
CEAI, Vol.17, No. 2, pp. 110-120, 2015 Printed in Romania

NaveGo: a simulation framework for
low-cost integrated navigation systems ?

Rodrigo Gonzalez ∗ Juan Ignacio Giribet ∗∗

Héctor Daniel Patiño ∗∗∗

∗ Laboratorio de Computación Reconfigurable and GridTICs, Facultad
Regional Mendoza, Universidad Tecnológica Nacional, Mendoza,

Argentina (e-mail: rodralez@frm.utn.edu.ar)
∗∗Departamento de Electrónica, Universidad de Buenos Aires, Buenos

Aires, Argentina (e-mail: jgiribet@fi.uba.ar)
∗∗∗ Instituto de Automática, Universidad Nacional de San Juan, San

Juan, Argentina (e-mail: dpatino@inaut.unsj.edu.ar)

Abstract: In this work, a simulation framework for low-cost integrated navigation systems
called NaveGo is presented. NaveGo simulates measurements from inertial sensors and a GPS
receiver. It also executes a loosely-coupled navigation algorithm. Complete mathematical models
are shown. As example, simulation results for a particular scenario are exhibited. NaveGo is
developed in MATLAB and freely distributed under an open source license. It is the authors’
believe that this article is the most complete work about a simulation environment for low-cost
integrated navigation systems. NaveGo is validated by using a practical approach, which main
goal is to evaluate how close in performance is a simulated navigation system to a real one. Thus,
simulated sensors are generated based upon a real trajectory, during which real sensors were
logged. Then, simulated sensors are corrupted with noises according to real sensors error profiles.
Both simulated and real navigation systems are processed. It is found that absolute differences
between real and simulated systems are under 0.6 degrees for attitude, under 23 centimetres
for 2D position, and under 10 centimetres for vertical position. As a result, it is verified that
NaveGo is a suitable simulation tool for the design and analysis of low-cost integrated navigation
systems.

Keywords: simulation; integrated navigation system; inertial sensors; INS; IMU; GPS;
MATLAB

1. INTRODUCTION

A strapdown inertial navigation system (SINS) is an
electronic device rigidly mounted on a vehicle, compound
of an onboard computer and an inertial measurement unit
(IMU). An IMU contains accelerometers and gyroscopes,
whose axis are aligned respect to the vehicle body frame, to
continuously calculate estimates of orientation, position,
and velocity.

An integrated navigation system (INS) is mainly composed
of a SINS and aiding sensors, such as a GPS receiver
and magnetometers, that contribute to bound the accu-
mulative errors of a SINS. An INS also provides estimates
of position and velocity, as well as orientation parame-
ters for a moving platform. Recently, with advances in
Micro Electro-Mechanical Systems technology (MEMS),
commercial-off-the-shelf, MEMS inertial sensors are avail-
able. Nowadays, INS built on MEMS inertial sensors are
subject of great interest due to their unique characteristics,
such as light weight, low power consumption, and low cost.
These features make MEMS-based INS suitable for several

? This work was supported by the Agencia Nacional de Promoción
Cient́ıfica y Tecnológica, Argentina; and the Universidad Tecnológica
Nacional, Argentina.

applications, e.g., positioning of micro-flying and micro-
land robots.

Throughout the design stage of an INS, prior to imple-
mentation, it is essential that designers have at hand
a simulation framework to evaluate and predict the be-
haviour of this complex, highly nonlinear system. Thus,
designers can rapidly try several schemes and components
and find the best trade-off between precision and costs. For
instance, it should be very practical to analyse different
sensors at simulation level, and subsequently choose the
best sensors that satisfy the prerequisite of precision at the
lowest cost. On the other hand, from an embedded system
perspective, navigation algorithms may be evaluated for
different numerical precisions (fixed-point and floating-
point), numerical stability, computational load, use of
memory, and therefore, to determine the best embedded
microcomputer architecture that achieves the required
computational complexity.

In this article, a simulation framework for low-cost in-
tegrated navigation systems called NaveGo is presented.
Complete mathematical models are given. Equations to
generate simulated data coming from gyroscopes, ac-
celerometers, and a GPS receiver are shown. Addition-
ally, the mathematical model of a loosely-coupled INS is

Control Engineering and Applied Informatics 111

provided. NaveGo is based upon the mathematical model
exhibited in (Gonzalez et al., 2015), which is a model com-
piled from recognized authors in the field of navigation.
NaveGo is written in MATLAB language and is provided
as a free open-source toolbox (Navego, 2015).

In the reviewed literature few papers have points in com-
mon with this work, and none is so comprehensive. In
(Giroux et al., 2003), (Wenling et al., 2010), (Liansheng
and Tao, 2011), and (Zhang et al., 2012) only mathemat-
ical models of a SINS are shown. Works from (Esposito
et al., 2007) and (Lijun et al., 2008) exhibit an INS sim-
ulator, but none of them expose complete mathematical
models. Although simulation results are shown in all these
works, most do not expose a validation method to assess
the proposed simulator, except in (Giroux et al., 2003).
Thus, to the best of the authors’ knowledge, NaveGo is
the most complete work about a simulation environment
of low-cost integrated navigation systems.

The method to validate NaveGo evaluates the perfor-
mances of three pairs of INS systems. Each pair is com-
posed of both simulated and real sensors. In (Toth et al.,
2011) several IMU and a GPS were logged on field. A
DGPS was also implemented. A reference data set is
formed fusing a navigation-grade IMU and DGPS. Three
real MEMS IMU are chosen to represent MEMS IMU
from low to high qualities. Simulation of the three MEMS
IMU and GPS is carried out by using the reference data
set. Sampling times between simulated and real sensors
are matched. Then, simulated data sets are corrupted
with noises according to the error characteristics from real
sensors. Finally, RMS errors from both simulated and real
INS are compared for each MEMS IMU.

The rest of this article is organized as follows. Section 2
shows the mathematical models to simulate of proposed
sensors. Section 3 presents the Kalman filter equations
used in NaveGo. Section 4 provides the main algorithm
of NaveGo. Section 5 displays simulation results for a
particular case. Section 6 exposes the validation method
for NaveGo. Finally, in Section 7 concluding remarks
are commented. Additionally, in Appendix the functions
included in the toolbox are listed.

2. SENSORS SIMULATION

This section explains how gyroscopes, accelerometers, and
a GPS receiver are simulated.

