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Abstract

This paper describes the hardware design, control, and naviga-
tion system of and some preliminary experiments with the robotic
wheelchair Mobility Aid for elderly and disabled people (MAid).
MAid’s general task is to transport people with severely impaired
motion skills. The authors did not set out to reinvent and rede-
velop the set of standard skills of so-called intelligent wheelchairs,
such as FollowWall, FollowCorridor, PassDoorway, which are com-
monly described in the literature. These maneuvers require motion
control skills that disabled people, in spite of their disabilities, are
eager to learn and quite good at using. Instead, this work focused
on generalizing the approach to fine motion control by considering
those maneuvers identified as very burdensome due to their duration
and required concentration. One of these functions is deliberative
locomotion in rapidly changing, large-scale environments, such as
shopping malls, entry halls of theaters, and concourses of airports or
railway stations, where tens or hundreds of people and objects move
around. MAid’s performance was tested in the central station of Ulm
during rush hour and in the exhibition halls of the Hannover Messe
’98, the largest industrial fair in the world. Altogether, MAid has
survived more than 36 h of testing in public, crowded environments
with heavy passenger traffic.

1. Introduction

The freedom and capability to move around unrestricted and
head for almost any arbitrary location is an extremely valuable
commodity. Mobility has become an essential component of
our quality of life. A natural consequence of this appreciation
of good mobility is the negative rating of the loss of mobility
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caused, for example, by disease or age. The loss of mobility
represents not only the loss of a physiological function but
often a considerable social descent. People with severely im-
paired motion skills have great difficulties participating in a
regular social life. Not infrequently, a loss of mobility leads
to a loss of contact with other nondisabled people and makes it
difficult to establish such contacts. A loss of mobility, whether
due to an injury or to advanced age, is always accompanied
by a loss of autonomy and self-determination, creates depen-
dence, and in extreme cases may affect the individual intimacy
and dignity.

The loss of one’s mobility may be seen as a difficult indi-
vidual fate, but it is also a problem in society in general. The
average age in Western societies is increasing dramatically.
As a consequence, the number of people suffering from se-
vere motion impairment will also increase. At the same time,
we can observe an equally dramatic increase in the expendi-
tures for health care and nursing and a reduction of nursing
staff to limit the cost explosion. The results of these develop-
ments are foreseeable: the quality of health care will decay,
individual care will become still more expensive and less af-
fordable for people with medium and lower incomes, and the
elderly will be sent to nursing homes much earlier to receive
sufficient care.

A way to avoid this unpleasant development may be
through the development of robotic technologies. Many ac-
tivities that a person with severe motion impairment is unable
to execute may become feasible by using robot manipulators
and vehicles as arms and legs, respectively. Lifting, carrying,
and moving around becomes feasible without the assistance
of a nurse. People with motion impairment retain a certain
amount of autonomy and independence and can remain in
their familiar environment. Expenditures for nursing person-
nel or accommodation in a nursing home can be avoided or at
least limited.
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In this paper, we describe a robotic wheelchair
Mobility Aid for elderly and disabled people (MAid)
whose task is to transport people with severely im-
paired motion skills and provide them with a certain
amount of autonomy and independence. The sys-
tem is based on a commercial wheelchair, which has
been equipped with an intelligent control and navigation
system.

Robotic wheelchairs have been developed in a number of
research labs (see our review in Section 2). The common set
of functions provided by most of those systems consists of
AvoidObstacle, FollowWall, and PassDoorway. In conversa-
tions with disabled and elderly people and with physicians,
we learned that not all of these functions are of equal interest
for people with motion impairment. Particularly, FollowWall
and PassDoorway are maneuvers that most disabled people
still want to execute themselves provided they have the nec-
essary fine motor control.

