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Anthocyanins, the pigments responsible for spectacular displays of vermilion in the leaves of deciduous trees, have long been con-
sidered an extravagant waste of a plant’s resources. Contemporary research, in contrast, has begun to show that the pigments can
significantly influence the way a leaf responds to environmental stress. Anthocyanins have been implicated in tolerance to stressors
as diverse as drought, UV-B, and heavy metals, as well as resistance to herbivores and pathogens. By absorbing high-energy quanta,
anthocyanic cell vacuoles both protect chloroplasts from the photoinhibitory and photooxidative effects of strong light, and prevent
the catabolism of photolabile defence compounds. Anthocyanins also mitigate photooxidative injury in leaves by efficiently scaveng-
ing free radicals and reactive oxygen species. Far from being a useless by-product of the flavonoid pathway, these red pigments may in
some instances be critical for plant survival.

INTRODUCTION

It is no coincidence that the leaves of most higher
plants are green. Chlorophyll and the associated acces-
sory pigments allow plants to maximise use of the visi-
ble light spectrum for photosynthesis [1]. By establishing
internal gradients in light capture, the green pigments en-
able plants to respond rapidly to changes in the spectral
environment, as well as to exploit niche habitats. Equally,
they provide some protection against photoinhibition and
photooxidation, the damaging effects of excess quanta.
Green leaves are engineered to optimise productivity.

Given the obvious benefits to their being green, why
then do many plant species produce red-pigmented leaves
at one or more stages in their life cycles? Red-leafed flora
are common throughout all orders of the plant king-
dom, from the basal liverworts to the most advanced an-
giosperms [2]. They occur in habitats as diverse as the
Antarctic shoreline and the tropical rainforests, are as
abundant in arid deserts as in freshwater lakes, and seem
equally at home in the light-starved forest understorey as
in the sun-drenched canopy. In many red-leafed species
the manufacture of red pigments is transient, often as-
sociated with a discrete developmental stage such as in
the growth flushes of tropical trees [3, 4, 5], or in the
senescing autumn foliage of deciduous trees [6, 7, 8, 9].
In certain other species, however, red pigments can persist
throughout the leaf ’s entire life span [10], or else they are
induced and retained only after the plant has experienced
stress [11]. Functional implications of these red pigments
in plants have been the focus of a significant research out-
put over the past decade.

For most vascular plants, red colouration in leaves
is achieved by anthocyanins, predominantly cyanidin-3-
O-glucoside, as a solution located in the vacuole of the
plant cell. Other pigments—notably the betalains, certain
carotenoids, thiarubrine A, some terpenoids, and the 3-
deoxyanthocyanins—also impart reddish colours in var-
ious species; these pigments have been less well studied
than the anthocyanins, but at least some of them have
comparable functions in leaves [12, 13, 14, 15, 16].

The synthesis and vacuolar sequestration of antho-
cyanin molecules represent a considerable metabolic in-
vestment for plant cells. First, there are metabolic costs
associated with enzyme production and activity; at least
seven enzymes are involved in the biosynthesis of cyanidin
from its precursors, 4-coumaroyl-CoA and malonyl-CoA
[17]. Then there is a cost associated with the conjugation
of each cyanidin molecule to a monosaccharide molecule.
Finally, there are costs associated with the transport of
cyanidin-3-O-glucoside into the cell vacuole via a tono-
plast Mg-ATP-requiring glutathione carrier [18]. This in-
vestment suggests that the accumulation of anthocyanins
in leaf cells is unlikely to be an “extravagancy without
a vital function” [19]. Neither is it likely that these red
pigments are simply the default product of a saturated
flavonoid biosynthetic pathway, since the timing of an-
thocyanin production is usually tightly controlled and of-
ten occurs in tissues remote from those associated with
other flavonoids [10]. On the contrary, a wealth of recent
evidence, both empirical and theoretical, ascribes a re-
markable diversity of functions to anthocyanins in leaves,
many of them associated with stress responses and some
potentially critical to a plant’s survival. Anthocyanins are
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arguably the most versatile of all pigments, their multi-
farious roles in plant stress responses stemming as much
from the physicochemical property of light absorption as
from their unique combination of biochemical reactivi-
ties. Recent advances in our understanding of these vari-
ous functions are the subject of this review.

