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Abstract. We prove a local existence theorem for the Navier–Stokes equations with
the initial data in B0∞,∞ containing functions which do not decay at infinity. Then we
establish an extension criterion on our local solutions in terms of the vorticity in the
homogeneous Besov space Ḃ0∞,∞.

0. Introduction

Consider the Navier–Stokes equations in R
n, n ≥ 2:


∂u

∂t
−�u+ u · ∇u+ ∇p = 0, divu = 0 in x ∈ R

n, t ∈ (0, T ),
u|t=0 = a

(N–S)

where u = (u1(x, t), u2(x, t), . . . , un(x, t)) and p = p(x, t) denote the unknown
velocity vector and the unknown pressure of the fluid at the point (x, t) ∈ R

n×(0, T ),
respectively, while a = (a1(x), a2(x), . . . , an(x)) is the given initial velocity vector.

In this paper we first construct a solution u of (N–S) in a finite time-interval
(0, T ) for a which does not necessarily decay at infinity. Then we give a criterion
on extension beyond T of our local solution. The theory on existence of local
strong solutions to (N–S) in the usual Lr -spaces had been developed by many
authors [9, 22, 25, 28, 29], and Kato [16] and Giga and Miyakawa [13] succeeded
in constructing the solution for a ∈ Ln. The Ln-strong solution is more important
than any other Lr -one from a viewpoint of scaling invariance. It can be easily
seen that if {u, p} solves (N–S), then so does {uλ, pλ} for all λ > 0, where
uλ(x, t) ≡ λu(λx, λ2t) and pλ(x, t) ≡ λ2p(λx, λ2t). Scaling invariance means that
‖uλ(·, 0)‖Lr (= λ1−n/r‖u(·, 0)‖Lr ) = ‖u(·, 0)‖Lr holds for all λ > 0, and this is valid
if and only if r = n. Since the pioneering work of Kato and Giga and Miyakawa, much
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great effort has been made to prove the existence of the strong solution in spaces larger
than Lr such as the Morrey space Mr , the Lorentz space Lr,∞ and the Besov space
Bsp,q (Giga et al [15], Giga and Miyakawa [14], Kozono and Yamazaki [19, 20], Sohr
[24], Cannone [5], Cannone and Meyer [6], Amann [1]). Most of these papers treated
the spaces where the norms are invariant under the scaling transform uλ as mentioned
above.

In the present paper, we deal with the space of initial data which do not decay
at infinity. Giga et al [11] proved the existence of a strong solution for a ∈ BUC
(BUC; bounded and uniformly continuous functions in R

n). In particular, we consider
here the Besov space B0∞,∞ which is slightly larger than L∞. The space L∞ is
useful enough to the nonlinear partial differential equations since it is an algebra by
pointwise multiplication. On the other hand, the disadvantage of choosing L∞ is
that the Riesz transforms are not bounded. To overcome this difficulty, we make use
of the auxiliary space of BMO and the homogeneous Besov space Ḃ0∞,∞ in which
the singular integral operators are bounded. Here BMO is the space of functions of
bounded mean oscillation. For the detailed definition of BMO, see e.g. Stein [26].
Furthermore, we establish a certain Hölder-type inequality in Ḃsp,q which plays a
substitutive role for the estimate ‖f · g‖Lr ≤ ‖f ‖L∞‖g‖Lr (see Lemma 2.3 below).
As a result, we can construct a solution u of (N–S) on a finite interval (0, T ) for
a ∈ B0∞,∞. Our approach is motivated by the recent work of Sawada [23]. Indeed,
Sawada [23] obtained a sharper Hölder-type estimate in the Besov spaces with various
differential orders and proved a local existence theorem with the initial data in B−s

p,∞
for 0 ≤ s < 1 − n/p with n < p ≤ ∞. Koch and Tataru [17] also gave the solution
for a = ∇b with b ∈ BMO. The space of initial data obtained by Koch and Tataru
is closely related to the Besov spaces which contain L∞. Although our first result on
existence of the local solution is not altogether new, our approach is different, and we
give a more simplified proof than Sawada [23] and Koch and Tataru [17] so far as the
initial data is in B0∞,∞. Furthermore, as a by-product of our approach, we establish an
extension criterion of local solutions in the scaling invariant class.

To be precise, we show that our Hölder-type inequality in Ḃsp,q is applicable to
the question whether the solution u(t) on (0, T ) extends beyond t > T . In the class
of the usual Sobolev space Hs , Beale et al [2] proved that the solution u(t) can be
continued on (0, T ′) for some T ′ > T provided

∫ T
0 ‖rot u(t)‖L∞ dt < ∞ (see also

Majda [21]). This result was generalized by the authors [18] from L∞ to Ḃ0∞,∞. In
the space BUC, Giga et al [12] gave a similar criterion under the more restrictive
hypothesis that sup0<t<T ‖rotu(t)‖L∞ < ∞. It should be noted that one cannot
control behavior at infinity of solutions in BUC so that the logarithmic type of the
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Sobolev inequality for ‖rot u‖L∞ does not hold as in the case of Beale et al. Giga
et al established another estimate of a logarithmic type for the nonlinear evolution∫ t

0 ‖e(t−τ )�P (u · ∇u)(τ )‖L∞ dτ . Since their estimate causes a singularity at τ = t ,
they need to generalize the well-known Gronwall inequality. On the other hand, our
estimate in Ḃsp,q gives us so much freedom to choose various differential orders s
that we may cancel the singularity at τ = t of the nonlinear evolution. Hence we
can obtain the same criterion as Beale et al even in the class of solutions which do not
necessarily decay at infinity. As for the Euler equations of the inviscid fluid, it turns out
that the techniques of Besov spaces such as the Littlewood–Paley decomposition and
Bony’s paraproduct formula are useful enough to analyze singularities of the solution.
This was fully developed by Chemin [7] and the series of papers by Vishik [30–32].
Our approach to (N–S) in the Besov space makes very full use of the variant of the
paraproduct formula, so in this sense the method of the present paper is relatively
related to those of [7, 30–32].

In Section 1, we state our main theorems. Section 2 is devoted to the preparation
of someLr−Lq -estimates for et� in Besov spaces. Making use of Bony’s paraproduct
formula, we establish our Hölder type estimate in Ḃsp,q . Finally in Section 3, we prove
the main theorems.

