 a4 a7 a10 {a1,a2,a3,a4,a7,a10}
H2 a2 a2 a2 a3 a9 a− {a2,a3,a9}
H3 a2 a− a2 a3→a6 a9 a4 {a2,a4,a6,a9}

When applied to FS (Diao and Shen, 2012), a musician is best described as an independent
FS expert, and the available features translate to notes. Each musician may vote for one
feature to be included in the emerging harmony (feature subset), indicating which features
are being nominated. The set of the original features A forms the pool of notes shared by
all musicians. Multiple musicians are allowed to choose the same feature, or they may opt
to pick none at all. The fitness function naturally becomes a feature subset evaluator that
analyses and merits each of the new subsets found during the search process. The HS-based
FS described here employs a distinctive subset representation, which is different from any
other approaches reviewed in this paper (but traditional binary string-based representation
has also been examined (Diao and Shen, 2010)). Table 2 depicts the following three example
harmonies. H1 denotes a subset of 6 distinctive features. H2 shows a duplication of choices
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from the first three musicians, and a discarded note (represented by a−) from p6, representing
a reduced subset B2 = {a2,a3,a9}. In HS, a musician may sometimes select randomly
from all available features (rather than from its note domain). This mutation-type of event
is controlled by the harmony memory considering rate δ . H3 signifies the feature subset
B3 = {a2,a6,a4,a9}, where a3→a6 indicates that p4 originally voted for a3, but it is forced
to change its choice to a6 due to δ activation.

1 pi ∈ P, i = 1 to |P|, group of musicians
2 H j ∈H, j = 1 to |H|, harmony memory

3 Ni =
⋃|H|

j=1 H j
i ,he note domain of pi

4 δ , harmony memory considering rate
5 T , a temporary set of feature subsets

6 for g = 1 to gmax do
7 T = /0
8 for i = 1 to |P| do
9 if rδ < δ then

10 T = T ∪{ra}, 1≤ ra ≤ |A|
11 else
12 T = T ∪{Nir}, 1≤ r ≤ |H|

13 if f (T )≥min{ f (H)},H ∈H then
14 H=H∪{T}
15 H=H\{arg minH∈H f (H)}

Algorithm 7: Harmony Search

The search process of HS is simple. At every iteration, each musician pi picks one feature
from their respective note domain Ni to form a new temporary subset T . The emerging
solution replaces the worst harmony in the harmony memory if it achieves a higher evaluation
score (or an equal score but with smaller cardinality), otherwise it gets discarded completely.
The harmony memory considering rate δ enables a musician to pick a random feature similar
to the mutation operator in GA, effectively encourages exploration.

Dynamic parameter tuning and iterative solution refinement techniques have been pro-
posed (Diao and Shen, 2012), which aim to lessen the effort spent in parameter configuration,
and to locate more compact subsets. A recent study has also investigated additional self-
adjusting mechanisms for HS-based dynamic FS (Zheng et al, 2014), including: restricted
feature domain, harmony memory consolidation, and pitch adjustment. Since HS imposes
only limited mathematical requirements and is insensitive to initial value settings. Importantly,
it has a novel stochastic derivative (for discrete problems such as FS) based on musician’s
experience, rather than gradient (for continuous variables) in differential calculus.

3.2.2 Simulated Annealing

Simulated annealing (SA) (Debuse and Rayward-Smith, 1997) is a generic probabilistic meta-
heuristic for locating an approximation to the global optimum of a given complex function. It
is inspired by the annealing process in metallurgy, a technique involving repeatedly heating
and cooling a certain material in a controlled environment, in order to increase the size of the
crystals, and reduce the defects, both of which depend on the thermodynamic free energy of
the material.
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1 g ∈ {gmin,gmax}, range of temperatures
2 ρ , perturbation percentage
3 c, cooling rate
4 e, equilibrium count
5 emax, maximum number of successful perturbations

6 while g > gmin do
7 B = Ḃ
8 rt = dρ|A|e
9 Flip rt random bits of B

10 d = f (Ḃ)− f (B)
11 if d ≤ 0∨ r < e−d/g then
12 Ḃ = B
13 e = e+1

14 if e == emax then
15 e = 0, g = gc, ρ = ρc

Algorithm 8: Simulated Annealing

The adaptation of SA for FS (Ekbal et al, 2011; Meiri and Zahavi, 2006) requires an
adjustment to the underlying computational algorithm, which ensures the SA keeping a
record of the current best solution. Unlike most other population-based NIMs, SA-based FS
maintains and improves only one single feature subset throughout the search process. As
shown in Algorithm 8, the algorithms checks whether it has reached “thermal equilibrium”
at a given energy state, by keeping a count e that increments each time SA finds a better
quality feature subset. Once encountered sufficient improvements, SA makes a transition in
the energy state, where both the temperature g, and the perturbation (mutation) percentage
ρ are adjusted, by a so-called cooling rate c. The equilibrium count e is also reset. Such a
transition generally indicates that a smaller number of features are adjusted during mutation,
allowing fine tuning to be achieved towards termination.

The major criticism of SA: not able to always return the best solution found throughout
the search process, is addressed in this application to FS. Only having to improve and maintain
a single candidate solution has an obvious advantage of high efficiency. However, this also
makes SA-based FS more prune to obtaining local minimal feature subsets, without careful
consideration of the settings for the starting temperature and cooling rate.

3.2.3 Tabu Search

Tabu search (TS) is a local search-based meta-heuristic designed to avoid the pitfalls of typical
greedy search procedures. It aims to investigate the solution space that would otherwise be
left unexplored. Once a local optimum is reached, upward moves and those worsening the
solutions are allowed. Simultaneously, the last moves are marked as tabu during the following
iterations to avoid cycling.