CONSEQUENCES OF BEING RED

Anthocyanins in vivo absorb the green and yellow
wavebands of light, commonly between 500 and 600 nm
[20, 21, 22, 23, 24, 25]. Foliage appears red because of
the subtraction of yellow-green light from the spectrum
of light reflected from the leaf ’s surface. Interestingly, the
amount of red light that is reflected from red leaves often
only poorly correlates to anthocyanin content [20]; leaf
morphology and the amount and distribution of chloro-
phyll are apparently the stronger determinants of red re-
flectance. The property of anthocyanins to absorb light
provides a mechanism for several important functions in
leaves.

Herbivory

The red colours of anthocyanic leaves have been pro-
posed both to attract and to repel various animal species.
Burns and Dalen [26] postulated that red-orange autumn
foliage of Canadian shrub species would accentuate the
conspicuousness of black-coloured fruits to birds. Exper-
imental manipulations of fruit and background foliage
colours confirmed that the black-red contrast was indeed
an effective enhancer of fruit-removal rates by avian dis-
persers. Certain insects, on the other hand, seem to pref-
erentially avoid eating red-pigmented leaves. California
maple aphids, for example, readily colonise yellow-orange
leaves of Japanese maples, yet they largely ignore red-
leafed individuals [27]. Similarly, leaf-cutting ants from
the tropical forests of Panama browse significantly less on
red leaves than on green leaves [28]. To these and other
insects the anthocyanins may serve as aposematic signals
of defensive commitment against herbivory [29]. Alter-
natively, the red pigments may simply render the leaves
unpalatable. Leaves that are rich in chlorophyll as well as
anthocyanin tend to be brown or even black, mimicking
dead foliage or else serving to camouflage leaves against
the exposed soil and litter of forest floors [30, 31, 32, 33].
Even brilliant red or scarlet leaves can appear dark to
nonmammalian folivores, which lack red light receptors
[5, 34]. The gains to be had from herbivore deterrence
would offset metabolic costs to the plant associated with
anthocyanin biosynthesis.

Protection of photolabile defence compounds

By intercepting the high-energy quanta, anthocyanic
cell vacuoles can prevent important photolabile molecules
from degradation by green light. An elegant example of
this was described recently for the silver beachweed (Am-

brosia chamissonis), a composite that grows at exposed,
sunny locations along the California coast. The plant
holds large amounts of thiarubrine A, a potent defence
compound that is toxic to insects, bacteria, and fungi [35].
Thiarubrine A is photolabile; even short exposures to vis-
ible light and/or ultraviolet radiation render it inactive
[36, 37]. However, the tissues in A chamissonis that con-
tain thiarubrine A are shielded from light by a sheath of
cells containing a mix of two anthocyanins, cyanidin-3-
O-glucoside and cyanidin-3-O-(6’-O-malonylglucoside).
The anthocyanins absorb quanta that would otherwise
lead to the destruction of thiarubrine A, and thereby con-
tribute significantly to the defensive armoury of the plant.

Protection of photosynthetic apparatus

When leaves receive more light energy than can be
used in photochemistry, they show a characteristic de-
cline in the quantum efficiency of photosynthesis, termed
photoinhibition [38]. Under severe conditions the chloro-
plasts generate reactive oxygen species, which have the
potential to destroy thylakoid membranes, damage DNA,
and denature proteins associated with photosynthetic
electron transport. Anthocyanins have been shown in
many plant species to reduce both the frequency and
severity of photoinhibition, as well as to expedite pho-
tosynthetic recovery [23, 39, 40, 41, 42, 43, 44]. In red-
osier dogwood (Cornus stolonifera), for example, a 30-
minute exposure to strong white light reduced the quan-
tum efficiency of photosynthesis by 60% in red leaves, but
by almost 100% in acyanic leaves [23]. When the plants
were returned to darkness, the red leaves recovered to
their maximum potential after only 80 minutes, yet their
acyanic counterparts had not achieved the pretreatment
state even after six hours.