1. Results

Before stating our results, let us recall definitions of the Besov space Bsp,q and the
homogeneous Besov space Ḃsp,q . For details, see e.g. Bergh and Löfström [3].
We first introduce the Littlewood–Paley decomposition by means of {ϕj }∞j=−∞. Take a
function φ ∈ C∞

0 (R
n) with suppφ = {ξ ∈ R

n; 1/2 ≤ |ξ | ≤ 2} such that∑∞
j=−∞ φ(2−j ξ) = 1 for all ξ 	= 0. The functions ϕj (j = 0,±1, . . . ) and ψ

are defined by

Fϕj (ξ) = φ(2−j ξ), Fψ(ξ) = 1 −
∞∑
j=1

φ(2−j ξ),

where F denotes the Fourier transform. Then, for s ∈ R and 1 ≤ p, q ≤ ∞, we write

‖f ‖Bsp,q ≡ ‖ψ ∗ f ‖Lp +
( ∞∑
j=1

(2sj‖ϕj ∗ f ‖Lp)q
)1/q

, 1 ≤ q < ∞,

‖f ‖Bsp,∞ ≡ ‖ψ ∗ f ‖Lp + sup
1≤j<∞

(2sj‖ϕj ∗ f ‖Lp ), q = ∞,



306 H. Kozono et al

‖f ‖Ḃsp,q ≡
( ∞∑
j=−∞

(2sj‖ϕj ∗ f ‖Lp )q
)1/q

, 1 ≤ q < ∞,

‖f ‖Ḃsp,q ≡ sup
−∞<j<∞

(2sj‖ϕj ∗ f ‖Lp), q = ∞,

where Lp denotes the usual Lebesgue space on R
n with the norm ‖ · ‖Lp . The Besov

space Bsp,q and the homogeneous Besov space Ḃsp,q are defined by

Bsp,q ≡ {f ∈ S ′; ‖f ‖Bsp,q < ∞}, Ḃsp,q ≡ {f ∈ S ′; ‖f ‖Ḃsp,q < ∞}.
It is well known that the solution of (N–S) can be reduced to finding a solution u of
the following integral equation:

u(t) = et�a −
∫ t

0
e(t−τ )�P (u · ∇u)(τ ) dτ, 0 < t < T, (I.E.)

where P = {Pjk = δjk + RjRk}1≤j,k≤n (Rj = F−1(
√−1ξj /|ξ |)F ; the Riesz

transforms) denotes the Weyl–Helmholtz projection.
Our first result on the local existence and uniqueness of solutions to (I.E.) now

reads as follows.

THEOREM 1. For every a ∈ B0∞,∞ with div a = 0, there exist T∗ = T∗(‖a‖B0∞,∞)
and a solution u of (I.E.) on [0, T∗) such that

u ∈ Cw([0, T∗);B0∞,∞), {log(e + t−1)}−1u ∈ L∞(0, T∗;L∞), (1.1)

t1/2∇u ∈ L∞(0, T∗; Ḃ0
∞,1), (1.2)

where Cw denotes weakly-∗ continuous functions. As for uniqueness, u is the only
solution of (I.E.) in the class of (1.1).

Remarks.
(i) The time-interval (0, T∗) of the existence of the solution u in Theorem 1 is

characterized by

T∗ = Cε/‖a‖2/(1−ε)
B0∞,∞

for all sufficiently small ε > 0, (1.3)

where Cε is the constant depending only on ε, but not on a.
(ii) The solution u in Theorem 1 is in fact smooth on R

n × (0, T∗) and satisfies
(N–S) in the usual sense; Giga et al [11] proved that once the solution u(t) of
(I.E.) belongs to L∞ at some definite time t = t∗, u(t) becomes necessarily
smooth for t > t∗.
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(iii) Koch and Tataru [17] showed the existence of local and global strong solutions
with the initial data in BMO−1. The relation between BMO−1 and B0∞,∞ is
connected through Lemma 2.2 below. Our proof is different from that of Koch
and Tataru and seems to be more straightforward along the definition of Besov
spaces by the Littlewood–Paley decomposition. Sawada [23] treated lager Besov
spaces B−s

p,∞ for 0 ≤ s < 1 − n/p with n < p ≤ ∞ as the initial data. For his
proof, a skillful technique for domain decomposition in the Fourier variable of
the paraproduct formula is essential. On the other hand, our proof is based on
Lemma 2.2 and seems to be simpler.

Next, we are interested in the problem of whether the solution u(t) can be
extended beyond t > T∗.

THEOREM 2. Let a ∈ B0∞,∞ and let u be the solution of (I.E.) in the classes of (1.1)
and (1.2) for all T∗ < T . If ∫ T

0
‖rot u(t)‖Ḃ0∞,∞ dt < ∞, (1.4)

then u can be extended to the solution of (I.E.) in the classes of (1.1) and (1.2) on
(0, T̃ ) for some T̃ > T .

Remark. For the Euler equations, Beale et al [2] treated the solution in the usual
Sobolev space Hs , and proved the above extension criterion under the stronger
hypothesis that ∫ T

0
‖rot u(t)‖L∞ dt < ∞.

Their criterion was generalized by [18] from L∞ to Ḃ0∞,∞ like (1.4). It is easy to
see that their results hold for (N–S), too. Their proof is based on the L∞-estimate of
functions by means of logarithmic growth of the Hs-norm for s > n/2. Therefore,
it is essential for their proof that the solution decays at infinity. As for (N–S) in the
class of solutions in BUC where the solution does not decay at infinity, Giga et al [12]
established the same criterion under the stronger hypothesis that

sup
0<t<T

‖rotu(t)‖L∞ < ∞.

Theorem 2 states that, even in the class of solutions which do not decay at infinity, the
extension criterion does hold under the hypothesis of the norm which is invariant with
respect to the scaling transform uλ(x, t) = λu(λx, λ2t). Notice that

‖rotuλ‖L1(R;Ḃ0∞,∞) = ‖rotu‖L1(R;Ḃ0∞,∞) for all λ > 0.
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2. Preliminaries

In what follows, we denote by C various constants. In particular, we denote by
C = C(∗, ∗, . . . , ∗) the constants which depend only on the quantities appearing in
parenthesis.