A TS-based FS method (Hedar et al, 2008), as shown in Algorithm 9, has been proposed
to deal with reduction problems in conjunction with the use of rough set theory. It employs a
binary representation for the feature subsets. It also maintains a tabu list τ that holds a record
of the most recently evaluated solutions, so that the algorithm can avoid being trapped in a
previously explored region, and is refrained from generating solutions of very low quality.
The tabu list is commonly initialised to contain two feature subsets: an empty subset /0, and a
set containing all available features A.
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1 C, candidate solutions ordered by quality
2 τ , tabu list
3 l, number of trials
4 T ∈ T, |T|= l, neighbouring solutions
5 Q, number of occurrences of features in T
6 k ≤ kmax, number of iterations without improvements

7 C= /0, Ḃ = /0, B = /0, τ = { /0}∪{A}
8 for i = 1 to |A| do C= C∪{{a1}}
9 while |B|< |A| do Local search (B)

10 for g = 1 to gmax do
11 while k < kmax do
12 for j = 1 to l do
13 T = B
14 Flip j random bits of T
15 if T ∈ τ then
16 j = j−1
17 else
18 T= T∪{T}

19 B = argmaxT∈T f (T )
20 τ = τ ∪{B}
21 if f (B)> f (Ḃ) then

// Shaking

22 Ḃ = B
23 for ∀C ∈ C do
24 if B∩C /∈ τ ∧ f (B∩C)≥ f (Ḃ) then
25 Ḃ = B∩C

26 else
27 k = k+1

// Diversification
28 for i = 1 to |A| do
29 rQ ∈ {1, · · · , |A|}
30 if rQ > Qi then B = B∪{ai}

Algorithm 9: Tabu Search

The approach starts by ranking the individual features according to their evaluation
scores, and invokes a procedure to generate l new trial solutions that are neighbours to a given
candidate solution, with a hamming distance of up to l features. The algorithm continues to
generate new trial at each iteration, until no improvement has been observed for a predefined
number of iterations. It then initiates two mechanisms to further “mutate” a given candidate
solution: shaking and diversification. Shaking is essentially a greedy backward local search,
each of the selected features are examined one by one, in order to check whether its removal
produces a higher quality solution, or a subset of the same evaluation score with a reduced size.
The diversification procedure attempts to generate a new candidate solution, which contains
features chosen with probability inversely proportional to their number of appearances in
the trial solutions. The process continues until the maximum number of iterations has been
reached.

The greedy mechanisms employed by TS are very beneficial to quickly locating poten-
tially better solutions, but they may lead to locally optimal feature subsets (see Section 4).
TS also adopts a trial generation procedure similar to the cloning process of CSA, although
the cost is not exponential, it may be a significant overhead for high dimensional problems.
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3.3 Swarm Algorithms

3.3.1 Artificial Bee Colony

The artificial bee colony (Karaboga and Basturk, 2007) (ABC) algorithm is inspired by the
intelligent behaviour of honey bee swarm when searching for promising food source. Because
ABC is a relatively new algorithm, and much of its original concept has been modified and/or
omitted in the existing FS adaptations (Palanisamy and S, 2012; Suguna and Thanushkodi,
2011), a brief description of the original method is given here first. In this algorithm, a colony
of artificial bees is divided into three groups: employed bees, onlookers and scouts. The
positions of food sources represent possible solutions to the optimisation problem. The nectar
amount of a food source corresponds to the quality of its associated solution. The number
of employed bees determines the amount of solutions to be simultaneously explored (and
maintained).

After an initial, random distribution of the food source positions is generated, an employed
bee attempts to locate a neighbouring food source and evaluates its nectar amount. If the
quality of the nearby source is greater, the employed bee will point to the newer position,
otherwise the previous food source is preserved. An onlooker watches the employed bees
dance at the hive, sharing information of the discovered sources, and independently selects a
food source to visit (following the same neighbourhood investigation procedure). The better
food sources are recorded in place of the previously found locations. Employed bees abandon
the unvisited food sources and become scouts, who perform random search for new solutions.
This process repeat until a predefined set of requirements is met such as the maximum number
of iterations.

1 pi ∈ P, i = 1 to |P|, the group of employed bees
2 qi ∈ Q, i = 1 to |P|, the group of onlooker bees
3 T i, a temporary subset for pi

4 for g = 1 to gmax do
5 for i = 1 to |P| do
6 if pi.visited == f alse then
7 Bpi

= B̃
8 else
9 if f (neighbour(Bpi

))> f (Bpi
) then

10 Bpi
= neighbour(Bpi

)

11 for i = 1 to |P| do

12 select p j with a probability of f (Bp j
)

∑
|P|
j=1 f (Bp j

)

13 p j.visited = true

14 if f (neighbour(Bp j
))> f (Bqi

) then
15 Bqi

= neighbour(Bp j
)

16 else
17 Bqi

= Bp j

18 Update Ḃ

Algorithm 10: Artificial Bee Colony Optimisation
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The rough set-based ABC FS method (Suguna and Thanushkodi, 2011) first groups the
instances by the decision attributes, and applies a greedy local search to find the reduced
feature sets (for each class). ABC is then used to choose a random number of features out of
each set, and to combine the chosen features into the final feature subset. Due to the presence
of the initial local search, this approach only requires a population size as big as the number
of classes. A more general approach (Palanisamy and S, 2012) considers features as food
sources. It configures the population of both employed bees and onlookers to be equal to
the number of features. Each employed bee is allocated one feature at the start, and may be
merged with others following the decisions of an onlooker, forming feature subsets in the
process. The merge of Bpi

and Bp j
only happens if r( f (Bpi

)− f (Bp j
))> 0, r ∈ [0,1].

In order to make the approach more scalable for data sets with a large number of features,
an alternative method is described in Algorithm 10 that fits more closely to the original ABC
algorithm. It uses a predefined population size independent of the number of features, which
is initialised with randomly formed subsets B̃. Both the employed bees and onlookers employ
the same neighbourhood investigation procedure, and accept a neighbouring solution if it is
better than the subset it is currently examining. An onlooker qi picks a particular employed
bee p j with probability:

prob
Bp j =

f (Bp j
)

∑
|P|
j=1 f (Bp j

)
(4)

which is in proportion to the evaluation score of its current feature subset f (Bp j
), and marks

p j as visited. At the end of the neighbourhood inspecting procedure, any employed bee that
is unvisited generates and evaluates a new random subset B̃, as its current solution is very
likely to be of a lower quality. The process repeats until gmax number of iterations is reached.
The current best solution Ḃ which has been updated at every iteration, is returned as the final
result. A solution adjustment procedure similar to the move operation, previously described
in Algorithm 1, is also employed with promising results. In particular, it allows an onlooker to
generate a neighbouring solution by moving its current subset towards that of the inspecting
employed bee.