Anthocyanins protect leaves from the stress of pho-
toinhibitory light fluxes by absorbing the excess pho-
tons that would otherwise be intercepted by chlorophyll
b. Although red leaves absorb more green light in total,
their photosynthetic tissues actually receive fewer quanta
than do those of acyanic leaves because the energy ab-
sorbed by the cell vacuole cannot be transferred to the
chloroplasts [45]. As a result, under light-limiting en-
vironments the photosynthetic efficiencies of red leaves
are often slightly lower than those for acyanic leaves
[4, 22, 45, 46, 47, 48, 49]. Under strong light, however,
the anthocyanins serve as a useful optical filter, divert-
ing excess high-energy quanta away from an already sat-
urated photosynthetic electron transport chain. Chloro-
plasts irradiated with light that has first passed through
a red filter have been shown to generate fewer superox-
ide radicals, thereby reducing the propensity for structural
damage to the photosystems [25]. The anthocyanins are
therefore clearly a useful supplement to other nonphoto-
chemical quenching mechanisms such as the xanthophyll
cycle pigments. Recent studies involving mutants of Ara-
bidopsis thaliana indicate that whereas xanthophylls have
a greater role in the protection of plants from short-term
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light stress, the anthocyanins can be the more effective
photoprotectants over the long term [50].

The photoprotection hypothesis potentially explains
why the leaves of many deciduous trees turn red in the
autumn. As leaves senesce, nitrogen associated with their
chloroplasts is resorbed into the branches. Anthocyanins
would protect the degrading chlorophyll from damaging
light levels, thereby restricting the formation of reactive
oxygen that could jeopardize the resorptive process [2, 8,
9, 23, 51, 52]. Consistent with this hypothesis, nitrogen
resorption has recently been shown to be more efficient in
wild-type than in anthocyanin-deficient mutants of three
woody species [53].

Protection from ultraviolet radiation

Interest in the flavonoid family has increased in recent
years following the observation that these compounds act
as sunscreens against potentially damaging UV-B radi-
ation. Foliar anthocyanins have generally been included
with other flavonoids in this UV-B protective role. Con-
sistent with this hypothesis, the anthocyanins, particularly
when acylated, absorb strongly in the UV region [54, 55],
are induced or upregulated in plant tissues in response
to UV irradiation [56, 57, 58, 59, 60], and mitigate DNA
damage in UV-B-irradiated cell cultures [61, 62, 63]. Fur-
thermore, certain anthocyanin-deficient mutants of Ara-
bidopsis are hypersensitive to UV-B [64], and red-leafed
Coleus varieties retain higher photosynthetic efficiencies
after UV irradiation than do green-leafed varieties [49].

Notwithstanding this body of evidence, there is now
a growing conviction that foliar anthocyanins cannot
be primarily concerned with UV protection. Unlike the
colourless flavonoids, the anthocyanins are usually lo-
cated in the internal mesophyll tissue rather than in the
epidermis, the optimal site for UV interception [33, 65].
Moreover, UV vulnerability often correlates only poorly to
anthocyanin content. For example, an Arabidopsis mutant
with enhanced sensitivity to UV radiation was found defi-
cient in certain flavonoids, yet it held normal amounts of
anthocyanin [66]. Similarly, the responses of Brassica rapa
mutants to supplementary UV-B treatment were for the
most part independent of anthocyanin levels in the leaves
[67]. Indeed, red-leafed plants of petunia (Impatiens) and
rice have all been observed to perform significantly worse
than their green-leafed counterparts under UV-enriched
environments [68, 69, 70]. Hada et al. [71] noted that
DNA damage after prolonged UV treatment was substan-
tially greater in purple-leafed rice than in a near-isogenic
green line. To repair UV-damaged DNA, plants employ
photolyase, an enzyme that uses blue/UV-A light to re-
monomerise the pyrimidine dimers. The anthocyanins in
purple rice prevented the photoactivation of photolyase
by absorbing some of the blue/UV-A light incident on the
leaves. Thus, any short-term gain from the absorption of
UV-B by anthocyanins would be offset by their property
to absorb visible light and thereby limit the rate of DNA
repair.