We first show some elementary interpolation inequalities in the Besov spaces.

LEMMA 2.1. (i) For s0 < s1 there is a constant C = C(s0, s1) such that

‖f ‖
B
s0
p,1

≤ C(N‖f ‖
B
s0
p,∞ + 2−(s1−s0)N‖f ‖

B
s1
p,∞) (2.1)

holds for all f ∈ Bs1p,∞ with 1 ≤ p ≤ ∞ and all positive integers N .
(ii) For s0 < s < s1 there is a constant C = C(s0, s, s1) such that

‖f ‖Ḃsp,1 ≤ C(2−(s−s0)N‖f ‖
Ḃ
s0
p,∞ + N‖f ‖Ḃsp,∞ + 2−(s1−s)N‖f ‖

Ḃ
s1
p,∞) (2.2)

holds for all f ∈ Ḃs1p,∞ ∩ Ḃs0p,∞ with 1 ≤ p ≤ ∞ and all positive integers N .

Proof. (i) Let f ∈ Bs1p,∞. By definition we have

‖f ‖
B
s0
p,1

= ‖ψ ∗ f ‖Lp +
N∑
j=1

2s0j‖ϕj ∗ f ‖Lp +
∞∑

j=N+1

2s0j‖ϕj ∗ f ‖Lp

≤ ‖ψ ∗ f ‖Lp +N sup
j≥1

2s0j‖ϕj ∗ f ‖Lp

+
∞∑

j=N+1

2−(s1−s0)j sup
j≥1

2s1j‖ϕj ∗ f ‖Lp

≤ N‖f ‖
B
s0
p,∞ + (2s1−s0 − 1)−12−(s1−s0)N‖f ‖

B
s1
p,∞

≤ C(N‖f ‖
B
s0
p,∞ + 2−(s1−s0)N‖f ‖

B
s1
p,∞)

for all positive integers N with C = max{1, (2s1−s0 − 1)−1}.
(ii) Similarly we have

‖f ‖Ḃsp,1 =
( −N−1∑
j=−∞

+
N∑

j=−N
+

∞∑
j=N+1

)
2sj‖ϕj ∗ f ‖Lp

≤
−N−1∑
j=−∞

2(s−s0)j (sup
j∈Z

2s0j‖ϕj ∗ f ‖Lp )+
N∑

j=−N
· sup
j∈Z

2sj‖ϕj ∗ f ‖Lp

+
∞∑

j=N+1

2−(s1−s)j (sup
j∈Z

2s1j‖ϕj ∗ f ‖Lp )
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≤ (2s−s0 − 1)−12−(s−s0)N‖f ‖
Ḃ
s0
p,∞ + (2N + 1)‖f ‖Ḃsp,∞

+ (2s1−s − 1)−12−(s1−s)N‖f ‖
Ḃ
s1
p,∞

≤ C(2−(s−s0)N‖f ‖
Ḃ
s0
p,∞ +N‖f ‖Ḃsp,∞ + 2−(s1−s)N‖f ‖

Ḃ
s1
p,∞)

for all f ∈ Ḃs1p,∞ ∩ Ḃs0p,∞ and all positive integersN , where C = max{(2s−s0 − 1)−1,

3, (2s1−s − 1)−1}. �

We next investigate the behavior of the heat semigroup et� in the Besov spaces.

LEMMA 2.2. (i) Let s0 ≤ s1, 1 ≤ p, q ≤ ∞. Then there holds

‖et�a‖
B
s1
p,q

≤ C(1 + t−
1
2 (s1−s0))‖a‖

B
s0
p,q
, (2.3)

‖et�a‖
Ḃ
s1
p,q

≤ Ct−
1
2 (s1−s0)‖a‖

Ḃ
s0
p,q
, (2.4)

‖et�a‖
B
s1
p,1

≤ C(1 + t−
1
2 (s1−s0)) log

(
e + 1

t

)
‖a‖

B
s0
p,∞ , (2.5)

for all t > 0, where C = C(s0, s1) is independent of p, q and a.
(ii) Let s0 < s1, 1 ≤ p ≤ ∞. Then there holds

‖et�a‖
Ḃ
s1
p,1

≤ Ct−
1
2 (s1−s0)‖a‖

Ḃ
s0
p,∞ (2.6)

for all t > 0 with C independent of a. In particular, there holds

‖∇et�a‖Ḃ0
∞,1

≤ Ct−
1
2 ‖a‖Ḃ0∞,∞ (2.7)

for all t > 0 with C independent of a.

Proof. (i) Let G(x) = (4π)−n/2e−|x|2/4. Then we see

et�a = G√
t ∗ a,

where Gε(x) ≡ ε−nG(x/ε) for ε > 0. To prove (2.3) and (2.4), it suffices to show
that

2s1j‖ϕj ∗G√
t ∗ a‖Lp ≤ Ct−

1
2 (s1−s0)2s0j‖ϕj ∗ a‖Lp (2.8)

with a constant C = C(s0, s1) independent of t > 0, j ∈ Z, 1 ≤ p ≤ ∞.
Since supp ϕ̂j = {ξ ∈ R

n ; 2j−1 ≤ |ξ | ≤ 2j+1}, we have

ϕj ∗G√
t ∗ a = ϕ̃j ∗G√

t ∗ ϕj ∗ a for all j ∈ Z,
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where ϕ̃j ≡ ϕj−1 + ϕj + ϕj+1, and hence by the Young inequality, there holds

2s1j‖ϕj ∗G√
t ∗ a‖Lp = 2αj2s0j‖(−�)−α/2ϕ̃j ∗ (−�)α/2G√

t ∗ ϕj ∗ a‖Lp
≤ 2αj‖(−�)−α/2ϕ̃j‖L1‖(−�)α/2G√

t‖L1(2s0j‖ϕj ∗ a‖Lp),
where α ≡ s1 − s0. It is easy to see that

‖(−�)−α/2ϕ̃j‖L1 = C2−αj , ‖(−�)α/2G√
t‖L1 = Ct−α/2,

for all t > 0 and all j ∈ Z with C = C(s1, s0). From this and the above estimate, we
obtain (2.8).