3.3.2 Ant Colony Optimisation

The ant colony optimisation (ACO) algorithm (Dorigo and Sttzle, 2010) is originally proposed
for solving hard combinatorial optimisation problems. It is based on the behaviour of ants
seeking an optimal path between their colony and a source of food. The approach uses a
group of simple agents called ants that communicate indirectly via pheromone trails, and
probabilistically constructs solutions to the problem being solved. Several adaptations of
the ACO algorithm have been used in the FS problem domain, a number of which focus on
rough set (Chen et al, 2010; Ke et al, 2008) and fuzzy-rough set-based (Jensen and Shen,
2005) subset evaluators, while a more general approach also exists in the literature (Kabir
et al, 2012).

In ACO-based FS algorithms, features are represented as the nodes in a fully connected
bi-directional graph, a candidate feature subset B is therefore a path that connects the selected
features. Two sets of hints are available to the ants: the heuristic information η and the
pheromone values τ . η is a pre-constructed matrix of size |A|2, where A is the set of original
features. cell η jk = ηk j stores the evaluation score of the feature subset {a j,ak}, and signifies
the quality of the path between a j and ak. τ is another matrix of same size that stores the
pheromone values deposited by the ants, it is initially filled with a constant value τ0.
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1 pi ∈ P, i = 1 to |P|, group of ants

2 Bpi
, current edges (feature subset) traversed by pi

3 η jk = ηk j , j,k = 1 to |A|, heuristic information
4 τ jk = τk j , j,k = 1 to |A|, pheromone values
5 τ0, initial pheromone
6 ρ , evaporation rate

7 Initialise Parameters
8 for j = 1 to |A|−1 do
9 for k = j+1 to |A| do

10 η jk = f (T )
11 τ jk = τ0

12 for g = 1 to gmax do
13 for j = 1 to |A|−1, k = j+1 to |A| do
14 τ jk = ρτ jk

15 normalise τ

16 for i = 1 to |P| do
17 ac = ar,1≤ r ≤ |A|
18 Bpi

= {ac}
19 while |Bpi |< |A| do
20 select al /∈ Bpi with probability τlc

α ηlc
β

21 if f (Bpi ∪{al})< f (Bpi
) break

22 Bpi
= Bpi ∪{al}

23 τlc = (1− f (Bpi
))/2+ f (Bpi

)τlc
24 ac = al

25 for i = 1 to |P| do
26 for j = 1 to |A|−1, k = j+1 to |A| do
27 τ jk = τ jk + f (Bpi

)

28 Update Ḃ

Algorithm 11: Ant Colony Optimisation

During every iteration, each ant beings from a random feature, an edge connecting the
previous node ac and an unvisited feature al is determined with probability:

probl =
τlc

α ηlc
β

∑al /∈B τlc
α ηlc

β
(5)

where α and β are predefined parameters. Following the path construction process, an active
(on-line) update of τ is performed, according to rules such as:

τ jk = mτ jk +n
1
|B|

(6)

where m and n are predefined weights (Jensen and Shen, 2005; Ke et al, 2008). A passive
(off-line) update (Jensen and Shen, 2005; Ke et al, 2008) may also be performed once the
whole path (feature subset) B is established:

τ jk =

{
ρτ jk + f (B), j ∈ B∧ k ∈ B
ρτ jk, otherwise

(7)

where ρ is the evaporation rate. For feature subset evaluators with a pre-determined, maximum
evaluation score, e.g., rough and fuzzy-rough set-based evaluators that have a score range of
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0 to 1, such information may be used to stop an ant from traversing towards further nodes,
once the highest possible fitness value is obtained. For a generic evaluation technique, an ant
may stop if f (B)> f (Ḃ), or f (B∪{al})< f (B), where l is the feature about to be included.

As ACO requires a pre-constructed heuristic information matrix, an O(|A|2) number of
subset evaluations is necessary to calculate the pair-wise feature dependency, which may
become prohibitive for large data sets or high complexity subset evaluators. To combat this,
a starting set of essential features may be calculated in advance, such as the core for rough
set and fuzzy-rough set-based techniques (Chen et al, 2010). This may significantly reduce
this computational overhead, thereby eliminating the need to consider such features while
traversing the graph. In addition, a normalisation process for τ has been proposed (Ke et al,
2008) to avoid search stagnation caused by extreme relative differences of pheromone trails.

3.3.3 Firefly Algorithm

The firefly algorithm (FA) (Yang, 2008) is a meta-heuristic inspired by the flashing behaviour
of fireflies, which acts as a signal system to attract others. This approach has several under-
lying assumptions: 1) all fireflies are uni-sexual, so that an individual will be attracted to
all others; 2) the brightness of a firefly is proportional to its fitness value but can decrease
when observed over distance; and 3) a random exploration is performed if no brighter fireflies
can be seen. It has been shown that FA degenerates into the particle swarm optimisation
algorithm with specific parameter settings.

1 pi ∈ P, i = 1 to |P|, group of fireflies
2 qi ∈ Q, i = 1 to |Q|, |Q|= |P|, temporary group of fireflies
3 γ , light absorption coefficient
4 Ii j , observed brightness of p j by pi

5 Initialise Parameters
6 Random Initialisation
7 for g = 1 to gmax do
8 Q = /0
9 for i = 1 to |P| do

10 select p j , j = argmax j Ii j , j 6= i

11 di j = d(Bpi
,Bp j

)

12 pi′ = move pi towards p j by di je−γdi j
2

13 if f (Bpi′
)> f (Bpi

) then Bqi
= Bpi′

14 P = Q
15 Update Ḃ

Algorithm 12: Firefly Algorithm

FA has been successfully applied to addressing rough set-based FS problems (Banati
and Bajaj, 2011), via the use of a population size equal to the number of features. Each
individual’s feature subset is initialised with one of the original features: Bpi

= {ai}. The
brightness Ii of pi is determined by the rough set dependency score of its associated feature
only. The best mating partner p j for a firefly pi should satisfy: 1) I j > Ii, 2) the distance
f ∗− f (Bpi ∪Bp j

) is minimal for all p j ∈ P, j 6= i, and 3) f (Bpi ∪Bp j
) > f (Bp j

). The two
subsets then merge together and the process repeats for all fireflies until the maximum rough
set dependency score is achieved. This implementation removes all stochastic components
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from the base FA algorithm, and delivers compact rough set reducts in a manner similar to
that of a greedy local search.