First, some comments about mathematical notation.
Equations presented in this work are in the discrete-time
domain, except otherwise stated. Besides, variables with
subscript (−) correspond to the former interval sample,
t(k−1). On the other hand, variables with subscript (+)
belong to the later interval sample, t(k+1). Noisy measure-
ments have as superscript a tilde (∼). Estimated variables
based upon noisy measurements have as superscript a
hat (∧). A skew symmetric matrix operator is defined as
S{3×3} = [r×] where r{3×1} is a vector (Farrell, 2008, Eq.
B.15). Lastly, the symbol ’◦’ means entry-wise product.

A trajectory generator is needed to provide the following
true input data to the simulator,

T = [e, p, vn, an, t
S
] , (1)

where vectors e = {ei}
k
S
i=1, p = {pi}

k
S
i=1, vn = {vni }

k
S
i=1,

an = {ani }
k
S
i=1, and t

S
= {ti}

k
S
i=1 are discrete-time se-

quences and have a number of elements equal to k
S
.

True attitude vector e = [φ, θ, ψ] contains row, pitch,
and yaw angles, respectively. p is the true position vector
mechanized in local North-East-Down (NED) coordinate
system (Cai et al., 2011, Sec. 2.2.3). vn and an are
true velocity and acceleration vectors, respectively, both
mechanized in the vehicle-carried NED coordinate system
(Cai et al., 2011, Sec. 2.2.4). Finally, t

S
is the simulation

time vector.

2.1 Gyroscopes

Outputs from three ideal orthogonal gyroscopes are ex-
pressed as (Titterton and Weston, 2004, Eq. 3.29),

ωbib = ωbnb + Cbn (ωnie + ωnen) . (2)

Vector ωbnb = [ωx, ωy, ωz]
T represents the turn rate of the

body frame (b-frame) with respect to the navigation frame
(n-frame) expressed in body axes, i.e., the orientation of
the vehicle respect to the b-frame.

Since ωnie, ω
n
en, and Cbn can be obtained from (Titterton

and Weston, 2004, Eq. 3.72, 3.74, and 3.63), respectively,
it can be seen from (2) that ωbnb is the only missing term to
generate gyroscopes outputs. ωbnb can be obtained doing
some mathematical manipulations.

Matrix Cnb can be updated at each simulation time step
doing (Titterton and Weston, 2004, Eq. 3.36–3.38),

Cnb(+) = Cnb (I + δΨ) (3a)

δΨ = [δe×] . (3b)

δe{3×1} is a vector that contains incremental values of
true Euler angles, projected along the b-frame, between
simulation time steps t(k) and t(k+1). In the limit, and
dividing δΨ by δt, the simulation time step (Titterton and
Weston, 2004, Eq. 3.40),

lim
δt→0

δΨ

δt
= Ωbnb , (4)

where Ωbnb = [ωbnb ×]. Therefore, in order to obtain ωbnb,
δΨ must be clear in (3a). Pre multiplying both sides of (3a)
by CnTb , and recalling that Cnb is an orthogonal matrix and
as result CnTb Cnb = I, yields,

CnTb Cnb(+) =

I︷ ︸︸ ︷
CnTb Cnb (I + δΨ) (5a)

=⇒ δΨ = CnTb Cnb(+) − I (5b)

= CbnC
bT
n(+) − I . (5c)

Cbn can be computed using e (Titterton and Weston, 2004,
Eq. 3.47).

112 Control Engineering and Applied Informatics

Vector ωbnb is set up by taking positive elements from δΨ
(3b) and dividing them by δt,

ωbnb =

[
δΨ(3,2)

δt
,
δΨ(1,3)

δt
,
δΨ(2,1)

δt

]T
. (6)

It is important to bear in mind that, according to (4),
ωbnb is an approximation to the theoretical value. Hence,
a smaller δt will lead to more accurate values of ωbnb.

A gyroscope presents several sources of error, for instance,
angle random walk noise (ARW), rate random walk noise,
rate ramp noise, biases, cross-coupling errors, scale factor
errors, and axes misalignments, among others. In this
work, only three sources of error are taken into account,
ARW and static and dynamic biases. According to the
authors’ experience, they have the strongest influence on
a MEMS IMU performance.

ARW from three gyroscopes can be expressed as Gaus-
sian white-noise sequences ηg ∼ N(0,σ2

g), where σ2
g =

[σ2
gx, σ

2
gy, σ

2
gz]

T (Farrell, 2008, Sec. 4.6.3.2). Static bias bg
varies every time the gyroscope is turned on, but stays
constant throughout operation (Groves, 2008, Sec. 4.4.1).
Hence, it is modelled as a random constant process and
is simulated by adding a constant value to ωbib (Farrell,
2008, Sec. 4.6.3.1). This number is taken randomly from
the interval [−bg, bg]. On the other hand, dynamic bias
δbg is usually observed at low frequencies and is associated
with a correlation time τ g. It is modelled as a scalar Gauss-
Markov process (Farrell, 2008, Sec. 4.6.3.3), whose discrete
formulation is given by (Strus et al., 2008),

ηgδb(+) = αηgδb +wc (7a)

α = e−(δt ◦ 1/τg) (7b)

σ2
c = σ2

gδb ◦ (1−α2) . (7c)

ηgδb is obtained in an iterative fashion with ηgδb(1) =

bg. wc is a normal sequence with variance σ2
c . If τ g is

unknown, ηgδb should be taken as uncorrelated Gaussian

white noise. If variance σ2
gδb is not provided by the

manufacturer, typically could be considered about 10
percent of the static bias (Groves, 2008, Sec. 4.4.1).

Finally, simulated noisy outputs from three orthogonal
gyroscopes are,

ω̃b = ωbib + ηg + bg + ηgδb . (8)

Usually, gyroscopes manufacturers deliver accuracy speci-
fication ARW in units of root PSD. Thus, a conversion of

units is needed for SI unit consistency. If ARW is in
(

deg√
h

)
,

then (Farrell, 2008, Sec. 4.6.3.2),

ng =
ARW

60

π

180

(
rad/s√

Hz

)
. (9)

Equation (30) is used to get σ2
g.

2.2 Accelerometers

Simulated measurements coming from three orthogonal
accelerometers are easier to generate when compared with
gyroscopes. In the first place, vector a from (1) has to
be projected from the vehicle-carried NED frame into the
b-frame,

ab = Cbn a
n . (10)

Accelerometers outputs have spurious values from a nav-
igation solution perspective. These distortions are grav-
ity and a Coriolis fictitious force. Gravity vector gn is
obtained from (Titterton and Weston, 2004, Eq. 3.89–
3.91). Formula to calculate the Coriolis fictitious force is
(Titterton and Weston, 2004, Eq. 3.27),

fncor = S (2 ωnie + ωnen) , (11)

where S = [vn×]. Gravity and Coriolis vectors must be
projected along the b-frame.

