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ABSTRACT

This dissertation is written under the supervision of Prof. Steve Shkoller. We
study a moving boundary value problem consisting of a viscous incompressible fluid
moving and interacting with a nonlinear elastic shell. The fluid motion is governed by
the Navier-Stokes equations, while the shell is modeled by the nonlinear St. Venant-
Kirchhoff constitutive law, and they are coupled together by continuity of displace-
ments and tractions (stresses) along the moving material interface. We introduce new
variables so that in order to formulate the problem more easily, and prove existence

and uniqueness of solutions in Sobolev spaces.
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This dissertation includes details of my work on the interaction of fluids and non-

linear elastic shells. A more concise version of the research result has been submitted

to the STAM Journal of Mathematical Analysis.

1. INTRODUCTION

The free boundary problem in continuum mechanics is one of the most beautiful
and important problems in nature. It appears when considering the motion of single
fluid with free boundary, or the motion of two different materials in liquid crystals,
elastic solids, porous media, and etc. Some typical examples in fluid dynamics are:
an oil drop moving inside water (known as the surface tension problem), an elastic
ball moving inside fluids (known as the fluid-solid interaction problem), and water
balloons or veins (also the fluid-solid interaction problem, while in this case the solid
is assumed to be thin enough so that it does not occupy any space). In most of the
cases, we have to couple the fluid equations such as the Euler or the Navier-Stokes
equations with other equations in order to study different physical phenomena.

A classical problem studied in this area is the Navier-Stokes equations without
surface tension. In mathematics, this is formulated by the Navier-Stokes equations
with a Neumann type of boundary condition, which is described as that the normal
stress of the fluid vanishes on the moving boundary. Even for this simple boundary
value problem, the existence of a global in time (weak) solution was not known until
1994. A level set method with a set-valued fixed point theorem, so-called the Kakutani
fixed point theorem, is used in [17] and [18] to establish the existence of global weak
solutions to the imcompressible Stokes and Navier-Stokes equations. Standard energy
methods are applied in [9] for the study on the global in time weak solution in two-
dimensional multiphase viscous fluids.

A more difficult problem is to consider the surface tension. In mathematical ter-
minology, the boundary condition becomes that the normal stress of the fluid is
proportional to the mean curvature vector on the moving boundary (this boundary

condition comes from the fact that the surface tension tries to minimize the surface
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area of the fluid domain and the variation of surface area is the mean curvature vec-
tor). Since in general the fluid domain might undergo topological changes such as
the separation or merging so that the mean curvature vector is no longer defined,
the existence of global in time weak solutions is not yet known and is still an open
problem. Because of the potential topological change of the fluid domain, level set
methods are widely used to study the problem, and numerous numerical results based
on the level set formulation are achieved (but without rigorous mathematical proof).
Theoretically, several approaches of establishing the existence of the short time solu-
tion were successful. A slight powerful topological fixed point theorem, known as the
Tychonoff fixed point theorem, was used together with the standard energy methods
in [5] to show the existence and uniqueness of the short time strong solution to the
single phase problem.

An even more difficult problem in this area is invicid fluids (the Euler equations)
with or without surface tension. The lack of viscosity was overcome by an additional
assumption that the curl of the fluid velocity vanishes everywhere inside the fluid, and
almost all of the well-posedness results focused on irrotational fluids. Without this
additional irrotational constraint, a Nash-Moser iteration is used to study the problem
without surface tension in [16], and the well-posedness of the Euler equations with
surface tension is established in [8]. In theory, the lack of viscosity is overcome by a
div-curl type of elliptic estimates which depends crucially on the transport structure
of the vorticity which only appears in the invicid fluids, while in numerical context,
the lack of viscosity causes catastrophe, and artificial viscosity has to be introduced
into the problems and good numerical schemes for simulating this phenomena are still
not available.

Many physical phenomena also involve fluids interacting with an elastic or rigid
structure. Fluid-solid interaction problems involving moving material interfaces have
been the focus of active research since the nineties. The first problem solved in this
area was for the case of a rigid body moving in a viscous fluid (see [10], [20] and also

the early works of [24] and [23] for a rigid body moving in a Stokes flow in the full
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space). The case of an elastic body moving in a viscous fluid was considerably more
challenging because of some apparent regularity incompatibilities between the two
phases: fluid and solid. The first existence results in this area were for regularized
elasticity laws, such as in [11] for a finite number of elastic modes, or in [2] and [3] for
hyperviscous elasticity laws, or in [22] for phase-field regularization which “fattens”
the sharp interface via a diffuse-interface model.

The treatment of classical elasticity laws for the solid phase, without any regular-
izing term, was only considered recently in [6] for the three-dimensional linear St.
Venant-Kirchhoff constitutive law and in [7] for quasilinear elastodynamics coupled
to the Navier-Stokes equations. Some of the basic new ideas introduced in those
works concerned a functional framework that scales in a hyperbolic fashion (and is
therefore driven by the solid phase), the introduction of approximate problems either
penalized with respect to the divergence-free constraint in the moving fluid domain,
or smoothed by an appropriate parabolic artificial viscosity in the solid phase (cho-
sen in an asymptotically convergent and consistent fashion), and the tracking of the
motion of the interface by difference quotients techniques.

The complimentary fluid-solid interaction problem, studied herein, consists of the
motion of a viscous incompressible fluid enclosed by a moving thin nonlinear elastic
shell (for example, an often used mathematical model of the cardio-vascular system).
This is a moving boundary problem that models the motion of a viscous incompress-
ible Newtonian fluid inside of a deformable elastic structure. The main mathematical
differences with respect to the previous problem of a three-dimensional solid body
moving inside of the fluid is the two-dimensional nature of the shell and in the ap-
pearance of “elliptic” operators that are degenerate in the (a priori unknown) tangen-
tial directions. The only cases considered until now consisted of regularized problem
wherein the elliptic degeneracy occurs along a fized direction, such as in [13] or [3].

In this dissertation, we are concerned here with establishing the existence and
uniqueness of solutions to the time-dependent incompressible Navier-Stokes equations

interacting with a quasilinear elastic shell of Koiter type, which comes directly from
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an asymptotic expansion in the nonlinear three-dimensional St. Venant-Kirchhoff
equations as the thickness of the shell converges to zero, and is a function of the first
and second fundamental forms of the moving shell (boundary of the fluid domain).

Let y C R? denote an open bounded domain with boundary I'y := 9€). For
each t € (0,7], we wish to find the domain €(¢), a divergence-free velocity field
u(t,-), a pressure function p(t,-) on Q(t), and a volume-preserving transformation

n(t,-) : Qo — R3 such that

(1.1a) Q(t) = n(t, Q) ,

(1.1b) ne(t, x) = u(t, n(t, z)),

(1.1c) w+Vyu—vAu=—-Vp+f  in Q),
(1.1d) divu = 0 in Q(t),
(1.1e) (v Defu — pld)n =ty on (1),
(1.1f) w(0,z) = ug(x) Yz € Q,
(1.1g) (0, ) = x Vo € Qp,

where v is the kinematic viscosity, n(t, -) is the outward pointing unit normal to I'(¢),
['(t) := 08(t) denotes the boundary of €(t), Def u is twice the rate of deformation

tensor of u, given in coordinates by uzj + ujl, and tgey is the traction imparted onto
the fluid by the elastic shell, which we describe next.

We shall consider a thin elastic shell modeled by the nonlinear Saint Venant-
Kirchhoff constitutive law. With e denoting the thickness of the shell, the hyperelastic

stored energy function has the asymptotic expansion
Eshell - 6Emem + 63E‘ben + 0(64)'

The membrane energy satisfies

(1.2) Emem = /r(t) [% Z (9as — Goap)” + 4($j_)\)<i(gw — go(m))Q] as



while the bending energy FEj., is given by
(1.3) Epen = / [(4u 2N H? - 2uK]dS,
I(t)

where g denotes the induced metric on the surface I'(¢), and H, K denote the mean
and Gauss curvatures on I'(t), respectively, and A/2 and p/2 are the Lamé constants
(see, for example, [14]).

The traction vector

tshell - etmem + €3tben + 0(64)

is computed from the first variation of the energy function FEj,.y;; the traction vec-
tor associated to the membrane energy will be defined later when we introduce a
coordinate system, while the traction associated to the bending energy has a simple

intrinsic characterization given by
(1.4) tpen = 0(AH — 2HK + 2H?)n

where o is a function of the Lamé constants and A, denotes the Laplacian with

respect to the induced metric g on I'(¢):

Bl = W&ca<v 90" 535)

1.1. Outline of this dissertation. In Section 2, we explain why the traction asso-
ciated to the bending energy has the form (1.4). In Section 3, in addition to the use
of Lagrangian variables, we introduce a new coordinate system near the boundary
(shell) and three new maps, n”, 17, and h, which facilitate the computation of the
membrane and bending tractions tyen and the,. A key observation is the symmetry
relation (3.7) which reduces the derivative count on the tangential reparameterization
map 77.

The space of solutions (to the problem with tyenm = 0) is introduced in Section
4, and the main theorem is stated in Section 5. Section 6 defines our notation, and
Section 7 provides some useful lemmas.

In Section 8, we introduce the linearized and regularized problems. The regular-

ization requires smoothing certain variables as well as the introduction of a certain
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artificial viscosity term on the boundary of the fluid domain. Weak solutions of this
linear problem are established via a penalization scheme which approximates the
incompressibility of the fluid.

In Section 9, we establish a regularity theory for our weak solution using energy
estimates for the mollified problem with constants that depend on the mollification
parameters. In Section 10, we improve these estimates so that the constants are in-
dependent of the artificial viscosity as well as other regularization parameters. This
requires an elliptic estimate, arising from the boundary condition (1.1e), which pro-
vides additional regularity for the shape of the boundary.

In Section 11, the Tychonoff fixed-point theorem is used to prove the existence
of solutions to the original nonlinear problem (1.1) Uniqueness, following required
compatibility conditions, is established in Sections 5 and Section 11. In Section 12,
we consider the inclusion of the lower-order membrane traction t,,e,, into the problem

formulation.

2. THE VARIATION OF THE BENDING ENERGY

In this section, we compute the variation of the bending energy and find the expression

of tben .

2.1. Some useful formula. By the definition of the metric and the identity ¢*’ g,, =

0%, it follows that

(2.1) 0gap = (007).anl’s + 0l (007) 5,

(2.2) 69 = —g°7 g | (07 o], + 0y (7).

Since I'f; = g”gngﬁn{g, by (2.1) and (2.2), the variation of the Christoffel symbol is

(2.3)  OL%s = =g T0s|(007) .oy + 00, (507) - | + 720607 ) s, + 9705 (007)



Let g be the determinant of g,s (Jacobian), then

0 0
2.4 =17
( ) axT \/§ 0'7_\/§ or axT O'Tg J
(2.5) 09 = 299", (o). or 0/ =1/g9" T, (o7).-
By (2.4), we have the following identity:
(26) Vg A+ [VarTiAr | = Vaniy

Let Cup3 be the covariant components of the curvature tensor which is defined

through the equation
Nap = Pgﬁn,n + Caﬂn'

The following identities hold true for C,s:

(2.7) Cagﬂ- — Cra,ﬁ = F Cn BCTH v a, ﬁ, T

(2.8) % Coo + 15, Cre + 15 Coo =10 Crie + 17, Cop —I'T Coe =0 V7.
2.2. The variation of the bending energy. Since the mean curvature vector
j 1 gy, -
Hn' = _A!JTI - 59 (77,045 - Faﬂﬁ,n)’
by (2.1), (2.2) and (2.3) we find that

) 1 . .
8(HW) = = 6|9 (1o — Digrrl)|

1 o K 1 ] K ] K ]

= 509" (s = Tag’e) + 59 | (00) a0 = TialOP) = (OT5)17
1 . ,
=—59"9" [(5771’),0773’7 + nf’g(5np),f} (as = Tag')

1aﬁ 53‘ re 5]’ KOTT SnP D P (SnP J

59 [ (0.3 = Tiag (0. + 9T (O0F) o0, + 75 (07) )

= 9"(0n") gy — 9“977?;5(5771’),977?;] :



Therefore, the variation of H? can be computed as

§H? = §(Hn - Hn) = 2Hn - §(Hn)

1 o j L j j K j K j
= 59797 (1,5 = Thstrl) [(5n”),aﬁ = L0p(0n") . = 9" (01") apyits

— G (O0F). o + 9" T (O0P) ol + 05 (00) 2 )7 |

1 aoc (BT j K j j L j
- 599" [(5771”),077?1 + 77?’0(577”),7] (Tas = e (s — Tosm)
1 a j L j K L j j
= 5{9 P97 [n,@g — T, — g™ (s — Fwani)nf’,mfg} (00’) ap

900 |~ Tagnlys + Taalh g’ — 905 = Tas s | (91F) 0
+ 9097 | 9T 05 = T’ (O ot + 7 (677) . ) |
— g% g"" [(5771’),077?’7 + nf’g(5np),7] (s — Tigml) (0,5 — nyanf;)} :

By the fact that g“g(n’jw — F%ni)% = 0, further simplification can be done, and

finally we find that

(. L ) ) N . S ,
0H? = 5{9 g [5{, ~9 gninfg] 15(01).p = 979" [n,@g - Fwni] o (077) s
=~ 979" g7 | (O0) oy (O | (5 — TP ) (075 — T’ §
LU abA (s aBPR A i (5 —
=3 [g Ag?' (0m7).ap = 9" LB’ (07 ),H] (: I)
= 979" (W — Tagil o Dgn” (017) (E H)
Intergrating by parts, it follows that

1
(2.9) / I/gdx = 5/ Afﬂ? - (6m)dS;.
FO Ft

For II, we have

ao BT

1T = — g*7g" (1" 5 — T gl ), Agn? (6177 -

= 2(g™ g7 — g* ¢ ") CagHnL (50 + — 29°° g7 CogHl(517) ;
2
g
- 111 + vV

(6%9677 — 67657 CogHry (617) - — AH? g7, (817) -



By (2.4), we find that

1 / 1 , ,
= | mi/gde = / [— o857 — §e0 5TV, H%} o) da
5 ), mvade = [ [ Casi,] (5)
1 , :
_ _—(§eBgoT _ sao 58T [_ FZTCCV H77]a +C, TH77]0
/F 0 \/E( ) sHn s Hy
+ CaﬂH,TTI,];; + CaﬁHn,];ﬂ-} (577J)d:L‘
:/ L((saﬁ(saﬂ' N 5a05ﬁ7) |: _T* CaﬁHnj + Caﬁ 7H77j
ro \/g KT R ) e
4 CupH 7+ CogHT 1], + CagCor Hr | (57
Noticing that
(6% 57T — 5“U5ﬂT)CaﬁCUT = 2det(C)
and for K being the Gaussian curvature of the surface,
1 9 1
K= 5(011022 - 012) = gdet(C’),

using identities (2.7) and (2.8), we find that

1 1 , ,
= — = (safsor _ soao BT j j
(2.10) 5 /FO II1,/gdx /FO \/5(5 4] 070" )CopH w1’ (01 )dx
42 / HEKn? (6n7)dS, .
Iy
Combining (2.9), (2.10) and IV, we have
1
/ (6H?)\/gdx = 5/ AZn - (0n)dS, — 2/ KAgn - (0m)dS,
T'o Iy Iy
1 , .
— 2/ —(6°P§T — 5°°6°T)Cog H 11 (01 )de
. \/g( )CapH 717, (07)

— 4 [ o) .
o

By (2.5), it follows that

/Hz(é\/g)dx:/ HQgJTnf'U(énj)J\/de.
T'o o
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Noting that (/997" n+).r = /9A4n, integrating by parts leads to
R AN
o

—— [ H2A - (on)ds, - / (H?) g7 P, (617 /g
To

s

and hence finally we obtain

§ | H?dS, = %/ Aznj(&f)dst -2 KAgnj(énj)dSt
Ft Ft

s

43 / H2A P (0r)dS, +6 | HH g7 i (51)y/gda
s

o

1 o
—2/ —(8°P5°T — 52769V Coug H o1y’ (61 )d: .
ro\/ﬁ( )CapH 717, (07)

Further simplication gives us
1 ) . ) ) . .
(5/F H?dS, = é/r Aznj(&yj)dSt—Q/F KAgnJ((SnJ)dSthZ%/F H?A g (617)dS;
+/ (g*Fg°T + QQO‘JgﬁT)C'agH,Tnf‘U((Snj)\/gd:p.
o

Next, we claim that the vector

1
(2.11) then = aAzn — QKAgU + 3H2Ag77 + (gaﬁgar + QQanﬁT)CaﬁH,TU,g

is actually normal to I';. It suffices to show that

1 (e} oT (a0 T
SO+ (9797 +29°79") CaH o

is normal to I'; since Ayn = 2Hn. By computing the tangential component of Af]n,
Ay(Hn)-n., = [(AgH)n +29*°H on g + H(Agn)] My
== 29°"H o Cyy + H(Agn) -1,
= —29""H oCpy + Hg** (Ti3Cry + T, Cor — Canyp)
= —2¢""H ,Cp, + Hg* (T Coi + T, Can — Capn) »
where we obtain the last equality by (2.8). Furthermore, by the fact that

9% = —(g*" T, + g7 T,
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we find that

A (Hn) -1, =—29""H ,Cg, + lTing‘ﬁ(Fngg,.C + 15, Carx — Capry)

=—29""H ,Cp, —2HH, .
Therefore, it follows that
1 2 af ot ao BT
[§Agn + (997" +29°79"")CopH 00 | * 1
=—29""H ,Cs, —2HH ., +2HH ., + 29" C,sH ,

which is zero. The claim is proved.

Similarly, the normal component of A,n is —g*?¢°"C\,,Cs,. This implies

1
§A277 = (AyH — Hg*?g°"C\s Cr )10

g

and hence we have
) A H?*dS, = /F (AgH)nj(5j) + A \/ﬁH(go‘ﬂg” — go“’gﬂT)C’agCMnj@nj)dSo
: ¢ 0
- 4/ HEKn?(60)dS,; + 2/r H?n? (617)dS;
I t
_ / [AgH _9HK + 2H3] nd (87)dS, .
Iy
This equation shows we can also define £ in the following way:

(2.12) then = (A H —2HK + 2H?)n .

3. LAGRANGIAN FORMULATION

3.1. A new coordinate system near the shell. Consider the isometric immersion
no : (Lo, g0) — (R3,1d). Let B = Ty X (—¢,€) where € is chosen sufficiently small so
that the map

B:B—R: (y,2) o y+ 2N(y)
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is itself an immersion, defining a tubular neighborhood of I'y in R®. We can choose

0

a coordinate system 5

a = 1,2 and % on B where % denotes the tangential
derivative and % denotes the normal derivative.

Let G = B*(Id) denote the induced metric on B from R? so that
Gly,2) = G.(y) + dz @ dz,
where G, is the metric on the surface I'y x {z}; note that Gy = go.

REMARK 1. By assumption, goag = ai 9 where - denotes the usual Cartesian

ya : W}
inner-product on R". Let C,p denote the covariant components of the second funda-

mental form of the base manifold I'y, so that Cop = —N, - %. Then, G, is given

by

(G2>aﬁ = (gO>aﬁ - QZCaﬁ + ZzgSJCMC@g.

Let h : Ty — (—¢,€) be a smooth height function and consider the graph of h in
B, parameterized by ¢ : Tg — B : y — (y,h(y)). The tangent space to graph(h),

considered as a submanifold of B, is spanned at a point ¢(x) by the vectors

9 86 9  Oh 0

8ya) oy Oy~ + Dy 0z’

.

and the normal to graph(h) is given by

oh 0 0
| _(ep Y Y
(3.1) n(y) = J, (y)< Ghiy) oo oyf T az>

where J, = (1 + h,ané)hﬂ)Uz. The mean curvature H of graph(h) is defined to be

the trace of Vn where

(Vn)i; = G(VZ_n, o) forij=1,23
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where aga = % fora =1, 2 and % = %, and VB denotes the covariant derivative.
Using (3.1),

(V) = G(vBa [— J,;ng‘shﬁa% + Jh‘l%] , 8%3)

= - (Gh)éﬁ [(Jh_lgzéhﬁ),a + Jh_l(_GZJhﬁFia + Pi?,)] ;

oy«

(Vn)ss = G(V% [ - Jh_lGZ‘Shﬁaiy& + Jh‘lé] , a%) ,

= (=G T + T5y)

where T’ f] denotes the Christoffel symbols with respect to the metric G. It follows

that the curvature of graph(h) (in the divergence form) is

(3:2) H = (" G’ha) s+ I (=G} hTs + ),

or (in the quasilinear form)
(33)  H= 0 [0y — S G shs] b + G2 Fasly, . Vh),
where F,3 denotes a smooth generic function of y, h and Vh.

REMARK 2. Note that G), denotes the metric G.—p,), and not the metric on the

submanifold graph(h).

REMARK 3. If the initial height function is zero, i.e., h(0) = 0, then H(0) = F§3(O),

which is the mean curvature of the base manifold I'y as required.

EXAMPLE 1. In the case that the initial surface Ty is flat, so that Ty C R? x {0},

then Gog = a3, and the mean curvature is given by (3.3),
B B

1 h.oh g

H= o6y — —2 T
\/1+\Vh|2[ ST VAR

EXAMPLE 2. In the case that the initial surface Ty = S2, with local coordinates

(y1,y2) = (0, ¢), then the metric

G = (1+ 2)*sin® pd6? + (1 + 2)*d¢* + dz?,
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and the mean curvature is given by the formula

_ h& _ h¢ _ 2 2
e I !
n g hzsmEe) e T\ T ayp) ) T (G cotet T
3.2. Tangential reparameterization symmetry. Let N denote the normal bun-
dle to 'y, so that for each y € T, we have the Whitney sum R?* = T,T'y & N,,.