An alternative FA-based FS approach can be developed. Briefly, it makes better use of the
stochastic elements proposed by the original, base FA algorithm. As illustrated in Algorithm
12, such an approach supports the use of any subset-based evaluator, and shares similar
intentions and modifications as those of the improved ABC algorithm explained in 3.3.1. A
population P of pre-defined fireflies pi are initialised with random subsets. The brightness of
pi when observed by p j is calculated using:

Ii j = f (Bp j
) · e−γd(Bpi

,Bp j
)
2

(8)

where γ is a pre-defined parameter termed the “absorption coefficient”. This implements
the original idea in which the attractiveness of a firefly decreases as the distance between it
and its mating partner increases. In FS terms, this means that the larger |Bpi ⊕Bp j | (the total
number of mismatched features) is, the less bright it will be perceived. A subset Bpi

is moved
towards its best mating partner with a distance of:

di j = d(Bpi
,Bp j

) · e−γd(Bpi
,Bp j

)
2

(9)

The resulting subset Bpi′
replaces the previous Bpi

if it is a better solution, otherwise the
original subset is maintained. At every iteration, the current best solution Ḃ is updated and
returned once the process reaches maximum number of iterations.

3.3.4 Particle Swarm Optimisation

Particle swarm optimisation (PSO) (AlRashidi and El-Hawary, 2009) is a method that
optimises a problem by exploiting a population of particles P, also referred to as the swarm,
which move around in the solution space with simulated positions and velocities. The
movement of a given particle is not only influenced by its own current best position, but
also guided towards the currently known group-wise best position in the search space. The
individual current best solution is constantly updated when the individual particles locate
better positions. The previously introduced FA is very closely related to PSO, having many
similar underlying principles, especially with regards to the concept of particle movements.
However, the fireflies in FA are only attracted and move towards locally observed best mating
partners.

When applied to FS, the velocity vi which represents the number of features to be altered,
of a given candidate feature subset Bpi

is calculated by:

vi = wgvi + c1rd1 d(Ḃpi
,Bpi

)+ c2rd2 d(Ḃpi
,Bpi

) (10)

where wg is a gradually decreasing inertia weight, and c1 and c2 are the acceleration constants
giving weights to the current individual best and the group-wise best solution, respectively.
The outcome of the velocity calculation, is further randomised via the use of random numbers
0≤ rd1 ,rd2 ≤ 1. It has been suggested in the literature (Wang et al, 2007) that the velocity
should be regulated by a pre-defined value vmax, since the amount of features being modified
can potentially become very large. Finally, once the number of features to be modified is
determined, the new candidate subset is calculated following Algorithm 1.

There exists significant debate surrounding the velocity calculation (Chuang et al, 2011;
Liu et al, 2011; Wang et al, 2007). This reflects the discrepancy between the intended usage
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1 pi ∈ P, i = 1 to |P|, group of particles

2 Ḃpi
, local best subset found by pi.

3 c1, c2, acceleration constants towards Ḃpi
and Ḃ

4 wg ∈ [wmin,wmax], gradually decreasing inertia weight
5 vi ∈ [1,vmax], current and the maximum velocity

6 Initialise Parameters
7 Random Initialisation
8 for g = 1 to gmax do
9 Update Ḃ, Ḃpi

10 for i = 1 to P do
11 0≤ rd1 ,rd2 ≤ 1

12 vi = wgvi + c1rd1 d(Ḃpi
,Bpi

)+ c2rd2 d(Ḃpi
,Bpi

)

13 Move Bpi
towards Ḃpi

by vi

14 wg = wmin +(1−g/gmax)(wmax−wmin)

Algorithm 13: Particle Swarm Optimisation

of “movement” proposed in the base PSO algorithm, and its actual implementation in PSO-
based FS. For continuous-valued optimisation, the notions such as velocity and movement
are intuitive to understand, which is used to locate a possible intermediate, interpreted
solution between two solution vectors (points) in a continuous space. Yet in FS, the features
are discrete-valued, and the current binary representation does not allow straightforward,
meaningful interpretation between two feature subsets. Therefore, PSO- and FA-based FS
methods may potentially benefit from the integer-valued representation as used in HS-based
FS.

4 Experimentation

A series of systematic tests are carried out using a selection of feature subset evaluators,
including CFS (Hall, 1998), PCFS (Dash and Liu, 2003), and FRFS (Jensen and Shen, 2009b),
which differ in terms of computational complexity and characteristics. For instance, CFS
is the most lightweight method. It addresses the problem of FS through a correlation-based
approach, and identifies features that are highly correlated with the class, yet uncorrelated
with each other (Hall, 1998). PCFS is an FS approach that attempts to identify a group of
features that are inconsistent, and removes irrelevant features in the process (Dash and Liu,
2003). FRFS, similar to most rough set-based methods, exploits rough set notions such as
the lower and upper approximations of a given concept, and is able to identify very compact
subsets of features that can fully discern the training objects into their respective classes. Note
that FRFS is relatively high in terms of computational complexity, and finding the minimal
sized solution of full discernibility (a minimal fuzzy-rough reduct (Jensen and Shen, 2009b))
remains as significant research.

In total 12 real-valued UCI benchmark data sets (Frank and Asuncion, 2010) are used, in
order to demonstrate the capabilities of the reviewed approaches. Several data sets are high
in dimension and hence, present reasonable challenges to FS. Lower dimensional problems
(e.g., cleveland and heart) are also included to see whether the feature subsets selected by
the algorithm are consistent. Table 3 provides a summary of these data sets.