By (2.3) we have

‖et�a‖
B
s1
p,1

= ‖e(t/2)�(e(t/2)�a)‖
B
s1
p,1

≤ C(1 + t−α/2)‖e(t/2)�a‖
B
s0
p,1
. (2.9)

It follows from (2.1) and (2.3) that

‖e(t/2)�a‖
B
s0
p,1

≤ C(N‖e(t/2)�a‖
B
s0
p,∞ + 2−εN‖e(t/2)�a‖

B
s0+ε
p,∞

)

≤ C{N + 2−εN(1 + t−ε/2)}‖a‖
B
s0
p,∞, ε > 0,

for all positive integersN , where C = C(s0, ε). In the case t ≥ 1, we take N = 1 and
obtain

‖e(t/2)�a‖
B
s0
p,1

≤ C‖a‖
B
s0
p,∞ , t ≥ 1.

In the case 0 < t < 1, we take N so large that 2−εN t−ε/2 ≤ 1, i.e.

N ≥ 1

2 log 2
log

(
1

t

)

and obtain

‖e(t/2)�a‖
B
s0
p,1

≤ C

(
1 + log

1

t

)
‖a‖

B
s0
p,∞ , 0 < t < 1.

In both cases, we have

‖e(t/2)�a‖
B
s0
p,1

≤ C log

(
e + 1

t

)
‖a‖

B
s0
p,∞ for all t > 0. (2.10)

Now, the desired estimate (2.5) is a consequence of (2.9) and (2.10).
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(ii) Since (2.4) yields ‖G ∗ a‖
Ḃs

′
p,∞ = ‖e�a‖

Ḃs
′
p,∞ ≤ C(s0, s

′, p)‖a‖
Ḃ
s0
p,∞ for all

s′ ≥ s0, we easily see that

‖G ∗ a‖
Ḃ
s1
p,1

=
∑
j<0

2(s1−s0)j2s0j‖ϕj ∗G ∗ a‖Lp +
∑
j≥0

2−j2(s1+1)j‖ϕj ∗G ∗ a‖Lp

≤ C(‖G ∗ a‖
Ḃ
s0
p,∞ + ‖G ∗ a‖

Ḃ
s1+1
p,∞

)

≤ C‖a‖
Ḃ
s0
p,∞ . (2.11)

For a non-negative integerm with m > s/2, Triebel [27] showed that

‖f ‖Ḃsp,q ∼=
{∫ ∞

0
(τm−s/2‖(−�)meτ�f ‖Lp)q dτ

τ

}1/q

, 1 ≤ q < ∞,

‖f ‖Ḃsp,∞ ∼= sup
0<τ<∞

τm−s/2‖(−�)meτ�f ‖Lp .

Then we observe that

‖f√
t‖Ḃs1

p,1
≤ Ct

1
2 (−s1−n+n/p)‖f ‖

Ḃ
s1
p,1

and ‖f1/
√
t‖Ḃs0p,∞ ≤ Ct

1
2 (s0+n−n/p)‖f ‖

Ḃ
s0
p,∞.

Therefore the desired estimate (2.6) is a consequence of (2.11), since (et�a) =
(G ∗ (a1/

√
t ))

√
t .

Finally, from (2.6) we easily obtain (2.7), since ‖∇et�a‖Ḃ0
∞,1

≤ C‖et�a‖Ḃ1∞,1
. �

Remark. Giga et al [11, Lemma 3] showed the estimate

‖(−�)αet�a‖L∞ ≤ Ct−α‖a‖BMO, α > 0 (2.12)

for all a ∈ BMO. We note that (2.6) is a slightly sharper estimate than (2.12).
Their proof of (2.12) is based on the estimate of the maximal function of (−�)αet�a.
On the other hand, we may give another proof. Indeed, there holds

Rk(−�)αG ∈ BUC with |Rk(−�)αG(x)| ≤ Cn,α|x|−n−2α for |x| ≥ 1 (2.13)

with

Cn,α = (4π)−n/2 (n/2 + α)

2(n/2 + 1)
,

which yields

Rk(−�)αG ∈ L1, k = 1, . . . , n.
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Hence we have (−�)αG ∈ H1. Here H1 is the Hardy space. Since
(−�)α(G√

t ) = t−α((−�)αG)√t , it follows from the duality result (H1)∗ = BMO
due to Fefferman–Stein [10] that

sup
t>0

tα‖(−�)αet�a‖L∞ = sup
t>0

tα‖(−�)α(G√
t ∗ a)‖L∞

= sup
t>0

‖((−�)αG)√t ∗ a‖L∞

≤ ‖(−�)αG‖H1‖a‖BMO.

This implies (2.12). We prove (2.13) in the appendix.

Next we establish a bilinear estimate in the homogeneous Besov space.

LEMMA 2.3. Let 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ and s > 0. Then we have

‖f · g‖Ḃsp,q ≤ C(‖f ‖Ḃs∞,q
‖g‖Lp + ‖f ‖Lp‖g‖Ḃs∞,q

) (2.14)

for all f, g ∈ Ḃs∞,q ∩ Lp , where C = C(p, q, s).

Proof. For the proof, we make use of the following paraproduct formula due
to Bony [4]. Our method here is related to that of Christ and Weinstein
[8, Proposition 3.3]:

f · g =
∞∑

k=−∞
(ϕk ∗ f )(Pkg)+

∞∑
k=−∞

(Pkf )(ϕk ∗ g)+
∞∑

k=−∞

∑
|l−k|≤2

(ϕk ∗ f )(ϕl ∗ g)

≡ h1 + h2 + h3, (2.15)

where Pkg = ∑k−3
l=−∞ ϕl ∗ g = ψ2−(k−3) ∗ g with ψε = ε−nψ(x/ε), ε > 0. We first

consider the case when 1 ≤ q < ∞. Since

suppF((ϕk ∗ f )(Pkg)) ⊂ {ξ ∈ R
n ; 2k−2 ≤ |ξ | ≤ 2k+2},

suppFϕj = {ξ ∈ R
n ; 2j−1 ≤ |ξ | ≤ 2j+1},

we have by the Young inequality that

‖h1‖Ḃsp,q =
{ ∞∑
j=−∞

(
2sj

∥∥∥∥ ∑
|k−j |≤2

ϕj ∗ ((ϕk ∗ f )(Pkg))
∥∥∥∥
Lp

)q}1/q

≤
{ ∞∑
j=−∞

( ∑
|l|≤2

2sj‖ϕj ∗ ((ϕj+l ∗ f )(Pj+lg))‖Lp
)q}1/q
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≤
{ ∞∑
j=−∞