Given a signed height function h : T'g x [0,7) — R, for each ¢ € [0,T), define the

normal map
n":Tox[0,T) = T(t), (y,t)—y+h(y,t)N(y), N(y)€N,.

Then, there exists a unique tangential map ™ : T'g x [0,T) — 'y (a diffeomorphism as

long as h remains a graph) such that the diffecomorphism 7(t) has the decomposition

nit) =n"(t)on (-t), nly,t) =n"(y,t) +h(n" (y,t), ) N(n"(y,1)) .

n(y.t

The tangent vector 7,, to I'(t) can be decomposed with respect to the Whitney

sum as 7.(y,t) = 7%y, 1) a‘zﬁ + ho(n7(y,t),t)n"%2 and hence the induced metric

9o = N,a 1,3 May be expressed as

(3.4) Jop = [((Gh)m + h,ﬁh,a) ° 777} Mol = [Qm ° 777} Mol

Note that G, is the induced metric with respect to the normal map n”. Furthermore,
we have the following useful relationship between the determinant of the two induced

metrics:

(3.5)  det(g) = det(Voy)? [det(Gh)J}ﬂ o = det(Von)? [det(g)} o



15

where V( denotes the surface gradient.
REMARK 4. The identity (3.4) can also be read as (n™)*g = G.

Let y and § = ¢(y) denote two different coordinate systems on I'y with associated

metrics

_ O’ % i oni o’
0"y ayr 0T g oy

It follows that ¢*g = g. Let H, H, K, K, n and 7 denote the mean curvature, Gauss
curvature, and the unit normal vector computed with respect to y and y, respectively.
Since H, K, and n depend only on the shape of I'(t), these geometric quantities are

invariant to tangential reparameterization; thus, the identity

(3.6) H=Hoyp, K=Koyp, n=mnoqy.
Similarly, computing the first variation of H?dS in our two coordinate systems
r(t)
yields

(88 + H(H = K))n| (9) = [ (85 + BT = B))a|(5) V5= ¢ly),

By (3.6), we have the following important identity

(3.7) Al () = [2s(Ho9)|(5) V= ()
and hence
(3.8) [Ag(Hon ")]on™ = AH

where by (3.3),

Hon™ = —J; Gy [0, = T 2GR sh s B + G Fagly, h, VR).



16
3.3. Bounds on 7. Let u” denote the tangential velocity defined by 7] = u™ o n7.

Time-differentiating the relation n = n* o ™ and using the definition of 1", we find

that
(3.9) u = (V ”)_1[uo ”—hg}
. = (Von n vy,
From the trace theorem, it follows that
(310) o) < CPURlo s, [llms@n) 0@ + el

for some polynomial P. Since, 0" (y,t) =y + fg(uT on")(y, s)ds, it follows that

¢ 4
Vo s < C[1+ [ 1 sy (14 190 o) ds
0

and hence by Gronwall’s inequality,

t
(3.11) Vo (0 lmscrg < C[1+ [ 17 ascryds
0

for t € [0, 7] sufficiently small. Furthermore, we also have

4
(3.12) 97 (s Dll 2310y < Cll sy |1+ 19007 )|

3.4. An expression for t,e, and tyem in terms of A and n”. Now we can compute

tpen, in terms of h and n™: the highest order term of A H is

{ﬁ% [\/F(g)gwa% (J,;l(G;jﬁ - J}L_2G%’“G§"hﬁh,g)h,aﬁ>} } or.

Since Gop = (Gh)ap + hoh g, the inverse of G5 is

1 (Ghp)o2 + h?g —(Gp)12 — h1ho
det(G) —(Gr)iz — haho (Gh)u + h?l

which can also be written as
G = J2 |G = (1) det(G) ™ (1 = da) (1= Do Dhch |
Therefore, the highest order term of AjH can be written as

1
7(1@1;(9 ) [\/ det(go)AOlﬁ’YzSh’aﬁ} y o 777'
\/ 0 ’



where
(3.13) AT = TG = (1) det(G) T (1= dan)(1 = Gy )hch o
x (G = I, 2GRGy hch)

is a fourth-rank tensor.

We also set

(3.14) n°(y,t) =h(n"(y,t),t), Vyely.

Using these variables, ty,en, can be represented as

9
0z

UA
214+ A

Nn] 0 My A

315 b = —[ MF _ [ NZ}
(3.15) pM"™ + o P TS

where with fgﬁ denoting the Christoffel symbols with respect to the metric gy,

M" = [(gaﬁ — G0as) Mg + (G2 )rans, (n,”agnf} + 77,177%;;) + 1%, (n;gnfg + n;nfm)}
+ [fgg(gaﬁ = 90ap) e T (Jap — 900) (Gyz)™ (G ), 5%
(G s '
M= [(an)sza (nfan,jg@ + nfw?@) + (9o — QOaﬁ)U,Zaﬁ]
+ [(gaﬂ — 9008) (Cre = 117G Cor Cos)'s175 + T95(9as — Goas)
+ (an)m,ﬂnﬁnfﬁni} )
N* = [(gaa — Goaa ) + 2Co 1a g + 277%77,277,2@]
+ (T2 (gan = G00a)15 + (G = G00a) (Ge )™ (G )ov 15

+ (an)wﬁnlninﬂ :

and

N* = Q(Gﬂz)ijn,zﬂn,iaﬂn,ja + (gaoz - gOaa)n,zﬂﬁ} + [Fgﬂ(gaa - ganc)n,ZB

+ (Jaa = Joaa)(Cr — ﬁzgwcmcw)?ﬂ??fﬁ + (Gn'z)mﬁnznfan?ﬁ] '
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3.5. Lagrangian formulation of the problem. Let n(t,x) = = + fo u(s, x)ds de-
note the Lagrangian particle placement field, a volume-preserving embedding of €2

onto Q(t) C R3, and denote the cofactor matrix of Vn(z,t) by

(3.16) a(x,t) = [Vn(x, )]

Let v = u o n denote the Lagrangian or material velocity field, ¢ = p o n the
Lagrangian pressure function, and F' = f o n the forcing function in the material

frame. The system (1.1) can be reformulated as

(3.17a) =0 in (0,7") x Qo,
(3.17b) v — v(a)D,(v)}) ; = —(aFq) p + F? in (0,7) x Q,
(3.17c) afvly =0 in (0,T) x Qo,

(vD,(v)s — ¢0)a)N; = €tpem + 0O

(3.17d) x| L(h)Bu(~G s, 1)] on” on (0,T) x Ty,
(3.17¢) he = B.((=G%°ho,1)) - (von™™) on (0,T) x Ty,
(3.17f) v = ug on {t =0} x Qo,
(3.17g) h=0 on {t =0} x Iy,
(3.17h) n=1Id on {t =0} x Qq,

where Dy (v) := (afv’, + afv’), N denotes the outward-pointing unit normal to I,

O is defined in Remark 5, and B, is the push-forward of B defined as

B.(7'(0)) = (Boy)(0) V() C T

L(h) is the representation of tg,e; - n using the height function h. It is defined as

follows

1

L(h) = GE{T%(QO) [

VAet(go) A" hap| -+ L7 (y, b, Dh, D*h)h o,
Y

+ LQ(y7 ha Dha DQh)}
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where L; and Ls are polynomials of their variables with L;(y,0) = 0, go is the metric

tensor on I'y.

REMARK 5. For a point n(y,t) € I'(t), there are two ways of defining the unit normal
n to T'(t):

1. Letn = \/§_1aTN where N s the unit normal to I'y.

_ N 0 0 , _ .
2. Letn = [Jh 1( — Ghﬁh,aa—yg + %ﬂ on” (denoted by [J, ' (—Voh, 1)] on7).

The function © is defined by
O(—Vohon™,1) =a’ N.
Equating the modulus of both sides, by (3.5) we must have
O = /det(g)[(J; ") on"] = det(Von")v/det(Gn) o 1"
REMARK 6. An equivalent form of (3.17¢) is given by
he = G((=Gy ha, 1), B (von™))
= — (GG halvon™), + (von™),
= —ha(von T)a+ (vonT).

where B* is the pullback map from Tp)R® to T,B. This equation states that the

shape of the boundary moves with the normal velocity of the fluid.
REMARK 7. By Remark (6), we also have nf = v, which implies that
n(y,0,1) = (" (v, 1), n°(y, 1)) Vyelo

REMARK 8. For many of the nonlinear estimates that appear later, it is important

that L(h) is linear in the third derivative h ,p .

REMARK 9. Without using the symmetry (3.8), we can still compute AgH in terms
of h and n™ by using (3.4) and (3.5); however, Ly would then depend on Vin™ and
thus lose one derivative of regqularity, preventing the closure of our energy estimate

(see Remark 33 in Appendix B for details).
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The study of the problem with t,,.,, = 0 requires that the lower order terms of L

depend at most on first derivatives of 7.

4. NOTATION AND CONVENTIONS

As we described above, the basic difficulties in the analysis of the fluid-shell interaction
problem is the directional degeneracy of the fourth-order elliptic operator arising from
the bending energy. Thus, we begin our study by consider tg,e = then. In Section 12,
we will then add the membrane traction t,e, to the analysis.

For T' > 0, we set

v e L20,T; H' (D)) | v € L*(0,T; Hl(Qo)’)};

v € L0, T; HA()) | v € L(0, T L(9)) };

{v e L2(0,T; H (D)) | v € L2(0, T H’f—2(90))} for k>3 ;
)= {h e 120, T H*(T0) | Iy € L2(0, T H*5(T0)), ha € L2(0,T; H*(To)) }

with norms

”UH%/l(T) = ”UH%2(0,T;H1(QO)) + Hvt”%Q(O,T;Hl(QO)’);

||U||%/2(T) = HUH%?(O,T;H?(QO)) + Hth%Q(O,T;L?(QO));

”””%/k(T) = ||v||%2(O,T;H’“(Qo)) + Hth%Q(O,T;H’C*Q(QO)) for k > 3 ;

HhH%r(T) = ”h”%%o,T;HM(FO)) + HhtHi2(o,T;H2-5(ro)) + ”httH%%o,T;HO»S(ro))-

We then introduce the space (of “divergence free” vector fields)
V, = {'U e H' () ] =0V te [o,T]}
and

V,(T) = {v € L2(0,T; H'(Q)) | a (), =0V t € [o,T]}.

We use Xr to denote the space V3(T') x H(T) with norm

1w, W)y = I0ll5sry + Rl ey
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and use Y7, a subspace of X7, to denote the space
Yy = {('U, h) € V3(T) x H(T) | hy € L=(0, T; HQ(FO))}
with norm
1w, B3, = (v, W%, + N0l 0.2 @)y + Nl Eoe 0 1m0
+ ||ht||%°°(0,T;H2(FO))'

REMARK 10. By the Sobolev embedding theorem, u € L>*(0,T; H*(Qy)) and h €
L>(0,T; H{Ty)) if (u,h) € X(T), with the following estimates:

2 2 2
su U < |lu + |lu ,
ogth I HH?(QO) I 0”H2(QO) | ”V3(T)
sup |2 7s(an) < l1hollzrao) + 107y
0<t<T 0 ?
where ug and hy are the restriction of u and h to {t = 0}, respectively.
We will solve (3.17) by a fixed-point method in an appropriate subset of Y.

5. THE MAIN THEOREM

Before stating the main theorem, we define the following quantities. Let ¢y be

defined by

(5.1a) Agy = —Vug : (Vug)' + v[al D, (u)i] £i(0) + div F(0) in Q,
(5.1b) qgo = v(Defug - N)- N — o L(0) on [
and

(5.2) w = vAuy — Vg + F(0).

We also define the projection operator Pjj(z) : R* — T, nI'(¢) by

ak Ny (z) afNy(x) ] |

Pij(x) = [6;; — (J; % o nT)afagNk(x)Nﬁ(x)] = [51“ - "N (2)] |a§Ng(x)|
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THEOREM 5.1. Let v > 0, 0 > 0 be given, and
F e L*0,T; H*(Q)), Fy € L*(0,T; L*(Q)), F(0) € H ().
Suppose that the shell traction is given by

snell = then-
Assume that the initial data satisfies
uo € H*(Q) N H* (L),
as well as the compatibility condition
(5.3) [Def ug - Nlygn = 0.

There exists T > 0 depending on ug and F such that there exists a solution (v, h) € Yr
of problem (3.17). Moreover, if uy € H>*(Qo) N H™(Ty) and the associated uy, qq

also satisfy the compatibility condition

CP:= gé“iuf)’kNjNg + ggguakNjNi} [V(Def uo)g — qoélj] N;
(5.4) (O — N;Ny) [(Defm)g . <(Vu0Vu0) + (vUovuo)T)f } N,

~ (8 — NiNp) [V(Def o) — qoéﬂ ub Ny =0

J

then the solution (v,h) € Yr is unique.

REMARK 11. In (5.4), ¢:(0) is not needed because the projection operator P;;(0) =
(0;j — N;N;) projects q;(0)N to 0. Therefore, only ug, ui(= u:(0)) and gy are required
in the compatibility conditions (5.4).

6. A BOUNDED CONVEX CLOSED SET OF Y7

DEFINITION 6.1. Given M > 0. Let Cp(M) denote the subset of Yr consisting of
elements of (v, h) in Y such that

(6.1) (v, W3, < M

and such that v(0) = ug, h(0) =0 and h(0) = (By)«((0,1)) - uo.
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REMARK 12. For (v,h) € Cp(M), define u™ by (3.9) and let ™ be the associated flow
map. Also define v™ as u” on™. By (3.11) and (3.12), we have

(6.2) s ¥ Ollnseo + 197 05 < CO)
€0,

for some constant C(M).
We will make use of the following lemmas (proved in [6]):

LEMMA 6.1. There exists Ty € (0,T) such that for all T € (0,Ty) and for all v €
Cr(M), the matriz a is well-defined (by (3.16)) with the estimate (independent of
NS CT(M))

||a||L°°(O,T;H2(QO)) + ||at||L°°(O,T;H1(QO)) + ||at||L2(O,T;H2(Qo))
(6.3) + Nlasl Lo o,7:0200)) + lawel| L20,7;m1.00)) < C(M).

LEMMA 6.2. There ezists Ty € (0,T") and a constant C' (independent of M ) such that
for all T € (0,Ty) and v € Cp(M), for all ¢ € H () and t € [0,T]

(6.4) Cllolay < [ [P + 1Dy

Qo

where

| Dy(0)[? = Dy(v); Dy (v); = (afvly + a5vly) (azvfy + ajvly).

In the remainder of the paper, we will assume that
0<T< min{TO,Tl,T}

for some fixed T' where the forcing F is defined on the time interval [0, 7.

7. PRELIMINARY RESULTS

7.1. Pressure as a Lagrange multiplier. In the following, we use H2(Q; o) to

denote the Hilbert space H'(Qg) N H?*(T'y) with norm

”U”fr{lﬂ(go;ro) = ”u”%ﬂ(ﬂo) + ”U”?ﬁ(ro)
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and use V; (V5(T)) to denote the space

{UEV@

ve H?(ro)}({v e V,(T) | v e L20,T; HZ(FO))}).

LEMMA 7.1. For all p € L*(Q), t € [0,T], there exists a constant C > 0 and
¢ € H'(Q; L) such that al (t)¢'; = p and

(7.1) 10l 1200m0) < CllpllL2(020)-
Proof. We solve the following problem on the time-dependent domain €(t):
div(pon(t)™) =pon(t)™  in nt, Q) = Q).

The solution to this problem can be written as the sum of the solutions to the following

two problems

(7:2) div(pon(t)™) =pon(t) —p(t)  in n(t ),

(7.3) div(¢on(t)™) = p(t) i n(t, ),

where p(t) = 2l /s p(t, z)dz. The existence of the solution to problem (7.2) with
0

zero boundary condition is standard (see, for example, [15] Chapter 3), and the
solution to problem (7.3) can be chosen as a linear function (linear in z) , for example,

p(t)x1. The estimate (7.1) follows from the estimates of the solutions to (7.2). O

Define a linear functional on H'?(Qq: Ty) by (p, @’ (t)";) 200 for @ € HY?(Qp; o).
By the Riesz representation theorem, there is a bounded linear operator Q(t) :

L2(Qg) — HY2(Q; ) such that for all ¢ € HY2(Qq; 1),
(p, ag(t)<ﬂfj)L2(Qo) = (Q)p, ©) H12(0i10) = (QE)D, ©) 1(020) + (QE)D, ©) Hr2(1y)-
Letting ¢ = Q(t)p shows that
1QW)pllrr200:r0) < Cllpllz2(520)

for some constant C' > 0. By Lemma 7.1,

1Pl Z2(00) < 1Q®PImz(@eiro) |l r2@0my) < CIQEPI 1200 Pl 22(020)
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which shows that R(Q(t)) is closed in H%?(Q;Ty). Since V,(t) C R(Q(t))* and
R(Q(t))* C V,(t), it follows that

(7.4) HY(Q0;To)(t) = R(Q(1)) @ rr(pirg) Volt)-
We can now introduce our Lagrange multiplier.

LEMMA 7.2. Let £(t) € H%(Qo;To) be such that L(t)p = 0 for any ¢ € V,(t). Then

there exist a unique q(t) € L*(Qq), which is termed the pressure function, satisfying

Ve HP(QoTo),  L(E)(e) = (q(t), al(t)¢’) r2(0)-

Moreover, there is a C > 0 (which does not depend on t € [0,T] and € and on the
choice of v € Cp(M)) such that

la()ll 20y < CNL@) | ar12(20;r0) -

Proof. By the decomposition (7.4), for given a, let ¢ = vy + v9, where v; € V,(t) and
vy € R(Q(t). It follows that

L(1)(p) = L{t)(v2) = (V(), v2) m2(oire) = (Y(1), 9) m12(00:m0)

for a unique ¥(t) € R(Q(t)).
From the definition of Q(t) we then get the existence of a unique ¢(t) € L*()) such
that

Vo€ HP(Q:Ty),  L)(p) = (a(t), al(t)e}) 20

The estimate stated in the lemma is then a simple consequence of (7.1). O

7.2. Standard inequalities.

LEMMA 7.3. Suppose f € H'P(Ty) if n = 3 (while f € HYTy) if n = 2) and
g € H**(Ty), then fg € H**(Ty) and satisfies

(7.5) I fallmosawyy < Cllfllzemollgllaosmo)

for some constant C' depending on the geometry of T'y.
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LEMMA 7.4. For space dimension n = 3,

3/4 1/4
(7.6) 1 Fllza) < CIFIG eI oty -

3/4 1/4
(7.7) 1 lloo) < ClFI3paa 1l oty -

1/2 1/2
(7.8) |l < ClEI o) 1 [ oty

while for space dimension n = 2,

1/2 1/2
(7.9) I lla@ < ClF el Al -

1/2 1/2
(7.10) 1l < ClFlae ] ot -

1/2 1/2
(7.11) | Fllzos) < Cll Il Ity -

and for either n =2 orn = 3,

1/2 1/2
(7.12) lolle) < Cllvllag ol o,

where C' depends on ).

7.3. Estimates for a and h. We make use of near-identity transformations. The

following lemmas can be found in [5] and [6].

LEMMA 7.5. There exists K > 0, Ty > 0 such that if 0 < t < Ty, then, for any
(ﬁ’ il) € CTO(M)7

(7.13a) 6" — Id|| e o, 0@y < KV
(7.13b) |G — Id|| (0,120 < KVT
(7.13c) [a: — @ (0)| Lo (o,r:m (0)) < C(M)E ;
(7.13d) @l oo 0,750 (00)) < K.

We also need the following
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LEMMA 7.6. For any (9,h) € Cy, (M),
(7.14) 1Rl 135 () < C Mt
for all 0 <t <Tj.
Proof. For (3, h) € Cp(M), ||hl3s ) + 1Al < M. By h(0) =0,
t
i@ < [ Wil ds < Vil
Finally, the interpolation inequality
(7.15) IV (Ol r5w0) < CUVEL I atrn I VEF | ary)-
implies
1All 55 ry < RIS g Il ) < CMEY™.

n

COROLLARY 7.1. ||Ly(t)||gr5(ry) and ||La(t)| g5y converge to zero ast — 0, uni-

formly in (v, h) € Cp (M). Furthermore, fort <1,

Ly () || mr1-5(rg) + || La(E) || rsrgy < C(M)EY,

By the fact that ||7]|2. (ro) = M and ||htt||L2(0TH05(FO) < M if (8,h) € Cp(M),

similar computations lead to the following lemma.
LEMMA 7.7. For all (0,h) € Cp(M),
(7.16) [Fu)llv ey < M

forall0 <t <T.
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8. THE LINEARIZED PROBLEM
t
Suppose that (0,h) € Cp(M) is given. Let 7(t) = Id —i—/ 0(s)ds and a = (V) ~*
0
We are concered with the following time-dependent linear problem, whose fixed-point

v = 0 provides a solution to (3.17):

(8.1a) U,f - I/[&I;Dﬁ('z})é],k = —(dfq),k + F? in (0,7) x Q,
(8.1b) v, =0 in (0,7) x Qp,

(8.1c) [vD;(v)! — qdl]at N, = 0© [Eﬁ(h)(—voﬁ, 1)] onf” on (0,T)xTy,

(8.1d) hion™ = [ﬁa 0N |vg — v, on (0,7) x Iy,
(8.1e) v = ug on {t=0} %9,
(8.1f) h=0 on {t=0}xTYy.

where Dj(v)] = &kvf}g + v, © = det(Voi"), and

v/ det(go) A sy, ag]

L;,(h) = .

Wil

with
A9 — 19, [det (G [va — (=1)" det(G5) (1 — Gan)(1 — 570)/5%%,0]
x (G = J2GMGYh b))
and
M(R) = /det(G;) [Lfﬁ”(y, h, Dh, D*h)h o, + La(y, h, Dh, D?f})] .
Here the thickness € is assumed to be 1.

