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Abstract

A two-dimensional unstructured Navier-Stokes code is utilized for computing the flow around multielement airfoil configurations.

Comparisons are shown for a landing configuration with an advanced-technology flap. Grid convergence studies are conducted to assess

inaccuracies caused by inadequate grid resolution. Although adequate resolution is obtained for determining the pressure distributions,

further refinement is needed to sufficiently resolve the velocity profiles at high angles of attack.

For the advanced flap configuration, comparisons of pressure distributions and lift are made with experimental data. Here, two flap

riggings and two Reynolds numbers are considered. In general, the trends caused by variations in these quantities are well predicted by

the computations, although the angle of attack for maximum lift is overpredicted.

Introduction

The goal of a high-lift system is to generate as much lift

as possible without separating the flow [1]. Without external

devices such as wall suction, the most effective way to achieve

this goal is through the use of multiple elements to manipulate the

inviscid pressure distribution to reduce the pressure rise over each

element [1], [2]. However, the presence of multiple elements

seriously complicates analysis procedures because of important

and often complex interactions between the individual elements.

While inviscid analysis can be accomplished in minutes with panel

methods or unstructured-grid Euler solvers, it is necessary to use

viscous techniques to accurately predict the flows about these

configurations. The reason for this is that although the tailoring

of the flow field to prevent separation is largely achieved through

circulation interactions between the elements, many viscous effects

can have large influences on the pressure distributions. While

these include obvious effects such as displacement thickness and

separation on the surfaces, wake interactions between forward and

aft elements as well as flow reversal off the surface can contribute

significantly in determining the overall performance of the high-

lift system [3], [4], [5].

For computations on multielement airfoils, unstructured grid

methods may offer a good alternative to more traditional methods

of analysis. This is due in part to the decreased time required to

generate grids over complicated geometries. Also, unstructured

grids offer the potential to adapt the grid to improve the accuracy

of the computation without incurring the penalties associated with

global refinement. However, despite the advantages of unstruc-

tured grids, they are typically much slower than structured grid

solvers. Also, the ability to obtain solutions through local adapta-

tion that are comparable to those obtained through global refine-

ment remains an area where further work is required [6]. Although

work remains to fully realize their potential, much progress has

been reported in computing viscous flows on unstructured grids

(See for example [7], [8], [9], [10]).

The purpose of this study is to present computational results

obtained with a particular unstructured grid method [11], [12]that

has been applied to several flows over multielement airfoils. Com-

parisons between computational results and experimental data are
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made to assess the effectiveness of the present code, to aid in de-

termining future directions, and to provide useful comparisons for

other researchers working in this field.

Symbols

� angle of attack

b span of wind tunnel model

c reference chord taken to be the chord of the

undeflected airfoil

Cl lift coefficient

Cp pressure coefficient

CFL Courant-Friedichs-Lewy number

M1 free stream Mach number

q magnitude of velocity

q1 magnitude of velocity in freestream

Re Reynolds number

u velocity component in direction of

surface-tangent vector

x; y; z Cartesian coordinates

y+ turbulent boundary-layer parameter

� angle of attack

� chordwise location on airfoil (referenced to

undeflected position)

Computational Method

The computational method used in this study is a node-based,

implicit, unstructured, upwind flow solver described in reference

[11]. In this code, the discretization of the convective and viscous

terms is handled similarly to the method of reference [8]. The

inviscid fluxes are obtained using Roe’s approximate Riemann

solver [13]; the viscous terms are evaluated with a Galerkin-type

approximation that results in a central-difference formulation for

these terms. Two different turbulence models are presently utilized

in the code. These include both the Baldwin-Barth [14] model and

the Spalart-Allmaras [15] model. At each time step, the equation
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for the turbulent viscosity is solved separately from the flow

equations, which results in a loosely coupled solution process that

allows for a relatively easy interchange of other turbulence models.

Although both turbulence models have been used extensively with

good success, the present study reports only results obtained with

the Spalart-Allmaras model.