( ∑
|l|≤2

2sj‖ϕj‖L1‖ϕj+l ∗ f ‖L∞‖Pj+lg‖Lp
)q}1/q

≤ C‖g‖Lp
{ ∞∑
j=−∞

( ∑
|l|≤2

2sj‖ϕj+l ∗ f ‖L∞
)q}1/q

,

where C = ‖F−1φ‖L1‖ψ‖L1 . Notice that

‖ϕj‖L1 = ‖(F−1φ)2−j ‖L1 = ‖F−1φ‖L1 for all j ∈ Z,

sup
k∈Z

‖Pkg‖Lp = sup
k∈Z

‖ψ2−(k−3) ∗ g‖Lp ≤ ‖ψ‖L1 ‖g‖Lp .

Then the Minkowski inequality yields

‖h1‖Ḃsp,q ≤ C‖g‖Lp
∑
|l|≤2

{ ∞∑
j=−∞

(2sj‖ϕj+l ∗ f ‖L∞)q
}1/q

= C‖g‖Lp
∑
|l|≤2

2−sl
{ ∞∑
j=−∞

(2s(j+l)‖ϕj+l ∗ f ‖L∞)q
}1/q

= C‖g‖Lp‖f ‖Ḃs∞,q
.

For q = ∞, we have similarly that

‖h1‖Ḃsp,∞ ≤ sup
j∈Z

(
2sj

∑
|k−j |≤2

‖ϕj ∗ ((ϕk ∗ f )(Pkg))‖Lp
)

≤ C‖g‖Lp
∑
|l|≤2

2−sl sup
j∈Z

(2s(j+l)‖ϕj+l ∗ f ‖L∞)

= C‖g‖Lp‖f ‖Ḃs∞,∞ .

Hence, in both cases, there holds

‖h1‖Ḃsp,q ≤ C‖g‖Lp‖f ‖Ḃs∞,q
, 1 ≤ q ≤ ∞. (2.16)

By replacing the role of f and g with that of g and f , respectively, we see that the
second term can be handled in the exactly same way as above. Hence there holds

‖h2‖Ḃsp,q ≤ C‖f ‖Lp‖g‖Ḃs∞,q
, 1 ≤ q ≤ ∞. (2.17)

To deal with the third term, we should note that

suppF(ϕk ∗ f · ϕl ∗ g) ⊂ {ξ ∈ R
n ; |ξ | ≤ 2max{k,l}+2},
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so there holds

ϕj ∗ ((ϕk ∗ f )(ϕl ∗ g)) = 0 for max{k, l} ≤ j − 3.

Hence if 1 ≤ q < ∞, by the Minkowski inequality we have

‖h3‖Ḃsp,q =
{ ∞∑
j=−∞

(
2sj

∥∥∥∥ ∑
j−2≤max{k,l}

∑
|k−l|≤2

ϕj ∗ ((ϕk ∗ f )(ϕl ∗ g))
∥∥∥∥
Lp

)q}1/q

≤
{ ∞∑
j=−∞

(
2sj

∑
α≥−4

∑
|m|≤2

‖ϕj‖L1‖ϕj+α ∗ f ‖L∞‖ϕj+α+m ∗ g‖Lp
)q}1/q

≤ C‖g‖Lp
{ ∞∑
j=−∞

( ∑
α≥−4

2−sα2s(j+α)‖ϕj+α ∗ f ‖L∞
)q}1/q

≤ C‖g‖Lp
∑
α≥−4

2−sα
{ ∞∑
j=−∞

(2s(j+α)‖ϕj+α ∗ f ‖L∞)q
}1/q

≤ C‖g‖Lp‖f ‖Ḃs∞,q
,

where C = ‖F−1φ‖2
L1 . Notice that

sup
k∈Z

‖ϕk ∗ g‖Lp = sup
k∈Z

‖ϕk‖L1‖g‖Lp ≤ ‖F−1φ‖L1‖g‖Lp .
If q = ∞, we have similarly

‖h3‖Ḃsp,∞ ≤ sup
j∈Z

(
2sj

∑
j−4≤k

∑
|m|≤2

‖ϕj ∗ ((ϕk ∗ f )(ϕk+m ∗ g))‖Lp
)

≤ sup
j∈Z

(
2sj‖ϕj‖L1

∑
j−4≤k

∑
|m|≤2

‖ϕk ∗ f ‖L∞‖g‖Lp
)

≤ C‖g‖Lp sup
j∈Z

(
2sj

∑
α≥−4

‖ϕj+α ∗ f ‖L∞
)

≤ C‖g‖Lp sup
j∈Z

( ∑
α≥−4

2−sα2s(j+α)‖ϕj+α ∗ f ‖L∞
)

≤ C‖g‖Lp‖f ‖Ḃs∞,∞ .

In both cases, we obtain

‖h3‖Ḃsp,q ≤ C‖g‖Lp‖f ‖Ḃsp,q , 1 ≤ q ≤ ∞. (2.18)

Now it follows from (2.16), (2.17) and (2.18) that

‖f · g‖Ḃsp,q ≤ C(‖f ‖Ḃs∞,q
‖g‖Lp + ‖f ‖Lp‖g‖Ḃs∞,q

)

where C = C(p, q, s). This yields the desired estimate. �
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The following lemma plays an important role for our extension criterion.

LEMMA 2.4. For 0 < ε ≤ δ ≤ 1 and s ≥ 0 there is a constant C = C(ε, δ, s) such
that

‖et�P (u · ∇u)‖Ḃs
p,1

≤ C(t−
1
2 (s−δ)− 1

2 + t−
1
2 (s+ε)− 1

2 + ‖rotu‖Ḃs∞,∞‖u‖Lp log(e+ ‖u‖L2p ))

holds for all u ∈ Ḃs+1∞,∞ ∩ Lp , 1 < p ≤ ∞, with divu = 0 and for all t > 0.