Hence, outputs from three orthogonal accelerometers are,

f b = ab − Cbn (fncor + gn) . (12)

As with gyroscopes, real accelerometers also present sev-
eral sources of noise. The proposed error model of ac-
celerometers is similar to the error model of gyroscopes,
presented in (8). Lastly, noisy simulated outputs of ac-
celerometers are,

f̃
b

= f b + ηf + bf + ηfδb , (13)

where ηf ∼ N(0,σ2
f) with variance σ2

f = [σ2
fx, σ

2
fy, σ

2
fz]

T .
bf denotes the static bias and ηfδb indicates the dynamic

bias noise with correlation time τ f and variance σ2
fδb, as

shown in (7).

Generally, accuracy specification of accelerometers is given

as velocity random walk (VRW). If VRW is in
(

m/s√
h

)
, then,

nf =
VRW

60

(
m/s

2

√
Hz

)
. (14)

Equation (30) is used to get values of variance σ2
f .

2.3 GPS receiver

A low-cost GPS receiver usually delivers estimates of
position as stated in the World Geodetic System 1984
Earth model (WGS84). Additionally, it may also provide
estimates of velocity in the vehicle-carried NED frame.
Table 1 shows some important constants from the WGS84
Earth model that will be used later.

Most low-cost GPS receivers give estimates at lower fre-
quencies than an IMU. They usually work at frequencies
between 1 Hz and 20 Hz. Thus, it is necessary to reduce the
vectors’ sampling rates from (1) (downsampling). These

Control Engineering and Applied Informatics 113

Table 1. Constants from WGS84 Earth model.

Semi-major axis a 6378137.0 m
Semi-minor axis b 6356752.3142 m

new true vectors will have k
G

number of elements, where
k

G
< k

S
.

GPS position Position p from (1) must be converted
to true GPS position pn = [γ, λ, h]T , where γ denotes
geodetic latitude, λ denotes longitude, both in radians,
and h denotes altitude in meters above the reference
ellipsoid (Farrell, 2008, Sec. 2.3.2.1). True GPS position
is generated in two steps. First, position in the local
NED coordinate system is expressed in ECEF coordinates,
pe = [xe, ye, ze]T . Then, ECEF position is transformed
into pn.

Formulas to convert coordinates from local NED to ECEF
are (Cai et al., 2011, Eq. 2.23),

pe = peo +Re p (15a)

Re =

[− sin γo cosλo − sinλo − cos γo cosλo
− sin γo sinλo cosλo − cos γo sinλo

cos γo 0 − sin γo

]
. (15b)

The local reference point pno = [γo, λo, ho]
T is the point

where the trajectory begins, and peo = [xeo, y
e
o, z

e
o]
T is the

local reference point in ECEF coordinates, which can be
found as follows (Farrell, 2008, Eq. 2.9–2.11),

xeo = (RN (γo) + ho) cos γo cosλo (16a)

yeo = (RN (γo) + ho) cos γo sinλo (16b)

zeo =
[
RN (γo)

(
1− e2

)
+ ho

]
sin γo , (16c)

where RN is provided by (Farrell, 2008, Eq. 2.7).

Next, intermediate calculations to transform from ECEF
position to GPS position (Vermeille, 2002, Sec. 3) are,

p =
(
xe2 + ye2

)
/ a2 (17a)

q = ze2
(
1− e2

)
/ a2 (17b)

r =
(
p+ q − e4

)
/ 6 (17c)

s =
(
e4 p q

)
/
(
4 r3

)
(17d)

t =
3

√
1 + s+

√
s(2 + s) (17e)

u = r

(
1 + t+

1

t

)
(17f)

v =
√
u2 + e4 q (17g)

w = e2 (u+ v − q) / (2 v) (17h)

c =
√
u+ v + w2 − w (17i)

E = c
√
xe2 + ye2/

(
c+ e2

)
, (17j)

where constants a and e are taken from Table 1.

Finally, true GPS position pn = [γ, λ, h]T is expressed as
(Vermeille, 2002, Sec. 3),

γ = arctan2 (ze, E) (18a)

λ = arctan2 (ye, xe) (18b)

h =
c+ e2 − 1

c

√
E2 + ze2 . (18c)

A GPS receiver delivers estimates of position with cer-
tain dispersion. Consequently, noise must be added to pn.
Usually, GPS manufacturers give horizontal (2D) position
accuracy expressed as circular error probable (CEP) in
meters. CEP is the radius of the circle centred on the cor-
rect location that contains 50% of the expected horizontal
position errors (Farrell, 2008, Sec. 4.9.1.2). If latitude and
longitude standard deviations, σγm and σλm respectively,
are considered to be equal, then (Farrell, 2008, Table 4.2),

σγ m = σλm = 0.8493 CEP (m) . (19)

GPS standard deviations are also needed in units of
radians and can be obtained as follows,

σγ =
σγm

RM (γo) + ho
(20a)

σλ =
σλm

(RN (γo) + ho) cos γo
, (20b)

where RM is given by (Farrell, 2008, Eq. 2.6).

Lastly, to find GPS position estimates p̃n
G

= [γ̃
G
, λ̃

G
, h̃

G
]T ,

pn is added with Gaussian white noises ηγ ∼ N(0, σ2
γ),

ηλ ∼ N(0, σ2
λ), and ηh ∼ N(0, σ2

h),

γ̃
G

= γ + ηγ (21a)

λ̃
G

= λ+ ηλ (21b)

h̃
G

= h+ ηh . (21c)

GPS velocity GPS velocity ṽn
G

= [ṽNG
, ṽEG

, ṽDG
]T is

straightforwardly generated. Vector vn from (1) is added
with Gaussian white noise ηv ∼ N(0,σ2

v), where σv is
given by the GPS manufacturer,

ṽn
G

= vn + ηv . (22)

3. EXTENDED KALMAN FILTER

The Kalman filter is an algorithm for linear systems that
operates recursively on noisy input and output data to
produce a statistically optimal estimate of the system
states. The extended Kalman filter (EKF) is a nonlinear
extension of the Kalman filter, which linearises about
an estimate of the current mean and covariance. The
EKF can be formulated to fuse information coming from
inertial and aiding sensors to get state estimates with less
errors when compared with sensors used separately. In
doing so, NaveGo implements a version of the EKF called
complementary filter (Farrell, 2008, Sec. 4.10).

The SINS error model is obtained by perturbing the
navigation equations, and is given by a series of first
order differential equations. The resulting system is linear
although time-variant. Fig. 1 exposes how SINS, GPS and

114 Control Engineering and Applied Informatics

EKF work together. This kind of integration is known
as feedback implementation (Farrell, 2008, Sec. 5.10.5.3),
where corrections in x̂ are fed back and used it as prior
information to calculate estimates at the SINS.

