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We examine the effects of absorption losses in photonic crystal structures composed of polar materials which

exhibit transverse phonon-polariton excitations. In order to explore the Bloch states of such a system, we study

the two subspaces of the complete set of complex (k ,v) states consisting of either real frequency, accessible

through a frequency-domain method, or real-wave vector, which we determine using a frequency-dependent

time-domain method. We describe analytically the conditions under which the imaginary frequency component

of a real-wave-vector state is related to the imaginary-wave-vector component of a real-frequency state through

a factor of the group velocity, and we present a one-dimensional lossy crystal as an example that satisfies these

constraints. We also discover that the real-frequency states of a two-dimensional crystal bear little resemblance

to the class of real-wave-vector states, due to interplay between the prohibitively large spatial decay of the

states near the edge of the Brillouin zone and the existence of metalliclike states localized to the surrounding

ambient dielectric region with much lower levels of loss. We then put these results in the context of possible

experiments, including reflection of a plane-wave from a slab structure, and discuss the viability for observing

the node switching and flux expulsion phenomena previously discovered in lossless crystals.
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I. INTRODUCTION

Recent advances1,2 in the study of photonic crystals com-
posed of materials which exhibit phonon-polariton excita-
tions have revealed a variety of optical phenomena that are
intimately related to the interplay between the strongly dis-
persive nature of these polar media and the structural disper-
sion of the crystal. These features involve ~i! small frequency
variations in bands with large regions of low group velocity
that produce a polarization-dependent restructuring of the
nodes in the field pattern ~node switching! and ~ii! transitions
across the polariton gap boundary at the frequency vT that
induce flux expulsion to and from the polariton material and
the surrounding ambient dielectric. Previous polaritonic pho-
tonic crystal ~PPC! band-structure simulations1–6 have incor-
porated the polariton material as a lossless frequency-
dependent dielectric. However, the node switching and flux
expulsion phenomena are tied directly to the strong fre-
quency dependence of the dielectric function near vT , where
losses are expected to be greatest.

A simple model for the dielectric function of a polaritonic
material with losses is7
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where the magnitude of the losses is characterized by the
width g of the absorption peak in the imaginary part of « .

Previous considerations of the effects of losses in a PPC have

been limited. Sigalas et al. implemented Eq. ~1! in transmis-

sion calculations to determine the photonic band gaps in a

PPC.8 However, these simulations relied on a stepwise ap-
proximation to the dielectric function that disrupts the loca-
tion of the flat bands near vT , which we have previously
shown are sensitive to the rapid changes in dielectric
function.1,2 Several authors have also investigated the rela-
tionship between spatial and temporal decays in dissipative
systems.9,10

The states of a periodic system where «(r) is complex are
in general Bloch states with complex k and v . Two sub-
spaces of the total set of solutions are Fv5$(k ,v):vPR%
and Fk5$(k ,v):kPR%. The states with real frequency
(Fv) are accessible computationally using frequency-
domain methods, such as the vectorial eigenmode expansion
technique described in Sec. II, while the states with real-
wave vector (Fk) can be obtained using a frequency-
dependent time-domain method, which we introduce in Sec.
III. These two methods solve fundamentally different prob-
lems. If the frequency is assumed to be real, the resulting
wave decays in space, while the time-domain approach stud-
ies a real-wave-vector excitation that decays away in time.
The solutions are identical only when « is real. Throughout
the remainder of this work, we will refer to the results of
frequency-domain simulations as real-v states/band struc-
tures and the results of time-domain simulations as real-k
states/band structures. However, it is important to note that
frequency-domain methods can compute states with complex
v as well.
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In Sec. IV, we show that under certain conditions, the
imaginary component of the wave vector of a real-v state is
related to the imaginary frequency component of a real-k
state through a factor of the group velocity. In Sec. V, we
analytically solve for real-v and real-k states of a one-
dimensional polaritonic photonic crystal. We compare the
band-structure diagrams generated by the two methods,
whose axes are Re@k# and Re@v# . The real-k states suffi-
ciently removed from vT have frequencies whose real parts
are relatively unperturbed from the corresponding states of a
lossless crystal, and the real-v states that have wave vectors
whose real parts are not close to the edge of the Brillouin
zone closely agree with the position of the real-k states on
the band-structure diagram. We find that these subsets of Fv

and Fk provide an ideal example of the aforementioned cor-
respondence between the imaginary components of fre-
quency and wave vector. However, the real-v and real-k
states with Re@k# near the edge of the Brillouin zone reveal
few similarities, which can be attributed to the small group
velocity at the band edges of the lossless crystal.