Experimental Data

All experimental data used in the present work have been

obtained in the Low Turbulence Pressure Tunnel (LTPT) located

at the NASA Langley Research Center [16]. The tunnel is a

single return, closed-throat wind tunnel that obtains high Reynolds

numbers by operating at pressures up to 10 atm. The test section

is 3 ft wide by 7.5 ft high by 7.5 ft long. Side wall boundary

suction is applied to promote two-dimensional flow [17].

Lift and moment measurements are obtained by using both

a force balance and an integration of surface pressures; drag is

obtained from a wake survey with a five-hole probe. The accuracy

of the lift force is approximately �0:5 percent when obtained

from the balance [16], and the lift coefficient is estimated to be

within �0:03 when obtained from pressure integration. The drag

coefficient is estimated to be accurate to within �0:001 [18] for

attached flows. Pressure coefficient distributions are obtained from

pressure orifices located along the model and are accurate to within

about �0:030.

For the calculations that follow, comparisons will be made

with experiments obtained from two different data sets and the

presentation of results is organized accordingly. A brief descrip-

tion is given below for each data set.

The test data is the result of a cooperative experimental pro-

gram between the Douglas Aircraft Company and the NASA Lan-

gley Research Center and is reported in references [19] and [20].

Test Reynolds numbers varied between 5, 9, and 16 million. The

angle of attack included a range of approximately �4� through

23
�. The tests have been conducted without forced boundary-

layer transition. The overall geometry, which is shown in figure

1, is a three-element configuration based on an 11:55 percent thick

supercritical airfoil. The slat and flap chord ratios are 14:48 per-

cent and 30 percent, respectively, based on the airfoil chord for

the undeflected position.

For the current study, the deflections of both the slat and the

flap are set at 30�, and two different flap riggings are considered.

A “rigging” refers to a combination of gap and overhang settings

as defined in figure 2, and a specific rigging is assigned a letter

designation. For the first configuration, denoted as 30P-30N (slat

deflection 30
�, slat rigging P, flap deflection 30

�, flap rigging N),

the flap overhang is 0.25 percent of the undeflected airfoil and the

flap gap is 1.7 percent. For the second configuration, which is

denoted as 30P-30AG, both the gap and overhang are 1 percent.

In figure 3, a more detailed view of the flap riggings for the two

configurations is shown.

The data for these configurations have been obtained from

two separate tunnel entries. Because the first test considered both

three- and four-element airfoils, the flap was constructed in two

pieces, which were then assembled on site. During these tests,

force and moment data were obtained for many flap riggings,

including those discussed here. From these experiments, it was

found that the 30P-30N configuration exhibited a slightly higher

Clmax than did the 30P-30AG. A single-segment flap was then

constructed and the 30P-30N geometry was studied in more detail

in a subsequent test. During this test, more detailed data, such

as velocity profiles, were obtained and are presented in reference

[20].

In order to make meaningful interpretations between compu-

tational and experiment results, an indication of the two dimen-

sionality of the flowfield is necessary. Figure 4 shows experimen-

tal pressure distributions at several angles of attack obtained at two

different spanwise locations on the model. The z=b = 0:5 location

corresponds to the centerline of the tunnel which has 146 pressure

taps. In order to better assess the two dimensionality of the flow,

several pressure taps are also present at z=b = 0:77, which is ap-

proximately midway between the centerline of the model and the

wind tunnel wall. As seen in the figure, excellent two-dimensional

flow is maintained at an angle of attack of 16:2� (uncorrected).

Slight three-dimensional effects are present at 21:31� and three

dimensionality is clearly indicated at 22:25� .

Results

The results of the comparisons are presented below. For the

computations, the CFL number has been ramped linearly from 20

to 100 over 100 iterations. The lift coefficient is constant to within

about 0:1 percent of the total lift (fourth significant digit) and the

pressure distributions and velocity profiles show no differences

over 500 iterations when plotted.

All grids used in the present study have been generated

using the grid generation procedure described in reference [21]; a

sample is shown in figure 5. In this procedure, structured grids

are first generated around individual components. These grids

are then used to define a cloud of points that is triangulated

with a stretched-Delaunay triangulation procedure to establish

the connectivity relationships. Although the aspect ratios of the

triangles near the surface are generally very large because of the

extremely small spacing required at the wall, grids generated in

this manner tend to have relatively few cells with large angles

that can negatively compromise accuracy. For the grids used here,

fewer than 2 percent of the angles are greater than 120
�.