Fig. 1. Diagram of SINS, GPS, and EKF integration.

The continuous state-space model of the system in time
domain is (Brown and Hwang, 1997, Sec. 7.1),

δ ˙̂x(t) = F(t) δx̂(t) +G(t) u(t) + ζ(t) (23a)

δŷ(t) = H δx̂(t) + ν(t) . (23b)

The discrete-time, state-space model of the system is
(Brown and Hwang, 1997, Sec. 5.5),

δx̂(+) = Φ δx̂+Gu+ ζ (24a)

δŷ = H δx̂+ ν . (24b)

Vectors ζ ∼ N(0, Q) and ν ∼ N(0, R) are known as
driving noise and measurement noise, respectively. Vectors
u ∈ R12, δx̂ ∈ R21, and δŷ ∈ R6 are defined as,

u =
[
ω̃b T , f̃

b T
, ηTgδb, η

T
fδb

]T
(25a)

δx̂ =
[
δêT , δv̂nT , δp̂nT , b̂

T

g , b̂
T

f , δb̂
T

g , δb̂
T

f

]T
(25b)

δŷ =
[
δŷTv , δŷ

T
p

]T
(25c)

δŷv =
[
v̂n − ṽn

G

]
(25d)

δŷp = T̂ rp
(
p̂n − p̃n

G

)
+ Ĉnb l

b
ba (25e)

T̂ rp = diag
([

(R̂M + ĥ), (R̂N + ĥ) cos(γ̂),−1
])
, (25f)

where lbba is the lever arm from the GPS antenna to the

IMU. T̂ rp is the curvilinear-to-Cartesian transformation
matrix (Groves, 2008, Eq. 12.81).

If I{3×3} is an identity matrix and 0{3×3} is a null matrix,
state-space matrices are,

F(t){21×21} =

Fee Fev Fep −Ĉnb 0 −Ĉnb 0

Fve Fvv Fvp 0 Ĉnb 0 Ĉnb
0 Fpv Fpp 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 − 1

τ g
0

0 0 0 0 0 0 − 1

τ f

(26)

G{21×12} =

−Ĉnb 0 0 0

0 Ĉnb 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 I 0
0 0 0 I

(27)

H{6×21} =

[
0 I 0 0 0 0 0

0 0 T̂ rp 0 0 0 0

]
. (28)

Submatrices Fnn from (26) are shown in (Titterton and
Weston, 2004, Eq. 12.28).

Covariance matrix Q (Groves, 2008, Eq. 12.67) is defined
as,

Q{12×12} = diag
(
[n2T
g , n2T

f , n2T
gδb, n

2T
fδb]
)
, (29)

where n2
g (9), n2

f (14), n2
gδb, and n2

fδb (7) are the power

spectral densities (PSD) of, respectively, the gyroscopes
random noise, accelerometers random noise, gyroscopes
dynamic bias, and accelerometers dynamic bias. These
parameters can be obtained as (Groves, 2008, Eq. 12.68
and 12.69),

n2
g = σ2

g δt (30a)

n2
f = σ2

f δt (30b)

n2
gδb = σ2

gδb ◦ τ g (30c)

n2
fδb = σ2

fδb ◦ τ f . (30d)

Covariance matrix R is defined as,

R{6×6} = diag
(
[σ2T
v , σ2

γm, σ
2
λm, σ

2
h]
)
. (31)

Diagonal entries from R are provided by the GPS error
profile. Matrix T̂ rp in (25e) motivates the use of σγm and
σλm in R, not σγ and σλ. This way, diagonal elements from
R are of the same order, which produces better numerical
stability in calculating the Kalman gain, K (Alg. 1, line
4).

Algorithm 1 presents a modified version of the EKF algo-
rithm for one iteration. At each iteration, the state pre-
diction equation reduces to δx̂− = 0, which is the optimal
predicted error estimate. Hence, the original equation to
update the actual state estimates, δx̂ = δx̂− + K(δŷ −
δx̂−), is simplified as shown in line 5 of Alg. 1 (Farrell,
2008, Eq. 5.103).

Since the master clock of an INS is the GPS clock, the
EKF is run only at GPS time steps, t

G
.

Control Engineering and Applied Informatics 115

Algorithm 1 Simplified extended Kalman filter.

1: Update δt
G

= t
G
−t

G(−), δŷ (25c), F (26), and G (27).
2: Φ = I + F δt

G

3: Qk = G Q GT δt
G

4: K =
(
P(−) H

T
) (
R+H P(−) H

T
)−1

5: δx̂ = Kδŷ
6: Pt = (I −K H) P
7: P = Φ Pt ΦT +Qk
8: P = 1

2

(
P + PT

)
The covariance matrix P{21×21} must be set up initially
before the first execution of Alg. 1. It is formed as a
diagonal matrix whose entries are chosen according to the
expected initial variances of δx̂ (25b) as,

P(1) = diag
(
[σ2
φ, σ

2
θ , σ

2
ψ, σ

2T
v , σ2

γ , σ
2
λ, σ

2
h, (32)

b2Tg , b2Tf , σ2T
gδb, σ

2T
gδf]

)
.

Kalman filter may have serious numerical problems (Gre-
wal and Andrews, 2008, Ch. 6). To avoid this situation, it
is necessary but not sufficient that covariance matrix P be
symmetric at each iteration. Line 8 of Alg. 1 ensures this
condition (Farrell, 2008, Sec. 5.9).

4. NAVEGO MAIN ALGORITHM

NaveGo is a simulation framework for low-cost integrated
navigation systems. It works with variables in units of the
International System of Units (SI). NaveGo takes data
generated by a trajectory generator, vector T (1), and pro-
duces simulated measurements delivered by gyroscopes,
accelerometers, and a GPS receiver. Also, it can process
data from real sensors.

The mathematical model of NaveGo is based upon the
reference model shown in (Gonzalez et al., 2015). NaveGo
implements a loosely-couple INS to combine data from
inertial sensors and aiding sensors into a more accurate
estimate of attitude, velocity, and position. A loosely-
coupled system is chosen between other types of integra-
tion since it can be implemented with most low-cost GPS
receivers.

NaveGo is developed in MATLAB for being the facto
standard programming language for simulation and math-
ematical computing. Nevertheless, NaveGo can run with
FreeMat (FreeMat, 2014), an open-source, mathemati-
cal computing tool, syntax-compatible with MATLAB.
NaveGo is developed as an open-source toolbox (Navego,
2015). Two type of floating-point precision are supported:
double and single. Precision is set by the argument ‘preci-
sion’ supported by some NaveGo’s functions (Sec. 7). The
default value is double.