Proof. First, notice that Ḃs+1∞,∞ ∩ Lp ⊂ L∞, and hence u ∈ L2p. By Lemma 2.3 we
have u ⊗ u ∈ Ḃs+1

p,∞ with ‖u ⊗ u‖
Ḃs+1
p,∞ ≤ C‖u‖

Ḃs+1∞,∞‖u‖Lp . Since divu = 0 implies

u · ∇u = ∇ · (u⊗ u), there holds u · ∇u ∈ Ḃsp,∞ with

‖u · ∇u‖Ḃsp,∞ ≤ C‖u‖
Ḃs+1∞,∞‖u‖Lp .

By the Biot–Savart law, we see the representation ∇u = R(R ∧ rotu) by the Riesz
transforms R = (R1, . . . , Rn). Since R is a bounded operator from Ḃs∞,∞ into itself,
it follows that

‖u‖
Ḃs+1∞,∞ = ‖∇u‖Ḃs∞,∞ ≤ C‖rot u‖Ḃs∞,∞

from which and the above estimate, we obtain

‖u · ∇u‖Ḃsp,∞ ≤ C‖rot u‖Ḃs∞,∞‖u‖Lp . (2.19)

Now applying (2.2) with s0 = s − δ, s1 = s + ε, we have by (2.4) and (2.19),
together with the boundedness of P in Ḃαp,∞ for α = 0, s, that

‖et�P (u · ∇u)‖Ḃsp,1 ≤ C(2−δN‖∇ · et�P (u ⊗ u)‖
Ḃs−δp,∞ +N‖et�P (u · ∇u)‖Ḃsp,∞

+ 2−εN‖∇ · et�P (u⊗ u)‖Ḃs+εp,∞)

≤ C(2−δN‖et�P (u ⊗ u)‖
Ḃs−δ+1
p,∞ +N‖et�P (u · ∇u)‖Ḃsp,∞

+ 2−εN‖et�P (u⊗ u)‖
Ḃs+ε+1
p,∞ )

≤ C(2−δN t−
1
2 (s−δ)− 1

2 ‖P(u⊗ u)‖Ḃ0
p,∞ + N‖P(u · ∇u)‖Ḃsp,∞

+ 2−εN t−
1
2 (s+ε)− 1

2 ‖P(u⊗ u)‖Ḃ0
p,∞)

≤ C(2−δN t−
1
2 (s−δ)− 1

2 ‖u‖2
L2p +N‖rot u‖Ḃs∞,∞‖u‖Lp

+ 2−εN t−
1
2 (s+ε)− 1

2 ‖u‖2
L2p ),

for all t > 0 with C = C(ε, δ, s).
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In the case ‖u‖L2p ≤ 1, we take N = 1 and obtain

‖et�P (u · ∇u)‖Ḃsp,1 ≤ C(t−
1
2 (s−δ)− 1

2 + t−
1
2 (s+ε)− 1

2 + ‖rotu‖Ḃs∞,∞‖u‖Lp).

In the case ‖u‖L2p > 1, we take N so large that 2−εN‖u‖2
L2p ≤ 1, i.e.

N ≥ 2

ε log 2
log ‖u‖L2p

and obtain

‖et�P (u · ∇u)‖Ḃsp,1 ≤ C(t−
1
2 (s−δ)− 1

2 ‖u‖2(1− δ
ε )

L2p + t−
1
2 (s+ε)− 1

2

+ ‖rot u‖Ḃs∞,∞‖u‖Lp log ‖u‖L2p )

≤ C(t−
1
2 (s−δ)− 1

2 + t−
1
2 (s+ε)− 1

2

+ ‖rot u‖Ḃs∞,∞‖u‖Lp log ‖u‖L2p ).

In both cases, we get the desired estimate. �

Remark. Giga et al [12, Lemma 3] showed a similar estimate to Lemma 2.4 in L∞.
If we deal with time-dependent functions u = u(t) for t ∈ (0, T ), a significant
difference of our estimate from theirs [12] consists of the separation of the singularity
at t = 0 and singularities of u(t) on (0, T ). This is the reason why we can avoid the
generalized Gronwall inequality which they used for the proof the extension criterion
on local solutions.

3. Proofs

3.1. Proof of Theorem 1

3.1.1. Existence. We first prove the existence of the solution u of (I.E.) by the
following successive approximation:{

u0(t) = et�a,

um+1(t) = u0(t)− ∫ t
0 e

(t−τ )�P (um · ∇um)(τ ) dτ, m = 0, 1, . . . .
(3.1)

We first show that

um ∈ Cw([0, T∗);B0∞,∞) with sup
0<t<T∗

‖um(t)‖B0∞,∞ ≤ Km, (3.2)
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{log(e + 1/t)}−1um ∈ L∞(0, T∗;L∞)
with sup

0<t<T∗
{log(e + 1/t)}−1‖um(t)‖L∞ ≤ K ′

m, (3.3)

t
1
2 um ∈ L∞(0, T∗; Ḃ1∞,1) with sup

0<t<T∗
t

1
2 ‖um(t)‖Ḃ1∞,1

≤ K ′′
m. (3.4)

Indeed, for m = 0, we have by Lemma 2.2 that

‖u0(t)‖B0∞,∞ ≤ ‖a‖B0∞,∞,

‖u0(t)‖L∞ ≤ ‖u0(t)‖B0∞,1
≤ C log(e + 1/t)‖a‖B0∞,∞,

‖u0(t)‖Ḃ1∞,1
≤ Ct−

1
2 ‖a‖Ḃ0∞,∞ ≤ Ct−

1
2

(
sup
j<0

‖ϕj ∗ ψ ∗ a‖∞ + sup
j≥0

‖ϕj ∗ a‖∞
)

≤ Ct−
1
2 ‖a‖B0∞,∞,

for all t > 0, so we may take K0 = K ′
0 = K ′′

0 = C‖a‖B0∞,∞ . Suppose that (3.2), (3.3)
and (3.4) are true for m. Since divum = 0, we have um · ∇um = ∇ · (um ⊗ um), and
it follows from Lemma 2.2(ii) that∥∥∥∥

∫ t

0
e(t−τ )�P (um · ∇um)(τ ) dτ

∥∥∥∥
L∞

≤
∫ t

0
‖∇ · e(t−τ )�P (um ⊗ um)(τ )‖L∞ dτ

≤
∫ t

0
‖∇ · e(t−τ )�P (um ⊗ um)(τ )‖Ḃ0∞,1

dτ

≤ C

∫ t

0
(t − τ )−

1
2 ‖P(um ⊗ um)(τ )‖Ḃ0∞,∞ dτ

≤ C

∫ t

0
(t − τ )−

1
2 ‖um ⊗ um(τ)‖Ḃ0∞,∞ dτ

≤ C

∫ t

0
(t − τ )−

1
2 ‖um(τ)‖2

L∞ dτ

≤ C(K ′
m)

2
∫ t

0
(t − τ )−

1
2 {log(e + 1/τ)}2 dτ.