Comparisons between computed results and experimental

data are presented below for the three-element advanced flap

configurations (30P-30N and 30P-30AG) discussed above. The

first set of results is for the 30P-30N configuration at several angles

of attack with a Mach number of 0.2 and a Reynolds number of 9

million. Simultaneously presented are the results of varying grid

densities on computed pressure distributions and velocity profiles,

which are used to ascertain the level of numerical errors in the

computations.

For these studies, three grids have been utilized. The first

grid, which will be referred to as the coarse grid, consists of

22,491 nodes, 524 of which lie on the surfaces of the elements.

The spacing at the wall for this mesh is 4 � 10
�6 normalized to

the chord length of the airfoil in the undeflected position. This

spacing yields a y+ of less than 2 for the point next to the wall

at the rear of a unit-length flat plate. Finer grids are obtained by

simultaneously increasing the number of points in each direction

to obtain as close to a uniform refinement as possible. In the

current study, the number of points in each direction is increased

with each refinement by a factor of roughly
p
2 so that the total

number of nodes with each refinement is approximately doubled

over the previous mesh.

With this procedure, the second mesh in this family of grids

contains 49,596 nodes with 806 points on the surfaces. This mesh

will be referred to in future discussions as the baseline mesh. For

this mesh, the spacing at the wall is about 2� 10
�6 and results in

a y+ of less than 1, according to flat plate estimates. In a similar
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fashion, another finer grid is generated that has 87,783 nodes with

1036 points on the solid surfaces; it is referred to here as the fine

grid.

Pressure distributions on all grids are shown in figures 6

through 9 for � = �0:03�, � = 8:23�, � = 16:30�, and

� = 22:36�, respectively. As seen, the variation in the pressure

distribution between the coarse grid and the other two grids is

relatively small up to � = 22:36� . However, at this angle of

attack, the loading on the flap is noticeably less for the coarse

grid than for the baseline and fine grids, which continue to yield

very similar results. Also, an obvious discrepancy exists in the

pressure distribution on the slat for an angle of attack of 8:23�.

The cause of this is unknown, but could be attributable to a

number of sources including wind tunnel wall corrections or an

inaccurate representation of the separated flow under the cove

which leads to higher circulation around this element. Although

not shown, it is interesting to note that excellent agreement is

obtained on the slat, as well as the other elements, when the

point vortex correction in the far field for the computations is

removed. However, numerical studies for the Euler equations with

this same three-element airfoil indicate that the presence of the

point vortex significantly decreases the dependence of the solution

on the placement of the far-field boundary as expected. Therefore,

the improved agreement obtained without the vortex is evidently

fortuitous. Note also that the pressure distributions on both the

main element and the flap indicate slightly higher lift than the

experiment, which could also account for a higher circulation on

the slat.

Computed velocity profiles at several locations along the

main element and the flap are shown in figure 10 for an angle

of attack of 22:36� . Also shown is an illustration that indicates

the locations on each element where the data are obtained. Note

that these locations are referenced to the airfoil coordinates in

the undeflected position. Results are shown for this angle of

attack because they indicate the most variation between the coarse,

baseline, and fine grids. As seen, the agreement between the

baseline grid and the fine grid is reasonably good on the main

element but the coarse grid is clearly inaccurate. Furthermore,

the trend with grid refinement is to decrease the boundary-layer

thickness on the main element. The increased thickness of the

boundary layer with the coarse grid is likely to be responsible

for the decreased flap loading obtained on this grid and seen in

figure 9.

On the flap, the major difference between the baseline grid

results and the fine grid results is in the enhanced resolution of

the slat wake on the finer grid. This wake is very apparent at the

station immediately downstream of the main element (� = 0:72)

but quickly dissipates so that its presence is barely detectable

at the location towards the back of the flap (� = 0:92). The

difference in profiles between the baseline and fine grids indicates

that further refinement is necessary to accurately resolve these

details. Although not shown, as the angle of attack is reduced,

the difference in the profiles decreases so that the baseline grid

and fine grid give essentially identical results at an angle of attack

of �0:03�.