We will also use L; (h) to denote Lj (h) + M(h).

REMARK 13. L; is a coercive fourth order operator for small h <34, Actually, it
is easy to see that Lj is coercive at time t = 0, and the coercivity of L; fort > 0
(but sufficiently small) follows from the continuity of h in time into the space H(T'y).

Moreover, by Lemma 7.6, we have the following corollary.
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COROLLARY 8.1. There exists a v1 >0 and 0 < T < Ty such that for all 0 <t < T,

V2 F ()] < / AP0 1) f5(1)dS.

o

for all 0 < t < T. Later on we will denote the right-hand side quantity of this

inequality by Er(f), where the subscript h indicates that A is a function of h.

REMARK 14. Given (0,h) € V3(T) x H(T), for the corresponding 1", we have

HﬁTH%OO(O,T;HQj(Qo)) + ||771:T||%2(0,T;H2-5(F0)) < C(M)

where (3.12) and (3.11) are used to obtain this estimate.

The solution of (8.1) is found as a weak limit of a sequence of regularized problems.

DEFINITION 8.1. (Mollifiers on I'y) Fore > 0, let

o
2

K (1 — EAQ)_ (PQ) — Hs+p(F0)

denote the usual self-adjoint Frederich’s mollifier on the compact manifold T'y, where

Ag is the surface Laplacian defined on Ty, given by

Aof = O (Va2 )

\/det go ay

By the Sobolev extension theorem, there exist bounded extension operators
Es: H¥(Q) — H¥(R™), s>1.

For fixed (but small) € and ¢ > 0, let p. be a (positive) smooth mollifier on R”. Set
U= pex B (D), F = pe % Ey(F), tig = pe * E3(up), where % denotes the convolution in
space, and h = Kem(iz) for large enough m. Define 77 and @ in the same fashion as 7
and a. Note that © — o € V(T), F — F in V*(T), 1y — uo in H>5(€) and h — h
in H(T) as e — 0.
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The regularized problem takes the form

(8.2a) vl — v[ak Dy ()i = — (@ q) x + F° in (0,7) x Qq,
(8.2b) v, =0 in (0,7) x Q,
(8.2¢) [vD;(v)! — q5f]d§Ng = oL (h)(=Vohoi, 1) on (0,7)xTy,

+ oM (=Vohoq", 1) + kAjv

(8.2d) hiofm = [(hq) 0N g — v, on (0,7) x Ty,
(8.2¢) v = 1 on {t=0}xQ,
(8.2f) h=0 on {t=0}xTYy,
where
S €1
o(f) = det(go) A o,
) = e [ (VAt@A 1) |7 e
o= O[(L57( h DR, D*)asy + Lo DR)) | 07 (1,0),

Note that

8.1. Weak solutions.

DEFINITION 8.2. A wector v € Vo(T) with v, € Vo(T)' for almost all t € (0,T) is a
weak solution of (8.2) provided that
(8.3a) (1) (ve, ) + g / Dyv : Dypdx + a/ flo‘ﬁ”‘shzﬂ [ —ho(¢”on™T)

Q r

0

€1

et or )| dS+r [ Bov- BapdS = (Frp) — o(G or,

(8.3b) (ii) v(0,-) = @

for almost all t € [0, T], where (-,-) denotes the duality product between V,(t) and its

dual V,(t)', and h is given by the evolution equation (8.2d) and the initial condition
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(8.2):
B4 b0 = [ [~ Bl 0@ 05).0.8) + 07 (025).0.9)]as

8.2. Penalized problems. Letting § > 0 denote the penalized parameter, we define
wy (with also € and ¢; dependence in mind) to be the “unique” solution of the problem
(whose existence can be obtained via a modified Galerkin method which will be

presented in the following sections):

: v Ao €1 7 o =—T
(©) (wne) + 5 [ Dyuns Dypdo+o [ A1 [ ol 07)
I

0

€1 1 . .
(8.5a) +(p7o 77’7)} ks ﬁ/ Agv - AgipdS + (5a]v, @) 12(00)

o

= <F7 90> - ‘7<M%(—V0B © 7777 1)? 90>F0
(8.5b) (i) v(0,-) = @

where (-, -) denotes the pairing between H'(£) and its dual, and h in (8.5a) satisfies

(8.4) with v replaced by wy.

8.3. Weak solutions for the penalized problem. The goal of this section is to
establish the existence of v to the problem (8.2) (or the weak formulation (8.3)), as
well as the energy inequality satisfied by v and v;. Before proceeding, we introduce

variable o and w, as follows: let ¢y be the solution of the following Laplace equation

(8.6a) Ajo = Viig : (Viig)t — div F(0) in Q)
(8.6b) Go = v(Def Gp)] NiN; — o MG (0) + kA24g - N on Ty,
and @, be defined by
(8.7) Wy = vy — Vi + F(0).
By elliptic regularity,
130ll7 () < C[H{LO”%{?(QO) + ||F(0)||%2(Qo) + [IMG (0) 1 Fro5(0y) + 123 G0 705 ry)

< C(M) | loll32(ey + Naollrasqry) + 1 PO 32y +1] -
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and hence
”le%Q(QO) < C(M) ”aOH%{Q(QO) + H’&0|’§J4~5(r0) + ”F(O)”%Q(Qo) + 1]-
REMARK 15. By (7.14), the constant C(M) in the estimates above can also be refined

as a constant independent of M if T is chosen small enough.

By introducing a (smooth) basis (es)32, of H%?(Qy; ), and taking the approxima-

¢
tion at rank m > 2 under the form wy(t, x) = > di(t)ex(x) with
k=1

B8 b0 = [ [~ ol 00 0:5).0.8) + i 051,05

and satisfying on [0, 77,

(i) (west, ©)12(00) + V(@ Wer g, 8 0 1) L2000y + V(@07 )ewe, 0 1) 12(20)

s [ ajatuide o [ (@l ode
QO 7 7 Q0 7 7

b [ AR (0 o )+ o N3l ale 0 77) 7 0 IS
To

b [ Ah Rl o) 4 7 0 TV dS
To

+o / A gl =heo (97 0 TT) 4 ho T (9% 0 7T7T) + T (95 0 17 7)]5dS
To

+ fs/ Aowee - DoedS — ((@lqe)e, ¢';) 12(0)
o

€1 €1
t

— (B, ) —0 / [L‘f‘ﬁ”l_qam i LQ} [/_170@00 o) — o] dS
To

- U/ [L?MB’“‘” ” LQ] [BW(‘PU i) T) = hot" (¢l 0 T) = (gl 0 ﬁ_T)] ds
To
V ¢ € span(eq, -+, e,

(ii) wer(0) = (w1)e, we(0) = (ug)e in Qo ,

5dgwé’j, and (1), denote the respective HY2(Qy; Ty) projections of

ug on span(ey, €y, -+, €).

where g, = o —
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REMARK 16. The existence of wy follows from the solution of
t
d}(t) + dy(t) Age(t) + do(t) Bre(t) + / de(8)Cre(s, t)ds = F(t)
0

for functions A, B, C'" and F; however, the existence of the solution d; does not
immediately follow from the fundamental theorem of ODE due to the presence of the
time-integral. A straightforward fiz-point argument can be implemented, whose details

we leave to interested reader.

The use of the test function ¢ = wy in this system of ODE gives us in turn the energy

law
1d v od .
5 dt” ét||L2 (Q0) §||Dﬁ(w€t)||%2(ﬂo) + §%Eﬁ(h€;,aﬁ) + QH%H%Q(%)
+v((alak) g, Wet ) £2(00) + V/Q (@iaf)twé,jw@,kdﬂ? + “|’A0w€tHi2(ro)
0
i g —7 4 o [} €
+ (qu, agtwé,j>L2(Qo) — (e, agtwﬁt,j>L2(Qo) - §/r (A [M) byt aﬁhét wds
0
5 “ ABYd
(8.9) — U/ (A20), hes |:h€tt + hy o (wf, o ﬁ_T)} 5dS + 0/ A% Piap X
To Y To

— — €1
x| = huo(wf 0T + ot (W, 0 ) + 7 (w0 )] | dS
77

— (Fywg) — o /F (555 By + L2)(~Voh,1)] - (w0777
0
=0 [ @ R+ L0 = R (0o ) + (w0777
0
For the tenth term, we have
|05 i 1S] < OOl 98,
By €;-regularization and the identity

AeBy pe pa g / \/det A0 ] K B ds
/Fo( ) B ity \/m gO)( )t 6 a8 ett

o [~ [T i
0 3

/F (A0), 2t het s,
0
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we find that
| [ 0 b S
To ’ ’
< C(en) [1+ Wl | 1V3hel 2 | well o) + lwallm @)
Similarly, the the last two terms of the left-hand side can be bounded by

Cle) el mzs@wo) I Vahell 2o [ weell 11 (00)

where we also use the €;-regularization to control ngJgt. It also follows that the last

two terms on the right-hand side can be bounded by
C(M) 1 + ||Et||H2'5(F0) ||wgt||H1(QO).

With positive 6, the fourth term of the left-hand side involving the square of g

acts as a viscous energy term. Integrating (8.9) in time from 0 to ¢, we then get
lwer(8) 2200 + V3R (B 721,
[ (19wl + sl +Olaal s

(810) < C(M)|lwa(0)F2(a) + 100 ) + 2:(0) oz
+0a) [ [14 I ey 93 o s

t t
+C(0) / (G / [1Vwa(5) 320, + () 320, dsdt’

where C'(€1),C(6) — oo as €,0 — 0, and we use

1F@lx < 1FO)]x + / 1£(8)llxds < [FO)]]x + V7 / 1) %

for f = wy, f = hy and f = g, to obtain (8.10).
REMARK 17. The 6-dependence follows from estimating the terms (qu, agtwé’j)p(go):

9 2 1 —7 2 [ 2
< §”qetHL2(Qo) + 2_9”agtHLOO(Qo)”wﬁ,jHLQ(QO)

0 C(M ¢
< Slaliey + g (1900 gy + [ [Twalxo(s)ds]

_j i
(et @ywy ;) L2 (00)
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By the Gronwall inequality, for 0 <¢ < T,

(8.11)

where

lwe(t) 172 (00) + 1V 3Ret (D)1 Z2r)
t
+ [ (19 walay + Flwnlegy + Ollasday ) ds

S C(Gl, 9)N0(U0, F)

No(uo, F) := Huo”%ﬂﬁ(ﬂo) + ”UOHfmﬁ(ro) + HFt”%Q(O,T;Hl(QO)’) + HF(O)H§{0»5(QO) + 1.

We can then infer that w, defined on [0,7], and that there is a subsequence, still

denoted with the subscript ¢, satisfying

(8.12a)
(8.12b)
(8.12¢)
(8.12d)

(8.12¢)

where

Wy — Wy in L?(0,T; H*(Q;Ty))

Wy — Wo in L*(0,T; H*(Q:Ty))
Vahe — Vahg in L*(0,T; L*(Ty))
Vahe — Viahg, in L*(0,T; L*(Ty))

Qot — ot in L*(0,T; L*())

~ 1—]’ i
do = qo — éaiwe,j'

From the standard procedure for weak solutions, we can now infer from these weak

convergences and the definition of wy that wy; € L2(0,T; HY(Q)"). In turn, wy €
C°([0,T]; HY(Q0)"), we € C°([0, T); L*()) with we(0) = g, we(0) = wy.
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Moreover, (8.12) implies that wy satisfies, for all ¢ € L*(0,T; H%?(y; Ty)),

T
(i) / [(wett,<ﬁ)L2(ﬂo) + (@l worj, @5 0 k) r2(00) + v((@aF)we, @ 1) 1200 | dt
0

T
—I—I// [/ a‘akwétjgokdx—i—y/g (aidf)twg’jgpfkdx dt
0 0
+a/ / APV (wg of~ ") +wgon s
X [=h (¢ 0f 7)) + ¢ o T|%sdSdt

T
+o / / (A0)hg sl —ho (@7 0T T) + " 0 T]%:dSdt
o

(8.132) +o / / AP Ry (¢7 0 T) + hp (9% 07
o

5 (7, 0 7] d St

T T
+ /i/ / Agwg - AgpdSdt — / ((dﬁq@)t, Spfj)LQ(Qo)dt
0o Jro 0

€1

T €1 -
— [ {Buods =0 [ [527ha + L] [Bolemon ) = o] s
0 Ty
_ €1 _
- U/ [L(llﬁvh,aﬂw + L2] [ht,tf(%@a of ") — h,U@K(‘P,Un on ")
o

— 0"(%, oﬁ*T)rldS}dt

(8.13b) (ii) we(0) = 1y, wy(0) = dig in Q.

Choosing ¢ to be independent of time, we find that for all ¢ € [0, T,

1%
(Wor, ©)r2(00) + 3

5 Di(wy) : Dy(p)dx + li/ Agwp - AgpdS
Qo

o

o /F AP [ —ho (@7 0 T) + 7 0 T%dS — (@lge, ') L2 (0)
0

= <F’790>+0/

1)

_ €1 _ €1
[L(fﬁwh,am + Lg] [ —hep? o T+ 7o 77*7] dS + c(p)
for all p € H%2(; ), where c(p) € R is given by

_ v N 1
c(p) = (W1, ) 2(00) + 5/ Def () : Def odz — (Go — i div g, div gp)p(go)
Qo

— (F(0), ) 2(020) — a(Mg(0)(0, 1), ©)2(rg) + K(Aotio, Do) 2(ry) -
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By compatibility conditions (8.6) and (8.7), ¢(¢) = 0. Therefore, the weak limit (wy,
hy) satisfies, for all t € [0, T,

1%
(wor, ) L2(00) + 5
Qo

(8.14) — (@l o, ') r2(0) + 0 / APORG s[=ho (97 0 7T) + F 0 T]5dS

To

Di(wy) : Dy(p)dx + li/ Agwy - AgpdS

o

— €1

- <F’ (’0> - J/ [L?B’WSB,CMIB'Y _'_ L2:| |: - h70-g00 o 77]77 _|_ ()OZ 1) 77]*7' dS’
o

for all ¢ € HY?(Qp; ).
Since wy € L*(0,T; H%?(Qp; Ty)), we can use it as a test function in (8.14) and obtain

(after time integration)

1 o . by
el + ZEaCht) + [ [21Dswollan + ol Sowolec,
0

g

t t
(8'15) + quGH%?(QO)] ds — 9/ (QG, qO)dt D) / / (Aaﬁ’yg)th;fozﬁh;tvéd‘gds
0 0 JTI'g

1 ~ e € 7 —T
= Sl + [ (oo + oM (—Toho i, 1), eyt
0

Consequently;,

t t
(v Oy + 19355 @] + [ 100l ts 4 [ ol s

t
+9/ HQGH%Q(QO)CZ‘S
0

< C(M) [HQOH%?(QO) + 9”%“%2(90) + HFH%{l(QO)/ + M (=Voh o, 1)”%2@0)}
t
+CON) [ Wullimoir IV g ds
0

t
< COD[Natua, F) + [ Widleoiey 19345 o s
where

Ni(ug, F) = No(uo, F') + || Fll720.0:m1 00y + I1F(0) |71 -
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By the Gronwall inequality,

sup|llwo()l3z(ag) + IVERE (O3,
0<t<T

T
(8.16) = [ (Il + Ol s < CONN w0, P)
8.4. Improved pressure estimates. By ¢;-regularization, we can rewrite (8.14) as,
for a.a. t € [0, 7],

14

(wor, 90)L2(QO) + 5

Dy(wg) : Dy(p)dx + r(Dgwg, Do) r2(re) — (@ a0, ©'5) r2(00)
Qo
o [ L[~ hao e+ @] dS = (Fup) + oM (-Voh o, 1), e,
o
Therefore, by the Lagrange Multiplier Lemma, we conclude that

196 ]1%200) < C(M) [HwetH?p(Qoy + I VwsllZaq) + 1 F Il ) + £l AGwell7-2ry)

+ NIE (') + MG (=Voh o 77, D)3 -2,
and hence

HqGH%ﬂ(QO) < C(M) ”th”%Q(QO) + HVUJGH%%QO) + "QHUJGH?{?(FO) + ”VghGH%%FO)
(8.17) + 1 F gy + 1].
8.5. Weak limits as § — 0. Since wy; € L?(0,T; H%?(Qg;Ty)), we can use it as a
test function in (8.13). Similar to the way we obtain (8.10), we find that
1 2 v [ 2 g €1 f A2 2
5”’(1]91&”[]2(90) + 5 ; |DﬁIU9t|’L2(QO)d8 + §Eﬁ(h6t> + K ; ”AowWHLQ(FO)dS

t

t t
+9/ HQGtH%Q(QO)ds“r‘/ (th,aftwé,j)B(Qo)dS—/ (g0, @jwy, ;)ds
0 0 0
t t
< ) Nofua, F) + CO) [ 100 ey [ V00 st

t
+ 0(61)/ [1 + ||ht||H2'5(Fo)] ||V(2)h§1||%2(r0)d3-
0



By (8.17),

t t t
| [ (i g)as] < COLS) [ lanliuys +6 [ IVl
t
< O(M)/o [HthH%Q(QO) + ||Vw6||%2(90) + ’f||w6||§12(r0) + ||V(2)h6||%2(r0)]d3
t
+8 [ IV uadoyds + CODNo(un, P
0
t
2 2 2 2
< C(M) | Ni(uo, F) + / (ol + Allwoleeyy + 11V3holl e, ) ds]
t
(8.18)  + 5/ V]2 s
0
where (8.16) is used to bound ||Vw9||%2(07T;L2(QO)). Integrating by parts in time,
/ (qot, @wp ;) 120y ds = (G0, @7, wh ;) £2(020) (1) + (o> Tp T ;) L2 ()
0
—/O (90, @jywp ;) 12(00)ds —/O (90, @jywpy ;) 12 () d5-
By e-regularization, the last two term can be bounded by
t
M) [ Nl [COIVwall ooy + [ Twml 2y ds
0
and hence
’/0 (q97dgttwé,j)L2(Qo)d3’ +)/0 (Qm@ftwét,j)m(no)ds)
t t t
< COLY) [ Nwlxayds+ ) [ IVunlixayds+5 [ [Tunlxo,ds
0 0 0
t t
< CleONifuo, F) + COLI) [ ulonds + Cler) [ IVEhlanyds
0 0
t
(8.19) +5/ [V 22
0

For (gp, C_lgtwaj)p(go)(t), it follows that

’(qﬁy dgtwg’j)LQ(QO)(t)’ S 51 ||w9t||%2(90) + 0(6, (51) ||VU}9 ||%2(QO)

< C(e,00)[Vwoll L2y + 01C()IVGhollZLarg) + 01| llworll T2 () + 1|20 + 1

39
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while for (Go, @) ;i) ;) 12(0), it is bounded by C(M)Ny(uo, F'). Combining (8.18),
(8.19) and the estimates above, by choosing 6 > 0 and d§; > 0 small enough,
t
||w9t||%2(90) + ||Vgh0t||%2(r0) + / [va@tH%Q(Qo) + ’f||w6t||§{2(r0) + QHQGtH%Q(Qo) ds
0
t
< Cler, )| Na(uo, F) + / (Hwnlaqay + (0 Wrellizs o) IR0 ey

7l | IVl ) ds] + Cifer, IV unlaa

where Ny(ug, F') = Ny(ug, F) + HFH%OO(O,T;L?(QO))‘ By the Gronwall inequality,

t
JnlBeqny + 1930l + [ (1700 By + ol
0

(8.20) < Cler, €)Na(ug, F) + Ci(e, €) | Vw2,

t
By using wy(t) = 6y + / weeds, we find that
0

t
”th”%Q(QO) + |’V3h9tﬂi2(r0) +/0 [”vw@lfH%Q(Qo) + ’f|’w9t|’§12(r0) ds

t
< Cer, ) Na(uo, F) + Ci (er, )t / |5t 230 -
0

Therefore, for any 0 <t <t; = min{ }, we have

1
T —
1204

1

t
oy + 1932 + 5 [ [Vl + el s
0

< C(€e1, €)Na(ug, F).
t1
By wy(t1) = —I—/ wgeds, we also have
0

(8.21) [Vws(t1)|72(0,) < Cler, €) Na(uo, F).
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t
For t > t;, since wy(t) = wey(t1) +/ wegrds, we have from (8.20) and (8.21) that

t1

t
o A T e / (1120320 + Fllworlaqey | ds
t
< Cler, ) Na(uo, F) + Coler, ) [lwolts) [y + (= 10) [ [ Vot 5]
t1

t
S 0(61, G)NQ(UO, F) + 01(61, €)(t — tl) / ||V0w9t||%2(90)ds} .
t1

Therefore, for any t; <t < 2t;, we also have

1

t
oy + 1932 + 5 [ [Vl + ey s
0

< C(€e1, €)Na(ug, F)
2t1
which with wy(2t;) = o + / werds gives
0

IVws(2t1)[|72(y) < Cler, €)Na(uo, F).

By induction, for any ¢ € [0, 77,

1 t
3 | (1wl + e, ds
0

||w9t||%2(90) + ||V3h6t||%2(r0) +
(822) S 0(6176)NQ(U0,F).
We also get a f-independent bound for ||q@||%2(07T;L2(QO)) by (8.17):

(3.23) 9012075000 < Cler, )N, P

Let # = +. Energy inequalities (8.16), (8.22) and (8.23) show that there exists a

subsequence w_1_ such that

e
(8.24a) wa v in  L*(0,T; H"(Q0; 1))
(8.24b) W= in - L*(0,T; H"*(Q0; o))
(8.24c) Viha = Vgh  in L*(0,T; L*(9))
(8.24d) Viho, Vb in L7(0,7517(Q))

(8.24e) g1 —q in  L*(0,T; L*(p)) .
my
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Moreover, (8.16) also shows that HdgwiinLQ(O’T;LQ(QO)) — 0 as m — oo. Therefore

the weak limit v satisfies the “divergence-free” condition (8.2b), i.e.,
(8.25) b€ Vy(T).