Following this advice, we focused on developing an ap-
proach applicable to different types of motion skills and ex-
tending the autonomy of robotic wheelchairs. Our system has
two modes of operation: a semiautonomous and a fully au-
tonomous mode. In the semiautonomous mode, the user can
command MAid to execute local maneuvers in narrow, clut-
tered space. For example, the user can command MAid to
maneuver into the cabin of a restroom for handicapped peo-
ple. Maneuvers in narrow, cluttered space require extreme
attention and often lead to collisions, particularly if the pa-
tient lacks sufficient fine motor control. We denoted this type
of maneuver in small, narrow areas as narrow area navigation
(NAN). The implementation of this capability is described in
Prassler, Scholz, and Strobel (1998).

In the second mode, MAid navigates fully autonomously
through wide, rapidly changing, crowded areas, such as con-
courses, shopping malls, and convention centers. We denoted
this latter type of motion skill as wide area navigation (WAN).
The only action the user has to take is to enter a goal position.
Planning and executing a trajectory to the goal is completely
taken care of by MAid. This application is particularly use-
ful, since we were informed that, contrary to common expec-
tation, people do not always give way to wheelchairs, as we
also had occasion to experience during our experiments. This
fact causes a lot of unnecessary fatigue, and automatic control
in this situation would be quite welcome.

MAid’s capability of navigating in rapidly changing envi-
ronments was acknowledged as being useful and entertaining.
MAid often had to work very hard to find its way through a
crowd of people, and our test pilots were curious to see what
MAid would do next (e.g., bump into a passenger, which it
rarely did, or move around).

MAid’s performance was tested in the central station of
Ulm during rush hour and in the exhibition halls of the Han-
nover Messe ’98, the largest industrial fair in the world. Alto-
gether, MAid has so far survived more than 36 h of testing in

public, crowded environments with heavy passenger traffic.
To our knowledge, there is no other robotic wheelchair and
no other mobile robot system that can claim a comparable
performance.

Note that at first sight, the two types of motion skills, NAN
and WAN, have little in common with the navigation skills of
other intelligent wheelchairs. Quite the opposite is the case.
In terms of its performance, WAN can be seen as a superset
of functions such as AvoidObstacle or FollowWall. When
WAN is activated and a destination at the opposite end of
a hallway is specified, then MAid will automatically show a
wall-following behavior and at the same time avoid obstacles,
although there is no explicit implementation of such a behav-
ior in the WAN module. Likewise, passing a door or docking
at a table are typical instances of NAN maneuvers.

The rest of this paper is organized as follows. In Section
2, we give an overview of the state of the art in the devel-
opment of robotics wheelchairs. MAid’s hardware design is
described in Section 3. In Section 4, we describe the software
architecture and the algorithms that enable MAid to navigate
in a wide, rapidly changing, crowded environment. Note that
although MAid’s capability to navigate in narrow, partially
unknown, cluttered environment is mentioned several times
below, the focus in this paper is on MAid’s WAN skill. We
will not go into the details of MAid’s NAN skill, which is
presented in Prassler, Scholz, and Strobel (1998).

2. Related Work

Recently, there has been the development of a number of in-
telligent wheelchair systems. A design concept for a self-
navigating wheelchair for disabled people was first proposed
by Madarasz et al. (1986). That vehicle used a portable PC
(320 KB of memory) as on-board computer. The sensor
equipment of the wheelchair included wheel encoders, a scan-
ning ultrasonic range finder, and a digital camera. The sys-
tem was supposed to navigate fully autonomously in an office
building. To find a path to its destination, it used a symbolic
description of significant features of the environment, such as
hallway intersections or locations of offices. The path com-
puted by the path planner consisted of a sequence of primitive
operations such as MoveUntil or Rotate.

In Bell et al. (1994), the system NavChair is described.
NavChair’s on-board computer is also a portable IBM com-
patible PC. An array of 12 Polaroid ultrasonic sensors at the
front of the wheelchair is used for obstacle detection and
avoidance. NavChair’s most important function is automatic
obstacle avoidance. Other functions include wall following
and passing doorways.