NaveGo considers that discrete-time series ω̃b and f̃
b

are
synchronized, i.e., they are associated with the same vector
time t

S
, which has a number of elements equal to k

S
. On

the other hand, GPS discrete-time series p̃n
G

and ṽn
G

are
synchronized with t

G
, which has a number of elements

equal to k
G

. Each sensor’s measurements and error profile
are put together in a data structure, so they can be
accessed efficiently.

Algorithm 2 details the operation of NaveGo. State vector
x̂ is defined as,

x̂ = [êT , v̂nT , p̂nT , b̂
T

g , b̂
T

f , δb̂
T

g , δb̂
T

f]T . (33)

Algorithm 2 NaveGo main algorithm.

1: Set σ2
g, σ

2
f , bg, bf , σ2

gδb, σ
2
fδb, τ g, and τ f

2: Set pno , σ2
γm, σ2

λm, σ2
γ , σ2

λ, σ2
h, and σ2

v
3: Set ng, nf , ngδb, and nfδb

4: Generate ω̃b (8) and f̃
b

(13) until k
S
, or load real IMU

data set
5: Downsample T (1) and generate p̃n

G
(21) and ṽn

G
(22)

until k
G

, or load real GPS data set

6: Set ê(1) = [φ̂o, θ̂o, ψ̂o]
7: Calculate q̂(1) with ê(1) (Titterton and Weston, 2004,

Eq. 3.65)

8: Calculate Ĉbn(1) with q̂(1) (Titterton and Weston, 2004,

Eq. 3.63)
9: Set p̂n(1) = p̃

G(1) and v̂n(1) = ṽ
G(1)

10: Set b̂g = 0 , b̂f = 0 , δb̂g = 0 , and δb̂f = 0

11: Set lbba, Q (29), R (31), and P(1) (32)
12: Guarantee that t

G(1) < t
S(1) =< t

G(2)

13: Guarantee that t
S(kS−1) < t

G(kG) =< t
S(kS)

14: Set i = 2
15: for k = 2 to k

G
do

16: while t
S(i) =< t

G(k) do
17: Update ω̂nie and ω̂nen (Titterton and Weston,

2004, Eq. 3.72 and 3.74)
18: Update q̂ (Crassidis and Junkins, 2011, Eq.

7.39)

19: Update Ĉnb (Titterton and Weston, 2004, Eq.
3.63)

20: Update ê (Titterton and Weston, 2004, Eq.
3.66)

21: Update ĝn (Titterton and Weston, 2004, Eq.
3.89–3.91)

22: Update v̂n (Titterton and Weston, 2004, Eq.
3.69)

23: Update p̂n (Titterton and Weston, 2004, Eq.
3.79–3.81)

24: i = i+ 1
25: end while
26: Update δx̂ (Alg. 1)
27: Correct x̂: x̂ = x̂− δx̂
28: Correct q̂ (34)

29: Correct Ĉnb (3)
30: end for

Formulas for correction of quaternions are (Crassidis and
Junkins, 2011, Eq. 7.34, A.172a, and A.173),

q̂ = q̂ +
1

2
Ξ(q̂) δê (34a)

Ξ(q̂){4×3} =

[
q4 I{3×3} + [%×]

−%T
]
, (34b)

where % comes from the definition of quaternion,

116 Control Engineering and Applied Informatics

q = [%, q4]
T

= [q1, q2, q3, q4]
T
, (35)

and δê is delivered by the EKF (25b).

The master clock of NaveGo is the GPS clock. There-
fore, the EKF is only executed when new GPS data are
available. Between GPS measurements, the SINS keeps
updating estimates of attitude, velocity, and position.

Attitude may be initialized with initial true angles or, a
more realistic approach, with estimated angles at rest. At
this point, one may force large initial attitude errors and
test how the system recovers. Position and velocity are
initialized with corresponding GPS estimates.

When a correlation time is not specified, it must be set to
inf . This way, NaveGo will process corresponding noise
ηδb as uncorrelated Gaussian white noise.

NaveGo has certain limitations. Neither corrections in
computation of attitude are made for conning effects, nor
velocity is corrected for sculling effects. In addition, GPS
position and velocity are derived under the assumption
that they are only affected by a zero-mean Gaussian
distributions. In particular cases, as when impulse noise
interference is relevant, GPS noise distribution cannot be
considered as Gaussian (Liu and Amin, 2008).

5. SIMULATION RESULTS

In order to expose some simulation results, it is proposed
to evaluate the performances from two INS compound of
different IMU.

A real-world data set is used as input data to NaveGo. In
(Toth et al., 2011), IMU of several grades and a Novatel
OEM4 dual-frequency GPS receiver were mounted on a
vehicle. Measurements from these sensors were logged
during an open-sky trajectory while the vehicle was driven.
In addition, a DGPS system was implemented with a
Topcon Legacy GPS base station. A reference data set
TR = [e,vn,pn, t

S
] is obtained by fusing navigation-grade

IMU Honeywell H764G-1 and DGPS measurements.

Fig. 2 displays the trajectory that pn from TR describes.
The trajectory takes place in the vicinity of the Ohio
University, USA. The globe on the left with a circle marks
the beginning of the trajectory. On the other hand, the
globe on the right with a square points the end of the
trajectory. As seen from Fig. 2, the trajectory contains
high and low dynamics. First, the vehicle performs several
curves on a parking. Then, it is driven along a road.
The path covers 14.67 minutes throughout which the
availability of GPS signal is 100%.

To simulate accelerometers, vector an is produced by
taking first order derivative of vn. A Savitzky-Golay FIR
smoothing filter is applied to an to eliminate the noise
produced by computing the derivative.

Noise characteristics of GPS, gyroscopes and accelerom-
eters are based upon parameters taken from real sen-
sors. Chosen inertial sensors are Analog Devices IMU
ADIS16405 (Analog Devices, 2009a) and ADIS16488
(Analog Devices, 2009b). The GPS receiver to simulate
is the GPS 18-5Hz from Garmin (Garmin International,
2005). Tables 2 and 3 summarize error parameters from

Fig. 2. Reference trajectory from (Toth et al., 2011) (image
courtesy of Google Earth (Google Earth, 2014)).

each IMU and GPS, respectively. SINS operation fre-
quency is set to 128 Hz and GPS’s is set to 5 Hz. It is
clear from Table 2 that IMU ADIS16488 presents smaller
errors than IMU ADIS16405, and thus, a better navigation
performance is expected from the former.

Table 2. IMU profiles.