Since (8.16) is independent of @ and €1, by the property of lower-semicontinuity of

norms,

sup (190 2y + 19300 2] + 901200 mi20 + Flolern

(8.26) < C(M)Ni(u, F).
By (8.24) and ¢;-regularization, the weak limit (v, b, q) satisfies
T L (T T
/ (04, 0) L2 At + —/ D;(v) : Dy(p)dzdt + /{/ / Agb - AgpdSdt
0 2Jo Ja, o Jro

T T
- / (@]9, ) 12(00)dt + 0/ / AMOY L s [=ho (07 0 T) + o7 0 i 7] dSdt
0 0 To

T € _ €
= / {<F, ®) — 0/ [L‘fﬁ”‘sﬁ,am + Lz] 1 [ —ho@? o T+ o 77’7] 1d5}dt
0 T
for all ¢ € L*(0,T; H"?(Q;Ty)). By the density argument, we find that for a.a.
t e [O,T], (NS Hl;z(QO; Fo),

14
(01, ©)r200) + 5

5 ; Dﬁ(U) : Dﬁ((ﬁ)dl‘ + /‘i/ A()U . AmpdS — (C_qu, (pfj)LQ(QO)
0

o
(827) +o / AB009 [Ty (7 0 17) + o 0 7 7]%4dS
o

- <F7 (’0> - 0/ [L?ﬂ/yéh,aﬁ'}/ + LQ] |: - FL,O’(,DO- [©] ’F]_T + 902 o ,F]—’T] dS,
To

or after a change of variable y' = 777 (y, t),

14

2

(8.28) + 0/ L () (=Vohoq™, 1) - dS
o

(01, 0)r2(00) + (DnUaDnSD)m(QO)Jrﬁ/ Aob - AgpdS — (@, ¢';)r2(a0)

o

= <F7 ()0> —O'/ M%l(_VOBOﬁTal) deS
To
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Furthermore, if ¢ € V;, then

14

2

‘o / L9 (0)(—Voho 1) - pdS = (F,0) — 0 / M (—Voh o7, 1) - oS

(01, 0)12(00) + 5 (Db, D) 12(00) + /’v/ Agb - AgpdS

To

for a.a. ¢t € [0, T]. In other words, (b, h,q) is a weak solution of (8.2).

9. ESTIMATES INDEPENDENT OF ¢€;

9.1. Partition of unity. Since {2}y is compact, by partition of unity, we can choose

two non-negative smooth functions (y and (; so that

G+¢G =1 in Q;
supp(¢o) CC o ;

supp(¢1) CC I X (—€,€) := Q.

We will assume that ¢; = 1 inside the region Q] C ©; and (, = 1 inside the region
Qf C Qy. Note that then ¢; = 1 while ¢, = 0 on I'.

9.2. Higher regularity.
9.2.1. € -independent bounds for q. Similar to (8.17), we have

lallZ2(0) < COM) | odllZ20) + IV Z2(0) + £ll0lE (00 + VGO 1220,

(9.1) + | F |22y + 1].

9.2.2. Interior regularity. Converting the fluid equation (8.2) into Eulerian variables

by composing with 777!, we obtain a Stokes problem in the domain 7()):

(9.2a) —vAU+Vp=Foit —v,0q  vva), of tu,—pal ot

(9.2b) divu=0,
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where u = v o7 ! and p = qo 771, By the regularity results for the Stokes problem,

”u”%ﬂ(ﬁ(ﬂo)) + ”p”%ﬂ(ﬁ(ﬂo))
: O[“Foﬁ_l”%w(no» + 1000 7 2o ey + 1V L2r0) + P12 600)

o Nl

or

o132y + Nal3rao) < C[I1F 320y + Notl3) + 101 n5cr) |
+ C(M) [Vl a0 + 20|
for some constant C' independent of M, e. By (9.1),
HU”?“JQ(QO) + ”CIHle(QO) < C(M) [HUtH%P(QO) + HVUH%Q(QO) + Ht’”%ﬂ(ro)
(9.3) + 130 2w + 1 1y + 1]
Similarly,
013 6y + Nalraga0) < C[1F s gy + Notl3ragay + 10 rmscr |
+ C(M) | 9003 0y + Nl
and therefore by (9.1) and (9.3),
HUH%ﬁ(QO) + ||q||12'{2(§20) < C(M) [HUH%{l(QO) + ||VU||%2(QO) + ||V(2)U||12'-11(§21)
(9.4) V3D Zaqr + IF sy + 1]

For the regularized problem, because the e-regularization ensures that the forcing
and the initial data are smooth, while the €;-regularization ensures that the right-
hand side of (8.2¢) is smooth, by standard difference quotient technique, it is also

easy to see that

(9.5) VEo € L2(0,T; H' (1) N H*(Ty)) for k=1,2,3,4
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Since (8.24b) implies that v, € L2(0,T; H'(y)), by €;-regularization and (9.4) we

conclude that
(9.6) o€ LA0,T; H¥(Q0)),  q € L2(0,T; HA(Q).

9.3. Estimates for v;(0) and q(0). By (9.6) and ¢;-regularization, (v, b, q) satisfies
the strong from (8.2). Taking the “divergence” of (8.2a) and then making use of
condition (8.2b), we find that

(9.7) —a;,0% — va; @, Dy(v)] jx = —a; (@lq) ju + @ F.
Let ¢ = 0, by the identity af, = —EL%T)’%@?,
Aq(0) = Vi : (Vig)T — div(F(0))  in

with

q(0) = v(Def @) N;N; — o MG (0) + kA2, on Ty
while (8.2a) gives us

0,(0) = vAllg — Vq(0) + F(0)  in Q.

By standard elliptic regularity result,
(9-8) 104017200 + 14(0) 1710y < CNo(uo, F)
for some constant independent of M, € and €.

9.4. L[?[2-estimates for v;. Since v; € L?(0,T; H'()), we can use it as a test
function in (8.28). By (8.25), we find that

vd v o
||Ut||%2(90) + ZE / |DﬁU|2de‘ — 5/ (Dﬁb)gdﬁtﬁ?kdl’ + li/ AOU . A()(pds
QQ QO

o

+/ qdf;tnszdxjta/ L () (=Vohoq™, 1) - 0,dS
Qo To

= <F, Ut) - U/ M%l(—VO?L e} 77]7-, 1) : UtdS
o
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By (6.3),
| (Dot < CONCE@IVolzqa, + 0l
0
and

|| qatwtia| < CONCO 19010+ 180" sy + 1P + 1]
0

1
+ 5”0”%{2(90) + §||Ut||%2(ﬂ)

for some C'(9), where we use (9.1) and the interpolation inequality (7.6) (for n = 3)
and (7.9) (for n = 2). These integrals on the boundary (with ¢ in front) are bounded
by

(M) |1V 12y + 1 1ot

< CM)CO1) I8 Zaqry) + 1] + S1llo0l3s g

Combining all the estimates above,

1 9 vd 9 Kk d 9
={|0¢]| 72 —— Dyo|“dr + - — Agv|“dS
SIoday + g [ 1D+ 55 [ il

< C[ V01320 + V80 Wy + 1 F 32 + 1] + 01102y + 01104330y

for some constant C' depending on M, ¢ and ¢;. Therefore by (8.26),

t
(9.9) /0!\Ut!\i2(go>d8+HVU(t)HiQ(QO)+HHUH§I2(FO>

t t t
< C[Natuo, F) [ IV8" s + 6 [ TolFieads 61 [ lonlFinonds.
0 0 0

REMARK 18. To obtain (9.9), we avoid using vy € H?*(Ly) for the integrals on the
boundary because this kind of terms can only be controlled by the artificial viscosity
and will produce k-dependent estimates. We will also avoid this kind of estimates in

the following discussion in order to get k-independent estimates.



47

9.5. Energy estimates for VZv near the boundary. Because of (9.5), V3(¢(?Viv)

in (8.27) can be used as a test function in (8.28). It follows that

[ (g )+ 2] (-Vuhio 1) - Vivds
o
< CD) |V ) + 1] ol

< C(M, 83) |1+ 1Dy | + Bsllolry -

By (8.4), we find that

t B 2 t
1y < [ [ Il lollusads] < @) [ olfeyds

and hence

) /F [ZEI(F)Q) + M;;} (=Vohoi,1)- Vgn(w’

0

t
<[t [ Iolfy] + dlolr,
0

for some constant C' depending on M, € and 5. Since

S S A N rey o R
AOf - \/Waya |: det(QO)gO &gﬁf}’

by the regularity on Iy (and hence on gy),

/ [ A Vgol*dS S/ AGo -+ (Vgu)dS + Cllol mawyllo]l o)
T'o To

< [ B0+ (V40 + Ol + ol
0
which implies, by choosing § > 0 small enough, that

ol < | A3+ (V40)dS + CllolEna

To



By the identity

(a. @ (V5(¢FVou©).0)

= (a4, V5@ (¢TVo0") 0) + 4(G1 Vo, V@61 Vio®) + 2(a, (T Vo, Viol)

(9.10) — 2(C1Voq, Vo(ayCr,eVao®) + 2(q, Vo(ayC,eVoli Vo))

+ (Voa, Vo((TVoa, Vovh)),
(6.3) and (9.3) imply that
(a. @, (V5 (7 V30")0) < COM)lall g0 0]l 1300
< C(M)C(9) ||Ut||%2(go) + HVUH%Q(QO) + ||VVOU||%2(91) +“||U||§J2(r0)
I35 By + 1P 1220y + 1] + Oll0N3 00
09 1z2(ro) L2(20) H3(9Q0)
For the viscosity term,

Dyv = Dy(V5(¢EViv))da
Qo

1 , A ,
= ||C1Dﬁv(2)0||%2(90) + 5/9 [Vg(dfdf)nfﬁ—vg(dfdf)nfg ((EVo0) pda
‘f‘/ |:V0(a a; )V()UE + Vo(a a; )V()U i|(§1v0 )kdl’
Qo
+ [ Dy(Viv)lak¢ ¢, Vavide
Qo

and hence by (7.6) (or (7.9) if n = 2),
316Dl < | Dy Dy Th0)de
e ety [||Vn||imo) VY00l | + 01000y
Summing all the estimates, by letting d3 = 2%, we conclude that

v VoK
5 dtHQVQUHB Q) Z”ClDﬁng”%?(Qo) + THU”frﬂ(ro)

< é[”“t”%ago) + ||U||12'{1(Qo) + ||VVOU||%2(Q/1) + ||U||%{2(r0) + ||ng61||%2(r0)

t
1P + 1]+ [ [0lqyds + BlolFin,
0

48
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for some constant C' depending on M, x, € and 6. Integrating the inequality above in

time from 0 to ¢, by (8.26) we find that

t
V3032, + / VY3020 + Kllo i | ds

t
(911) < CNa(uo, F) +C / [1ocl130y + 900113y + 102y | 5

t S t
+c/0/0 |yn(r)|ﬁ,4(mdr+5/o 011250 5-

By using V(¢?Vv) as a testing function in (8.28), similar computations leads to

t
Vo000 + | [I9V00lE 0, + ol s
0

t
(912) < C(M)NQ(Uo,F) —|—C(M, (5)/0 |:HUtH%2(Qo) "‘KHUH%{Q(FO)] ds

t S t
+C(M) /O /O 1) 200y drds + 8 /0 101245 5

9.6. Energy estimates for v, - L? H!-estimates. In this section, we time differen-

tiate (8.28) and then use v; as a test function to obtain

(01, 02) + v / a(Dyo)i] vidz+ o / 23 (67 (=Voh o, 1)] -vids
Qo t I t

0

+ K |A00t|2dS — / (diq)tnﬁgdﬂ? == <Ft7 Ut> — U/
Qo

o o

M (=VohorT UL 0,d5.
By the chain rule,

/ [(E%l(bq) + M%)(—VOB o ,'77'7 1)]t - 0.dS

To

et (:)t |:Lﬁ(b€1)j| 1 o ﬁr(_vol_,l/ o ﬁT, 1) . UtdS
To

+ /Fo CLE [VO[LE([JQ)]Q(_VOB, 1)] off" - v,dS

n /F é[[LB(bﬁl)]el(voﬁ,—1)]]to—f.ntds.
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By using H?(T'y)-H%(T) duality pairing with e-regularization on © and %, it follows

that
[ [+ M) =Tohoi1)] - vuas
o
< C(O[IVabl2uy + V8bell 2oy + 1] loell ey
t
< ctea)| [ Iolngds + ol + 1] + dullelrcn,

t
< C[/O 1011774 (rgyds + (1011 31100) + 1} + 8101125 0y + F3l10el 122

for some constant C' depending on M, ¢, § and s, where we use the interpolation

inequality (7.8) to estimate [|o[|7.p)-

By (7.6) (or (7.9) is n = 2),

/ |Dyo,[2dx = 2/ [afDn(n){]tn{kdx—Q/ [(afaf)tn{'wt(afaﬁ)tnfz v} da
Qo Qo Q

0
<2 [ [aDyo)] pisde + CONCE )Vl
:
-/ (aat e + 3ol + Bl
Note that
(Fy,00) < ClF oy I0dll ey < CODIFl oy + 01llodl -

Summing all the estimates above,

1d v
5@”%”%2(90) + 1||V0t||%2(90) + /’v||AOUt||%2(FO)

t

+ 5”“”?{3(90) + 51"025"?{1(90) + 53”“16”?#(%) +/ (diq)tt’ﬁedﬂf

Qo

for some constant C' depending on M, x, § and 6,. By Appendix C.2,
t t
/0 /Q (@y,q):v) dxds < C(M)C(9, 51)N3(u0,F)+5/0 [0113 0 5
0

t
+(51/ ||Ut||%{1(90)d8
0
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where
N3(uo, F) :== Huo”%ﬂﬁ(ﬂo) + ”UOHfmﬁ(ro) + HF”%Q(O,T;Hl(QO))
F I Eel 207,01 00y + 1 (O 00y + 1-

Integrating (9.13) in time from 0 to ¢ and choosing ¢y, 3 > 0 small enough, (8.26)
and (9.9) imply that, for all ¢ € [0, T,

t
[o0(8)132(a) + / (117001320 + Bllo0l3aqryy | ds

t s t
(914) < CNg(UQ,F) ‘l—C/O /O ||U(T)||12q4(ro)d7“d5+5\/0 ||U||§{3(Qo)d5
for some constant C' depending on M, k, § and dy. In (9.14), (9.8) is used to bound
||Ut(0)||%2(90)~

9.7. €;-independent estimates. Integrating (9.3) in time from 0 to ¢, (8.26), (9.9)
and (9.12) imply that

t
| TielBran + lalin ey s
t
< CONNy(uo, )+ [ [IonlEay + ol |ds
0

t s t
(9.15) < CNy(uo, F) + C / / [00°) 2100y drds + 6 / T

for some constant C' depending on M, x and d. Integrating (9.4) in time from 0 to
t, making use of (9.11), (9.12), (9.14), (9.15), and then choosing > 0 small enough

and T even smaller, we find that

t t s
©16) [ (1ol + Il ds < OV, P)+C [ [ o(0) By s

for some constant C' depending on M, x and e.
Having (9.16), by choosing d, > 0 small enough, the estimates (9.11) can be rewrit-

ten as
t
2
IV530(6)22(0) + / IVV30 1220y + Fllo ey | ds

t s
(917) < CNg(U(),F) ‘l—C/O A ||U(T)||12g4(ro)d7“d5
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for some constant C' depending on M, x and e. Therefore,
_ t
X(t) < C[/ X(s)ds+N3(u0,F)]
0
where
t
X(0) = [ ol
By the Gronwall inequality,
t s
) _
(9.18) | 160 drds < Csfuo. )

for all t € [0,7T] for some constant C' depending on M, r, and e. Having (9.18),
estimates (9.9), (9.14), (9.16) and (9.17) along with the standard embedding theorem

lead to
2 2 2 2
sup | [[0(D)[[z2(0) + 106|200y | T N0MVs (1) + NallZ2 075200
0<t<T
(9.19) + HHU”%Q(O,T;H‘l(FO)) < CNB(UOa F)

for some constant C' depending on M, x and e.

9.8. Weak limits as ¢ — 0. Since the estimate (9.19) is independent of ¢, the
weak limit as € — 0 of the sequence (v, b, q) exists. We will denote the weak limit
of (v,b,q) by (v, hs, qs). By lower semi-continuity, (9.8) and thus (9.19) hold for the

weak limit (v, hy, ¢,;). Furthermore,

(U, @) + g / Dgv,. - Dypdx + 0/ © [[Cﬁ(hm)(_V0E> 1o ﬁT] - pdS
Q Lo
(920) +=& /F Agve - DowdS — (a4, @9%) 12(00)
—(F.¢)—0 / 6[IM(B)(~Voh, 1] o 7] - ds
To

for all p € H'?(Q; ) and a.a. t € [0,T].
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10. ESTIMATES INDEPENDENT OF & AND €

10.1. Energy estimates which are independent of x. Although (9.19) doesn’t
imply that h, € H*(Ty), h, is indeed in H*(Ty) by (8.4). Therefore, we know that

(/Uﬂ7 hlia q;q> Satisﬁes

(10.1a) v, — v[aF Dy(ve)i) s = — (@) & + F° in (0,7) x Qq,

(10.1b) alv.'; =0 in (0,7) x Q)

(10.1c) [vDy(ve)] — qnéf]&ﬁNg = 00[L;(he)(=Voh, 1)] 0]

+ 0O[M;(=Voh, 1) 07" + kAjv, on (0,T) x Ty,

10.1d hion™ =[(hy) o vy — v, on (0,7) x I'y,
( ] a) o]

(10.1e) v =1y on {t =0} x Q,
(10.1f) h=0 on {t =0} xTy.

Having (10.1c), (A.10) in Appendix A implies that h, is in H?(T) for a.a. t € [0, T

with estimate
t t
| 198l < €O [ 1980320+ Dol + sl + 1],
where the forcing f in (A.10) is given by
[yDﬁ(v,i)g — q,ﬁf]c‘zﬁNg — 0O[Mj,(=Voh, )] oq".

By the same argument, (8.17) holds with all 6 replaced by k. Therefore, by (9.4)
(which follows from (8.17)),

t t
| 19mgds < €O [ [lonalinan + 198l + [ V50n s ds
0 0
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With this extra regularity of h,, the energy estimate (9.19) can be made indepen-

dent of k. In Appendix B.2, we prove that
v ! = - .
ANy < [ [ O[[Lath(~Tuh. D] 7] - Vi(¢2VRu,)ass
0
t
+c / (1 5120y + Welrms oy + Wlrs oy | 1V 83y s
to t t
2 2 2 2
0 [ [ty + 1] ds 5 [ llagds + [ 193l ds
for some constant C” depending on M, €, § and ¢;. By (10.2),
1%
SISOy < [ [ O[Lalh)Tuh ] 7] - 3GV )asas
(10.3)  +C'Na(uo, F) +C' / [Hvomumm + K (3) [ VahelZ2qryy | ds
t t
48 [ onlBinods + 61 [ onlagds
0 0
where
K(s):=1+ ||1~)||%{3(Qo) + ||Ht||§{2~5(ro) + ||H||%{5(r0)-
With (10.3), (9.11) now is replaced by
t
IV30:(0) 220y + V8RO 22y | + [ 19930122000y + 5 ll0allZpacrs) | s
0
t
< C'Na(ug, F) + C' / [1one22(0) + 173003 ) + K () V8l ey ds
0

t t
(104) +6 / o2 s + 61 / el

for some C” depending on M, €, § and d;, where (A.8) is applied to bound /-iHv,iH%{g(Fo)

(this is where HUMH%Q(QO) comes from). Similar computations leads to

t
V00 (Ol 2y + V3R 22(rsy | + / IV VoualZaa) + KllvelZaqey | ds
t t
(105) SONQ(UO,F)"‘C/ ||Véhﬁ||%2(ro)d8+5/ ||Uﬁ||§{3(g ds
0 0

for some constant C' depending on M and §.
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In Appendix C.1, we establish the following k- and e-independent inequality for
the time-differentiated problem:

t t
L 198l < [ [ [2a)Foh 10 7], v
0 0 JTo ¢
t
+ C'Ny(uo, F) +C / K(3) [V ahal3aqcy + V3l 320y | ds

t t
LG+t / o ey s + (81 + CE1/2) / el s s + 2l b 2o
0 0

for some constant C' depending on M, §, §; and ds. Therefore, (9.14) can be replaced
by the following estimate:

t
[lewalsmy + 198ballzg] + | [1V0malam + ll davialagy ] ds
0

t
(10.6) < CNy(uo, F) +C / K(3) [IVahalaqcy + V3l 2oy | ds

t t
04007 [ odpds + 6+ C02) [ folBiads
0 0

+ 52||Véhn||%2(ro)~

10.2. k-independent estimates. Just as in Section 9.7, we find that

t
| ol + sl s

t
By choosing § = 0; = d; = 1/8 and T > 0 so that CT"? < 1/8 in (10.6), we find that

t
1
/0 (ol + laella e | ds < CNa(uo, F) + Sl VihulEaqr,

t
108)  +C0n) [ (V3000 + KG) (198l + IV3haley) | s
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Combining the estimates (8.26), (9.9), (10.4) and (10.5) with (10.6),
10l 00y + 19302200y + 1983y + ey + I3t 3200y | (1)
t
-+A 190:22(0) + 19 VovalZagay) + IV V30sl32(01) + lomilragay | s

t
SCWMmﬂ+OA[MMQW+K®@%MMWWHW%JQWH%

for some constant C” depending on M and e. By the Gronwall inequality and (9.4),

sup [an(t)H?p(Qo) + one(OlIZ200) + IVoRee O IZ20g) + [ Vohu (D12 o)

0<t<T

108 | + ToullBacry + 196l2207,m200 < Ol N3 (o, F)

10.3. Weak limits as x — 0. Just as in Section 9.8, the weak limit (v, h, g.) of
(Vi I, @) as k — 0 exists in V(T)x L*(0, T; H*(To)) x L*(0, T; H*(Qp)) with estimate

Sup. lwe®)l200) + e 0220y + IVoher B)][Z2ry) + I Vohe )22y

(10.9) +lge (15 o) | + 1vxllVaery + NellZ20 im0 < C(€)N3(uo, F).