Hoyer and Hölper (1993) present a modular control archi-
tecture for an omnidirectional wheelchair. The drive of this
system is based on Meccanum wheels. The wheelchair is
equipped with ultrasonic and infrared sensors and a manipu-
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lator. A low-level control unit is in charge of the operation of
the sensor apparatus, the actual motion of the vehicle, and the
operation of the manipulator. This control unit is realized on
a VME-Bus system using pSOS+. A high-level PC/UNIX-
based planning module consists of a path and a task planner
to execute task-oriented commands.

A hybrid vehicle RHOMBUS for bedridden persons is de-
scribed in Mascaro, Spano, and Asada (1997). RHOMBUS is
a powered wheelchair with an omnidirectional drive that can
be automatically reconfigured such that it becomes part of a
flat, stationary bed. The bedridden person does not have to
change seating when transferring between the chair and the
bed.

Mazo et al. (1995) describe an electrical wheelchair that
can be guided by voice commands. The wheelchair recog-
nizes commands such as “stop,” “forward,” “back,” “left,”
“right,” “plus,” “minus” and turns them into elementary mo-
tion commands. The system also has a autonomous control
mode. In this mode, the wheelchair follows a wall at a certain
distance.

Miller and Slack (1995) designed the system Tin Man I and
its successor Tin Man II. Both systems were built on top of
a commercial pediatric wheelchair from Vector Wheelchair
Corporation. Tin Man I used five types of sensors, drive
motor encoders, eight contact sensors used as whiskers, four
infrared proximity sensors distributed along the front side of
the wheelchair, six sonar range sensors, and a flux-gate com-
pass to determine the vehicle’s orientation. Tin Man I had
three operation modes: human guided with obstacle override,
move forward along a heading, and move to (x, y). These
functions were substantially extended in Tin Man II. Tin Man
II capabilities include Backup, Backtracking, Wall Following,
Passing Doorways, Docking, and others.

Wellman, Krovi, and Kumar (1994) proposed a hybrid
wheelchair that is equipped with two legs in addition to the
four regular wheels. These legs should enable the wheelchair
to climb over steps and move through rough terrain. A com-
puter system consisting of a PC 486 and an i860 coprocessor
for the actuator coordination is used to control the wheelchair.

In recent years, much attention has been directed to mo-
tion planning in dynamic environments, which includes the
problem addressed in this paper. Motion planning in dynamic
environments is a difficult problem, since it requires planning
in the state space; that is, simultaneously solving the path-
planning and velocity-planning problems. It is a computa-
tionally difficult problem, and it is not guaranteed to have a
solution due to the uncertain nature of the environment, since
a solution computed at time t0 may be infeasible at a later
time (Sanborn and Hendler, 1988).

Motion planning in dynamic environments was originally
addressed by adding the time dimension to the robot’s config-
uration space, assuming bounded velocities and known tra-
jectories of the obstacles (Reif and Sharir, 1985; Erdmann
and Lozano-Perez, 1987; Fujimura and Samet, 1989a). An-

other approach to dynamic motion planning is to decompose
the problem into smaller subproblems: path planning and ve-
locity planning. This method first computes a feasible path
among the static obstacles. The velocity along the path is
then selected to avoid the moving obstacles (Kant and Zucker,
1986; Lee and Lee, 1987; Fraichard, 1993; Fujimura and
Samet, 1993).

A different approach consists of generating the accessibil-
ity graph of the environment, which is an extension of the vis-
ibility graph (Fujimura and Samet, 1989b). Online planning
in dynamic environments has mostly emphasized reasoning
and decision making, with little concern for robot dynamics
(Sanborn and Hendler, 1988). These approaches rely on po-
sition information to test for collision between the robot and
the moving obstacles, and thus can be described as zero-order
methods, since they rely on position information to determine
potential collisions.