ADIS16405 ADIS16488

ARW 2 0.3 deg/
√

h

VRW 0.2 0.029 m/s/
√

h
bg(1σ) 3 0.2 deg/s
bf (1σ) 50 16 mg
σgδb 7E-3 1.8E-3 deg/s
σfδb 0.2 0.1 mg
Frequency 128 128 Hz

Table 3. GPS 18-5Hz profile.

Position error (2σ) < 15 m
Velocity error 0.1 knot
Frequency 5 Hz

Since NaveGo works with variables in SI units, most values
from Tables 2 and 3 must be converted to be processed.
Tables 4 and 5 summarize converted input data to the
simulator. Elements of variance vectors are set equally.

Table 6 shows the average RMS errors from both INS
and GPS for 10 simulations. Both INS present similar
performances except in attitude where the INS with IMU
ADIS16488 is more accurate. As expected, it is observed
that both INS have better precision in 3D position when
compared with the GPS-only solution.

Control Engineering and Applied Informatics 117

Table 4. Input data to NaveGo I.

ADIS16405 ADIS16488

σg 5.582E-3 2.746E-4 rad/s
σf 3.771E-2 1.521E-3 m/s2

bg 5.235E-2 3.490E-3 rad/s
bf 4.905E-1 1.569E-1 m/s2

σgδb 1.221E-4 3.151E-5 rad/s
σfδb 1.962E-3 9.810E-4 m/s2

ng 5.818E-4 8.727E-5 rad/s/Hz
nf 3.333E-3 4.833E-4 m/s2/Hz
ngδb 1.222E-4 3.151E-5 rad/s/Hz
nfδb 1.962E-3 9.810E-4 m/s2/Hz
τg inf inf s
τ f inf inf s

Table 5. Input data to NaveGo II.

σγm 5 m
σλm 5 m
σh 10 m
σγ 7.8591E-7 rad
σλ 1.0219E-6 rad
σv 0.0514 m/s
ê(1) [0.0223, 0.0234, 0.0550]T rad

pno [0.698145481,−1.449307157, 204.691]T [rad,rad,m]

lbba [0, 0, 0]T m

Table 6. Average RMS errors from both INS
and GPS.

INS/ADIS16405 INS/ADIS16488 GPS-only

φ 0.1595 0.0564 − deg
θ 0.2284 0.0540 − deg
ψ 0.6599 0.3166 − deg
vN 0.0224 0.0177 0.0514 m/s
vE 0.0239 0.0184 0.0517 m/s
vD 0.0194 0.0164 0.0515 m/s
γ 0.5366 0.5335 5.0632 m
λ 0.6159 0.6125 5.0015 m
h 0.5944 0.5949 9.8185 m

6. VALIDATION METHOD

The aim of this section is to validate the simulation of
sensors in particular, and NaveGo in general. In doing so,
it is evaluated how close in performance is a simulated
INS to a real INS for the same scenario. The proposed
validation method simulates sensors with a real trajectory
during which real measurements were collected from field.
Then, performances from both systems are compared.

6.1 Experiment setup

Real sensors data sets are provided by (Toth et al., 2011),
which were logged during the trajectory of Fig. 2 (see Sec.
5). Only three MEMS IMU are taken into account, namely,
Xbow IMU400CD (XBOW1), Xsens MTi (XSENS1), and
Gladiator Landmark 10 (GLAD). These MEMS IMU
represent inertial sensors of different grades, sorted by high
to low qualities.

Reference data set TR (Sec. 5) is used to simulate sensors.
Since simulated data sets have the same sampling time of
the reference data set, they are downsampled according to
sampling times from real sensors. Thus, simulated sensors

have close sampling times to corresponding real MEMS
IMU and Novatel GPS.

It is worth mentioning that the same three MEMS IMU
units used in (Toth et al., 2011) were profiled in (Hasnur-
Rabiain, 2010), in which error characteristics were de-
termined by using the Allan variance and PSD tech-
niques. MEMS IMU noise sources are taken from (Hasnur-
Rabiain, 2010, Table 4.4, column AV), except static biases
that are taken from (Hasnur-Rabiain, 2010, Table 4.3,
column Mean). These values are shown in Table 7 for
completeness.

Table 7. MEMS IMU profiles.

XBOW1 XSENS1 GLAD

X 8.0521E-3 1.4364E-2 3.4972E-2
σg Y 6.3292E-3 1.3617E-2 3.3640E-2 rad/s

Z 7.2158E-3 1.5617E-2 3.2998E-2

X 1.5621E-2 1.4930E-2 5.7851E-1
σf Y 1.5621E-2 1.5890E-2 5.7992E-1 m/s2

Z 1.1372E-2 1.7930E-2 5.9787E-1

X 7.6969E-2 4.2324E-2 1.0646E-3
bg Y 6.9813E-3 1.0018E-2 5.6199E-3 rad/s

Z 1.9896E-2 1.8151E-2 1.5620E-2

X 0.151 0.3070 0.1730
bf Y 0.007 -0.2800 -0.0700 m/s2

Z 0.019 0.0059 0.0212

X 5.9812E-5 1.9931E-4 2.0141E-4
σgδb Y 3.5395E-5 2.1467E-4 2.0943E-4 rad/s

Z 3.7576E-5 2.6633E-4 2.0141E-4

X 1.7870E-4 4.2740E-4 3.2320E-3
σfδb Y 1.8430E-4 3.3960E-4 3.1710E-3 m/s2

Z 2.1490E-4 4.7690E-4 3.6100E-3

X 6.9743E-4 1.4364E-3 2.4748E-3

ng Y 3.5482E-4 1.3617E-3 2.3806E-3
rad/s√

Hz
Z 6.2500E-4 1.5617E-3 2.3352E-3

X 1.3530E-3 1.4930E-3 4.0940E-2

nf Y 1.3530E-3 1.5890E-3 4.1040E-2
m/s2√

Hz
Z 9.8500E-4 1.7930E-3 4.2310E-2

X 250.7 274.4 458.9
τg Y 432.2 463.9 289.7 s

Z 395.2 132.2 370.9

X 196.9 33.4 260.2
τf Y 332.8 124.3 382.8 s

Z 79.2 39.2 351.3

Frequency 133 100 200 Hz

GPS error profile is shown in Table 8 (Novatel, Inc., 2005).
Also, lever arm vectors are provided (Toth et al., 2011).

Table 8. Novatel GPS profile.

σγm 0.6660 m
σλm 0.5062 m
σh 1.2242 m
σv [0.1925, 0.1521, 0.0521]T m/s

lbba XBOW1 [−0.781, 0.438, 1.072]T m

lbba XSENS1 [−0.714, 0.434, 1.098]T m

lbba GLAD [−0.646, 0.539, 1.097]T m
Frequency 5 Hz

118 Control Engineering and Applied Informatics

Table 9. RMS errors from real and simulated INS.