An additional study of grid effects has been conducted and

is presented in figure 11. For this study, a grid very similar to the

baseline grid has been generated with the spacing of the grid points

next to the wall based on obtaining a y+ � 10 instead of y+ � 1.

Note that the spacing is determined based on estimates from a

flat plate at the Reynolds number in question (Re = 9 � 10
6).

In order to obtain y+ � 1, the required spacing at the wall is

approximately 2 � 10
�6; however, y+ � 10 allows spacing an

order of magnitude larger. Although not shown here, the y+

obtained from actual computations on the baseline grid at an angle

of attack of 22:36� is approximately one over the first 20 percent

of the airfoil and then drops to about 1/2 afterwards. Values of y+

for the second mesh are slightly above 10 for the first 20 percent

and drop to around 5 for most of the remainder of the element.

Because the sublayer for a turbulent boundary layer extends to a

y+ of approximately 10, essentially no points exist in this region

over the first 20 percent of the airfoil for this mesh.

Figure 11 shows that inadequate spacing at the wall drasti-

cally affects the pressure distribution on the flap; hence, the other

elements are effected as well. Inspection of the velocity profiles

(not shown) reveals that inadequate spacing near the wall leads

to an artificial thickening of the computed boundary layer on the

main element. As discussed in reference [3], a thick boundary

layer on the main element acts to suppress the loading on the flap.

Therefore, the effect of the artificially thickened boundary layer is

to artificially suppress the loading on the flap.

Numerical experiments indicate that inadequate wall spacing

has little effect on the pressure distributions at lower angles of

attack, such as 8:23�. It is primarily at higher angles where the

wall spacing has been observed to be critical. Note that for single

element airfoils, the effect of wall spacing is not as dramatic as

it is for multielement configurations because the wake does not

impinge on aft elements. Also, achieving a y+ of 1 is not a

necessary requirement; typically, values similar to those used for

algebraic turbulence models (y+ � 3) should be sufficient [14],

[15].

A summary of computed and experimental lift coefficients

at Reynolds numbers of both 5 and 9 million are shown in figure

12. Here, the lift versus angle of attack is shown for the full

configuration, as well as for the individual elements. The lift

for each of the individual elements is obtained from pressure

integration and is not corrected for wind tunnel wall effects.

The total lift, on the other hand, is also computed from pressure

integration, but has been corrected for wall interference.

As seen in the figure, the lift agreement is good for the un-

corrected data on each element whereas the total lift (corrected) for

the configuration is overpredicted in the computations. Although

not shown, improved agreement between the computations and the

experiment is obtained by using the lift from the force balance be-

cause it is slightly higher. For the computations, the angle of attack

for maximum lift is not accurately predicted for either Reynolds

number; however, the overall trend is well represented. The ex-

periment and computations both obtain higher lift for a Reynolds

number of 9 million over that of 5 million, and the main element

begins to lose lift before either of the other elements.

A comparison of velocity profiles for Reynolds numbers of

5– and 9 million are shown in figure 13 for � = 16:3�. Only small

differences are seen over the main element, although the boundary

layer at 9 million appears to be slightly thinner than at 5 million.

Over the flap, more differences are apparent; the computations

at the lower Reynolds number show lower velocities than at a

Reynolds number of 9 million. Although the results from the grid

convergence studies indicate that more refinement is required to

adequately resolve the wake emanating from the slat which persists

to the back of the flap, the overall trends in the velocity profiles

with variations in Reynolds number are well captured.

The last case considered from this data set is a comparison

of the computations and experiment between the 30P-30N and

the 30P-30AG configurations. Recall from the description of the

wind tunnel tests that these configurations differ only in the flap

rigging, as shown in figure 3. Because the tests for the 30P-30AG
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configuration were conducted with only the two-segment flap, the

data shown below for both the 30P-30N and the 30P-30AG are

from this same test.

A comparison of the lift coefficients versus angle of attack for

these configurations is shown in figure 14 for a Reynolds number

of 9 million. In both the computations and the experiment, the

30P-30N configuration attains higher lift coefficients than the 30P-

30AG. Note that the agreement between the computed lift and

the experimental data for the 30P-30N configuration is somewhat

improved over that shown previously in figure 12. This is because

the data for the two-segment flap is used for the current figure.