In Sec. VI, we find that the difference between the real-v
and real-k states in the band structure of a two-dimensional
~2D! PPC is much more striking. As in the 1D crystal, the
real-k band structure is qualitatively similar to the lossless
crystal, which we have previously discovered exhibits the
node switching and flux expulsion phenomena in the TE po-
larized bands for the given geometry.1 As the width of the
absorption loss peak increases, the real-v bands begin to
resemble the lowest band of the metallodielectric crystal that
is obtained by replacing the polariton rod with a perfect
metal. This is manifested by a folding back of the bands
before they reach the Brillouin zone edge. This feature again
occurs in frequency regimes associated with low group ve-
locity in the lossless crystal.

Finally, in Sec. VII, we analyze the reflection and trans-
mission of a plane-wave off of a slab consisting of five pe-
riods of the 2D PPC structure studied in Sec. VI. We find that
such a source will excite real-v states which exhibit the node
switching and flux expulsion phenomena at relevant levels of
loss, but the localization of the field is lower than for the
corresponding real-k states. The reflection/transmission mea-
surements in a computational experiment using the time-
domain method agree with those using the frequency-domain
method, as expected since the source excitation is the same
in each. The reflectivity spectrum reveals the presence of
pseudogaps: frequency ranges where the transmission drops
but the reflectivity remains much less than 1. We attribute
these features to the high loss states in the real-v band struc-
ture that exist in the intervals representing the band gaps of
the real-k band structure.

II. FREQUENCY-DOMAIN METHOD

Our previous studies of PPC band structures utilized a
computational technique based on the vectorial eigenmode
expansion.2,11,1 This generic frequency-domain photonic
simulation tool CAMFR ~Refs. 11 and 12! can efficiently and
accurately compute the Bloch states of a system with
frequency-dependent dielectrics by dividing the unit cell into

layers where the index profile does not change in the propa-
gation direction. In each of these layers, we expand the field
in the local eigenmodes of that particular layer. The only
approximation is the size of the eigenmode basis, which we
have determined to be well converged at 40.

Using mode matching, we derive frequency-dependent re-
flection and transmission matrices that completely describe
the scattering behavior of the unit cell,

F25T12•F11R21•B2 , ~2!

B15R12•F11T21•B2 . ~3!

Here, F and B are column vectors containing the expansion
coefficients of the forward and backward propagating fields,
respectively. We then impose Bloch boundary conditions,
and recast Eqs. ~2! and ~3! as a generalized eigenvalue prob-
lem, which can be solved for each frequency:

FT12 R21

0 I
GF F1

qB1
G5qF I 0

R12 T21
GF F1

qB1
G ,

where I is the unit matrix and q5e2ika. Since the indepen-
dent variable in these simulations is frequency, it is trivial to
account for any frequency-dependent dielectric response.

III. TIME-DOMAIN METHOD

In a periodic time-domain approach, we solve the time-
dependent Maxwell equations,
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where the electric polarization density P describes a forced
oscillation at the phonon frequency vT with damping g ,13,14
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Assuming a harmonic time dependence ;e2ivt for both
E and P, Eq. ~4! results in an effective dielectric function
«5«11i«2 that matches precisely with Eq. ~1!,

«15«`F 11

~vL
2
2vT

2 !~vT
2
2v2!

~vT
2
2v2!2

1v2g2 G ,

«25«`

~vL
2
2vT

2 !vg

~vT
2
2v2!2

1v2g2
.

A Bloch state is generated with real-wave vector using a
periodic source that produces a propagating wave which de-
cays in time. We note that due to losses, it is necessary to
perform several simulations, each with sources based around
different center frequencies spread throughout the frequency
range of interest in the band structure.

Given finite grid spacing, «(v)5n(v)2 can be derived
from the electric fields at two points separated by a distance
x12 using the relation
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A comparison between the approximate results of Eq. ~5!
applied to a bulk real-k simulation with a5160 grid points
and the exact value from Eq. ~1! used in real-v simulations
is given in Fig. 1.