Stratified 10-fold cross-validation (10-FCV) is employed for data validation, where a
given data set is partitioned into 10 subsets. Of these 10 subsets, nine are used to form one
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Table 3 Data Set Information

Data Set Feature Instance Class C4.5 (%) NB (%)

arrhythmia 280 452 16 65.97 61.40
cleveland 14 297 5 51.89 55.36
handwritten 257 1593 10 75.74 86.21
heart 14 270 2 77.56 84.00
ionosphere 35 230 2 86.22 83.57
libras 91 360 15 68.24 63.635
multifeat 650 2000 10 94.54 95.30
ozone 73 2534 2 92.70 67.66
secom 591 1567 2 89.56 30.04
sonar 61 208 2 73.59 67.85
water 39 390 3 81.08 85.40
waveform 41 699 2 75.49 79.99

training fold. The FS methods are employed to identify quality subsets, which are then used
to build classification models. A single subset is retained as the testing data, so that the built
classifiers can be compared using the same unseen data. This process is then repeated 10
times (the number of folds). The advantage of 10-FCV over random sub-sampling is that
all objects are used for both training and testing, and each object is tested only once per
fold. The stratification of the data prior to its division into different folds ensures that each
class label has equal representation in all folds, thereby helping to alleviate bias/variance
problems (Bengio and Grandvalet, 2004). In the experiment, unless stated otherwise, 10-FCV
is executed 10 times (10×10-FCV) in order to reveal the impact of the stochastic nature
of the approaches employed. The differences in performance of the various methods are
statistically compared using Paired T-Test with two-tailed P = 0.01.

Note that since 10×10-FCV is imposed, each of the figures displayed in the following
tables is an averaged result of 100 search outputs (per data set per algorithm). Obviously, the
searches are carried out using the same fold of the data set each time, so that their results
(and the final averaged figures) are directly comparable.

4.1 Feature Selection Results

Tables 4 details the results collected with three different subset evaluators and all of the
reviewed search algorithms. As the time complexity of a subset evaluation using CFS is very
low, the maximum search iterations/generations for this set of experiment is set to a very
large value (gmax = 50,000), in order to allow all algorithms to fully converge. Based on the
figures shown in this table, GA, HS, and MA deliver very similar results, and work well for
lower dimensional data sets such as cleveland, heart, ionosphere, and water. Algorithms
such as SA and TS demonstrate very good performance for the most complex data sets:
arrhythmia, multifeat, and secom. ABC, ACO, and FF are not particularly competitive in
identifying feature subsets with the highest evaluation scores. However, they are relatively
good at producing very compact feature subsets, with acceptable evaluation quality.

For results obtained with PCFS, TS fails to find subsets with the best evaluation scores for
most of the data sets, which forms a sharp contrast to its strong performance in the previous
set of experiment. However, it still identifies the best solutions for multifeat and waveform,
which are two of the higher dimensional problems. CSA, GA, and HS demonstrate their
capabilities in finding good quality and compact feature subsets for 7/12 data sets. GA is the
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Table 4 Feature selection results using CFS, PCFS, and FRFS, showing both the evaluation scores (left) and
the sizes (right) of the selected feature subsets. Bold figures indicate the highest evaluation scores, shaded cells
signify overall most compact best solutions.

CFS

Data Set ABC ACO CSA FF GA HS MA PSO SA TS

arrhythmia 0.349 10.5 0.369 15.5 0.467 24.6 0.394 27.7 0.263 61.4 0.466 26.8 0.275 58.4 0.280 16.4 0.466 23.5 0.467 25.1
cleveland 0.271 5.4 0.239 6.4 0.271 5.4 0.269 5.0 0.274 6.7 0.274 6.7 0.274 6.7 0.274 6.7 0.266 4.4 0.274 6.6
handwritten 0.435 92.0 0.444 31.5 0.527 78.0 0.484 58.0 0.513 97.9 0.525 93.7 0.467 120 0.473 122 0.526 68.2 0.527 82.3
heart 0.337 5.3 0.313 6.3 0.337 5.3 0.334 5.0 0.338 6.4 0.338 6.4 0.338 6.4 0.338 6.4 0.333 4.7 0.335 5.3
ionosphere 0.523 9.6 0.511 9.5 0.538 9.4 0.528 9.2 0.539 10.4 0.539 10.3 0.539 10.4 0.535 10.9 0.536 8.4 0.537 9.3
libras 0.577 23.5 0.570 15.6 0.610 23.0 0.589 21.7 0.611 31.4 0.611 28.7 0.607 33.7 0.595 26.6 0.607 19.1 0.611 25.0
multifeat 0.824 235 0.802 26.9 0.923 106 0.836 88.4 0.879 258 0.919 141 0.836 318 0.849 357 0.926 76.0 0.926 80.0
ozone 0.100 14.0 0.102 10.7 0.112 14.0 0.106 13.0 0.114 21.9 0.114 21.4 0.113 23.3 0.110 25.3 0.107 9.5 0.114 19.8
secom 0.024 2.9 0.085 14.2 0.101 14.5 0.045 15.7 0.008 97.0 0.064 22.5 0.025 95.6 0.018 20.8 0.101 14.1 0.100 14.3
sonar 0.330 11.4 0.316 17.7 0.360 16.7 0.339 12.5 0.360 17.7 0.360 17.7 0.360 17.6 0.329 11.9 0.358 15.4 0.359 16.6
water 0.417 8.2 0.387 10.3 0.426 10.4 0.416 7.5 0.426 10.5 0.426 10.5 0.426 10.5 0.417 8.9 0.423 8.4 0.424 9.2
waveform 0.366 11.3 0.361 14.5 0.383 13.1 0.364 10.5 0.384 14.9 0.384 14.9 0.384 14.9 0.372 12.4 0.382 12.6 0.384 14.9