INS/XBOW1 INS/XSENS1 INS/GLAD Average

Real Sim Diff Real Sim Diff Real Sim Diff |Diff|

φ̂ 0.337 0.322 0.015 0.677 0.541 0.136 1.362 0.720 0.642 0.264 deg

θ̂ 0.656 0.644 0.012 1.109 0.765 0.344 1.454 1.102 0.352 0.236 deg

ψ̂ 2.518 2.841 -0.323 2.651 2.695 -0.044 5.413 4.186 1.227 0.531 deg
v̂N 0.201 0.130 0.071 0.221 0.146 0.075 0.220 0.155 0.065 0.071 m/s
v̂E 0.168 0.080 0.088 0.170 0.100 0.071 0.198 0.107 0.091 0.083 m/s
v̂D 0.021 0.017 0.004 0.021 0.026 0.007 0.080 0.039 0.041 0.017 m/s
γ̂ 0.446 0.219 0.227 0.462 0.231 0.231 0.474 0.242 0.232 0.230 m

λ̂ 0.357 0.140 0.217 0.350 0.129 0.221 0.386 0.154 0.232 0.224 m

ĥ 0.233 0.132 0.101 0.218 0.134 0.085 0.221 0.125 0.096 0.094 m

Finally, ideal simulated sensors are added with noises in
accordance with the linear error models shown in Sec. 2.

6.2 Result analysis

In order to evaluate the precision of the proposed sensor
error models, two types of integrated systems are imple-
mented for each MEMS IMU; a real one (Real) composed
of real IMU and real GPS, and a simulated one (Sim)
composed of both simulated IMU and simulated GPS from
NaveGo. Lastly, real and simulated data sets are processed
by using NaveGo. Vectors ê(1) and pno are taken from Table
5.

Table 9 displays RMS errors (RMSE) from each INS, Real
and Sim, with respect to the reference data set, for the
three MEMS IMU. Diff columns expose the difference
between both real and simulated RMSE, for each IMU.
Last column shows the average of absolute values from
columns Diff.

Values from Real columns of Table 9 are analysed. As
expected, since XBOW1 and XSENS1 have similar error
characteristics, their INS performances are also alike. On
the other hand, INS/GLAD shows a worse performance,
which is coherent with GLAD quality. Thus, performances
from the three real INS are coherent with corresponding
MEMS IMU error profiles. Therefore, it is shown that
NaveGo overall execution is correct.

It can be seen from Table 9 that simulated INS generally
have better performance than real INS, although very
close to the real ones. Two primary factors cause this
situation. Firstly, simulated sensors have pure-Gaussian
probability distributions, thus KF estimates are optimal.
On the other hand, real sensors’ probability distributions
are close to Gaussian but not exactly Gaussian. So, KF
estimates for these sensors are suboptimal. Second, sensors
are represented in the KF as first-order linear systems.
This model matches the simulated sensors models, but not
the real sensors models since the latter have some level of
nonlinearity in their corresponding output signals.

Average column from Table 9 shows that the proposed
models to simulate inertial sensors and GPS work well for
integrated systems composed of MEMS IMU of different
qualities. On average, attitude difference between real and
simulated systems is under 0.6 degrees, and 2D position
difference is under 23 centimetres. Additionally, vertical
position difference is under 10 centimetres. These numbers
expose that NaveGo is an adequate tool for assessing

the performance of real integrated navigation systems at
simulation stage.

7. CONCLUSIONS

In this work, a simulation framework for low-cost inte-
grated navigation systems called NaveGo is presented.
This article exposes complete mathematical models to
simulate measurements coming from inertial sensors and a
GPS receiver, as well as the algorithm of a loosely-couple
INS. NaveGo is distributed as an open-source toolbox and
can be freely obtained (Navego, 2015).

Proposed models to simulate mentioned sensors in par-
ticular, and NaveGo in general, are validated by using a
practical procedure. It is exhibited that the performance
of a low-cost INS at simulation level is comparable to the
performance of a real INS. On average, and for three dif-
ferent MEMS IMU, absolute differences between real and
simulated systems are under 0.6 degrees for attitude, under
23 centimetres for 2D position, and under 10 centimetres
for vertical position.

As a rule of thumb, in evaluating certain sensors for a
low-cost INS and having at hand both precise IMU and
GPS error profiles, one can expect that the performance
obtained with NaveGo will be close to the operation of a
real INS.

As a result, it is concluded that NaveGo is a suitable
simulation tool for the design and analysis of low-cost
integrated navigation systems.

ACKNOWLEDGEMENTS

The authors would like to thank to Dr. C. Toth, Dr. A.
Kealy, and MSc. A. Hasnur-Rabiain for generously share
IMU and GPS data sets, and, in particular, for Hasnur-
Rabiain’s unselfish support. They would also like to thank
to Dr. C.A. Catania (from Universidad Nacional de Cuyo,
Argentina) for his comments on this work.

REFERENCES

Analog Devices, Inc. (2009a). ADIS16400/ADIS16405
Data Sheet Rev. B.

Analog Devices, Inc. (2009b). ADIS16488 Data Sheet Rev.
C.

Brown, R.G. and Hwang, P.Y.C. (1997). Introduction to
Random Signals and Applied Kalman Filtering, 3rd Ed.
John Wiley & Sons, Inc., USA.

Control Engineering and Applied Informatics 119

Cai, G., Chen, B.M., and Lee, T.H. (2011). Unmanned
Rotorcraft Systems. Springer London, UK.

Crassidis, J.L. and Junkins, J.L. (2011). Optimal Esti-
mation of Dynamic Systems, 2nd Ed. Chapman and
Hall/CRC, USA.

Esposito, F., Accardo, D., Moccia, A., Ciniglio, U., Cor-
raro, F., and Garbarino, L. (2007). Real-time simulation
and data fusion of navigation sensors for autonomous
aerial vehicles. In Advances and Innovations in Systems,
Computing Sciences and Software Engineering, 127–136.
Springer Netherlands.

Farrell, J. (2008). Aided Navigation: GPS With High Rate
Sensors. McGraw-Hill Professional, USA.

FreeMat (2014). FreeMat home page. URL
http://freemat.sourceforge.net.

Garmin International, Inc. (2005). GPS 18 5Hz Technical
specifications Rev. D.

Giroux, R., Landry, R.J., Leach, B., and Gourdeau, R.
(2003). Validation and performance evaluation of a
Simulink inertial navigation system simulator. Cana-
dian Aeronautics and Space Journal, 49(4), 149–161.
doi:10.5589/q03-015.