A first-order method to compute the trajectories of a robot
moving in a time-varying environment, using velocity infor-
mation to directly determine potential collisions, is presented
in Fiorini and Shiller (1997, 1998). The method uses the
concept of velocity obstacle, which maps the dynamic envi-
ronment into the robot velocity space. The velocity obstacle
is a first-order approximation of the robot’s velocities that
would cause a collision with an obstacle at some future time,
within a given time horizon.

3. Hardware Design

MAid (Fig. 1) is based on a commercial electrical wheelchair
type SPRINT manufactured by MEYRA GmbH in Germany.
The wheelchair has two differentially driven rear wheels and
two passive castor front wheels. It is powered by two 12-V
batteries (60 Ah) and reaches a maximum speed of 6 km/h.
The standard vehicle can be manually steered by a joystick.

The goal of the work presented here was to develop a com-
plete navigation system for a commercial wheelchair, such as
SPRINT, which would enable it to automatically maneuver in
narrow, cluttered space and in crowded large-scale environ-
ments. The hardware core of the navigation system developed
for the task is an industrial PC (Pentium 166 MHz) that serves
as on-board computer. The computer is controlled by the real-
time operating system QNX.

MAid is equipped with a variety of sensors for environ-
ment perception, such as collision avoidance and position es-
timation. In particular, MAid’s sensor apparatus includes the
following devices:

• a dead-reckoning system consisting of a set of wheel en-
coders and a optical fiber gyroscope (Andrew RD2030)

• a modular sonar system consisting of three segments
each equipped with eight ultrasound transducers and a
microcontroller mounted on an aluminum frame, which
can be opened to enable the user to sit in the wheelchair
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Fig. 1. The robotic wheelchair MAid.

• two infrared scanners (Sharp GP2D02 mounted on ser-
vos) for short-range sensing

• a SICK two-dimensional laser range finder PLS 200
mounted on a removable rack.

The dead-reckoning system, which integrates over the dis-
tance traveled by the vehicle and over its orientation changes,
provides elementary position and orientation information.
This information is rather inaccurate, with errors accumu-
lating rapidly over the traveled distance, but it is available at
low cost and at all times.

The sonar system and the laser range finder are the sensors
used by MAid to perceive its surrounding environment. The
sensors are used in combination, since one alone would not
be sufficient to ensure a collision-free navigation in a natural
environment with multiple moving obstacles.

The laser range finder provides an accurate two-
dimensional picture of the environment because of its high
angular and range resolution (see Section 5.1.1). However, a
significant disadvantage of this device in a three-dimensional
environment is that it covers only a single two-dimensional
cross section of the environment at a given height. For this
reason, we use the range information provided by the laser
range finder mainly to track moving obstacles.

The sonar system is used to avoid collisions with objects
that are not recognized by the laser range finder, either because
they have a lower height and are out of reach of the laser beam
(e.g., waste baskets in the concourse, bags and suitcases lying
on the floor, or moving pets) or because they do not reflect the
laser beam properly (e.g., glass doors). However, the sonar

system has a rather poor angular resolution, which makes it
impossible to track a larger number of moving obstacles. Al-
together, the two sensors naturally complement each other in
tracking and avoiding obstacles in a three-dimensional space.

Furthermore, data provided by sonar and laser systems are
also used to estimate MAid’s position in the environment by
means of an extended Kalman filter. An a priori description
of the environment is required by the filter, which produces
a set of expectations with regard to MAid’s sensor readings
using a model of MAid’s locomotion and its last position data.
The deviation between these expectations and the true sensor
readings is then used to compute correction values for MAid’s
estimated position.

It should be mentioned that in a wide, crowded, rapidly
changing, mostly unknown environment, there is little ad-
vantage in using a Kalman filter, since one of its essen-
tial ingredients—namely, the a priori description of the
environment—is not available. For the navigation in such
an environment, we have to rely exclusively on the position
information provided by the dead-reckoning system.