PCFS

Data Set ABC ACO CSA FF GA HS MA PSO SA TS

arrhythmia 0.987 121 0.752 8.8 0.988 107 0.977 38.7 0.989 45.6 0.989 29.1 0.989 114 0.989 111 0.989 29.1 0.983 21.6
cleveland 0.781 8.0 0.775 8.8 0.781 7.9 0.715 6.4 0.781 7.9 0.781 7.9 0.781 7.9 0.781 7.9 0.781 8.0 0.738 6.7
handwritten 1.000 27.1 1.000 26.9 1.000 22.0 1.000 23.1 1.000 41.2 1.000 70.2 1.000 40.5 1.000 24.0 1.000 83.4 0.999 18.1
heart 0.961 9.5 0.955 10.2 0.961 9.5 0.915 7.2 0.961 9.5 0.961 9.5 0.961 9.5 0.961 9.5 0.922 8.7 0.947 8.3
ionosphere 0.996 9.8 0.993 10.0 0.996 7.0 0.996 8.7 0.996 10.0 0.996 6.8 0.996 10.1 0.996 8.1 0.989 15.6 0.991 6.4
libras 0.971 35.2 0.935 19.0 0.972 17.2 0.968 24.5 0.972 18.2 0.972 16.4 0.972 33.3 0.972 28.4 0.961 41.6 0.967 16.0
multifeat 1.000 14.6 1.000 10.6 1.000 13.1 1.000 19.5 1.000 44.9 1.000 9.1 1.000 43.8 1.000 13.4 1.000 325 1.000 6.1
ozone 0.997 23.0 0.969 14.2 0.999 16.6 0.996 20.1 1.000 21.0 0.999 18.4 1.000 31.8 1.000 26.0 0.994 34.5 0.999 19.1
secom 0.986 211 0.936 2.5 0.989 213 0.974 150 0.990 198 0.988 23.7 0.988 314 0.990 256 0.971 294 0.979 97.3
sonar 0.993 24.8 0.946 11.6 0.993 11.7 0.989 15.8 0.993 12.4 0.991 11.8 0.993 23.7 0.993 17.6 0.924 30.3 0.985 11.6
water 0.994 15.8 0.975 10.8 0.995 9.8 0.990 10.5 0.995 10.0 0.995 10.2 0.995 13.8 0.995 12.2 0.927 18.9 0.990 9.3
waveform 0.999 12.4 0.999 11.4 0.999 9.7 0.999 10.9 1.000 11.5 1.000 11.1 1.000 14.9 1.000 12.9 0.979 20.1 1.000 10.6

FRFS

Data Set ABC ACO CSA FF GA HS MA PSO SA TS

arrhythmia 1.000 40.4 1.000 23.6 1.000 29.0 1.000 29.2 1.000 63.4 1.000 25.1 1.000 63.1 1.000 34.5 1.000 108 1.000 24.9
cleveland 0.929 13.0 0.929 13.0 0.929 13.0 0.854 10.9 0.999 12.9 0.999 12.9 0.999 12.9 0.999 12.9 0.929 11.2 0.989 11.9
handwritten 1.000 26.6 1.000 27.5 1.000 22.0 1.000 22.9 1.000 40.4 0.999 22.5 1.000 40.0 1.000 23.8 1.000 129 0.999 22.0
heart 0.959 12.8 0.960 13.0 0.959 12.8 0.909 10.7 1.000 10.1 1.000 10.0 1.000 10.1 1.000 10.3 0.989 10.6 0.959 9.1
ionosphere 0.993 15.3 0.994 16.6 0.993 14.0 0.992 15.1 1.000 25.7 1.000 25.7 1.000 26.1 1.000 26.5 0.991 14.9 1.000 25.9
libras 0.997 19.7 0.997 21.3 0.998 18.7 0.997 19.5 1.000 29.4 1.000 20.7 1.000 29.9 1.000 23.2 0.999 26.2 0.999 20.4
multifeat 1.000 20.3 1.000 17.6 1.000 18.9 1.000 27.3 1.000 49.8 1.000 15.3 1.000 41.8 1.000 21.0 1.000 323 0.562 6.0
ozone 0.975 36.5 0.962 35.7 0.973 32.9 0.976 34.5 0.982 48.5 0.924 38.5 0.982 48.8 0.982 51.9 0.919 36.1 0.979 33.7
secom 1.000 35.2 1.000 20.5 1.000 37.0 1.000 26.6 1.000 67.5 1.000 15.8 1.000 67.1 1.000 31.7 1.000 296 0.803 7.0
sonar 1.000 13.3 1.000 14.5 1.000 12.9 1.000 13.5 1.000 17.3 1.000 13.0 1.000 16.9 1.000 14.1 1.000 17.8 0.998 11.7
water 0.998 18.0 0.998 19.0 0.998 15.9 0.997 17.8 1.000 20.8 1.000 19.8 1.000 22.0 1.000 22.1 0.981 19.2 1.000 19.9
waveform 1.000 17.0 1.000 18.0 0.999 16.5 1.000 17.0 1.000 19.2 1.000 18.4 1.000 19.4 1.000 19.2 0.996 20.5 1.000 17.4

only algorithm that identifies the overall best solutions for the ozone and secom data sets.
Note that the search outputs from these algorithms can differ significantly. Taking the secom
data set as an example, the overall best evaluation score is 0.990 (achieved by CSA, GA, and
PSO) with around 200 features, while ACO, HS, and TS yield subsets with an average size of
only 2.5, 23.7, and 97.3, respectively. The evaluation scores of the resultant solutions are also
significantly lower in comparison, indicating that only local minimal solutions are possibly
returned. Similar observations are also reflected by the results for the arrhythmia data set.

FRFS is a computationally intensive evaluator that requires a considerable amount of time
when the number of training objects is very large. Because of the underlying mathematical
properties of rough and fuzzy-rough sets (Jensen and Shen, 2009b; Mac Parthaláin et al,
2010b), it is easy to find feature subsets with almost full dependency scores (for the commonly
adopted fuzzy t-norms and fuzzy implicators). However, the search for the most compact
solutions (fuzzy-rough reducts) is very challenging. These characteristics of FRFS help to
compare the size reduction capabilities of the reviewed methods. Note that the evaluation
scores are not compared statistically, since subsets with full dependency score can be readily
identified. HS performs very well in this set of experiment, mainly owning to the fact that
it is tailored to solving FRFS problems in the first place (Diao and Shen, 2010), and that it
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Table 5 C4.5 (left) and NB (right) classification accuracies using the feature subsets found with the respective
search algorithms via CFS, PCFS, and FRFS. Bold figures indicate best accuracy (per classifier), shaded cells
signify higher accuracies are achieved by both classifiers.