(10.9) implies that for a.a. ¢t € [0, 7],

()l z25r0) < C(1)

for some C(t) independent of x, and therefore for a.a. t € [0, 7],

/1/ Agvy - DopdS — 0
To

as k — 0. This observation with (9.20) shows that (v, he, ¢.) satisfies, for a.a. ¢ €
[0, 7] and for all p € H"?(Qq; Ty),
v _ _
(e, ©)12(00) + 5 | Dot Dylep)da + U/ ©L;(he)(=Vohon",1) - ¢dS

QO o

(1010) - (agQIia (pfj)LQ(Qo) = <F7 ()0> =+ O-<6MB(_VOB o 7777 1)7 @)FO :

Since (10.10) also defines a linear functional on H'(£), by the density argument, we

know that (10.10) holds for all ¢ € H* (). As (v, he, ¢.) are smooth enough, we can
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integrate by parts and find that (v, he, q.) satisfies (8.2) with (8.2¢) replaced by
(10.11) [vDy(ve)! —qe6?]asN, = o |O[(Ly(he) +M(h))(Voh, —1)]on" | on (0,T)xTy.
10.4. H®®-regularity of h,. By (10.11), we have

LEMMA 10.1. For a.a. t € [0,T7], h(t) € H>*(Ty) with

||he||§155(r0) < C(M) ||Uet||%{1(go) + ||Vve||%2(go) + ||V(2)Ue||%11(91) + ||Vghe||%2(ro)

(10.12) +1F 3 + 1] 5
and hence
(10.13) el 320755 (ry) < C(M)e“ M Ny(ug, F).

Proof. We write the boundary condition (10.11) as

(10.14)  Ly(h.) = %Jf(—voha 1) {07 [wDy(v)] — adllatNe] o = M(B).

By Corollary 8.1, L; is uniformly elliptic with the elliptic constant 14 which is inde-
pendent of M which defines our convex subset Cr(M). Since h € H(T), M(h) €
L?(0,T; H*>(Ty)) N L>(0,T; H'(Ty)), and hence by (9.19), the right-hand side of
(10.14) is bounded in H'*(Ty). The important point is that these bounds are inde-

pendent of €. Thus, elliptic regularity of L5 proves the estimate
Vo) < COM) D3 rveqr + Ny +1]
so that with (9.4), (10.12) is proved. O

10.5. Energy estimates which are independent of ¢. Having estimate (10.12),
one can follow exactly the same procedure as in Section 10.2 to show that the constant

C’" appearing in (10.9) is independent of €, provided that we have an e-independent



58

version of (10.4). By Appendix B.2, we indeed have such an estimate:

v t - . .
ANVl < [ [ B[ ILalh(~Tah. ] o7 - V(¢T30S s
t t
+ CNy(ug, F) + C / K () [V ehelaqods + (6 + CH72) / el 2
0 0

t
+(51+Ct1/2)/ et s
0

for some constant C' depending on M, ¢ and d;. Therefore, we can conclude that

sup [”UGH?JQ(QO) + ”UetH%%QO) + ”VghetH%%ro) + HVghe”%%ro)
0<t<T

(10.15) o NaelZs | ) + oclBacry + el mzcaoy

< C(M)eCMHT Ny (ug, F).

REMARK 19. Literally speaking, we cannot use Vi((3Viv.) as a test function in
(10.10) since it is not a function in H*(Qy). However, since h, € H>3(Ty) for a.a.

€ [0, 7], (10.10) also holds for all ¢ € H'(Qp) N H'3(Ty) and V3(¢iViv.) is a
function of this kind.

REMARK 20. Having only (10.9), the integral

/F [(:)[L;l(hg)(vol_z, —1)] o ﬁT] tvetds

does not make sense (while it makes perfect sense with k mollification), so literally
we cannot do L?H} estimate for v, as we did in the appendiz. However, since (10.8)
is independent of k and €, by the property of lower semicontinuity of norm (on the
left-hand side) and the strong convergence of h, (on the right-hand side), we also
know that (10.8) holds for the weak limit v. and he.

10.6. Weak limits as ¢ — 0. The same argument leads to that weak limits of

(Ve he, qe) (denoted by (v, h, q)) as € — 0 exists and (v, h, q) satisfies (8.1).
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10.7. Uniqueness. In this section, we show that for a given (7, iL) € Y7, the solution
to (8.1) is unique in Yz. Suppose (vi, hy) and (ve, he) are two solutions (in Yr) to
(8.3). Let w =wv; — vy and g = hy — hs, then w and g satisfy
(we, @) + %/QDﬁw : Dppdx + a/ é[i,;(/t(ﬁ,awa — wz)dsﬂ of" X
r 0

0

(10.16) X (=hgaon ¢*+¢*)dS =0

for all p € V,(T) with w(0) = 0, where L equals L except L, = Ly = 0. Since w is in
V,(T), letting w = ¢ in (10.16) leads to

103y + 130220y + V8RN0 + NotlZaqay + V33200 | (8

t
+ [ (190l + 1900y + 19 V30030 + el | ds
0
t
<€) [ K1Vl + 193l

Therefore, by the Gronwall inequality and the zero initial condition (w(0) = 0), we

know that w (and hence g) is identical to zero.

REMARK 21. The reason we have an 1 in the expression of Ns(ug, F') is that we
linearized our problem in the way that we treat L and Lo as extra forcings on the

boundary. When there is no such forcings, we don’t need that 1 in N3(ug, F').

11. FIXED-POINT ARGUMENT

From previous sections, we establish a map O from Y7 into Yr, i.e., given (7, l~1) €
Cr(M), there exists a unique O7(#, h) = (v, h) satisfying (8.1). Theorem 5.1 is then
proved if this mapping O has a fixed point. We shall make use of the Tychonoff

Fixed-Point Theorem which states as follows:

THEOREM 11.1. For a reflexive Banach space X, and C' C X a closed, convex,
bounded subset, if F': C' — C' is weakly sequentially continuous into X, then F' has

at least one fixed-point.
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In order to apply the Tychonoff Fixed-Point Theorem, we need to show that
O(t,h) € Cp(M) and this is the case if T is small enough. In the following dis-
cussion, we will always assume 7' is smaller than a fixed constant (for example, say

T <1) so that the right-hand side of (10.15) can be written as C(M)N3(uq, F').

REMARK 22. The space Yr is not reflexive. We will treat Cr(M) as a convex subset

of Xt and applied the Tychonoff Fized-Point Theorem on the space Xr.

Before proceeding the fixed-point proof, we note that lemma 7.5 implies that for a
short time, the constant C'(M) in (9.1) and (9.4) can be chosen to be independent of

M. To be more precise, for almost all 0 < ¢ < T7,

A1) llaliZay < C |lonlaay + 1900320 + IVaR Iy + 1F 220y + 1],

(11.2) HUH%ﬁ(QO) + ||Q||12'{2(Qo) < C[H“t”%{l(go) + ||VU||12'—11(QO) + HVOUH%H(QI)
+ V30l 0y + 1 F I + 1],
and
Wiy < € [l + 1900y + 1930 0,y + V8RR,
(11.3) + 1F s ey + 1]
for some constant C' independent of M.

11.1. Continuity in time of h. By the evolution equation (8.1d) and the fact that
v e V3Ty), hy € L*0,Ty; H**(Ty)). Since h € L*(0,T1; H>5(Ty)), we know that
h € C°([0,Ty]; HY(T'y)) by standard interpolation theorem. Although there is no

uniform rate that h converges to zero in H*(Ty), we have the following.

LEMMA 11.1. Let (v,h) = ©4,(0,h). Then |2(t)[| 25 (rg) converges to zero ast — 0,
uniformly for all (0, h) € Cr, (M).

Proof. By the evolution equation (8.1d),

t
1R () || 25 rg) < / 17 0Va — Vs g25(rg)dS < C(M)N3(ug, F)/*/2.
0
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The lemma follows directly from the inequality. U
REMARK 23. We can also conclude from ||Vght||i2(ro) < C(M)Njs(ug, F) that
V3Rl 2y < C(M)N3(uo, F)t
forall0 <t <Tj.
By lemma 11.1 and the interpolation inequality, we can also conclude that

LEMMA 11.2. ||V3h(t)||grsry) converges to zero as t — 0, uniformly for all h €

Cr, (M) with estimate
(11.4) V2R ()| sy < C(M)Na(ug, F)t*
forall0 <t <Tj.

11.2. Improved energy estimates. In order to apply the fixed-point theorem, we

have to use the fact that the forcing F is in V2(T). We also define a new constant
N(ug, F) :== HuOH%{?ﬁ(QO) + ||F||%/2(T1) + ||F||%°°(O,T1;L2(Qo)) + ||F(0)||§{1(QO) + 1.

Noting that N3(ug, F') < N(ug, F).

REMARK 24. For the linearized problem (8.1), we only need F € V(T) to obtain a

unique solution (v, h) € Yr.

11.2.1. Estimates for Vv near the boundary. Note that

1d
335 168y + o [

T

N B 14
@BAaﬂwav(Q)h@ﬁv(Q)h,’ytst} + 5 ”ClDﬁ(v(Q)/U)”%Q(QO)
0

— (FV3GVR0) — % [ [Viaale) + V)] @ Viv)ade

v o~ j ~k~ % j
~ 5 [ [Votatat)Vor) + Vio(aal) Varl ] (V30
Qo

~ 2 [ Dy GGV + [ VAT s
Qo QO

3 8
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where [}’s and Ji’s are defined in Appendix B.1 (with ~ replaced by 7, and no € and

61).
As in [6] and [7], we study the time integral of the right-hand side of the identity
above in order to prove the validity of the requirement of applying Tychonoff Fixed-

Point Theorem.

Step 1. Let A; = / / V2 (afa)v), + Vi(aral)v', | ((FVev?) wduds. By (7.7) and
Qo

(10.9),

t
A <cC / 12260 [ V0 o 10 15000 5

1/2 1/2
C0) [ 101 Vol s+ B

< C(M)C(8)N(ug, F 1/2/ [0]l2 s + 6C (M)N (ug, F)

< C(M)N(uo, F) [0(5)5”/4 n 5} .

Step 2. Let Ay = / Vo (akal) Vov + Vo(aka )Vov ((3Var?) pdxds. Similar
Q
to Step 1, by (7.12) and O1() 9),

t
A <C / (LTI IL o AT R 3
0
t
2
< C(M)C() / ol s 0L 12(6y s + 611022 0 221150000
0

t
< C(M)C() / ol ot + 3011022 0 7115000

< O(M)N(u, F) [0(5)15 + 5] .
t . .
Step 3. Let A3 = / Ds(Vav)ak(i1¢ Vvl deds. Tt is easy to see that
Qo

t
As < (J(M)/ 0]l 1500y | V20l 220 yds < C(M)N (ug, F)EV2.
0
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Step 4. Let Ay = / / qaL[V2(¢(?V20R)] ydxds. By identity (9.10) and interpolation
Qo

inequalities ,

t
Ay < C(M)/ |:||Q||L°°(Qo)+||Q||W1’4(QO)+||q||H1(Qo) V]| &3 00\
0

t
< cONC) | lallauds + [l + ol )

< C(M)N(ug, F) [O(é)tW + 5] .

Step 5. Let
t ~ ~
o :/ / [Li(h) 0 7] | VA(Voh o7, ~1) - v + 4V§(Voh o7, ~1) - Vo
0 To
4 6V2(Voho ", —1) - vgv} dSds.
By Appendix B.3 with (7.14), we find that
t ~
| As| < C(M)/O 12l 7155 (0o) 0] 125 (0) || 2] 7235 (0 s

t
< 0D [ [IblBinaqy + lolBiay ds
0

< C(M)N (ug, F)t'/*,

Step 6. Let Ag = / / (Vo(Vohon™, —1) - Viv)dS.
r
By H%*(T)-H%*(Ty) dflahty pairing,

Aq| < / 125 (B)(Vo(Voh 0 7, —1)|[ ooy [ V30l -0y ds

< C(M)/O |l 725 o) | Poll 2735 0oy |V || 2125 (1) s

< C(M)N(ug, F)t"/*.
Step 7. Let

Ay = //\/W [M(L hag7+L2>o77]V2(hto77)de8
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By Appendix B.1,
t ~
Ay < C(M) / (14 ll sy 920 1y s
t t
< (M) / [0l s(yds + C(M) / TP
0 0

t t
< C(M)N(uo, F)*#2 1+ C(M)C(5) / 1 s + 6 / ol s

< C(M)N(ug, F) [tlﬂ OO+ 5] .
t
Step 8. Let Ag = / (J1 + Jo + J3)ds. Since
0

]+ 12l + ] < CODIBlLms oy 1 ell o) + 1 Vohl

< C(M)||P]l a5 o) 1ot | 2 o),

t
Ag < C(M) / Vil 1o 2y ds
t t
< C(M)C(6) / Illsrsrayds + 8 / "

< O(M)N (uo, F) [0(5)t2/3 + 5} .

t 1 t B B
Step 9. Let Ag = /0 Jads = —3 /0 /F (OBA*°),NV2h ,5Vih ,5dS. Then
0

t
|[Ao| < C(M)/ (191l 2(020) + llBell 25 o)) 1ol o) ds
0

< C(M)N(ug, F)t'/2.
t
Step 10. Let Ay = / (J5 + Jg)ds. By Appendix B.2,
0
| T5] + | Js| < COM)|| Al gras o) | Bll s ooy [0 25 o)

and hence

t
| Ay < (J(M)tl/“/ [||h||§,4A5(FO) + [0l s @) |ds < C(M)N (ug, F)tH*.
0
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t
Step 11. Let Ay = / (J7 + Jg)ds. By interpolation and (7.14),
0
¢
|Aq| < C(M)/ 12| g5 ) ||| 1125 (rgyds < C(M)N (ug, F)t/2.
0

t
Step 12. Let Ay = / (F,V2((?V3v))ds. By (7.12),
0

s < / P liqen 0 200y ds < N, F / 02y
< N(ug, F') + C(M)N (ug, F)t.
Step 13. Summing A; to A;o, we find that
IV30() 30, + OB (VER)| + v / D40 s
< ol %20y + ON (g, F) + C(M)N (uo, F) [0(5) (B 423 112 1) + 6] .
By Corollary 8.1,
IV30(8) 3200y + VAR Eaqey | + / V30
(11.5) < ON(ug, F) + C(M)N(u, F) [0(5)0@) + 5} as t—0

where C' depends on v, o, v; and the geometry of ['y.

By similar computations, we can also conclude (the (8.26), (9.9) and (10.5) variants)

that
t

0@ a0 + VRO Iy | + / 1012 s
11.6 < CN(ug, F) + C(M)N (uq, F)O(t as t—0;
(11.6) (up, F) , ,

t

IV60(®) 320, + V3R Rary| + / Vool ayds

(11.7) < CN(ug, F) + C(M)N (ug, F)O(t) as t—0;
t

Vo) + | oy
11.8 < CN(ug, F) + C(M)N (uq, F)O(t as t—0
(11.8)

where C' depends on v, o, v; and the geometry of ['y.
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11.2.2. L?H}-estimate for v;. For the time-differentiated problem, we are not able
to use estimates such as those in sections 9.6 and 11.2.1, since no e-regularization is
present; nevertheless, we can obtain estimates at the e-regularization level and then

pass € to the limit once the estimate is found to be e-independent. We have that

1d v od _—
§E||Ut||%2(go) + §||Dr7“t||%2(go) + §£/r QAP \shy~5dS
0

= (F},v;) — 1// [(df‘f)tvfé + (&f&ﬁ)tvﬂ vi"kdx +/ Qg v de
QO QO
L[\/det(go)(/_l“ﬁw)thaﬁ} hudS
ro v/ det(go) e

— 9 / 0., Ak, \shy sdS — / 0.5 A by shydS
T'o To

1 _
+ 3 / (BA“) hy aphi~sdS —
To

— / (:) |:L?ﬁ7]_17aﬁ,\/:| thttdS — / @(Lg)thttds + Kl + Kg —+ K4 -+ K5 + K6
To

To

where K;,i =1,...,6 is defined in Appendix C.1 (withoute; ).
First we estimate the time integral of terms due to the viscosity, pressure and

forcing terms:
¢
Step 1. Let By = / / [(dfdﬁ)tvfe + (d?d;)tvfg] v} pdxds. By (7.6) if n =3 (or (7.9)
0o Jo
if n =2), i

t
B)| < C(M) / 1901 2o 1l 2 s

t
< C(M)C(5)/O ||vv||%2(§20)d3+5[HUH%Q(O,T;H2(QO)) + HUtH%?(O,T;Hl(QO))

< C(M)N(ug, F) [C(é)t + 5} .

t
Step 2. Let By = / / (qdi)tvfjgdxds. As in Appendix C.2,
0 Jo

t t
By :/ / &itqvfgdxds—/ / ak,qutdads.
0 Jao ’ 0o Jao ’
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By (7.6) if n =3 (or (7.9) if n = 2) and (9.1), it follows that

’// aktqvtgdxds
Qo

< C(M)C(5)/ HQH%Q(QO)dS +5[HQH%2(O,T;H1(QO)) + Hth%Q(O,T;Hl(QO))
0

< C(M)N(uo, F) [0(5)75 + 5] .

By Appendix C.2,

t
/ / atqhduds = / (@) (t)de — / L, (0)q(0)ut
0 Qo Qo

t
—/ / (ditvf})tqd:pds.
0 Jao
By the identity at, = akvj a;

¢ t
‘ / / (ditvkg)tquds) < / / [’é
0 Qo ' 0 )

k —{ .k
AV + aktvt,€:| q)dxds

E

t
< C(M)/ (14 oell @) I VOl 2400 14l 240y ds-
0

Therefore,

¢
’/ / (ditvl})tqd:pds
0 Jao ’

t t
< C(M)C(5)N(UO,F)/O a3 o gl o) d8+5/ (L + 17l (0 )l

< C(M)N(ug, F)>? [0(5)@ ) 4 5}

1
Whereoz:zifn:3anda:—ifn:2.

The second integral equals Vg : (Vug)T q(0)dz which is bounded by O'N (ug, F).
Qo

It remains to estimate the first integral. By adding and substracting / at,(0)qv" dz,
Qo
we find, by @;(0) € H?(£y), that

|| @t < [

< Cllag(t) — ar(0) || 2o 2l 20) | VUl L1 (20)

L k

ay (0)quy|dx

(@~ L) a0+ [

+ 0(51)||VU||%2(90) + 51”(]”%2(00)'



68

Noting that
t
V020 = V00 + / Vouds| a0,

< [l + [ I1¥alzzads]

< 2|0l ) + CODN (uo, Ft],
(7.13¢), (10.9) and (11.1) imply

|| @haavs(0rds] < CONN o, PO + 6N (o, F)
o
+ 01 lenl 22 + 1V8RI32(cy) |
Summing all the estimates above, we find that
|By| < C(61)N(ug, F) + C(M)N (ug, F)? [0(5)@ L) 5]
+ 01 lenl32(ay) + IV8RI32(cy) |

REMARK 25. It may be tempting to use an interpolation inequality to show that
q € C([0,T]; X) for some Banach space X by analyzing q; via Laplace’s equation. The
problem, however, is that the boundary condition for ¢; has reqularity L*(0, T; H=1*(Ty))
(by the fact that hy € L*(0,T; H**(Ty))), and thus standard elliptic estimates do not
provide the desired conclusion that q; € L*(0,T; H'(€)") (and hence by interpolation,
q € C([0,T]; H**(Q)). However, suppose that q; € L*(0,T; H (Q0)'); then we can
estimate /t/ﬂ c‘zﬁtqtvfgdxds by the following method:
0 0

t t

’// &itqtvﬁ,dxds’ §/ Hc‘zﬁfﬁﬁv@”m(go)HthHl(Qo)/ds
0 Qo 0
<C

(M)N (o, F) [t +£°7%).
t
Step 3. Let B3 = / (Fy,v;)ds. By the fact that Fy € L*(0,T; L*(Qy)), it follows
0
that
t
Bg S / HFtHLQ(QO)”UtHLQ(QO)dS S C(M)N(Uo,F)tl/Q
0

Next, we estimate the time integral of terms from the boundary.