Although all other components of MAid’s navigation sys-
tem are inexpensive or can at least be substituted by cheaper
components without reducing MAid’s performance, the laser
range finder is undoubtedly an expensive sensor (approxi-
mately US$4000). However, as we have argued elsewhere
(Prassler et al., 1998; Prassler, Scholz, and Elfes, 1999), no
other sensor is equally suited for detecting and tracking a large
number of moving objects in real time. This function in turn
is essential for navigating in wide, crowded, rapidly changing
environments.

Except for the laser range finder, the other sensors are con-
nected to, and communicate with, the on-board computer us-
ing a field bus as shown in Figure 2. The interface between
these devices and the field bus is implemented by a number
of microcontrollers (68HC11). Due to the high data rates of
the laser range finder, this device is connected directly to the
on-board computer by a serial port. The motion commands
computed by the navigation system are also sent over the field
bus to the motion controller, which powers the wheel motors.

The user interface of MAid’s navigation system consists
of the original wheelchair joystick and a notebook computer.
With the joystick, the user points to the desired motion direc-
tion. The notebook is used to select MAid’s operation mode
and to enter the goal position. We are planning to enhance
this interface with a commercial speech recognition system
similar to those currently used in the automobile industry. It is
obvious, however, that to be useful for a severely disabled per-
son, MAid’s user interface has to be adapted to that person’s
specific disability.

One of the main criticisms that disabled people had when
first confronted with MAid was its current appearance. It is
obvious that MAid needs some major redesign to become
an aesthetically pleasant device that does not attract peo-
ple’s curiosity and exposes the user to unwelcome attention.
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Fig. 2. Hardware architecture of MAid’s control system.

However, our discussion with the manufacturer of MAid’s
wheelchair about this issue revealed that a redesign was not
considered a major problem. Most components of MAid’s
on-board sensing and electronics can be significantly reduced
in size and placed in inconspicuous positions. The most diffi-
cult component to hide is the laser scanner, currently mounted
on a removable aluminum frame on MAid’s front, which has
to be removed every time a person sits in the wheelchair. A
preliminary analysis has shown that the laser scanner can still
perform well when placed either in a less exposed position,
such as an arm rest, or on a sliding or rotating boom, which
would not interfere with the wheelchair access.

4. Control Architecture

MAid has a hierarchical control architecture consisting of
three levels: a basic control level, a tactical level, and a
strategic level. The components of this control system that
contribute to MAid’s capability of WAN (in a wide, crowded,
rapidly changing area) are shown in Figure 3. Note that in the
following, we simply denote these components as the WAN
module. For the sake of clarity, in Figure 3 we omit the parts
of the control system that implement MAid’s NAN skills (for
narrow, cluttered, partially unknown areas). These are de-
scribed in Prassler, Scholz, and Strobel (1998).

On the basic control level, we compute the values of the
control variables that put the vehicle into motion. The veloc-
ity control module on this basic control level receives as input
a velocity vector �u describing the target velocity and head-
ing and the actual values of the translational and rotational
(va, ωa) of the vehicle. The velocity vector is converted into
target values for the translational and rotational velocities.

Fig. 3. Software architecture of MAid’s wide area navigation
module.

From these target values and the actual values provided by
the vehicle’s dead-reckoning system, the velocity controller
computes appropriate correction values that are then fed to
the motor controllers.

On the tactical level, which essentially forms the core of
the WAN module, we have three submodules: a motion de-
tection module, a module for motion tracking and estimating
object velocities and headings, and a module for computing
evasive maneuvers. In the following paragraphs, we give a
brief description of the interaction of these submodules. The
methods that they actually implement are described in detail
in Section 5.

As mentioned previously, MAid uses its sonar system and
its laser range finder to continuously monitor the surrounding
environment. The range data provided by these sensors rep-
resent MAid’s view of the world. In this continuous stream
of range data, MAid tries to detect the objects in the environ-
ment and identify which are stationary and which are moving
(for more details, see Prassler et al., 1998; Prassler, Scholz,
and Elfes, 1999). Using laser range data, MAid further es-
timates the motion direction and velocity of the objects by
extrapolating their past trajectories and velocities.