Gonzalez, R., Giribet, J.I., and Patio, H.D. (2015). An
approach to benchmarking of loosely coupled low-cost
navigation systems. Mathematical and Computer Mod-
elling of Dynamical Systems, 21(3), 272–287. doi:
10.1080/13873954.2014.952642.

Google Earth (2014). The Ohio State University, USA.
40.001319N, 83.039045W. Date of original imagery:
5/29/2010. Date accessed: 4/17/2014.

Grewal, M.S. and Andrews, A.P. (2008). Kalman Filtering:
Theory and Practice Using MATLAB (3rd Ed.). John
Wiley & Sons, Inc., USA.

Groves, P.D. (2008). Principles of GNSS, Inertial, and
Multisensor Integrated Navigation Systems. Artech
House, USA.

Hasnur-Rabiain, A. (2010). Performance Evaluation of
MEMS based INS/GPS Integration. Master’s thesis,
Department of Geomatics, The University of Melbourne.

Liansheng, L. and Tao, J. (2011). Research on strap-down
inertial navigation system simulation. In Intelligent
Computation Technology and Automation (ICICTA),
2011 International Conference on, volume 2, 1168–1171.
doi:10.1109/ICICTA.2011.577.

Lijun, W., Huichang, Z., and Xiaoniu, Y. (2008). The mod-
eling and simulation for GPS/INS integrated navigation
system. In Microwave and Millimeter Wave Technology,
2008. ICMMT 2008. International Conference on, vol-
ume 4, 1991–1994. doi:10.1109/ICMMT.2008.4540881.

Liu, L. and Amin, M. (2008). Performance analysis
of GPS receivers in non-gaussian noise incorporating
precorrelation filter and sampling rate. Signal Pro-
cessing, IEEE Transactions on, 56(3), 990–1004. doi:
10.1109/TSP.2006.890827.

NaveGo (2015). An open-source MATLAB toolbox for
simulating low-cost integrated navigation systems. URL
http://www.github.com/rodralez/navego.

Novatel, Inc. (2005). OEM4 Family User Manual (OM-
20000046 Rev 19).

Strus, J.M., Kirkpatrick, M., and Sinko, J.W. (2008).
Development of a high accuracy pointing system for
maneuvering platforms. Inside GNSS, March/April, 30–
37.

Titterton, D.H. and Weston, J.L. (2004). Strapdown
Inertial Navigation Technology (2nd Ed.). Institution
of Engineering and Technology, USA.

Toth, C., Brzezinska, D., Politi, N., and Kealy, A.
(2011). Reference data set for performance evaluation
of MEMS-based integrated navigation solutions. In FIG
Working Week 2011. Marrakech, Morocco.

Vermeille, H. (2002). Direct transformation from geo-
centric coordinates to geodetic coordinates. Journal of
Geodesy, 76, 451–454.

Wenling, L., Pei, C., and Chao, H. (2010). Simulation
based on MEMS INS performance analyses in flying
mission. In Pervasive Computing Signal Processing and
Applications (PCSPA), 2010 First International Con-
ference on, 1205–1208. doi:10.1109/PCSPA.2010.296.

Zhang, W., Ghogho, M., and Yuan, B. (2012). Mathe-
matical model and MATLAB simulation of strapdown
inertial navigation system. Modelling and Simulation
in Engineering, 2012(Article ID 264537), 25. doi:
http://dx.doi.org/10.1155/2012/264537.

APPENDIX: LIST OF FUNCTIONS

NaveGo is composed by 34 functions. Next, functions are
listed in alphabetical order and a brief description is given:

(1) acc gen.m simulates accelerometers outputs in the
b-frame (Sec. 2.2).

(2) acc nav2body.m projects accelerations from n-frame
to b-frame (10).

(3) att update.m updates attitude (Crassidis and Junk-
ins, 2011, Eq. 7.39).

(4) coriolis b.m computes Coriolis force in the b-
frame (11).

(5) coriolis.m computes Coriolis force (11).
(6) dcm update.m updates DCM with Euler angles e

(Titterton and Weston, 2004, Eq. 11.4).
(7) dcm2euler.m converts DCM to Euler angles (Titter-

ton and Weston, 2004, Eq. 3.66).
(8) earthrate.m computes the Earth rate (Titterton

and Weston, 2004, Eq. 3.72).
(9) ecef2llh.m converts ECEF position to n-frame

position (17).
(10) ecef2ned.m converts ECEF position to local NED

position (inverse process of (15)).
(11) euler2dcm.m converts Euler angles to DCM (Titter-

ton and Weston, 2004, Eq. 3.47).
(12) euler2qua.m converts Euler angles to quaternion

(Titterton and Weston, 2004, Eq. 3.65).
(13) F update.m updates matrix F (26).
(14) gps err profile.m transforms GPS errors in me-

ters to radians (20).
(15) gps gen.m generates measurements of GPS position

and GPS velocity in the n-frame (Sec. 2.3).
(16) gravity b.m computes gravity vector in the b-

frame.
(17) gravity.m computes gravity vector in the n-frame

(Titterton and Weston, 2004, Eq. 3.89–3.91).
(18) gyro gen delta.m computes incremental angles be-

tween time steps (5).
(19) gyro gen.m simulates gyroscopes outputs in the b-

frame (Sec. 2.1).
(20) imu err profile.m adjusts IMU error profile to SI

units ((9) and (14), and (30)).

120 Control Engineering and Applied Informatics

(21) ins.m computes the loosely-coupled integration
(Alg. 2).

(22) kalman.m computes the Kalman filter (Alg. 1).
(23) llh2ecef.m converts n-frame position to ECEF

position (16).
(24) navego example of use.m compares the performances

of two INS with different IMU (Sec. 5).
(25) ned2ecef.m converts local NED position to ECEF

position (15).
(26) pos update.m updates position (Titterton and We-

ston, 2004, Eq. 3.79–3.81).
(27) qua2dcm.m converts quaternion to DCM (Titterton

and Weston, 2004, Eq. 3.63).
(28) qua2euler.m converts quaternions to Euler angles

(see (Farrell, 2008, Eq. 10.3–10.5, pp. 354–355)).

(29) qua update.m updates quaternions (Crassidis and
Junkins, 2011, Eq. 7.39).

(30) radius.m computes RM and RN (Farrell, 2008, Eq.
2.6 and 2.7).

(31) rmse.m computes root-mean-square error between
two vectors.

(32) skewm.m composes a skew symmetric matrix from a
vector.

(33) transportrate.m computes the transport rate (Tit-
terton and Weston, 2004, Eq. 3.74).

(34) vel update.m updates velocity (Titterton and We-
ston, 2004, Eq. 3.69).