Note that ‖∇f ‖∞ ≤ ‖∇f ‖Ḃ0
∞,1

holds for all f ∈ BMO with ∇f ∈ Ḃ0
∞,1 and that the

projection P is a bounded operator from Ḃ0∞,∞ into itself. Since

log(e+ 1/τ) ≤ 2 + ε−1τ−ε′ for all τ > 0, ε′ > 0,

we obtain from the above estimates with ε′ = 2ε that∥∥∥∥
∫ t

0
e(t−τ )�P (um · ∇um)(τ ) dτ

∥∥∥∥
L∞

≤ Cε(K
′
m)

2(t
1
2 + t

1
2 −ε/2) ≤ C(K ′

m)
2t

1
2 −ε/2
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for all 0 < t ≤ 1. Since sup0<t≤1 t
ε/2 log(e + 1/t) ≤ Cε and L∞ ⊂ B0∞,∞, we may

take Km+1 and K ′
m+1 so that

Km+1 = K ′
m+1 = C‖a‖B0∞,∞ + Cε(K

′
m)

2T
1
2 −ε

∗ (3.5)

with sufficiently small ε > 0. Moreover, we have from (2.6) that∥∥∥∥
∫ t

0
e(t−τ )�P (um · ∇um)(τ ) dτ

∥∥∥∥
Ḃ1∞,1

≤
∫ t

0
‖e(t−τ )�P (um · ∇um)(τ )‖Ḃ1∞,1

dτ

≤ C

∫ t

0
(t − τ )−

1
2 ‖P(um · ∇um)(τ )‖Ḃ0∞,∞ dτ

≤ C

∫ t

0
(t − τ )−

1
2 ‖(um · ∇um)(τ )‖L∞

≤ C

∫ t

0
(t − τ )−

1
2 ‖um(τ)‖Ḃ1∞,1

‖um(τ)‖L∞ dτ

≤ CK ′′
mK

′
m

∫ t

0
(t − τ )−

1
2 τ− 1

2 log(e + 1/τ) dτ

≤ CεK
′′
mK

′
m

∫ t

0
(t − τ )−

1
2 (1 + τ− 1

2 −ε) dτ

≤ CεK
′′
mK

′
m(t

1
2 + t−ε)

for all 0 < t ≤ 1. Hence, in the same was as in (3.5), we may take K ′′
m+1 as

K ′′
m+1 = C‖a‖B0∞,∞ + CεK

′′
mK

′
mT

1
2 −ε

∗ . (3.6)

Setting Lm ≡ max{Km,K ′
m,K

′′
m}, we obtain from (3.5) and (3.6) that

Lm+1 ≤ C‖a‖B0∞,∞ + CεT
1
2 −ε

∗ L2
m, m = 0, 1, . . . , (3.7)

for sufficiently small ε > 0. If we choose T∗ so small that

T
1
2 −ε

∗ <
1

4CCε‖a‖B0∞,∞
, (3.8)

then the sequence {Lm}∞m=0 is bounded by 1/2CεT
1
2 −ε

∗ . This implies that sequences
(3.2), (3.3) and (3.4) are bounded by the same constant. Now by the standard
argument, we get the limit function u of um as m → ∞ in the spaces of (1.1) and
(1.2). Letting m → ∞ in (3.1), we see easily that u is the desired solution of (I.E.).
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Remark. Giga et al [11, Lemma 3] gave an estimate ‖∇et�Pf ‖L∞ ≤ Ct− 1
2 ‖f ‖L∞

and constructed a local solution for a ∈ BUC.

3.1.2. Uniqueness. We next prove the uniqueness of solutions in the class of (1.1).
Let u and v be two solutions of (I.E.) in the class of (1.1). For w ≡ u− v, we have

w(t) = −
∫ t

0
∇ · e(t−τ )�P (w ⊗ u+ v ⊗ w)(τ) dτ,

and by Lemma 2.2(ii) there holds

‖w(t)‖L∞ ≤
∫ t

0
‖∇ · e(t−τ )�P (w ⊗ u+ v ⊗ w)(τ)‖L∞ dτ

≤ C

∫ t

0
(t − τ )−

1
2 ‖P(w ⊗ u+ v ⊗ w)(τ)‖BMO dτ

≤ C

∫ t

0
(t − τ )−

1
2 ‖w ⊗ u(τ)+ v ⊗ w(τ)‖BMO dτ

≤ C

∫ t

0
(t − τ )−

1
2 ‖w(τ)‖L∞(‖u(τ)‖L∞ + ‖v(τ )‖L∞) dτ

≤ C

∫ t

0
(t − τ )−

1
2 ‖w(τ)‖L∞ log(e + 1/τ) dτ

≤ Cε sup
0<τ<t

‖w(τ)‖L∞
∫ t

0
(t − τ )−

1
2 (1 + τ−ε) dτ

≤ Cε sup
0<τ<t

‖w(τ)‖L∞(t
1
2 + t

1
2 −ε)

≤ Cε sup
0<τ<t

‖w(τ)‖L∞ t
1
2 −ε

for all 0 < t ≤ 1 with sufficiently small ε > 0. Since the right-hand side of the above
estimate is monotone increasing in t ∈ (0, 1], we have

g(t) ≤ Cεg(t)t
1
2 −ε, 0 < t ≤ 1,

where g(t) ≡ sup0<τ<t ‖w(τ)‖L∞ . Hence, if we take T1 < 1/C2/(1−2ε), then there
holds

w(t) ≡ 0 for all t ∈ [0, T1].
We next show that

w(t) ≡ 0 for all t ∈ [T1, T ).