Based on these predictions and on its own motion direction
and velocity, MAid then determines if it is moving on a colli-
sion course with one or several of the moving objects. After
an analysis of velocity obstacles (Fiorini and Shiller, 1993),
MAid computes an avoidance maneuver, which is as close to
its original heading as possible but does not lead to a collision
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with the objects moving in its vicinity.
Motion detection, motion prediction, the computation of

collision courses, and the computation of the avoidance ma-
neuver take approximately 70 ms. If we include the time for
a sensor observation (recording of a range image), the cy-
cle time increases to 0.3 s; thus, MAid is able to compute a
new maneuver every 0.3 s. This is due primarily to the low
transmission rate of the range finder.

MAid’s main task while it navigates in a wide, crowded,
rapidly changing area is to reach a specific goal at some dis-
tance from its present position. In the current design, it does
not pursue plans that are more complex, such as visiting a
sequence of intermediate goals. Accordingly, the strategic
level consists of the selection of the next goal, which is left to
the user. At a later point, the strategic level will be expanded
by, for example, a path planner, which will provide the WAN
module with a sequence of intermediate goals.

5. Navigation in Rapidly Changing, Crowded
Environments

In this section, we describe the methods and components
that contribute to MAid’s capability of navigating in a wide,
crowded, rapidly changing area. Among existing robotic
wheelchairs, this capability is rather unique. The part of
MAid’s control system that implements this capability essen-
tially consists of three components: an algorithm for motion
detection, an algorithm for motion tracking, and an algorithm
for computing evasive courses, which is based on the velocity
obstacle approach (Fiorini and Shiller, 1998).

5.1. Motion Detection and Motion Tracking

A rather obvious approach to identify changes in the surround-
ing environment is to consider a sequence of single observa-
tions and to investigate where these observations differ from
each other. A discrepancy between two subsequent observa-
tions is a strong indication of a potential change in the envi-
ronment. Either an unknown object has been discovered due
to the self-motion of the observer or an already discovered ob-
ject has moved by some distance. In the following sections,
we discuss how this simple idea can be used in a fast motion
detection and tracking algorithm.

5.1.1. Sensor Selection and Estimation of Self-Motion

The sensor that we use for motion detection and tracking
in crowded, rapidly changing environments is a laser range
finder (SICK PLS 200). In Prassler et al. (1998) and Prassler,
Scholz, and Elfes (1999), we argue that this is the most ap-
propriate sensor for the given task. The device works on a
time-of-flight principle. It has a maximum distance range of
d = 50 m, with an accuracy of σd ≈ 50 mm and an angular

range of ±90◦, with a resolution of 0.5◦. The device is cur-
rently operated at a frequency of 3 Hz providing three range
images per second.

The range data provided by the laser range finder are nat-
urally related to the local frame of reference attached to the
sensor. To compare two subsequent local range images and
to compute a differential image, it is necessary to know pre-
cisely which motion the sensor has undergone between two
observations, how far it has moved from one viewpoint to the
next, and how far it has turned. This information is provided
by the dead-reckoning system, which enables the wheelchair
to keep track of its position and orientation over some limited
travel distance with reasonable accuracy. With the informa-
tion about the current position and orientation of the vehicle,
it is straightforward to transform the local range images from
earlier measurements into the actual frame of reference.

5.1.2. Representations of Time-Varying Environments

An efficient and straightforward scheme for mapping range
data is the occupancy grid representation (Elfes, 1989). This
representation involves a projection of the range data on a
two-dimensional rectangular grid, where each grid element
describes a small region in the real world.