FREE RADICAL SCAVENGING

Anthocyanins diminish the oxidative load in a leaf
simply by filtering out yellow-green light, since the major-
ity of reactive oxygen in plant cells is derived from the ex-
citation of chlorophyll. Anthocyanins are, in addition, ex-
cellent scavengers of free radicals. Purified solutions scav-
enge almost all species of reactive oxygen and nitrogen
with an efficiency up to four times greater than those of
ascorbate and α-tocopherol [72, 73, 74]. Recent experi-
mental evidence indicates that this antioxidant potential is
indeed utilised by plant cells. In Arabidopsis, for example,
strong light and low temperatures caused more lipid per-
oxidation in anthocyanin-deficient mutants than in wild-
type plants [50]. Similarly, upon gamma irradiation, only
those Arabidopsis plants that contained both anthocyanin
and ascorbic acid were able to grow and flower normally
[75].

Microscopic examinations of wounded leaf peels have
shown that red-pigmented cells eliminate H2O2 signifi-
cantly faster than do green cells [76]. It is not clear, how-
ever, whether scavenging occurs predominantly by the red
tautomers of anthocyanin found inside the cell vacuole, or
else by the colourless tautomers in the cytosol. Both forms
have impressive antioxidant potentials [77, 78, 79]. In a
model in vitro system, the colourless tautomers of cyani-
din 3-(6-malonyl)glucoside were found capable of scav-
enging up to 17% of the superoxide radicals generated by
irradiated chloroplasts [25]. Given their proximity to the
organelle sources of reactive oxygen, it may be that the cy-
tosolic anthocyanins, rather than those in the cell vacuole,
provide the greater contribution to antioxidant defence.

The degree to which anthocyanins contribute to the
arsenal of low-molecular-weight antioxidants (LMWA)
varies among species. In the young, red leaves of
Elatostema rugosum, an understorey herb from New
Zealand, anthocyanins are the predominant phenolic
component of the LMWA pool [78]. In contrast, the red-
and green-leafed morphs of the canopy tree Quintinia
serrata both hold hydroxycinnamic acids as their most
concentrated LMWA [79]. Similar differences have been
reported across ecotypes of wild-type Arabidopsis [75].
Thus it would seem that anthocyanin biosynthesis can en-
hance but is not usually a prerequisite for protection from
oxidative stress.

AMELIORATION OF STRESS RESPONSES

The induction of foliar anthocyanins has been im-
plicated in the acquisition of tolerance to many differ-
ent kinds of environmental stressors [11, 80, 81]. Antho-
cyanins, for example, are associated with enhanced resis-
tance to the effects of chilling and freezing [82, 83, 84, 85,
86], to heavy metal contamination [87, 88, 89, 90], to des-
iccation [91, 92, 93], and to wounding [76, 94, 95]. It is
not clear at this stage whether the apparent ameliorative
properties stem from one or more types of mechanism.
Chalker-Scott [11, 80] provided a compelling case for
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a generalised role of anthocyanins as osmoregulators in
plant cells, since most types of suboptimal environments
induce water stress, either directly or indirectly. Others
have argued that the photoprotective [96] or the antiox-
idant [97] properties of anthocyanins are paramount. Re-
gardless of their mechanism, it is clear that anthocyanins
offer multifaceted, versatile, and effective protection to
plants under stress. They are the Swiss army knife of the
plant kingdom.
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