To this end, it suffices to show the following proposition.



320 H. Kozono et al

PROPOSITION 3.1. There exists κ > 0 such that if w(t) ≡ 0 on [0, T2], then there
holds

w(t) ≡ 0 on [0, T2 + κ).

Proof. Since u(T2) = v(T2), we have

w(t) = −
∫ t

T2

∇ · e(t−τ )�P (w ⊗ u+ v ⊗ w)(τ) dτ, T2 < t < T .

Hence in the same way as above, we see that

‖w(t)‖L∞ ≤ C

∫ t

T2

(t − τ )−
1
2 ‖w(τ)‖L∞(‖u(τ)‖L∞ + ‖v(τ )‖L∞) dτ

≤ C( sup
T1<t<T

‖u(τ)‖L∞ + sup
T1<t<T

‖v(τ )‖L∞) sup
T2<τ<t

‖w(τ)‖L∞(t − T2)
1
2 ,

for all T2 < t < T . If we take κ so that

κ
1
2 ≡ 1

2C(supT1<t<T
‖u(τ)‖L∞ + supT1<t<T

‖v(τ )‖L∞)
,

then there holds

g̃(t) ≤ 1

2
g̃(t) for T2 ≤ t < T2 + κ,

where g̃(t) ≡ supT2<τ<t
‖w(t)‖L∞ . Then it follows that

w(t) ≡ 0 on [T2, T2 + κ),

and we obtain the desired uniqueness result. �

3.2. Proof of Theorem 2

Since the existence time interval [0, T∗) with respect to the initial data a ∈ B0∞,∞ is
characterized as in (3.8)(see also (1.3)) and since L∞ ⊂ B0∞,∞, it suffices to show an
a priori estimate of ‖u(t)‖L∞ for t ∈ (η, T ) in terms of (1.4). Here 0 < η < T can
be taken as u(η) ∈ L∞. Since ‖∇f ‖L∞ ≤ ‖∇f ‖Ḃ0

∞,1
holds for all f ∈ BMO with
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∇f ∈ Ḃ0
∞,1, we have by Lemma 2.4 with ε = 1/2, δ = 1, s = 0 and p = ∞ that

‖u(t)‖L∞ ≤ ‖u(η)‖L∞ +
∫ t

η

‖∇ · e(t−τ )�P (u⊗ u)(τ )‖L∞ dτ

≤ ‖u(η)‖L∞ +
∫ t

η

‖∇ · e(t−τ )�P (u⊗ u)(τ )‖Ḃ0
∞,1
dτ

≤ ‖u(η)‖L∞ +
∫ t

η

‖e(t−τ )�P (u · ∇u)‖Ḃ0∞,1
dτ

≤ ‖u(η)‖L∞ + C

∫ t

η

(1 + (t − τ )−
3
4

+ ‖rot u(τ)‖Ḃ0∞,∞‖u(τ)‖L∞ log(e + ‖u(τ)‖L∞)) dτ

≤ ‖u(η)‖L∞

+ C + C

∫ t

η

‖rot u(τ)‖Ḃ0∞,∞‖u(τ)‖L∞ log(e + ‖u(τ)‖L∞) dτ

for all t ∈ (η, T ) with C = C(T ). Hence the Gronwall inequality yields

‖u(t)‖L∞ ≤ (‖u(η)‖L∞ + C) exp

(
C

∫ t

η

‖rot u(τ)‖Ḃ0∞,∞ log(e + ‖u(τ)‖L∞) dτ

)
,

η < t < T .

Setting z(t) = log(e + ‖u(t)‖L∞), we obtain from the above estimate

z(t) ≤ z(η)+ C + C

∫ t

η

‖rot u(τ)‖Ḃ0∞,∞z(τ ) dτ, η < t < T .

Again by the Gronwall inequality, we have

z(t) ≤ (z(η)+ C) exp

(
C

∫ t

η

‖rotu(τ)‖Ḃ0∞,∞ dτ

)
, η < t < T,

which yields

sup
η<t<T

‖u(t)‖L∞ ≤ {eC(‖u(η)‖L∞ + e)}exp(C
∫ T

0 ‖rotu(τ)‖
Ḃ0∞,∞ dτ)

.

This proves Theorem 2.
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Appendix

In this appendix, we prove (2.13). We make use of the representation

Rk(−�)αG(x) = (2π)−n
∫
Rn
eix·ξ iξk|ξ | |ξ |

2αe−|ξ |2 dξ, k = 1, . . . , n.

Obviously, Rk(−�)αG ∈ BUC. Introducing the polar coordinate ξ = ρω with
ρ = |ξ |, ω = (ω1, . . . , ωn) ∈ Sn−1, we have

Rk(−�)αG(x) = (2π)−n lim
R→∞

∫
ω∈Sn−1

dω ωk

∫ R

0
eirρ cos θ e−ρ2

ρn+2α−1 dρ

(by changing the variable ρ → s = rρ cos θ )

= i(2π)−nr−n−2α lim
R→∞

∫
ω∈Sn−1

dωωk

×
∫ Rr cos θ

0
eise

− s2

r2 cos2 θ sn+2α−1 cos−n−2α θ ds, (A.1)

where r = |x| and θ is the angle between x and ω. Since∣∣∣∣
∫ Rr cos θ

0
eise−s2/r2 cos2 θ sn+2α−1 cos−n−2α θ ds

∣∣∣∣
≤

∫ Rr | cos θ |

0
e−s2/cos2 θ sn+2α−1| cos θ |−n−2α ds

(by changing the variable s → t = s/| cos θ |)

≤
∫ Rr

0
e−t2 tn+2α−1 dt

≤ 1

2

∫ ∞

0
e−t tn/2+α−1 dt = 1

2


(n
2

+ α
)

holds for all R > 0 and all r ≥ 1, it follows from (A.1) that

|Rk(−�)αG(x)| ≤ (2π)−n|Sn−1| 1
2(n/2 + α)r−n−2α

= (4π)−n/2 (n/2 + α)

2(n/2 + 1)
r−n−2α

for all r ≥ 1, which yields (2.13).
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