While investigating the performance of existing grid-based
mapping procedures, we noticed that most of the time was
spent mapping free space. Particularly, the farther away the
observed objects were, the more time it took to map the free
space between the sensor and the object. Also, before a range
image could be assimilated into a grid, the grid had to be
completely initialized; that is, each cell had to be set to some
default value. For grids with a typical size of several tens of
thousands of cells, these operations became quite expensive.

Mapping large areas of free space is rather useless for de-
tecting and tracking moving objects. To avoid this, we devised
an alternative representation in which we map only the cells
observed as occupied at time t , whereas all other cells in this
grid remain untouched. We call this representation a time
stamp map.

Compared to the assimilation of a range image into an oc-
cupancy grid, the generation of a time stamp map is rather
simplified. Mapping a range measurement involves only one
single step; that is, the cell coinciding with the range measure-
ment is assigned a time stamp t . This stamp means that the
cell was occupied at time t . No other cell is involved in this
operation. Particularly, we do not mark as free any cell that
lies between the origin of the map and the cell corresponding
to the range measurement.

The time variation of the environment is captured by the
sequence T SMt, T SMt−1, . . . , T SMt−n of those time stamp
maps. An example of such a sequence is shown in Figures
4a-c. These pictures show three snapshots of a simple, time-
varying environment with a moving and a stationary object
in a time stamp map representation. The age of the observa-
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a)

c) d)

b)

Fig. 4. A sequence of time stamp maps describing a toy
environment. The age of the observation is indicated by
different gray levels. The more recent the observation, the
darker the gray level that marks the object contours.

tion is indicated by different gray levels, where darker regions
indicate more recent observations. Note that the maps are al-
ready aligned so that they have the same orientation. A trans-
lation by a corresponding position offset finally transforms
the maps into the same frame of reference. The aligned maps
are shown in Figure 4d. The assimilation of a range image
into a 200 × 200 time stamp map takes 1.5 ms on a Pentium
166 Mhz.

5.1.3. An Approach to Fast Motion Detection

Motion detection in a sequence of time stamp maps is based
on a simple heuristic. We consider the set of cells in T SMt

that carries a time stamp t (occupied at time t) and test whether
the corresponding cells in T SMt−1 were occupied too; that
is, carried a time stamp t − 1. If corresponding cells in
T SMt, T SMt−1 carry time stamps t and t − 1, respectively,
then we interpret this as an indication that the region in the
real world, which is described by these cells, has been occu-
pied by a stationary object. If, however, the cells in T SMt−1
carry a time stamp different from t − 1 or no time stamp at
all, then the occupation of the cells in T SMt must be due to
a moving object. The algorithm that implements this idea is
described in pseudocode notation in Table 1.

As we pointed out earlier, for motion detection, the time
stamp representation of a time-varying environment is more
efficient than commonly used grid representations. Particu-

Table 1. A Motion Detection Algorithm Based on a Se-
quence of Time Stamp Maps

procedure detectMotion;
for each cell ensemble csx,t describing an object x

in T SMt

for each cell ci,t in csx,t

for each corresponding cell ci,t−1, . . . , ci,t−k, . . . ,

ci,t−n in T SMt−1, . . . , T SMt−k, . . . , T SMt−n

if ci,t−k carries a time stamp t − k

then ci is occupied by a stationary object
else ci is occupied by a moving object

if majority of cells ci,t in csx,t is moving
then cell ensemble csx,t is moving
else cell ensemble csx,t is stationary

larly, the time stamp representation allows us to use a sequence
of maps in a round-robin mode without a need to clear and
initialize the map that is used to assimilate the new sensor im-
age. Outdated time stamps that originate from the mapping
of previous sensor images do not have to be deleted but are
simply overwritten. In this procedure, the map receiving a
new sensor image remains polluted by outdated information.
However, this is not only efficient—as we save an expensive
initialization operation—but correct. Cells that are marked by
an outdated time stamp are simply considered as free space,
which has the same effect as assigning some default value.