IV. RELATIONSHIP BETWEEN REAL v AND REAL k

STATES

We now consider the general problem of comparing real-
frequency and real-wave vector states in lossy systems. A
general Bloch state is a solution to the master equation
f (k ,v)50 of the form (k11ik2 ,v11iv2). Consider a point
(k0 ,v0) with k0 ,v0PRe. Then,

f ~k ,v !5 f ~k0 ,v0!1~k2k0!
] f

]k
U

k0 ,v0

1~v2v0!
] f

]v
U

k0 ,v0

1O2@~k2k0!,~v2v0!# , ~6!

where O2(x ,y) refers to terms of second order in x and/or
y. Assuming they exist, we consider two solutions of the
master equation, (k0 ,v01Dv11iDv2) and (k01Dk1

1iDk2 ,v0), with Dv1,2 ,Dk1,2PR. Ignoring second-order
terms in Eq. ~6!,

2 f ~k0 ,v0!5~Dk11iDk2!
] f
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. ~7!

Equation ~7! states that if the real-v and real-k band
structures coincide at a particular (k0 ,v0)PR (Dv1 ,Dk1

'0), then the imaginary components Dk2 and Dv2 are re-
lated by a factor of the group velocity,

Dv252Dk2

]v

]k
U

k0 ,v0

[2Dk2vg . ~8!

This also demonstrates that the group velocity as defined by
Eq. ~7! is purely real at (k0 ,v0) in this system. We note that
this argument implicitly assumes that losses are small (n2

!n1) so that the perturbations to k and v are small com-
pared with (k0 ,v0). These results are independent of the
dimensionality of the photonic crystal; however, the validity
of Eq. ~8! ultimately rests on the applicability of the assump-
tion Dv15Dk150. The factor of vg can be understood by
comparing the nature of the real-k and real-v states. A real-
k state has fields with no spatial decay and is unaffected by
the group velocity, unlike real-v states with complex k that
decay spatially and hence will be affected more strongly by
the lossy polariton material when vg is small.

Previous work10,9 has argued that the relationship in Eq.
~8! holds for small losses. In particular, Krohkin and Halevi
~KH! follow a similar analysis using Taylor expansion of the
master equation, but with less generality. In order to arrive at
Eq. ~8!, KH implicitly assume that a pair of Bloch states
exists with Dv15Dk150. In the following section, we will
demonstrate that in a 1D PPC, this condition holds for the
lowest few bands, except very close to the band edges.

However, in a bulk system where k5nv/c , it is easy to
show that Eq. ~8! does not hold, even for small losses. A
solution of the form (k01iDk2 ,v0) satisfies k05n1v0 /c
and Dk25n2v0 /c . Therefore,

Dk25k0

n2~v0!

n1~v0!
. ~9!

The only solution of the form (k0 ,v01Dv11iDv2) is

Dv152

ck0

n1
U

v0

1ck0

n1

n1
2
1n2

2U
v01Dv11iDv2

~10!

Dv252ck0

n2

n1
2
1n2

2 U
v01Dv11iDv2

. ~11!

FIG. 1. ~Color! The polariton dielectric function for LiTaO3

with «`513.4 and a54.5 mm, leading to normalized frequencies

vT50.4, vL50.703, and g50.014. The real part «1 is in black and

the imaginary part «2 is in red. Note the excellent agreement be-

tween the exact value from Eq. ~1! used in frequency-domain simu-

lations ~solid line! and approximate value derived from time-

domain simulations with a5160 grid points using Eq. ~5! ~circular

symbols!.
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If we can assume that n(v0)'n(v01Dv11iDv2) ~as
would be the case, e.g. in a frequency-independent dielectric
material! we can combine Eqs. ~9! and ~11!,

Dv252cDk2

n1

n1
2
1n2

2
52Dk2ReF]v

]k
G , ~12!

since ]v/]k5c/n . This result holds even for large Dk2 and
Dv2. We see that because Dv1 in Eq. ~10! is no longer zero,
it is only the real part of the group velocity which transforms
between Dk2 and Dv2. We note that this conclusion comes
from the natural pairing of states with the same real wave
vector component and comparing the shift in frequency. A
similar analysis assuming Dv150 produces

Dv252cDk2 /n1 . ~13!

The difference between Eqs. ~12! and ~13! stems from the
fact that when it is impossible to simultaneously choose
Dk150 and Dv150, there is no logical pairing of real-k
and real-v states for which to apply Eq. ~8!. We will present
a more striking example of this situation in a 2D PPC in Sec.
VI.