Step 4. Let

t 1 o (:) -
Ba= / / [5(@Aa575)tht,aﬁht,wé ATSTRY [\/F(go)(AaﬁWJ)th’aﬁ}
0 JIo

det(go)
— 2(:)7,\/Aaﬁfy5ht7aﬁhtt75 — éﬁ(SAO‘B'Y‘Sht,aﬁhtt] dSds

Y

By (C.4), (C.5), estimates of K, K9 and Remark 34, we find that
|By| < C(M)N (ug, F)t'/2.
t — —
Step 5. Let Bs = / / S [[L‘f‘mh,am]thtt + (Lg)thtti| dSds. Tt follows that
0 Jro
t o t
)/ \/I; @(Lg)thttdeS‘ S C(M)/ |:||’U||Loo(l‘0) + ||’Ut||L2(1") ds
0 o 0
< C(M)N (ug, F)2(t + t3/4).
For parts involving L, we have
t o ~ t o ~
/ / 6 [[Lﬁﬁm,am]thttdsczs — / / 6 [Lﬁf”} has hudSds (= BY)
0 JTo 0 JTo t
t
+/ / éL?ﬂwhtaﬂwhttdeS. (E Bg)
0 Jro
By (7.9),

t
Bl < (M) / 1601 ey 1l ey I el oy S ds
0

t
<) [ (Il + oo Jds

< C(M)N(ug, F)Y?t/?
while by (7.14) and Corollary 7.1,
e 7 B
B3| < /0 1O e300y 1 Foel [ 12:500) |1 L7 [ 15 0) | ot || 05 g s

t
< CODNL sy | Wil (ol + lelnia ] ds
0

< C(M)N (ug, F)t*/*.

htt
5
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Therefore,

1Bs| < C(M)N(uy, F)(t + /4 + £1/4).

Step 6. Let Bs = / Ksds —/ / [Li(W)]e[(Don™™) - (Voht)]dSds. The L; and
r
L, part of Bg is bounded by i

t
M)/ 1O 2115 wo) 01| 115 () 12l 2135 o) [ e | 1120y e | 112020 s
0
and hence
t — —
| / O L8 hap + La| [(50777) - (Vohe)ldSds| < C(M)N (ug, F)iM*,
0 t

Integrating by parts, the highest order part of Bg can be expressed as

/ / OWon I s )(Aaﬁvé)th,aﬁ] VohidSds (= BY)
v/det(go) o
+/ / (:)(17o77_7)/_10‘57‘5ht,a[gvohm(;des (= B?)
To
+ 2/ / (von™ " flo‘m‘shmgvoht?gdes (= BY)
o
/ / (von™ " Aaﬁwhmgvohtde& (= Bg)
To
It follows that
t — —
| Bs| < C(M)/O 100 © 77| v (vo) 1Pl | 2 (0o) |2 | 24 (0o | ot 22 0y S
< C(M)N(uo, F)t

and

t
|Bg| < C(M)/ 190 0 77" lwrawo) | All oo o) | el 2 00) || Pt [ w24 (1) AS
0

< C(M)N (ug, F)t'/2.



For B2, integrating by parts,

1t :
= / / 61 0 ") AVy |y ashi | dSds
o

det(go)O(v 07~ Ao‘m‘S hi ot sdSds
By

___/ To \/det go

and hence

t
B < [ (198l lo ey + 18l o Alwrary)
0
X |l hallw2aqo) [ Poell 120 ds

t
< C(Mw(uo,p)l/?/ o5 a0y s
0

< C(M)N (ug, F)t*/2.

For B§, noting that

0.5 = det(Voi") 451/ det(Gy) o 7 + det(Voi™) ,/det(Gy) on s
+ det(Von") s1/det(Gy) o —|—det (Vo™ )/ det(Gy,) N 5

and ||V det(Voi") || grosry) < C(M)tY/2, we find that

t
|Bg| < C(M)/ Vo det(Vor™) || 05 o) |V ahel| 505 (mg) | Vo e | 1.5 1o ds
0

t
+C(M)/ 1 det(Voi )| zoe o) | Vit oo (r) [V 5hell 22y | Vohel [ 22ry ds
0

< C(M)N (o, Y2 + C(M zLFM/Wnﬁm

< C(M)N (ug, F)(tY? + ¢3/4).

Combining all the estimates, we find that

|B| < C(M)N(ug, F)(t+ "7 + %),

71
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t t

Step 7. Let B; = / Kyds = / / 0 [L,;(h)] [(Voh,=1); - (vo 7 7)]dSds. Inte-
0 r t

grating by parts in time, i

_ /t/F Ly (h) [@t(voﬁ, 1) (vo ")+ @(VOB’ 1) (woq )

+O(Voh,—1)u - (vo 77’7)} dSds + /r @Lﬁ(h)[(voﬁ, —1)¢-(voq7)]dS.

0

For the first integral, (7.16) implies

| L(Voh ~1) (w0777 as
To
< 1Ol o) | Liy (B) | 200y | Vol Laroy [0 0 777 (| o)

S C(M)N(UQ, F)HiltHHl.s(FO)

< C(M)N (ug, F)tY5.

It also follows that

t
[ [ L [8u¥ah. 1) o 77) + 8(Voh, <1y (vo 7 77)Jasds
o
t
< C(M) / [0l zeero) + lvellzan) | 12 2y | V0Pl ds

t
< C(M)N(uO,F)l/z/O (1ol + ol oy | 5

< C(M)N(ug, F)t'/2.

For the remaining terms, H%?(Ty)-H %%(Ty) duality pairing leads to

) / / B, —1) - vdSds

S/O 1O 1215 ro) | L7, () |05 (00) || 0] 11105 (00 | et | 7105 (0 s

By (7.11) and (7.12),

1/2 1/2
|Za(B) oy < COD) Il g Al 3y + 1
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and hence

‘ /0 t /F O L (h)(Voh, —1)4 - (voﬁ_T)des‘

< CODNu F) [ Wl [IV301 5, + 1]
< CONCON (o P) [ (193w + 1]ds + 6O N . F)
< O(M)N(uo, F) [0(5) (2 4 1) + 5} .

All the inequalities above give us

By < C(M)N (uo, F) [0(5)(#/2 1)+ £ 4 5.

Step 8. Let Bg = / Ksds = / / [Li,(R):[(© 07 7)(V3ah,0) - (voq 7)]dSds.
F0
By H'?(Ty)-H'?(Ty) duality pairing,

t
| Bs| < C(M)/ 1O zr15 o) (Ve | 1250y + DO 15 (o) |l 135 (o) |0 15 (1) S
0
t
< C(M) / (ol acy + D0l 20y
< C(M)N((ug, F)tY/*.

Step 9. Let By = / Keds = / / —1); - (v 077 7)dSds. By (7.8),

t
|Bg| < C(M)/ | e l] 1225 0oy |2l 22 (o) |:||véh||L2(Fo) +1|ds
0
t
< C(M)C'((S)N(UO’F)UZ/ H’Ut”LQ(QO)H/Ut”Hl(QO)dS_'_(SC(M)N(UO,F>
0

< C(M)C(8)N (ug, F)*t/% + 6C(M)N (uo, F).

t
Step 10. Let By :/ Kids. By (C.1),
0

By < C(M)N (ug, F)(6 + C(8)(t/% +1)).
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Step 11. Summing B; to Bjg, we find that

t
o+ [ B4 hyshiosldS] 0+ [ 1Dsuulads
0

o

< e(O)[7200) + 0 | 1G5 htap(0)*dS + (C + C(61)) N (uo, F)
To
+ C(M)N(ug, F) [(J(é)(t P 8 ) 5]

+ 01 [lonE2(0y) + V8RN 2(ro) |

and by Corollary 8.1,

1o (8) 320 + V3 (0) 20| + / loelrs s
(11.9) < (C + C(8,))N(ug, F) + C(M)N (uo, F) [0(5)0(15) +6

+ 01 llenl22(0y) + V8RN Z2(ro) |

where C' depends on v, o, v; and the geometry of I'y. Since this estimate is indepen-
dent of €, we pass € to zero and conclude that the solution (v, h) to (8.1) also satisfies

(11.9).

11.3. Mapping from Cr(M) into Cp(M). In this section, we are going to choose
M so that ©(w, h) € Cp(M) if (4, h) € Cr(M).
Summing (11.5), (11.6), (11.7), (11.8) and (11.9), by (7.13) we find that

10(8) 220 + I900(8) 320 + 930 (1) 3200 + 0(t) 220
V3R Zaqr + VBRI + IV8AO gy + V3RO 32y
t
+ / 1ol ) + V00 30 + 93011y + el | ds
< (C+ C(0)N(uo, F) + C(M)N (uo, F)[C()O(t) + |

+ 0 [lonE2(0y) + V8RN 2(ro) |
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1
where C' depends on v, o, 1, and the geometry of I'y. Choose §; = 3
[Hv(t)H%Q(QO) + IVou(t)1Z2000) + 1VE0 ()1 22000y + 100172100
+IVeh(O) 22y + VORI 172y + Vol 2oy + HVght(t)Hiaro)]
t
+ / 10151y + V00 530 + 9301 ) + lenlrs | s
< O\ N(ug, F) + C(M)N (uo, F)? [0(5)(9(t) + 5]

where ('} depends on v, o p and the geometry of I'y. Similar to Section 9.7, for almost

all0 <t < T,
1000 By + 1206 gy + 19300 Braqeyy + 93e(0) ey |
t
1110+ [ Il + Il + lalfa s
< CyN(ug, F) + C(M)N (ug, F)? [0(5)(9@) + 5}

for some constant Cy depending on Cf.

By (7.14), (7.16) and (8.1d),

t t
| Wblsgds < [ [L+ B IolBineqds
0 0
(11.11) < C(M)N(uy, F)t'/*
and

[ halsuds < O [ [l ol + e oo |ds
(11.12) < C(M)N(ug, F) [t1/4 + tl/Q]
Also, by (11.3) and (11.10),
[ 1t < € [ [lofpan + 19000 + 19500 0y + 19801
o IF sy + 1] ds
(11.13) < CyN(ug, F) + C(M)N (ug, F)? [0(5)(9(t) + 5]

for some constant C'3 depending on Cb.
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Combining (11.10), (11.11), (11.12) and (11.13), we have the following inequality:

10 a0 + O30y + IR sy + WO e |

t
[ (1ol + el + e + el + el ds
0

< (Cy + C3)N(ug, F) + C(M)N (ug, F)? [0(5)(9(t) + 5] .

Let M = 2(Cy + C5)N(ug, F') + 1 (and hence corresponding Ty and 7" in Lemma

7.5 and Corollary 8.1 are fixed). Choose § > 0 small enough (but fixed one such 9)

so that

C(M)N (ug, F)*5 <

1 =

and then choose T' > 0 small enough so that

C(M)N(ug, F)?C(0)T <

e~ =

Then for almost all 0 <t < T,
10y + 108220y + A sy + N3y
t
+ / 103320y + 063320y + el By + el sy | s
1
S CQN(Uo,F)—l— 5

and therefore

sup | [[o(t)l[3r200) + 106l 2200) + 1RO 73y + Ilht(t)!\?p(m]
0<t<T
(11.14) + vl + 1Al < 2C2N(uo, F) + 1,

or in other words,

(v, W3 r) < 2C2N (ug, F) + 1.

REMARK 26. (11.14) implies that for (0,h) € Cp(M) (with M and T chosen as

above), the corresponding solution to the linear problem (8.1) (v,h) = O¢(0,h) is

also in Cp(M).
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11.4. Weak continuity of the mapping Or.

LEMMA 11.3. The mapping Or is weakly sequentially continuous from Cr(M) into
Cr(M) (endowed with the norm of Xr).

Proof. Let (vp, hy)pen be a given sequence of elements of Cp(M) weakly convergent

(in Y7) toward a given element (v, h) € Cr(M) (Cr(M) is sequentially weakly closed

as a closed convex set) and let (vy(p), ho(p))pen be any subsequence of this sequence.
Since V3(T') is compactly embedded into L?(0,T; H*(Q2)), we deduce the following

strong convergence results in L?(0,T; L*(Q)) as p — oo:

(11.15a) (a})p(af), — ajaf and  (a}),(af), — ajaf,
(11.15b) [(a7)p(af)p) s — (agag); and  [(a)p(ap)yly; — (agay) s
(11.15¢) (a¥), — ar.

Now, let (wy, g,) = O (v, hy) and let g, be the associated pressure, so that (g,)pen is
in a bounded set of V*(T). Since Xr is a reflexive Hilbert space, let (Wo(p), o (p)s Go(p) )pen
be a subsequence weakly converging in X7 x V?(T) toward an element (w,g,q) €
X7 x VX(T). Since Cp(M) is weakly closed in Xr, we also have (w, g) € Cr(M).

For each ¢ € L*(0,T; H'(2)), we deduce from (8.3) (and Remark 6) that

/OT [(wt, ¢)L2(Q) + g /Q Dyw : Dyodz + U/Fo Li(9)(9.00a — ¢-)dS

e [

which with the fact that, from (11.15), for all ¢t € [0,T], w € V,, provides that (w, g)
is a solution of (3.17) in Cr(M), i.e., (w,g) = Or(v, h).
Therefore, we deduce that the whole sequence (O1(vy,, hy,))nen weakly converges in

Cr(M) toward ©r (v, h), which concludes the lemma. O

11.5. Uniqueness. For the uniqueness result, we assume that wuy, F' and I'y are
smooth enough (e.g. ug € H>*(Qy), F € VX(T), Ty is a H®® surface) so that ug and

the associated wuy, gy satisfy compatibility conditions (5.4). Therefore, the solution
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(v,h,q) are such that v € VO(T), ¢ € L*(0,T; H3()) and h € L>=(0,T; H(Ty)) N
L2(0, T; HS(T)), he € L*°(0, T; H¥(To))NL2(0, T; H¥5(Ty)), hye € L(0,T; H2(T))N
L?(0,T; H35(Ty)). This implies a € L>(0,T; H?(p)) and hence by studying the el-
liptic problem

(alabque) e = [vallabage’) e+ ally + o]~ l(afabhaile i 0,

g =J;° [(aLh(h)Ni - VDn(v)fazNj) — (agNj)tq} atN, on T\,
t

we find that ¢; € L?(0,T; H*()) and this implies vy € L*(0,T; H'(y)). By the

interpolation theorem, we also conclude that v; € L=(0,T; H*%(Qp)).

REMARK 27. It is somewhat surprising that vy loses more derivatives than that the
Navier-Stokes equation might suggest. In the fixred domain case, Navier-Stokes equa-
tions scales like the heat equations which implies that one time deriwative, roughly
speaking, equals two space derivatives for smooth boundary data. With moving bound-

ary, this is no longer true since the boundary condition depends on the solution itself.

Suppose (v, h,q) and (9, h, G) are two set of solutions of (1.1). Then

(11.16a) (v—10) — v[akDy(v — D) = —af(g—q§)p+ 6F
(11.16b) al(v—0)’; = da
(11.16)  [vIDy(v = D)t — (a = D3t |alN; = 06| Lu(h = )(~Voh, 1)] 0"

+ 0Ly 4 0Ly + 6Ls

(11.16d) (h=h)yon™ = [haon(va —Ta) — (v, — )
+ 0hy 4 Ohg + Ohy

(11.16e) (v—0)(0)=0

(11.16f) (h—h)(0) =0
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where
(11.17a) OF = fon— foi+v|(aka) —afa))v’ ]k—l—z/[(aga —alga])vg],k
— (af — @)
(11.17b) da = (al — al)v,
(11.17¢) 5L, = 0O [Lh(ﬁ)(voh — Vo, 0)] on” — v(dkal — abal)it,N;
— v(ajaj — aga;) oy N; + (a] — @l)GN,

(11.17d) 6Ly = O[L;(h) o nT](Voﬁ on” —Vohod,0)
+ [@Lh(ﬁ) o — OLy(h) o ﬁf} (Voh o i, —1)
(11.17¢) 5Ls = © [[Lh(ﬁ) — L. (W)](Voh, —1)} o i
(11.17f) hy = (B o1 — h 077 )0a
(11.17g) Shy = [(h,a “ha)o ff} Ta

(11.17h)  Shg = — (o —hy o)

3 3
We will also use dL and 0h to denote Y Ly and ) dhy respectively.
k=1 k=1
Before proceeding, we state some useful lemmas.

LEMMA 11.4. For each non-negative integer k,

t
(11.18) I(a = a) () [I3ey) < Ct/o [0 = Bl Fs1(0)d
where the constant C' depends on k.

By (11.18), it follows that for £k =0, 1,
t
187 Wy < O [ o= tlinonds

and for £ =0,1, 2,

t
|mm;m@scw/|w—m@mwmw-
0
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By the identity a{t = —afvfkai,

¢
Hﬂwam@schu+w%mm%pAHv—m@mm@+w@—m@mm]
Similar to (11.3) in [7], we also have the following estimates.

LEMMA 11.5. For f € H*(Q) and g € H'*(Ty),

~ t o 1/2
(11.19) [fon— fonllrzay < C\/EHme(ﬂo)[/o v — U”Hl(Qo)dS} )

~ t B 1/2
(11.20) |mwﬂnmmmmscﬁmmwﬁlnww%mm4.

for some constant C'.

REMARK 28. Assuming the reqularity of h, hy and hy given in the beginning of this

section, we have

t o 1/2
(11.21) 10La| g2y + |61 + Sha||gzsrg) < C\/z_f[/ v — vHHs(QO)dS]

0

and

(0 L2) el L2(ro) + [1(6h1 + 0hs) el a1 0oy

~ ¢ - 1/2
(11.22) < Ol =l + Vi( [ o= ilhmanas) ]

and

IVE(6hs)ellz2re) < C'lllv = 0llai(ay) + lv = 0l #3(620)

- t 1/2
(11.23) ¥ \/E||htt||H3.5(FO)</ lo — ﬁ||§,3(ﬂo)ds) } .
0
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First, we establish an inequality similar to (9.9) (without ). We multiply (11.16a)

by (v — 0); and then integrate over ) to obtain

1 . vd -
310 = Dy + 55 [ 1040 )P

IN

1 ~ ~\i ~ <\ i
16 F )+ 20 / (D, (v — )ak,(v — 3)de — / (¢ — @)(a — @b)ii o
0 0
- / (q— @)(at — @) ida + / (¢ — Qv — B)de
Qo Q0

. /F [[Lh(h — B)(Voh, —1)] 0 nf] (v — B):dS — /F SL(v — 0),dS

t
<clt / v = 513y ds + lla = dlln o | la = il an) + 0 = Fllm e |
+ [lv = 0lla @) llv = Oll 20y + [ = Bl sy | (v - 17)t||H1(Qo)]

+ [19Lallz2qro 110 = D)illms o)

where (11.19) is used in the estimate of ||0F'|| 12(q,). By (11.21) and Young’s inequality,

d
~ 2 ~\ |2
100 = )l + v | 1Dy = )

t
< CO)[t [ 1o tllmonds + o = s + I = Al
0

+ 5[“(“ - 17)t||§{1(90) + llv— 77”%{2(90) + llg — (jH}%{l(QO)]

Integrating the inequality above in time from 0 to ¢, we find that

t
IV (= 0) Ol + [ 10— Dilads
t
(11.24) <€) [ [l = tlBa + 10— Wl s
t
L (CO) + ) / o — 3112 s
0

t
48 [ (160 = 0By + lla = @l |
0
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For the L2H? estimate for v — ¢ and L H* estimate for h — h, we need to estimate

Dyi= [ (i93a - @Visads, Dai= [ ](Lulh—h)] 0w (Vigh)ds
QQ I—‘O

Ds := / SL - V(v —0)dS,
o
while for the the L? H] estimates for the time derivative of v—o, we need only estimate

the following terms:

Ei = /Q (q— @i(da)dr,  By:= /F [@[Lh(h—h)]onf (6h)udS,
By m / (GL)s - (v — B)dS.

It follows that

1d i . y )
St [HQW( — 0)||72(9) + 20 En(V5(h — h))] + 716D V50 = D)llz2(a,

< C[10F Iy + N0
+ [ Vo(h - il)”%?(ro) +0llv — 01330y + D1+ D2+ Ds

Dellz200) + 1V (0 = D)2y + 1V Vo0 = 0)lI720y)

and
1d 5 v N
537 10 = Dl + 20 Bu((h = B))] + IV (0 = Dl
OV = 1)y + 19300 = Welae) + 10F s gy ] + 310 = ol
+ Ey+ Ey + Es.

With the estimate already established,
t
(11.25) D < 0(5)t/0 o = 328 + 811g — 2.
For D, by the elliptic estimate (from (11.16¢) and (11.21))
I = Bl < D0 = 8) oy + llg = sy + 1Ly

< C|llv = ll3ssauy + lla = @lacay + I = Blliay

t
[ o= ol ds],
0

(11.26)
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we find, by (11.21), that
Dy < || Li(h = B) || s eo) [|6R | 2 o)

t
21 < 6flo =l + o= ey +¢ | 0=l

+C@)Ih = hll g,

Similarly, D3 is bounded by the same right-hand side in (11.27).

Summing all the estimates above, we find that

| =

- ~ v -
[HCN%(U = 0)Z200) T 20En(Vo(h = R)| + 711G D5 V(0 = D)2 00

DO | —
Q

t
t

< )] / o = 3 gy ds + 10 = B)ell2aayy + 1700 = )220y
0

+ I8 = ) Eaqrg | + 6|0 = Bl + lla = @l
where we bound the term |[|[VVq(v — 0) ||%2(Q,1) by the interpolation inequality
lv = Bl 20 < CO1)lIv = DllF () + 01llv = BllEs o)

and then choose d; > 0 small enough so that C'(§)d; < .