Careful inspection of figures 12 and 14 indicates that differences in

the experimentally obtained lift between the one-and two–segment

flap appear to start at about 20�. This difference may be due to

slight differences in the model geometry or because the flow may

no longer be two dimensional at this angle of attack.

A comparison of computed and experimental pressure distri-

butions is shown in figure 15 for an angle of attack of 16:3� . The

agreement between the computations and experiment is good for

all elements. Although little difference due to the flap rigging is

apparent on the slat and the main element, the flap shows a higher

suction peak for the 30P-30N configuration than for 30P-30AG.

Conclusions and Recommendations

A two-dimensional unstructured Navier-Stokes code has

been utilized for computing the flow around multielement airfoil

configurations. Comparisons are shown for a landing configura-

tion with an advanced-technology flap for angles of attack up to

the maximum-lift condition. A systematic grid convergence study

has been conducted to assess the inaccuracies in the computations

caused by inadequate grid resolution. Below maximum lift, pres-

sure distributions are adequately resolved by using approximately

50,000 nodes. However, at high angles of attack, further grid re-

finement is required to obtain suitable levels of grid convergence

for velocity profiles. This could be achieved by continuing to re-

fine the mesh in a systematic manner, or possibly through the use

of adaptive gridding or higher-order methods. The grid studies

further indicate that care must be taken in obtaining accurate reso-

lution of the wall boundary layers on upstream elements by using

sufficiently small spacing of grid points. The use of a grid with

inadequate wall spacing (y+ = O(10)) results in an artificially

thick boundary layer on the main element that severely effects the

loading on the flap and hence the entire configuration.

Comparisons for the advanced flap configuration between

computed and experimental pressure distributions are made for

two flap riggings. In addition, lift coefficients and velocity profiles

are compared for Reynolds numbers of 5– and 9 million. In

general, the trends due to variations in rigging and Reynolds

numbers are predicted well by the computations although the angle

of attack for maximum lift is overpredicted.
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Figures

Figure 1. Geometry for three-element airfoil 30P-30AG.

Overhang

Gap

Deflection
Angle

Wing Waterline

Figure 2. Definition of gap and overhang for flap.

Figure 3. Differences in flap rigging for

the 30P-30N and 30P-30AG configurations.

Figure 4. Experimental pressure distributions at two spanwise locations for several angles of attack.

Figure 5. View of sample unstructured grid for three-element airfoil.
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Figure 6. Computed pressure distributions on the coarse, baseline, and fine grids for 30P-30N withM1 = 0:2, Re = 9�10
6, � = �0:03

�.

Figure 7. Computed pressure distributions on the coarse, baseline, and fine grids for 30P-30N with M1 = 0:2, Re = 9�10
6 , � = 8:23

� .

Figure 8. Computed pressure distributions on the coarse, baseline, and fine grids for 30P-30N with M1 = 0:2, Re = 9�10
6, � = 16:30

� .

Figure 9. Computed pressure distributions on the coarse, baseline, and fine grids for 30P-30N with M1 = 0:2, Re = 9�10
6, � = 22:36

� .
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Figure 10. Computed velocity profiles on the coarse, baseline, and fine grids for 30P-30N with M1 = 0:2, Re = 9� 10
6 , � = 22:36�.

Figure 11. Comparison of pressure distributions on grids with y+ � 1 and

y+ � 10 for 30P-30N with M1 = 0:2, Re = 9 � 10
6 , � = 22:36� .
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Figure 12. Experimental and computational lift versus angle of attack for Re = 5�10
6 and Re = 9�10

6 for 30P-30N with M1 = 0:2.

Figure 13. Comparison of velocity profiles at Reynolds numbers of

Re = 5 � 10
6 and Re = 9 � 10

6 for 30P-30N with M1 = 0:2, � = 16:3
�.
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Figure 14. Comparison of computational and experimental lift for the

30P-30N and 30P-30AG configurations with M1 = 0:2, Re = 9 � 10
6.

Figure 15. Comparison of computational and experimental pressure distributions for the

30P-30N and 30P-30AG configurations with M1 = 0:2, Re = 9 � 10
6, � = 16:3

�.
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