V. 1D CRYSTALS

The one-dimensional PPC problem is useful because it is
analytically solvable. We consider a system of air and
LiTaO3 a material with a large polariton gap from vT

526.7 THz to vL546.9 THz, «`513.4, and g50.94
THz. We set a54.5 mm so that vT50.4(2pc/a), and g
50.014(2pc/a). The slabs have width d15d25a/2. The
Bloch states are given by solutions of

cos~ka !5cosS vd1

c
D cosS n~v !vd2

c
D

2

11n~v !2

2n~v !
sinS vd1

c
D sinS n~v !vd2

c
D , ~14!

which is solvable through inversion for k if v is given and
through Newton’s method for v if k is given. We note that
although Eq. ~14! is generally referred to in the context of a
frequency-domain problem, it is in fact a general solution to

FIG. 2. ~Color! Lossy one-dimensional PPC structures: ~a! Comparison of band-structure calculations for the 1D lossy LiTaO3 PPC

shown in the inset using frequency-domain and time-domain approaches. The solid pink line is the real part of the wave-vector solution

assuming real frequency in Eq. ~14!, while the purple circular symbols are the real part of the frequency solution assuming real-wave vector.

Note the presence of frequency gaps only when k is purely real, and coincidence of the two methods in the middle of the Brillouin zone. ~b!

The inverse of the ‘‘group velocity’’ defined by ṽg
21

5(dv/d Re@k#)21 as calculated from the real-v simulation.

FIG. 3. ~Color! Comparison of the imaginary components of the

band-structure calculations in Fig. 2. In purple circular symbols is

the imaginary part of the frequency when the wave vector is as-

sumed to be real, while the pink line is the imaginary part of the

wave vector when the frequency is assumed to be real, rescaled by

the quantity ṽg . Note the agreement in the first three bands, simul-

taneous with the coincidence of the band-structure diagrams as de-

scribed in Sec. IV.
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the arbitrary 1D Bloch boundary value problem for a plane
wave with complex k and/or v . We plot the real component
of the solutions assuming either real frequency or real-wave
vector in Fig. 2~a!. To stress the low ‘‘group velocity’’ of the

higher bands, the inverse 1/ṽg5(dv/dRe@k#)21 obtained
from the real-v solutions is shown in Fig. 2~b!. Near the
band edges, the two methods produce differing results. When
k is real, there are gaps where no Bloch solution exists whose
frequency has a real component within these frequency
ranges. However, the band structure for real v is a continu-
ous line, with a solution lying somewhere within the Bril-
louin zone for all v .

Nevertheless, the real-k and real-v bands show excellent
agreement in the middle of the Brillouin zone. Therefore, we
can choose states such that Dv1'0 and Dk1'0 simulta-
neously, and the coinciding states (k01iDk2 ,v0) and
(k0 ,v01iDv2) should be related by a factor of the group
velocity. In Fig. 3, we compare the values of Im@v# and
Im@k#vg as functions of Re@v# . Equation ~8! holds ex-
tremely well through the first few bands, showing disagree-
ment only close to vT when the terms of second order in Dk2

in Eq. ~6! can no longer be ignored and the two band struc-
tures cease to coincide. As v increases, the group velocity
becomes much smaller than c,2 and so the imaginary wave-
vector component from real-v calculations is several orders
of magnitude larger than the imaginary frequency component
from real-k calculations.

As is the case for lossless crystals,2 the frequencies of the
bands of the 1D PPC at the midpoint of the Brillouin zone
show excellent agreement with the resonance frequencies
given by solutions to

v̂ j5 jpc/dn1~v̂ j!, ~15!

where d is the width of the polariton slab~rod!. Note that
unlike the lossless crystal, there are only a finite number of
solutions to Eq. 15 with real v since «(v) no longer blows
up at vT . We list these frequencies, as well as the value of

the dielectric function at v̂ j , in Table I.

VI. 2D CRYSTALS

We can apply the insights from Secs. IV and V to the band

structures of a two-dimensional polaritonic photonic crystal,

computed using either the frequency-domain or time-domain

method. We consider a 2D photonic crystal of square rods in

air with sides of length s (s/a50.25) in a square lattice. The

rods are taken to be LiTaO3, with a54.5 mm so that vT

50.4(2pc/a), vL50.703(2pc/a) and g50.014(2pc/a).