Integrating the inequality above in time from 0 to ¢, (11.24) implies that

t
V30 = 8)(O)l2a) + IV8(h = BBz | + / VY30 = 8) 2200, ds
t
(11.28) < 00) [ [0 =l + Vo0 = Dl + V8 = ) iny s
t t
+(COE+0) [ o= tlhagds +0 [ gl
0

For the estimates of E!s, note that

Lu(h =)o ”TL - [Lh(h - ﬁ)L o 4+ - [[VOLh(h ) on
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and hence by H2(Tg)-H?*(Ty) duality pairing and standard Holder inequality,

By < C|I[alh = Wil 10l o) + 120 = W)l oy Al 20

IN

<C
CIV8 0 = Rell e 1Rl gy + 1 = Blls | 9R)e e |
C

< CO)[lo ~ ol + I = FlEprny + (Ut [l I3 = Bl
t
1129+t [ o= 3lqands] +6 [l = g + = dlieon)

where (11.22), (11.23), (11.26) and Young’s inequality are used in the bound for
Héht”LQ(Fo) and ”h — ;L”HS(FO).
Now we turn to the estimates for E;. By the regularity of ©, h and h,

wamm;mﬁschAﬂw—m@mm@+wv—m@mm+Hh—M@@m
10 = Beleqry |
and hence
ﬁfﬂﬂﬂv—@ﬂsﬁC@W@ﬁﬂ@@yﬂww—ﬁM@mm
< C(9) [t /Ot v — f’”%ﬂ(go)ds + v - 77”%{1(00) + || — il”%#(ro) + [I(h — B)t”%{?(ro)]
+ 6110 = D)3y + 10 = Ty |
By (11.22),
,
| 6L =S < @[t [ 1= ol + I = Dl
S [CEEN A

It remains to estimate the term [ (dL3); - (v — 0)dS. Note that
To

(OLs)e = |SI(Ln(h) = Ly (B)(Voh, ~1)] i (= (0L)})

+ 7+ | Vol®(La(h) = Ly(R)(Voh, ~1)]| on™ (= (6Ls)2).
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It is easy to see that

/F O(5L3)?(v — 0):dS < C||Vo[(La(h) — Ly (1)) (Voh, =D)]l| 2w | (v = D)ell 71 0
< C(8)1h = hllFrsryy + 0ll(v = )l (0p)-
By the identity
(Vohoii,—1) - (v — ),
= [(Voho i, =1) - (v =)l — ([Voh 0777, 0) - (v — )
= (h =)y o )" + (0h); — ([Voh 0 77"];, 0) - (v — D),

we find that

/F 0(5L3)g (v — B),dS

= [ AR = L)L [(h =Ry = (Vb0 710 0) - (0= D] dS (= b)
+ [ O ~ LR (= M)
+/r [©(Ln(h) — L (h)](Vohs 0 77, 0) - (v — 9),dS. (= Ms)

Since in [O(Ly(h) — Ly(h))];, the highest order term is V3(h — k), we can estimate
M, and M3 by H'(T'y)-H"(Ty) duality pairing and obtain

M, < CO)[IV3(h = D)l Zaqy) + 0llv — BllEs @),
M, < C[Hv — 0|3y + IVE(R - ﬁ)t!\%m)} + t/ot [0 = 0lI32(00) s
while for Fj3, standard Holder inequality is applied and we have
My < CO)|Ih = hl3psry) + 0l (v = D)ellZn -
Therefore
(11.30)  E5 < C(6) [t /Ot lv = 81500 ds + lv = 830y + 1A = AllFrary)

1 = )l | + 8|0 = 8)eliE ) + 1o = Blncay) -
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Finally, similar to the estimates in Appendix C.2, we estimate the time integral of
Ey. The estimate of E) requires the estimates of da; and da. By (11.18) and the

identity af, = —akvfkaz, we find that

%

1841320y < Clla = @lifiay) + v = 51300

t
< Ct / [||v — 02 () + (v — @>tllélmo>]d8
0

and

[80ul132(c) < C [lla = @l 1Tl ) + la = @l ey + 10 = 3
+ 1w = )il
t
< C[t(1+ I9ul3a ) /0 o = (13200 @5 + v — 1220

+ 0 = )l ga |

Therefore, integrating by parts in time,

[ [ a-ananass = [ -ao@oc- [ [ - sz

t t
< C0) I8l + [ g dlEsonds] +5[lle = A3y + | WooulEaods]
0 0
t t
<@t | (o=l + 10 = Dilinn)ds+ [ o= olBnagds]
t
4 8[la = @l + [ (1= 5o + 10 = Dilincan +lla = e )]
0
where we also use the face that ¢(0) = ¢(0) defined by 5.1.
REMARK 29. In order to close up all the estimates, hy € H3®(Ty) is needed when

estimating By and vy € H* () is needed when estimating day. These two estimates

necessitate the reqularity used above.
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Combining all the estimates and then integrating the inequality above in time from

0 to t, we find that
110 = De(®) 220y + V30 = BellEaqey | + / IV (0= Dl ds
< C(s) / t 10 = 312 gy + IVACR = )32y + (1 + WallFrasry)
(11.31) x |V2(h — ﬁ)t||§2(ro)]ds
OO +)+9) [ 0= 0lds + Sl = Gl

t
48 [ 10 = 1By + g = @l s
0

Similar to the estimates in (9.3) and (9.4) (except that the vector field is not

divergence-free), (11.16) implies that

v — "7”%1(90) +[lg — CINH%%QO)

< CI6F By + 10 = 0l gy + 10613200 + 10 = 8lmscr) |

t
11.32)  <clt / v = 5133 a0y ds + 10 = DliZaqagy + o = B3 o)

and
lv = 91300y + g = @llFr2(00)
¢
1133 <t [ o= lBqyds + 10 = 8l + 1930 = Dl
REMARK 30. Note that (11.33) also implies that
¢
/o [”U - 77”?{3(90) + [lg — CINHfH?(QO)}dS

t t
<0t [ o= olpyds +C [ [I0 = Dilnan + 1930 = D) ds.
0 0

For a fized T > 0 (depending on the constant C') small enough, for 0 <t < T,
t
[ T =i + lla = il s

t
<0 [ 10 = 0 + 1930 = Dl Jds
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and hence

t

; [”U - 77”?{3(90) + [lg — CINH%?(QO) ds

t
(11.34) scw+4yé[Mv—mmzwm+wvav—ﬁm§mgd&

Summing (11.24), (11.28) and (11.31) and then applying (11.32) and (11.34), we
find that

(11.35) V(1) + / ' 2(s)ds < C() / CE(s)Y ()ds + (CO)(E + 1) + 0) / ' 2(s)ds
where
k(t) = 1+ [t (8) 1 0.5
Y(t) = [HU — 0() |30y + IVE (0 = ) () I72(0y) + (v = D)) 1722
b = Blaceyy + 1(h = B)elfzey |
Z(t) = |l(v = 0)i(t) | F1 () + IV Vo (0 = 0) () [[72(0)-

By letting 6 = 1/4 and choosing T,, < T so that C(§)(T2 +T,) < 1/4,

t t
(11.36) Y(t)+ / Z(s)ds < C / k(s)Y (s)ds
0 0
for all 0 < t < T,. Since Y (0) = 0, the uniqueness of the solution follows from that

Y(t)=0forall 0 <t <T,.

12. THE MEMBRANE ENERGY

In order to study the problem with the membrane traction t,e, included in our
formulation, we need a modification of the closed convex set to which apply the

Tychonoff fixed-point theorem. Define

Cr(M) = {(v, h) € V3(T) x H(T))H /Ot vT(s)ds‘

<M}

L2(0,T;H35(Tg))

where v™ are defined as in Remark 12.
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t

REMARK 31. If/ v"ds € L*(0, T; H**(Ty)) and v € L*(0,T; H**(T'y)), we will have
0

/t v"ds € C°([0, T]; H*(Ty)) with

H/ sds o) / [0(s) 13150 ds—i—/

for some constant C' depending on the geometry of .

t 2

v (s)ds

dt’}
0 H3.5(FO)

Taking tyem into account, we linearize problem (3.17) by replacing (8.1c¢) with

(12.1)  [vDs(v)! — ¢']a ENg—a@[[ (h)](voh,—n] ofi”  on (0,T) x Ty,

+ L) + E(7) + E1(7)

where
L) = = (G o [ (ol + ) + 5 o | 5
and
£201) = = [1(Gap — 900y + 5075 (B = G005
- :M(gaﬁ ~ 90a8)Tap + 5 Mi 3 (Gaa — gma)ﬁfgg}

zZ =z

[~k 2 A ~K =2 =2
- _/“7, <77aﬂ77/3+77a775/3> + 2 +)\77ﬂ77a77aﬁ:|a K

20U\
20+ A

[ 2 ~i ~j L ~j i 0
= [MGie)igna (77,(177,]5@ +n,gnfa5> + (G gnagna} 55

and &;(7) contains the remaining terms which we also treat as a given forcing on the

boundary. Note that & (1) consists of only the lower order terms of tem, and
(12.2a) ()10 mg) + [1E2(7) || o5 rg) < CM)E2

t
(1226) (&l + & momy < CONBE| [ 5(s)as
0

H3.5(FO)

for some constant C' depending on the geometry of I'y. The regularized problem is

(8.2) with (8.2¢) replaced by (12.1) and with 7 replaced by 7.
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Note that since Ly (Id) = 0, it follows that
t
Lz(n") = Lm(/ v (s)ds).
0

LEMMA 12.1. There exists a'T' > 0 such that Ly is uniformly elliptic. In other words,

there exists a constant vo > 0 such that

2/M - o
An[m‘s ]5355 > 1|2

(G (G s | T+ WISHLE + 5

forall0 <t <T.

Q,u)\ e
Proof. Let Nogyo = (Gi#) ko (G )vs [/m il + 105 + An%ni} Then

2u\

Naﬁ'yg(o) = Goke9oys [:U <5§5§ + 5255) 2,u +A 7

_ZHAgn 55}
and hence

(o} g (o} QM)\ (o}
Naﬁw(o)fgfg =M [golwgowéfgfn + golwgofwfgfg} + mgomgwofgfg

=K Z |90/€J€ﬁ|2 (

B,r=1

> cl¢|?

)\) |90a7§g‘2

for some constant ¢ > 0. Since N' € C([0,T]; H*(T'y)), we conclude the lemma by

continuity:. O

Taking the inner-product of (12.1) with 8i + (Gi=)yohry © ﬁTag, we find that
ye z

(128) (G durali) = (WDa(w)] — @8N 5 + (G )aoh o 5)

! Oy 7 0z

0 .0
=+ (Gi)rohy 07 52)

— (&) + &), oy° 92

By (9.3), (9.4) and Lemma 12.1,

(12.4) H/

< C(M) [ l[vellZ200) + VU llz2(0) + Vo0l 0,

H25 )

+IVohllZa ) + I1FIIZ2p) + 1
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and

2

(12.5) H /Ot UT(S)dS’

< (M) [Hth?p(Qo) +IVollZ2 00 + IVE0llE @)

H3.5 (FO)

t
+ vahH%Q(Fo) + HFH%P(QO) + 1+ tH / ﬁT(S)dS)
0

2
H3'5(F0):| ’
Taking the inner-product of (12.1) with (Voh o7, —1), then
1 . . -
(12.6) Ly (h) = —J; |{[vDs(v); — q0])a5 Ny, (Voh o ij", —1))
— (L") + E0(7) + &(7), (Voh o777, ~1)) | 07777

and hence by ellipticity of Lj and (12.5),

1Rl msaeay < COM) el ) + IV 0I1Z200) + V5011 @) + VoA

t 2
2 ~T
(12.7) + HF”Hl(Qo) + 1+ tH /0 v (S)ds H3A5(p0)}'

Because of (3.14), we also have that

2

(12.8) H /0 0 (s)ds < C(M)EV [1+H /0 th(s)dS’

H3:5(Ty) H3‘5(F0)] '

Similarly, we find that

t 2 t
19301+ 1980y + || [ Vo as], T+ [ 1930l ds
t
< C(M) | Na(uo, F) + / (Il gy + KVl 2qr, ) s
t
+(5+T1/2)/0 V5|7 @, ds
and
t
2 2 2 T 2 2
[lor(8) 20 + I VB3RO0, + V0" (B2, | + / [Verl 22 0, ds

t
< C(M) [Ni(uo, F) + / K(3)(IV8hI32c0y + V3l E2qr, ) s

t
+(0+ C(M)t?) /O IVGv Iz @i ds + 0l Vohl Lz,
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where Ny(ug, F') := N(ug, F') + HUEH%{S(FO Finally, by (9.4) and the Gronwall in-

)
equality,

2

t
sup (10Ol + 1o + 10Ol + | [ v7(s)as

0<t<T H3(To)

+ [[Voh()]1Z2(ry) + ”Vght(t)H%%ro)} + vllTsry + el 2070200

< C(M)Ny(ug, F)

and by (12.5), (12.7), as well as the evolution equation (8.2d), we also have

2

T .
/0 |:”h”§{5.5(1"0) + ”ht”?{2.5(1“0) + Hhtt”?{Oﬁ(Fo) + H /0 UT(s)dS

< C(M)Ny(uop, F).

} (t)dt

H3-5(T")

This establishes the map Oy from (,h) € V3(T) x H(T) to (v, h) € V¥(T) x H(T).

For the existence, with the help of (12.2b) we can also show that, with suitable
choice of M and T, the mapping ©r maps from Cp(M) into itself. Therefore, the
existence follows from the Tychonoff fixed-point theorem. For the uniqueness, since
tmem does not involve any composition type of operations, a straightforward argument
leads to the same conclusion provided that the solution is in the same space stated

in Section 11.5. Therefore, we have
THEOREM 12.1. Let v > 0, > 0 and X\ > 0 be given, and
F € L*(0,T; H*(Q)), Fy € L*(0,T; L*(Q)), F(0) € H' ().
Assume that the initial data satisfies
ug € H*(Qp) N H*®(Ty)
as well as the compatibility condition

A ] 0

J
Def -N n:_[ KO,0 o Yoo,k | 7 .-
V[ €I Ug ]ta HGoko, + 2/~L + /\90 , 8y“
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There exists T > 0 depending on ug and F such that there exists a solution (v, h) €

V3(T) x H(T) of problem (3.17). Moreover, if the initial data satisfies

_ % v v " v
CP=—p [gowuo,an 1 Gory U000 T J0ry,oUo,0 T Jono,oUoy T Joro,ocUok

0

+ Fgﬂgmﬂt(o) + gaﬂt(o)gg’nga'y,ﬂ - 2“6700/@0 - QUSCM,U} 8—y”°

pA . i
- 72[“ T h\ |:2g0’¥0u3,m§ =+ gO’yo‘,nug,g + g()»ygﬁuoﬁ + gOUU,ﬁUO,ﬁ
+I7,.90at(0) + gaat (0095 Joar.e — 205 xCoo — 2ugcm4 B
- LQ(ya 07 07 O)uz KA
0, aym

then the solution (v, h) is unique, where CP is defined in (5.4), q(0) and v:(0) = uy
are defined in (5.1) and (5.2).

APPENDIX A. ELLIPTIC REGULARITY

We establish a k-independent elliptic estimate for solutions of

s (VA1) -5k i

where h,, and v, satisfy the evolution (8.4) with h, € H*Ty), v, € H*Ty), and

(A1)

f € H5(Ty). Letting w = v, 07", (A.1) is equivalent to

(A.2) /det(go) AP, mﬁ} EVoh ) 4 A = o

vl

which implies

TaB6 —2A2 o T
. \/F[\/det o)A wmﬁ] + kT 2A2w - (—=Voh, 1)

= J.2foq - (=Voh,1).
Recall that w - (—Voh, 1) = hy.
We start with taking the inner-product of (A.3) with V§h, to obtain

[\/det(go)zxawhmﬁ] VihadS +n / A2h,.,Vih.dS
7Y

To

S}
Lo v/ det (90)

:/ 702 o (=Voh, )] [Vihe|dS + 5 x Lot
Lo



where l.o.t. can by bounded by
C(M)[wllzrs o) I Vol 2(ro)-

Therefore, by Corollary 8.1,

Kk d

4 2 2 2
Vbl + 55 | IV oh fas

< C(O)nlrsroy + L2y + wllwll s |1Vl 22cr

%1
< C(O I nllirey) + 112wy + Bl | + 5 1V8hel e,y

and hence, after integrating in time from 0 to ¢,

t
m/n%mmmm+w%mmm®)
0

t
(A4) < €O [ Il + 1 g + wllwlony | ds.

Similarly, taking the inner-product of (A.3) with V2h, or h,, we find that

t
1 [ 198y + RT3 e,
0
t
< 0O [ [l + 181 + sllwlieds
0

t
(A5) <€ [ [19my + ol s

and

t
mluv%mam@+ﬂw%am@m)

t
(A6) <€ [ [11my + ol s

94
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Let Dy, denotes the difference quotients (w.r.t. the surface coordinate system).

Taking the inner-product of (A.3) with D_;, D, Vgh,,

(e _
———— | \/det(g9)A*°h,, .5\ D_,D,Vih,.dS
ro \/m[ € (90) , ﬁi| G h/h Vo

K / Alh.,D_, Dy Vh,dS
o
:/ D [J,;Zf o " - (=Voh, 1)] [thghﬁ} dS + k x Lo.t.
o
where l.o.t. can be bounded by
C(M)[wllzrs o) | Dn Vol L2 o) -
Therefore, by Corollary 8.1,

il DaVohiel| 72,y + th/ |D,V2Aoh,|2dS

< CO | Wnlrscroy + sy + wllwll s [ 1108 Vbl 2

n
< C(O) | Wnlrscryy + 1 ey + sl | + 5 102 VehelEzqe,y

and hence, after integrating in time from 0 to ¢, by (A.4) and (A.5) we find that

[ IDAT8 s + DT B0 e,
t
< C(e) / 13y + 17 sy + lleolragry | ds

t
< 0O [ (Il + 191 + Flwlfie, |ds.
0

Since the right-hand side is independent of the difference parameter h, it follows that

h. € H°(Ty) (as it is already a H*-function) with the estimate

t
/0 1732y + K3 (8) |2

t
(A7) < C(e) / el + 1 gy + Kl | ds.
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Next, we obtain a s-independent estimate of ﬁHwH%H(FO). By taking the inner-

product of (A.2) with Viw, we find that

[\/det(go)Aathﬁ] 7(svghmds + K / Alw - ViwdS

To

fon ™ VewdS + lo.t.

o

where l.o.t. can be bounded by

C(ONIVohall L2 oy llw | 2(ry)-

Therefore,

1d
2dt

< C(e) [HVSMiQ(pO) 1 2 + ol |

@Aaﬁmsth,i aﬁVohﬂ ,y(gdS + — / |V0A0w|2d5

where we use the fact that

/F ‘VOAow‘QdS S /F Agw : V(Q)IUdS + C(€>Hw”H3(Fo)”wHH2(FO)-
0 0

After integrating in time from 0 to ¢,

t
V3Ol + [ lwlfods
t
(A8) < (o) / (173 elZ2qr) + 132y + 0l 0y ds.

Similarly, by taking the inner-product of (A.2) with Viw, we find that

[\/det(go)Aathﬁ] 76Vf§hmdS + K / Alw - ViwdS

To

fon ™ VowdS + lo.t.

o

where l.o.t. can be bounded by

C()|Vohull 2oy ||| r2(ry) -
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Therefore, following the procedure of obtaining (A.8), we find that
t
4 2 2
Vi O+ [ Tlegds
0
t
< Cle,) / (V7822 + 1 sy + I0ls(ay ] ds
t t
+51/ ||V8h,€||%2(ro)d5+0(e)/~;/ ||w||§{3(po)ds
0 0
t
< Cle,) / (IV8elZaqr) + 1 rnsqony + N0 lisqay ] ds

t
(A.9) S W\ A
0

t

where we use (A.8) to estimate H/ |w]| m3rgyds. (A.9) provides a k-independent
0

estimate for /1|]wH12LI4(FO); hence by choosing §; > 0 small enough, (A.7) implies that

for all t € [0,T7,
t
2 2 2 2
/0 192 2 s + £V 22

t
(A.10) < C(e) / (I78elZ2qr) + 1 3rnsqoy + 0le 0y | ds

for some constant C’ depending on e.

REMARK 32. With the inclusion of tyem in the shell traction, by treating it as an

extra forcing, we find estimates similar to those in (A.7):

t
/0 19202y + 5]V 2R (8) s o

<0 [ (Inlgy + | [ x|
[ | [

H3(

o) + ||J ||2H1(F0) + ’f”w”%{‘i(ro)]ds-
Moreover, just as in (A.Q),
t d ’ + IV4h 2 + t 2 d
. K 13
H/o Vg SHHS(FO) | 0 ()||L2(FO) ’“”v/o ||w||H4(F0) S

t S 2
< 0(6,51)/0 {vahnuig(pwjj/o v;(mdr)

H2'5(F0

T 115y + w0l sy | ds

t
+51/0 IVEhll72(ry) dS-
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Therefore, by choosing 61 > 0 small enough, we have k-independent estimates

t
/0 12k 20y s + nnv%hm(t)nzw
< c<e>/ [1V8h132qr,) +H/

APPENDIX B. INEQUALITIES IN THE ESTIMATES FOR ng NEAR THE BOUNDARY

+ Hf”%{lﬁ(ro) + |’wH12q3(Qo) ds.

H2 5(F )

B.1. k-independent estimates. By (; = 1 on I'j and

(_VOB o ﬁT, 1) : Vévﬁ = Vé((—VQE o ﬁT, 1) . Uﬁ) - Vé(—VOB o ﬁT, 1) P
— AV (=Voho ", 1) - Vou, — 6V5(~Voho ", 1) - Vv,

— 4V0(—VOI_1 o ﬁT, 1) VO’U,i y

we find that

Q\"
@
t~
=
o
3

| IS
|
<
o
>
o)
3
=
<
o
D
<
o
=t
g
=
Wn

—_ [0 [L;l(hﬁ) o ﬂ [vg(—voﬁ 017, 1) - v+ AVE(—Voh o 777, 1) - Vous
+6VE(—Voho i, 1) - vgvﬂ] s (=1)

—4/F (:)[L;L(h,i)oﬁT}(VO(—VOBoﬁT,l) Viv)dS (= 1)

/ \/m [M(Ufmﬁ,am + Lz) o ﬁT} Vi(heyoq)dS (= 1y)
0

2V0

ro v/det(go)

T /F O(V%@[(L?W,ammz) oy | Vi 0 )dS (= 1)

[ det(go) (L;Wﬁ,am + L2) o ﬂ V2(hey o )dS (= IL)

det(go) AP b, 5) s 0 ﬁf] Vi(hyy 0 77)dS.