CFS

Data Set ABC ACO CSA FF GA HS MA PSO SA TS

arrhythmia 63.0 63.2 66.8 67.0 67.1 68.5 66.8 67.0 66.8 66.8 66.9 68.9 66.9 67.4 63.5 63.3 67.4 69.0 67.2 69.0
cleveland 55.8 56.3 55.3 56.5 55.8 56.3 55.8 56.6 56.4 56.9 56.4 56.9 56.4 56.9 56.4 56.9 55.0 55.7 56.3 57.0
handwritten 75.0 83.7 70.2 72.9 75.9 84.7 74.3 82.0 75.5 85.2 75.9 85.3 75.4 85.5 75.3 85.3 76.0 83.8 76.1 84.9
heart 81.7 83.0 81.2 84.1 81.7 83.0 82.2 83.0 80.6 85.0 80.6 85.0 80.6 85.0 80.7 85.0 82.1 82.3 81.7 82.9
ionosphere 88.2 85.6 87.6 86.3 87.8 86.8 88.0 86.1 88.4 86.9 88.3 86.9 88.3 86.9 88.0 86.4 87.4 87.0 87.3 87.0
libras 65.6 60.7 62.1 57.3 67.0 61.6 65.5 61.0 67.6 62.1 67.3 61.6 68.2 61.8 66.8 61.4 65.9 61.4 66.9 61.3
multifeat 94.3 95.7 93.4 95.2 94.9 97.1 92.8 95.7 94.6 96.3 94.9 96.8 94.6 95.8 94.7 95.9 95.1 97.2 94.9 97.2
ozone 93.4 75.8 93.4 77.2 93.1 74.8 93.3 76.1 93.3 73.9 93.2 73.9 93.4 73.7 93.3 73.5 93.4 78.4 93.1 74.0
secom 93.4 88.7 92.5 82.6 92.5 84.2 92.7 75.1 90.7 84.1 92.1 71.2 91.2 88.7 92.7 74.2 92.5 84.7 92.4 83.7
sonar 72.3 66.6 73.2 66.3 73.0 66.6 73.4 65.9 73.1 66.6 73.2 66.6 73.3 66.5 72.8 66.3 72.3 66.6 74.1 66.9
water 81.9 84.9 82.7 85.8 82.8 85.9 82.3 85.1 83.4 85.9 83.3 85.9 83.3 85.9 82.1 85.2 83.0 85.6 82.9 85.6
waveform 76.9 79.8 77.4 80.5 77.6 80.7 76.8 79.5 77.5 80.2 77.5 80.2 77.5 80.2 76.9 79.7 77.6 80.9 77.5 80.5

PCFS

Data Set ABC ACO CSA FF GA HS MA PSO SA TS

arrhythmia 66.4 63.3 62.6 61.5 66.3 63.5 66.7 66.2 66.2 65.9 66.2 66.8 66.3 64.0 66.1 63.9 66.2 67.5 66.7 68.2
cleveland 54.5 55.9 54.0 56.0 54.5 55.9 56.4 55.8 54.5 55.9 54.5 55.9 54.5 55.8 54.4 55.9 54.5 55.8 55.2 56.0
handwritten 65.2 68.4 65.6 69.1 63.2 66.2 63.8 66.7 68.1 73.3 69.9 75.9 67.9 72.8 63.7 66.6 70.2 76.8 71.1 73.5
heart 78.5 84.4 78.6 84.2 78.5 84.4 80.2 83.0 78.5 84.4 78.5 84.4 78.5 84.4 78.5 84.4 79.6 83.1 79.5 84.5
ionosphere 85.8 79.6 86.0 80.5 85.7 78.8 86.0 79.9 85.4 79.0 85.7 80.1 85.3 80.1 85.5 78.6 85.5 81.0 87.4 80.3
libras 66.0 61.9 64.5 58.7 64.4 60.2 65.9 61.8 64.1 60.4 65.4 61.5 65.1 61.6 65.3 61.6 66.1 61.5 63.7 59.9
multifeat 79.5 82.1 83.8 86.5 78.7 81.0 80.2 82.7 86.0 89.5 81.7 84.3 85.5 89.1 78.5 81.0 93.4 94.9 89.8 91.4
ozone 93.0 72.5 93.1 75.7 93.3 76.3 93.1 73.7 93.1 73.4 93.2 75.6 93.1 70.6 93.0 71.8 92.9 69.4 93.2 75.2
secom 90.4 36.2 93.3 90.9 90.7 37.8 91.4 49.6 90.5 37.0 92.5 70.9 90.4 32.3 90.2 35.0 89.9 31.9 92.1 67.6
sonar 73.5 67.1 73.2 66.5 74.1 66.3 73.9 66.7 72.4 66.6 73.5 66.6 73.0 66.3 73.7 66.6 72.2 66.9 73.8 67.3
water 81.5 85.7 81.4 84.9 81.1 86.3 81.5 85.9 81.7 85.9 81.4 86.2 81.7 86.1 81.7 86.3 80.2 83.2 81.9 86.1
waveform 74.6 78.5 75.3 80.0 73.7 78.9 75.0 78.6 75.0 79.1 74.7 79.5 74.3 78.8 74.8 79.1 71.6 75.8 75.8 80.2