In Fig. 4, we plot the band structure from G-X-M-G com-

puted using the time-domain method from Sec. III. We over-

lay with dashed lines the band structure for the metallodi-

electric crystal obtained by replacing LiTaO3 with a perfect

metal. Similar to a lossless crystal,1,2 both the TE and TM
bands are relatively flat in most frequency regions below
vT , where they resemble rod-localized resonance modes.
We again note the finite number of bands, related to the finite
maximum in « introduced by the absorption peak. The TE
bands also display an anticrossing interaction related to the
existence of Bloch states of the geometrically equivalent
metallodielectric crystal. There is very little perturbation
from the band structure of the lossless crystal for the bands
shown. This is because the frequency is always many factors
of g away from vT , where «2!«1. In this regime, the shape
of «1(v), and hence the spatial modulation of the Bloch
state, are virtually unchanged.

Like the lossless crystal, PPC states of TE polarization
exist with real component of frequency both below and
above vT , even at frequencies very close to vT . This allows
for the realization of the node switching phenomenon
through a variety of field profiles and the flux expulsion phe-
nomenon over a frequency range down to a few g . We note
that as the dielectric function makes a rapid transition from
high index to metallic around vT , the TE band inside the
polariton gap appears discontinuously as in the lossless
crystal.2 In addition, for frequencies within ;g of vT , the
polariton material is too lossy to observe any states on the
same time scales that were used to generate the rest of the
band-structure diagram. The two experimental phenomena
that were previously introduced in a lossless crystal1 can
easily be realized in the lossy crystal. In Figs. 5~a! and 5~b!,
we demonstrate node switching through the high localization
of the fields at the edges of the second TE-polarized band,
which connects the TE1,1 rod-localized state to the TE1,2

state. In Fig. 5~c!, we verify the existence of states above vT

by showing a state with fields that are essentially expelled
from the polaritonic region.

We found in Sec. V that the real-v band structure of the
1D PPC differed from the real-k band structure near the band
edges, where the group velocity is smallest. An additional
feature is introduced in two-dimensional PPCs that further
distinguishes the real-v and real-k states in the regions of
low group velocity. The existence of a lossless band
(Im@k#50) in the metallodielectric crystal in the frequency
range below vT introduces the possibility that light can
choose to circumvent the lossy polariton rods and concen-
trate flux in the ambient region. The PPC reveals precisely
this tendency in the real-v band structure in Fig. 6, where we
plot the TE-polarized state at each real frequency with the

TABLE I. Comparison of the band frequencies at k5p/2a to v̂ j

from Eq. ~15! for a 1D PPC of LiTaO3 slabs in air with d15d2

5a/2. In the last column is the value of « at v5v̂ j . The resonance

at v̂9 does not have a corresponding band in the PPC.

m v(p/2a) v̂ j «(v̂ j)

1 0.1667 0.1478 45.8110.4882i

2 0.2622 0.2564 60.8411.817i

3 0.3194 0.3179 88.9515.737i

4 0.3498 0.3498 130.4115.31i

5 0.3664 0.3671 183.7134.88i

6 0.3761 0.3775 247.8171.21i

7 0.3822 0.3843 318.21134.0i

8 0.3863 0.3893 386.51242.2i

9 N/A 0.3943 408.51484.5i
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lowest imaginary-wave-vector component for the same crys-
tal structure used in Fig. 4. We vary the absorption peak
width g between 0.0001(2pc/a) and 0.01(2pc/a) and con-
centrate on the locations of the first three photonic band gaps
in the real-k band structure. The bands are obtained by se-
lecting the Bloch wave vector at each frequency with the
smallest absolute value of Im@k# .

As g increases to ;0.01(2pc/a), the band structure
takes on a strikingly different character. In particular, the
anticrossing interaction with the localized rod states that pro-
duced the flat band regions in the lossless crystal becomes
greatly reduced, and the bands fold back and connect within

the regions marked in purple shading that correspond to the
bandgaps of the real-k simulations. This surprising band
back-bending, with two superluminal points of infinite group
velocity in each band gap, has also been observed in constant
dielectric simulations with complex e ~Ref. 15! and at sur-
face plasmon resonances.16 The superluminal behavior can
be attributed to the remnants of the photonic band gaps,17

and is found only in frequency ranges where the imaginary
component of the wave vector is prohibitively large. In the
context of Sec. IV, it is clear that in a 2D crystal the assump-
tion of the existence of states with Dk1 ,Dv1'0 and
Dk2 ,Dv2 small breaks down entirely, and Eq. ~8! is no

FIG. 4. ~Color! Band structure of a square 2D PPC of square LiTaO3 rods in air with sides of length s/a50.25, vT50.4(2pc/a),

vL50.703(2pc/a), «`513.4, and g50.014(2pc/a) along the edge of the irreducible Brillouin zone from G to X to M to G , calculated

using frequency-dependent time-domain simulations. The TE (H out-of-plane! bands are in red in ~a!, TM (E out-of-plane! in blue in ~b!.