8]
+ [, 7l
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The last term of the identity above, by a change of coordinates, can be written as

5) _
— | (\/det(go) A hy ) s 0 T | Vi( Ry 0 77)dS
. s (VAT A )0 7] T o )
B _
= | ————V?2(\/det(g)) A" °h,; o5) s V2R, dS + R
v Jaot(a0) o (90) p) 16 Vol 1
VO TaBys _ro2 7 =
- mvo [( v/ det(go)A hn,aﬁ),wé on }vo(hm on")dS (=)
[ (v/det (o) A%y o5) 5 © 7 }vo(hm oii)dS (= 1)
\/det (90)
1d

=5 Aawvghﬂ,aﬁvghwds + R,
where B =b' @ b' @ b' @ b* with b = V7", and
Ri(t) = /F b @b @ (Vob') @ (Vob')Vo(v/det(go) A by 0) 16 Vo heedS (= Js)
o
+ /F b @b @b @ (Vo) Voly/det(go) AP hye o5) 46 ViR dS (= J4)
o

+ /F 0 b @b @b @ (Vb ) VE(v/det(go) AP hyg o5) 16 VohwdS (= J5)

and

/ 1 1o
Ri(t) = Ri(t) + Ji(t) + Jo(t) — 3 /F (BA*), e by, 05Vl 1sdS (= Js)

o(v/det(go) A\ ohy o5Vl 1sdS (= J7)

To \/det go
/ \/790V2 (v/det(g0) AV hye 05 VEhsisdS (= Jg)
o \/87 \/ det(QO)Aaﬁ’yahn aﬂ)vohﬁt 5dS (E JQ)
B s

Vi (y/det(go) A °h,, o5)VihdS. (= Jio)

Lo v/ det (go)

It follows that

L] < Ce)(1+ 1Vohall 2o I VEvsll 1@y 5

| I] + [ L] + L5 < COM) L+ (17 s [ Vovell ey
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and hence that
L]+ s + [1a] + |Is] < C(e) [IVohall T2y + 1Bl 3 rg) + 1] + 0llvallFrs )
It follows that

| Ja| + | T3] + | 5] + | 10| < ClN Vol 2ol Vot 22 (o)

[Js| < COM)(18llms(0) + el 2 500)) Vol 7 )

We need only obtain x-independent estimates for the terms Iy, Jy, Jy, J7, Jg and Jy.

By H=%5(T'y)-H**(T) duality pairing and (7.5),

L] < C|O]| g5yl Li (Fe) | 505 00) [ Vo (Yol 0 77) || 111:5(00) [ Vi vl | 051

< (M) | I93he 2oy + 1ol 25r0)
Therefore, by (7.11) and Young’s inequality,
(B.1) 11| < C[lhallbscey + 1] + IV, + Slvellrgen)

for some C' depending on M, § and ;.
For Jy, J; and Jg, by H*?(To)-H%5(T) duality pairing, we find that

|J1| + | a] + [Jo| < C()|| bl 45 w0y |Vk] 225 (1)

< HVghnHiﬁ(ro)ﬂLl +51HV?)/%H§{3(FO) "‘5”%”%3(90)

for some constant C’ depending on M, €, 6 and &;.

For J; and Jg, by H~'5(Ty)-H"5(Ty) duality pairing,
| T2l + 15| < CODN Bl v o) Rl 125 oy 1 eras oy 1ol vz o).
Similar to the estimate in (B.1), we find that

| J7| + [ Js] < C(M)[thH?{zt(ro) + 1|+ 0 Vohellzrs o) + 0llvellzrs -
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Summing all the estimates and then integrating in time from 0 to ¢, by Corollary 8.1

and the fact that B is close to 1 in the uniform norm for 7" small,
v t _ _ .
DIV Oy < [ [ O[ILath)-Tah, 1o 7] - Ti(CITE0IdSs
0
t t _
0 [ K IThulrnyds + € [ [y + 1]

t t
+5/0 |]U,€H§{3(Qo)ds+51/0 1920l 20y s
for some constant C’ depending on M, €,  and ¢;, where
K(s) = 1+ [[0ll3a(aq) + 10llFsry) + 1ellFr2s(ry)-

B.2. e-independent estimates. We next obtain e-independent estimates for the
first two terms of I;, as well as those for Iy, Jy, Jo, J3, J4, J5, Jg and Jip with h,

replaced by h.. Let
N _/F 6[Li(he) o | [Va(~Vohon, 1) u] s,
0
2o 4/ 6[Li(he) o 7| [V3(~Voh o7, 1) - Voui S
o
By H=15(Ty)-H'?(T) duality pairing,
1]+ [1E] < OO\ L (ho) s o) |0l 2500y [|(Voh) 0 77 | 25 ) -
Therefore, by (7.14) and (10.12),
1]+ [1E] < COOE helsry) + 1} [[vell z3(20)
< C(M, 5)t1/2||he||511155(r0) + 5||Ue||%{3(00)
(B.2) < C vl gy + IV a2y + 1F s + 1]
+ (0 + Ct1/2)||”e||1293(90)
for some constant C' depending on M and 9.
REMARK 33. Without the inclusion of t,en, into the shell traction, n™ only inherits

the reqularity of v and hy, and hence the only way to estimate Iy without any artificial

reqularization (in our case e-reqularization) is to have h € H°>(Ty). We obtain
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this regularity through the elliptic problem (10.11) where the H'S regularity of the
lower order terms Ly and Lo are crucially used. With the inclusion of t,em, we have

n™ € H35(Ty) and with this reqularity, h € H**(Ty) is enough to estimate I.

For .J;, we use an L*-L*L? type of Hélder’s inequality and conclude that
| Ti| < COM)E 2| el 5oy Vel 250
while for the other J terms, we use H*?(Ty)-H °?(Ty) duality pairing to obtain
| Jo| + [Js] + [Ja] + | J5| + | Jo| + [Jio| < C(M)E"?||hel 15510 |ve | 525 (o) -

and hence all the J terms are bounded by the same right-hand side of the inequality
n (B.2). Therefore,

V%4 —
Ve < [ [ B[l (~Foh. 1) 7] - Vi TiudSs
0
t
- CN(ug, F) + C / K () [VihelBaqds + (6 + C12) / el s s
0 0
t
+ (61 + 6175‘1/2)/0v ||U€t||?;11(90)d8
for some constant C' depending on M, § and 9;.

APPENDIX C. L?H]! ESTIMATES FOR v;

C.1. Estimates for the integral over I'y. By the chain rule,

/F (O1Li(h) (=Voh, D] o777 | - vyqdS = / O1[La(h)] o 7T (=Voh o7, 1) - 1,dS

+ / 60" - [VolLu(ho))(=Voh, )] 07 - v0dS (= K1)
+ [ B[ ILah)(Tah, <1 o - vads. (= Ko

The first term is bounded by

OOl IV 82wy + 1] ol s2r0
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Integrating by parts, we find that

/ \/F \/m) [[Lﬁ(hnﬂ(_voﬁ, 1) (’U o ﬁiT)(Um‘, o ﬁiT)dS
- /p [[Lﬁ(h“)](_v()ﬁ’ 1)] (b") " (Vov) 07 " (vgg 077 7)dS

- / (L5 (h))(=Voh, )| (0 0 7)) (Vovn) 077 7dS. (= K1)

The first two terms of the right-hand side can be bounded by

(M) |98l 20y + L ol

The terms containing L; and Ly in K7, by using H%?(Tg)-H %5(T'y) duality pairing,
are bounded by

C(M)|[vsl| 120

In order to estimate K7, we only have to find a bound for

det(g())AaﬁMghn,aﬁ],'y&(voﬁa _1>:| o ﬁTVO'szdS.

il

Integrating from 0 to ¢ and integrating by parts in time, we find that

/0 t /F 0 ﬁ (VA G0) A b 5] (V. ~1)] o 7 VoudSds
-/ W (VAT Ay 5] 15(Voh, ~1)| 07 VoS ) () (= K)
_ / t /F | ﬁ [Vt (00) A Dy 5] 10Vl ~1)| © 7 VouedSis (= i)
/ / ¢£7 {[Vaet(g0) A5 e ) 35(Voh, ~1)] 07 } VovedSds (= K)
~ /0 /F 0ﬁ[[mAaﬁwhn@ﬁ]m(voﬁt,0)} o " VoundSds. (= K1)

t _
v — _
— — | [\/det(go) A%’ h, , Voh, —1)| 0 7" Vov,.dSds. (= K?
/O/FO dot(g0) [[ (90) apltns(Vo )] 1 Vo ( 1)



With Young’s inequality,

|K1| < COM)IVohall 2oy lvell i o)

< C(M)C(8, 8:)l|0al s ) + S0l gy + S2ll Vbl 22z

t t
< CONCE.8)1 [ onalinnds+6 | [l + ol ] ds

6 2o
and
t
~ 4
K2 < C(M) / 10l 110 el 2 1 oy s
t t
~ 112 4 2 2
< C(M)C(5) / 1501211 gy |V ol 2 s+ 6 / s s
and
t —
|K}| < O(M)/ 19]] 2o (0) |V o Pl 2(00) | Vohe || 4oy | Vovs | (o) ds
0
t t
4 2 2
< C(M)C() / [V 2o ds + 6 / NI
For K3, by H'(Ty)-H!(T'y) pairing, we find that
t
K3 < C(M) / 15 ® 3) Vvl sy | V4o oy s
0
t
< () / ol 12620y 19 80 2y s
t t
4 2 2
< C(M)C(5) / [V 2o ds + 6 / 0 sy 5.
It remains to estimate K7. Using that

(=Voh, 1) 0 7" Vov, = Vo[l 0 7] — Vo[(=Voh o i™,1)] - vy

= bt(vohmt) © ﬁT + bt(V(Q)B © ,'77—7 0) * Uy

104
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and integrating by parts, we find that

t
K= [ [ [Ah ][00 Fohae — (V3) o0 ,0) - ve07] sl
0 T'o

Y

t
=— / / Ovb A h,y 05V ol 45dSds + RS
0 To

Yo [\/det (go)é@btzxaﬁﬂ Rt st 5dSds + R

2l ) e

where
t
4
R < COO) [ V8l llod s
0
t t
< CONCE) [ IVihliayds+3 [ lodlsuds
By interpolation,
t — —
|K7| < O(M)/O [HVO(@bt)HL‘l(FO)||T)Aaﬂms||L°°(Fo)HV?)thHL‘l(FO)||vghf€t||L2(Fo)
+ ||(:)bt||Lr><>(F0)||V0(@Aaﬁ’ya)||L4(F0)||V(2)hf€t||L2(Fo)||vghﬁt||L4(Fo):|ds + | R
t t
S C(M)C((S) [N(Uo, F) +/ ||Véh5||%2(ro)d8] + 5/ ||Uﬁ||§{3(go)d8
0 0
t
+CONCE! [ ol ouds
Therefore, K satisfies

t
’ / KldS
0

(C.1)

t
S CA |:K(S)<||Véhn||%2(Fo) + ||Vghnt||%2(ro)) —+ 1] ds + 62||véhn||%2(ro)

t t
+ (6 +Ct'?) / [kl gy ds + (6 + CE/2) / lvwellzr1 (1) ds
0 0

for some constant C' depending on M, § and 9,.

For K5, by time differentiating the evolution equation, we find that

(_VO;L o ﬁTa 1)Ufet - h/@tt o 777 + o7 - (Vohmt) o ’F]T - - (V?);L o ﬁTa O) * Uk

(C.2) — (Vohy 01", 0) - vy
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and hence (after a change of coordinates)

Ko= [ (LatlbeuS + [ LaUIE 077) - (TubeldS (= K)
- [ LTl 0)- (00778 (= Ka)
= [ AL 077 - (V3,000 7S, (= K)
[ LRl 0)- (w0 S (= K

For the first term, we have

1d 1 _
[ i = S [ AT gt = 5 [ (A b ohi oS
Fo F0
C.3 Vdet(go)(A%P), k. us|  hupdS
( ) I \/m[ )( )t , ﬁi| G tt

+/ [L?ﬁvﬁ,aﬁ’y] hm&tds_'_/ (LQ)thlittdS’
To t To

The second term on the right-hand side verifies

(C.4)

/ (Aamé)thm,aﬁhnt,v&ds’ < C(M>HﬁtHHQ's(Fo)vah“tH%%FO)’
T

and the third term satisfies the equality

[\/ det(g )(Aaﬂ%)thm,aﬁ} wahmtds

ro v/det(g
\/det AP B aghendS (= K
/ \/w gO)( ) ]776 B!kt ( 7)
+2 det(go) (A )| hy agohendS (= K.
[ V@A) ] s (= 5

"—/ Aaﬁ’yghn,aﬁyéhmtds (E KQ)
To

By (C.2),

Pellrre) < COM) vl m2(00) + Vel 51 (020)
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and hence
| Ks| + [ K| < C(M)||Vahull 2(ro) [||Un||H2(Qo) A |kt H1 (20)
< C(M)C(8,8:)IVohullZ2 o) + OlloxllTrz ) + 01 llvnellirn o)-

For the term K7, we use the H%?(T)-H %(T'y) duality pairing and (7.5) to obtain

1
det (o)

< C(M)[1v/det(go) (A )ell s o) Vo el s ooy | P 105 )

< COD 2o Vbl 2oy | vell 0 + losdllm |

| K7 < Cll[y/det(go) (A7) ] ysll -0

hﬂ,aﬂ Pt HO5(Ty)

< C(M)C(9, 51)||ilt||§{2~5(r0)||Véhm||%2(r0) + 5”%”%{2(90) + 51||Unt||%11(9 )
Therefore,
(C.5) ‘ . \/F \/W)(Aaw)thmﬁ] ’wh,ﬁtds‘
< C(M)C(8,80)(1 + [Pl s o) | VohsllZ2re) + Ollvall i) + 01 lonllFnqy)-
REMARK 34. The bound for K; can be refined even further as
|K7| < C(M)C(0) 1Bl i) I V5P 150y + 0110l Frs ) + Sl omell o
it is this inequality that will be used in the proof of the fixed-point argument.

Now let us turn our attention to the other terms in (C.3). Integrating by parts, for

the fourth term we have

/ [L?ﬁvﬁvaﬁ»y] h,{ttdS
o ¢

- / (L?ﬁ’y)tﬁyaﬂwhttds -
o

ht a3 [\/ det 90 hm&tL }

and the first integral on the right-hand side is bounded by

ro v/ det(g

OO |l + lowillin @ |
which is dominated by

C(M)C(0,01) + 8llvallE2(0) + 01 Vel 71 (-
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The worst term in the second integral is
/ L?ﬁ’yﬁt,aﬁhntt,yd‘g'
To
Using H%5(T)-H"5(Ty) duality pairing, we find that
)/ L?ﬁ’yﬁt,aﬁhntt,yds) < C(M)Hﬁt,aﬁHH“(Fo)Hhmt,vHH*Oﬁ(Fo)
o
< C(M)C(S, 51)“;%”%{2-5@0) "‘5”%”%{2(90) + 51||Unt||%11(90)

and hence

| / L8R esdS|

To t

(C6) < COCE,8) |1+ Ihelldmsqw | + V30alls gy + Fillvsel o)
For the last term on the right-hand side in (C.3), it follows that
(C.7) / (L2)ihsydS < C(M)C(6, 01) +5HV3W”§{1(Q;) +51”Um”§{1(90)-

o
It remains to estimate K3 to Kg. It is obvious that

K] < COM) | [ Vel 2oy + 1 om0

(C8) < CMCO) | IVbhalZaqrg) + 1] + OllvmilEr gy

Similar to the estimates in (C.6) and (C.7), we know that the lower order terms in

K; to K5, i.e, terms containing Ly and Lo, can be bounded by

(C9) (M) ez ol 150

For the highest order term, we note that by (7.14),

1(v/det(g0) A* P hy o) sl 1500y < v/ det(g0) (A hg as)ell mo5(rg)

< COD[ 4 hall 2510y + V8l 22410 |
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Therefore, combining with an upper bound (C.9) for the lower order terms, we find

that
K] + | Ks| < COD) [ il o) + Vbl 2wy | [1ell o) + ol
+ C(M) ||l 200 |0l 1125
< Ot Wl [1 + IV8Ra 22| + 6+ CE) ol

for some constant C' depending on M and 4.

For K4, most of the terms can be estimated in the same fashion except the term

/Fo \/%(90) [\/F(go)ﬁawhm,aﬁ] [(VOI_%,MS’ O) ’ (U“ © ﬁiT)]dS

which is identical to

/ {m[ det(go)flaﬁv&hm,aﬁ} [(VohAs,0) - (v, 0 ﬁff)]}tds (= Ko)

aBvé ., _
FOM[\/FA hmtaﬂi| [(Vohs,0) - (v 0 7)]dS (= K1)

Time integrating Ko and use the inequality (7.6) (or (7.9) if n = 2) together with

VAt 90) A g5 | [(Voh5,0) - (v 0 777)iJdS. (= Ki)

Young’s inequality, we find that

) /0 ' Koo(s)ds

t
(ClO) < C(M)C(él, (52)N3(U0, F) + (SQHVgh,QtH%Q(FO) + 51 /0 ”U,ﬁ”?{l(ﬂo)ds,

< O(M) | ol Fmsicny + I V3hatll 20 [0l 20|

where
N3(ug, F) == ||U0||§{2~5(QO) + ||U0||§{4~5(r0) + HFH%Q(O,T;Hl(QO))

+ 1F L0 2000 01y + I (O [ + 1

¢
and we use ||v,@||12ql(go) < C’[/ ||v,€t||§{1(g)ds—|— ||u0||12gl(90) to obtain (C.10). The
0

worst term in Ky 1S

/ VGO A s 5 (Voling, 0) - (v 0 7 )]dS
To
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which, by H=1%(Ty)-H5(Ty) duality pairing, can be bounded by

C(M) || st || 1105 o) || 2] 1725 00 [0 | 115 (o)

< C(M)C3, 60| hllzzs5m0) 10sll22(00) + OllvallErzo) + 01llvnel i (qy)-
Therefore,
|[Ku| < C HhH?{5»5(FO)”UKH%Q(QO)_'_ ”VghmH%%ro) "‘5”%"%3(90)+51”Um”§{1(90)
for some constant C' depending on M, ¢ and ;. Also,
Ko < CM)CO)|[ Pl a5y VR 72mg) + Ollvnel 71 )
and hence
6 ~ ~

SO < CLU+ bl + el [1+ loel3a@y + 18l a0

i=3
(C.11) + (8 4+ CE2) ol a0y + O llvmellFr ) + s

with K satisfying inequality (C.10). Finally, combining all the estimates,

(C.12)
t t
/ IVl 22 () ds < / / [[L;L(hm)(voh,—l)]oﬁT} 0, dS
0 0 JTIp t

t
+ CNa(ua, F) + € [ K(5)JonlEaia + [ V8ha By + 193l |
0
t t
#6400 [ odfiguyds + G+ ) [ ol ands + 6l Vil
for some constant C' depending on M, ¢, ; and 0s.

C.2. Estimates for the terms with pressure. By the “divergence free” condition

(8.2b),

—/ k —/ k —/ k
/ (akqﬁ)tvm,édx:/ athHvﬁt,édx_/ aktqﬂtvn,édx~
Qo Qo Qo
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By (6.3), (7.6) (or (7.9) if n = 2), (9.1), and (9.3),

|| dhaendide < CONCEN oo loclian + ailvalFr
0
< COM)CE,81) [lvmalZza + 1V 0kl + IVl 22qr

(C.13) + ”FH%%QO) + 1} + 5”"%”?{3(90) + 51”“&t”?{1(90)-

For the second integral, we time integrate it and have the identity

/ /QO Ay GriVr zdS = /S;O(aktq,%vm v)(t)dx / ait(o)qn(O)(ﬂo)ﬁ;dx

// aktvmé )eqrdzds.
Qo

The first term on the right-hand side can be bounded by

@]l 24 (0 [V Vsl £400) |9l L2(20)

while the second term on the right-hand side is bounded by C'N3(ug, F'). Because of

(C.13), it remains to estimate

0k
/akttqu,idx.
Qo
3 : =0 _ =iz E
By the identity a;, = —a,v,a;
0k _ Zi izl k Zi=j =l k
/ gy Vs yGrdT = —/ aktv7iajv,§’gq,§dx—/ 3,0y ;U5 14 dT
Qo Qo Qo

i =j=L , k
—/ )05V Qs AT
Qo

The first and the third integrals are bounded by

@ || £220) | VO (0 18] oo (20) [ VR Lo (920) |2 | 22 (020 -

For the second integrals, we integrate by parts to obtain

R . 14 —i -0k _ —j i
—/ akvmajvﬂ’gq,idx—/ (@a5v.q.) thdx—/ ay,05Vx"qx Ui M dS.
Qo Q0

To
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It follows that
/ (d};dﬁv,ﬂl}qﬁ)yi@fdx
Q ’
< (M) I90k st (el st00) + [V ull 200 ) + 11720k w00l zsc00) -

For the second term on the right-hand side (the integral over Ty), we use H%*(Ty)-

H~%5(T) duality pairing to obtain
/ d};dﬁvmf}qﬁﬁgnids
Lo
< COD vl [l + sl mosrn |
< C(M)C(0,81) a1y + 20| + 010l + 0111l 0

Combining all the estimates, (9.3) and (9.9) imply

t
/ / (dﬁqn)tvnﬁgdxdsg C(M)C(6,01)N3(ug, F)
0 J

t t
+ 5\/0\ ”U,QH?'JS(QO)CZS + 51 /0 ”Umg”?{l(ﬂo)ds.
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