FRFS

Data Set ABC ACO CSA FF GA HS MA PSO SA TS

arrhythmia 57.8 58.5 57.1 58.5 58.7 61.8 52.3 57.3 58.0 57.2 60.6 60.6 63.0 57.2 56.6 58.2 62.1 57.0 59.5 61.5
cleveland 50.4 55.1 50.4 55.1 50.4 55.1 49.9 54.1 49.7 55.1 49.7 55.1 49.7 55.1 49.7 55.1 55.8 56.0 51.8 53.8
handwritten 65.6 68.2 66.7 69.0 62.0 65.1 63.5 66.1 68.3 71.2 64.3 67.0 67.4 72.0 62.2 64.1 73.9 83.3 65.7 67.9
heart 77.8 82.6 77.8 83.0 77.8 82.6 78.9 83.0 78.0 82.4 78.9 82.4 78.5 82.4 78.3 81.7 79.3 82.2 78.2 80.7
ionosphere 88.5 83.3 89.8 85.0 89.1 83.9 88.3 83.7 88.7 83.9 88.5 83.9 88.5 83.7 88.5 83.9 85.7 82.6 86.5 83.9
libras 63.6 56.1 60.8 58.5 59.9 54.6 63.1 58.6 62.9 58.8 63.1 53.6 66.0 60.3 64.4 57.2 62.1 58.8 63.3 58.9
multifeat 80.6 84.4 83.1 88.3 82.6 86.4 81.8 86.6 87.0 91.1 84.1 88.6 85.8 90.2 83.2 86.7 93.8 95.2 84.8 86.0
ozone 93.3 69.9 93.0 67.6 92.7 70.3 93.0 69.4 93.2 67.0 93.1 69.7 93.2 68.3 93.1 67.3 92.8 68.5 93.5 69.6
secom 92.7 71.6 92.9 91.6 92.7 77.4 93.2 69.4 91.6 50.4 93.1 93.1 91.4 43.9 92.7 74.6 90.2 31.3 93.4 93.4
sonar 75.3 69.2 76.0 73.9 76.2 71.1 71.6 71.5 71.7 67.9 76.7 71.2 70.0 67.4 70.7 65.4 70.8 68.4 76.4 76.4
water 80.8 83.9 80.0 83.9 78.7 85.0 79.7 83.9 79.7 83.9 80.6 84.4 81.4 85.0 81.3 83.9 79.6 84.2 79.7 84.6
waveform 71.1 74.8 73.8 78.5 71.0 74.9 70.4 75.8 70.4 75.7 72.9 75.7 71.6 75.6 73.0 76.5 71.8 75.5 72.6 75.9

also embeds mechanisms to actively refine the sizes of the feature subsets during the search.
GA, MA, and PSO also deliver competitive performance. Although TS obtains best results
for 6/12 data sets, it fails to optimise the FRFS dependency scores for multifeat and secom,
producing sub-optimal solutions.

4.2 Classification Results

The classification algorithms adopted in the experiments include two commonly used tech-
niques: 1) the tree-based C4.5 algorithm (Witten and Frank, 2005) that uses entropy to
identify the most informative feature at each level, in order to split the training samples
according to their respective classes; and 2) the probabilistic Bayesian classifier with naive
independence assumptions (NB) (John and Langley, 1995). Obtaining the views of two
different classifiers helps to provide a more comprehensive understanding of the qualities of
the selected feature subsets. Table 5 shows the accuracies of the classifiers, trained using the
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same 10-FCV folds as those used to perform FS. The quality of the underlying subsets have
already been discussed in the previous section, the accuracies of the full data sets (without
FS) is given in Table 3.

For features selected by CFS, the worst solutions (with an averaged score of 0.024 and
size of 2.9) that are found by ABC, actually result in the best classification performance for
both tested classifiers for the secom data set. This shows that for filter-based evaluators, a
solution that achieves the highest evaluation score does not necessarily guarantee the best
classifier model, subsequently learnt using such features, since these subsets are selected
independent of the end classification algorithms, However, in general, there is a reasonable
correlation between subset quality (judged by the CFS evaluator) and the classification
accuracy. Feature subsets selected according to CFS also build slightly more accurate models
than those constructed based on PCFS and FRFS, and more algorithms are able to find better
performing solutions.

For the set of feature subsets selected using PCFS, CSA and TS seem to lead to the best
classifiers overall. Each of the remaining algorithms also finds best results for one or more
data sets. For the secom data set, all of the reviewed algorithms, apart from ACO, select
features that do not contribute to good NB classifier models. Several models result in an
averaged classification accuracy lower than 40%. A closer investigation reveals that in fact,
local best solutions have been selected by these algorithms for a number of cross validation
folds, which have a large, negative impact in the final 10-FCV results.

For classifiers built using feature subsets selected by FRFS, algorithms such as ACO, MA,
SA, and TS all perform reasonably well. Both tested classifiers also tend to agree more often
(than the two previous sets of experiments) in terms of predictive accuracy. The performance
of a given classifier, and the evaluation score of its underlying feature subset are also well
correlated for FRFS. Note that since FRFS generally helps to find more compact subsets, the
resultant classification accuracies are also slightly lower when compared to those obtained by
CFS or PCFS.

5 Conclusion

This paper has presented a comparative review of ten different NIMs that have been applied
to the problem domain of FS. Existing methods that are based on the classic heuristics,
such as ACO, GA, and PSO, are summarised. Several more recent developments, including
CSA, ABC, and FA, which are proposed to solve more specific scenarios (or work with
fixed types of feature subset evaluator) are introduced and modified considerably. These
modifications enable the approaches to work with generic, feature subset-based evaluators
and thus, allow their FS results to be compared systematically. Experimental evaluation
shows that all reviewed algorithms are capable of finding good quality solutions. SA and
TS are particularly powerful in optimising the evaluation scores of the CFS evaluator, and
work well with a few high dimensional problem. Algorithms such as CSA, GA, and HS offer
more balanced results for all tested subset evaluators, in terms of both evaluation score and
subset size. HS also excels in size reduction and produces very compact fuzzy-rough reducts
for most of the tested data sets. The selected feature subsets are verified via the use of two
classification algorithms: C4.5 and NB, the performance of the resultant models generally
agree with the quality measurement by the filter-based evaluators, although, there exist cases
where feature subsets with very low evaluation lead to the most accurate classifiers.

Stochastic FS approaches have shown promising results in the area of meta-learning
(Vilalta and Drissi, 2002). It is capable of generating diverse feature subset-based classifier
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ensembles, and is effective in reducing the amount of redundancy in pre-constructed base
classifier learners (Diao et al, to appear). It is worth investigating whether different NIMs
can identify feature subsets with distinctive characteristics, so that they can jointly construct
even higher quality FS ensembles. It is evident from the experimental results that each
NIM may have its its own strength and weakness in dealing with different data sets, but a
number of them generally work better in conjunction with the use of feature subset evaluators.
It may be beneficial to develop a meta-framework in which suitable algorithms may be
dynamically identified, and employed either concurrently or consecutively, in order to form a
more intelligent, hybrid approach for FS.
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