At distances greater than g away from vT , this band structure shows little difference qualitatively from that of the crystal of lossless

polaritonic material (g50) ~Ref. 1!. The TE~TM! bands of a metallodielectric crystal obtained by replacing LiTaO3 by a perfect metal are

given by the red~blue! dashed lines.

FIG. 5. ~Color! Magnetic field profiles (uHu) of the TE-polarized states at three representative points on the band structure diagram in Fig.

4. ~a! @v50.3(2pc/a),k5G# and ~b! @v50.355(2pc/a),k5X# show the field localization at the band edges of the second band. ~c! @v
50.44(2pc/a),k50.475(2p/a)# shows the metallic profile above vT .

KERWYN CASEY HUANG et al. PHYSICAL REVIEW B 69, 195111 ~2004!
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longer relevant. We expect that if corresponding states
around k5G and k5X with real frequency were to exist in
the real-v band structure, they would exhibit prohibitively
high losses, due to the low group velocity of the correspond-
ing bands of the lossless crystal near the resonance frequen-
cies.

We have also marked the locations of the rod resonance

frequencies v̂1150.311(2pc/a), v̂2150.359(2pc/a), and

v̂3150.380(2pc/a) solving v̂ i j5Ai2
1 j2pc/sn1, which all

lie within the band gap regions @v̂2250.374(2pc/a) does
not interact with the metallodielectric band due to symmetry

considerations2#. The only other resonance mode of this sys-

tem with real frequency is v̂3250.386(2pc/a).

We associate the features of the g;0.01(2pc/a) real-v
band structure with the tendency of the light to prefer the

metallodielectric configuration with the flux predominantly

expelled from the polariton region. We find a different situ-

ation entirely when studying the TM-polarized bands of the

LiTaO3 crystal. Because vT is below the lower edge of the

fundamental TM band gap of the metallodielectric crystal,

the bands plotted in Fig. 7 with g50.014(2pc/a) appear

similar qualitatively to those of the 1D crystal since the met-

allodielectric bands play no role.

As further evidence of the influence of the metallodielec-
tric crystal states, we can shift the resonance frequencies into
the TE band gap of the metallodielectric crystal by shifting
vT through a change in a. In Fig. 8, we plot the TE bands of
a 2D PPC of SiC rods with s/a50.25, «56.7, vT

50.5(2pc/a), vL50.6(2pc/a), and g50.01(2pc/a) ~a
purely speculative amount of loss for this material!. The low-

est resonance frequency v̂11 is now inside the band gap of
the metallodielectric crystal @cf. Fig. 4~a!#. Due to the lack of
an anticrossing interaction, the bands of the lossless crystal
are very flat in the middle of the Brillouin zone. It is now
modes with real component of k away from the edges of the
Brillouin zone that would have prohibitively large imaginary
component due to the low group velocity in the lossless crys-
tal near these frequencies. The result is that instead of the flat
band near v50.473(2pc/a) that extends from G to X in the
lossless crystal, the states with lowest loss occur only near
the wave vector k5X. This effect can also be observed in
the behavior of the TM states near vT in Fig. 7, which are
clustered around k5G .

FIG. 6. ~Color! Band structure from G to X of the same crystal

as in Fig. 4 calculated using real-v simulations, with the loss pa-

rameter g varied from 0.0001(2pc/a) to 0.01(2pc/a). As g in-

creases to 0.01(2pc/a), the first bands clearly fail to extend to the

edges of the Brillouin zone. Instead, the band structure begins to

mimic the lowest TE-polarized metallodielectric band, shown as a

dashed solid line. The imaginary component of wave vector ~not

shown! increases sharply in the gaplike regions marked in purple.

FIG. 7. ~Color! TM bands of the 2D LiTaO3 crystal with g
50.014(2pc/a) from a real-v simulation. Note the similarities in

appearance of the first few bands to the bands of the 1D PPC in Fig.

2~a!. The bands are flat, except near the band edges. Moreover,

despite the fact that the bands extend from k5G to k5X, there are

no band gaps.

FIG. 8. ~Color! Real ~solid! and imaginary ~dashed! wave-vector

components from a real-v simulation of the TE bands of a crystal

of square SiC rods with s/a50.25, «`56.7, vT50.5(2pc/a),

vL50.6(2pc/a), and g50.01(2pc/a). Note that the modes re-

main close to the edge of the Brillouin zone at frequencies near vT ,

unlike the lossless crystal which has flat bands extending from G to

X.
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VII. RELEVANCE TO EXPERIMENTAL MEASUREMENTS

The question of experimental accessibility arises for the
two classes of states discussed above. A previous experiment
using the coherent microwave transient spectroscopy ~CO-
MITS! technique excited particular Bloch states of a 2D
crystal using a plane-wave source.18 Since the frequency is
conserved in the transmission of a plane wave through a slab
structure, we expect that only the real-v states will be ex-
cited in this type of experiment if it involves a system with
losses.

To simulate the results of a COMITS experiment which
probes the node switching and field expulsion phenomena,

we use CAMFR to examine the field profile of the real-v
mode excited in a slab of five periods of the LiTaO3 crystal

structure from Sec. VI by a plane wave at frequencies similar

to those studied in Fig. 5. At frequencies below vT , we

expect that relatively few periods are necessary to generate

the highly localized states of the system near the resonance

frequencies. In Figs. 9~a! and 9~b!, we demonstrate node

switching at frequencies near the TE1,1 and TE1,2 resonances

using two different values of g: g150.001(2pc/a) and g2

50.014(2pc/a). We compare the actual level of loss (g2)
to a smaller value g1 in order to study the intermediate
changes in the fields between a physical LiTaO3 crystal with

FIG. 9. ~Color! Magnetic field profiles (uHu)
of TE-polarized modes excited in a slab of five

periods of a 2D LiTaO3 crystal by a plane-wave

for two different absorption peak widths: ~i! g
50.001(2pc/a) and ~ii! 0.014(2pc/a). ~a! v
50.312(2pc/a) and ~b! v50.356(2pc/a)

show the field localized inside the rod at wave

vectors near the edges of the Brillouin zone and

represent the node switching phenomenon. Note

that the rod localization of the fields for becomes

steadily worse as g increases due to the increas-

ing preference for a metalliclike configuration. In

~a!–~ii!, the reduction in rod localization is very

slight since v is far away from vT ; the change in

field profile is due to the fact that the wave vector

is shifted by 0.225p/a . ~c! The field profile at

v50.44(2pc/a) is highly metallic, and in com-

bination with the states in ~b! verifies the exis-

tence of the flux expulsion phenomenon. ~d! The

states of the infinite crystal corresponding to the

modes in ~a!–~c! identified on a real-v band-

structure diagram by black dots.
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losses and the lossless crystals previously examined.1 As g
increases, the rod localization of the field clearly decreases as
the frequency approaches vT and the field configuration be-
comes more metallic. In Fig. 9~c!, we demonstrate flux ex-
pulsion from the polariton rod using an incident wave with
v.vT . The states of the infinite crystal at the frequencies of
interest are identified on a band structure in Fig. 9~d!. Above
vT , the band structure is virtually unaffected by the amount
of loss, since most of the field is removed from the polariton
region. We note that the node switching phenomenon can
also be observed at fixed frequency. In Fig. 10, we consider
a polaronic crystal slab with 10 periods of a square LiTaO3

rod in air that increases in width from s50.26a to 0.35a in
steps of 0.01a. As the rods increase in size, the resonance
frequencies of the rods decrease. The effect is the same
as moving along one of the bands of the PPC. With v I

50.4pc/a) and g50.014(pc/a), an incident plane wave at
v50.312(2pc/a) first excites the v̂11 resonance mode and
then smoothly transitions to the v̂21 mode along the slab.

In order to observe the propagating states with real-wave
vector that are generated in a real-k band-structure calcula-
tion, it may be necessary to mimic the periodic source con-
ditions of our simulations. This could be possible by cou-
pling to a state in Fk through a grating on the surface of the
photonic crystal. These states decay relatively slowly, even
near the band edges where the full width at half maximum is
at most 50% greater than the states in the middle of the
Brillouin zone. If these modes can be excited, the node
switching and flux expulsion phenomena can be observed at
higher levels of loss with more field localization than is pos-
sible using real-v states.

We mention that the frequency regimes without states in
the real-k band structure are not true band gaps, because they
lack the high reflectivity characteristic of a lossless photonic
band gap.8 In fact, any crystal with absorptive materials can-
not produce the perfect interference of reflected waves
through Bragg scattering that is considered to produce a nor-
mal gap in a lossless crystal. In Fig. 10, we compare the
reflection and transmission of a plane wave off of the same
five-layer slab structure studied in Fig. 9 at frequencies near
the gaplike regions ~pseudogaps! using both the time-domain
and frequency-domain methods. As expected, they show
good agreement since the simulations are reproducing the
same computational experiment. From the perspective of the
real-v band structure, this drop in transmission without a
correspondingly high reflectivity can be attributed to cou-
pling to the high-loss real-v states that exist within the
pseudogap regions. Figure 10 demonstrates that the maxi-
mum value of the reflectivity in the pseudogap regions
clearly decreases as the frequency approaches the absorption

peak at vT50.4 and the magnitude of Im@k# within the

pseudogaps increases.

VIII. CONCLUSION

In conclusion, we have extended our investigations of the
optical phenomena in PPCs to lossy crystals, and presented a
formalism for understanding the two classes of states, Fv

~real frequency! and Fk ~real-wave vector!. In a 1D PPC, we
have found that due to the coincidence of the real-v and real-
k band structures, the time decay represented by the imagi-
nary frequency component of the real-k states is related to
the spatial decay represented by the imaginary-wave-vector
component of the real-v state with the same real-wave vec-
tor and frequency components through a factor of the group
velocity ~see Fig. 11!.

However, as the width of the absorption peak increases,
the real-v band structure of a 2D PPC consisting of square
LiTaO3 rods diverges from the real-k band structure, which

FIG. 10. ~Color! Magnetic field profile ~uHu! of a TE-polarized mode excited in a slab of 10 periods of a 2D LiTaO 3 crystal by a

plane-wave of frequency v50.312~2pc/a! where vT50.4(2pc/a), g50.014(2pc/a), and the width of the rods is slowly increased from

s50.26a to 0.35a in steps of 0.01a. Note the transition from the v̂11 to the v̂21 resonance mode.

FIG. 11. ~Color! Reflectivity and transmission off five layers of

a 2D square PPC of square LiTaO 3 rods with g50.001(2pc/a).

The reflectivity is shown in red, the transmission in green, Real-c
simulations with 40 eigenmodes are shown with circular symbols,

real-k simulations with a5160 grid points are shown with solid

lines. Note the pseudogap regions near the center frequencies of

0.309~2p/a! and 0.357 ~2pc/a!, where the transmission shows a

marked decrease. The reflectivity in these frequency ranges is much

lower than 1, and in fact displays no noticeable features near the

second pseudogap for g50.014 ~not shown!. The small shift

~;0.5%! between the two data sets is due to the fact that the results

of time-domain simulations coverge from below as a function of the

grid resolution, while the results of frequency-domain simulations

coverge from above as a function of the number of eigenmodes.
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is relatively unperturbed from previous simulations for a
lossless crystal,1 as the absorption peak width g increases.
Any states near the edges of the Brillouin zone could only
exist with extremely high spatial decay rates, which we as-
sociate with the low group velocity. Instead, the states with
lowest loss are metalliclike with high localization in the sur-
rounding ambient dielectric region, exhibited in the band
structure by a folding of the bands before they reach G or X.
As g reaches the experimentally measured value for LiTaO3,
the entire real-v band structure below vT closely resembles
that of a metallodielectric crystal with the polariton rods re-
placed by a perfect metal.

Our analysis applies equally well to the broader class of
periodic structures containing any lossy materials, not only
polaritonic media. Ultimately, we conclude that both compu-
tational techniques used in this work provide accurate and

efficient means to solve for two distinct classes of states. The

variables which effect the similarities between these two sets

extends beyond simply the absorption peak width g , but

rather also depends strongly on the geometry of the structure.

In this light, the distinction between real-k and real-v states

must also be considered in experiments when attempting to
reproduce theoretical predictions in lossy systems.
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