5.1.4. Motion Tracking and Estimation of Object Trajectories

Although kinematic and dynamic models of human walking
mechanisms and gaits have been developed, there is no analyt-
ical model of human purposive locomotion that would allow
us to make inferences about the motion of a person over longer
distances. Therefore, the best we can do to track a moving
object in an environment such as a crowded concourse in a
railway station is to collect information about its past mo-
tion and to extrapolate this past motion into the near future, if
necessary. For this purpose, we consider the sequence of re-
cent sensor images and extract the information about motion
direction, velocity, or acceleration that describes the motion
history of the moving objects from the spatial changes that
we find in the mappings of these sensor images.

Note that although it is sufficient for motion detection to in-
vestigate only the mapping of two subsequent sensor images,
provided the objects move at a sufficient speed, establishing a
motion history may require one to consider a more extended
sequence of sensor images. We assume that the cells describ-
ing distinct objects are grouped into ensembles, and we also
assume that these ensembles and their corresponding objects
are classified either as moving or as stationary by the motion
detection algorithm described above.
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The first step in establishing the motion history of an object
is to identify the object in a sequence of mappings. Once we
have found this correspondence, it is easy to derive the heading
and the velocity of a moving object from its previous positions.
To find a correspondence between the objects in the mappings
of two subsequent sensor images, we use a nearest neighbor
criterion. This criterion is defined over the Euclidean distance
between the centers of gravity of cell ensembles representing
distinct objects. For each cell ensemble representing an object
at time t , we determine the nearest ensemble in terms of the
Euclidean distance in the map describing the environment
at the preceding time step t − 1. Obviously, this operation
requires the objects to be represented in the same frame of
reference.

If the distance to the nearest neighbor is smaller than a
certain threshold, then we assume that both cell ensembles
describe the same object. The threshold depends on whether
the considered objects and cell ensembles are stationary or
moving. For establishing a correspondence between the two
cell ensembles describing a stationary object, we choose a
rather small threshold, since we expect the cell ensembles
to have similar shapes and to occupy the same space. Cur-
rently, we use a threshold of 30 cm for stationary objects.
For a correspondence between the cell ensembles describing
a moving object, this value is accordingly larger. Here, we
use a threshold of 1 m, which is the approximate distance that
a person moving at fast walking speed covers between two
sensor images.

A description of the above algorithm in pseudocode nota-
tion is given in Table 2. On a Pentium 166 MHz, a complete
cycle involving both the detection and tracking any moving
objects takes approximately 6 ms. For a more detailed de-
scription and discussion of our motion detection and tracking
method, we refer to Prassler et al. (1998) and Prassler, Scholz,
and Elfes (1999).

The algorithms in Table 2 allow us to establish a corre-
spondence between the objects in two or even more subse-
quent time stamp maps. Having found this correspondence,
it is straightforward to compute estimates of the heading and
the velocity of the objects. Let (cog(oi,t )) and (cog(oi,t−1))
be the centers of gravity of the object oi as it is perceived by
the laser range finder at times t and t − 1. Estimates for the
velocity v and the heading φ of oi are given by

v(oi,t ) = ‖ �ui,t ‖
�t

and φ(oi,t ) = atan(�(�ui,t ), �(�ui,t )),

where

�ui,t = cog(oi,t ) − cog(oi,t−1).

As the above equations reveal, we use a very simple model
for predicting the velocity and heading of an object. In par-
ticular, we assume that the object oi moves linearly in the
time interval from t − 1 to t . Apparently, this may be a very

Table 2. An Algorithm for Tracking Moving Objects in a
Crowded Environment

procedure findCorrespondence;
for each object oi,t in T SMt

for each object oj,t−1 in T SMt−1
CorrespondenceTable[i,j] = corresponding
(oi,t , oj,t−1);

function corresponding(oi,t , oj,t−1);
if oi,t is stationary and oj,t−1 is stationary
then ϑ = ϑs; (threshold for stationary objects)
else ϑ = ϑm; (threshold for moving objects)

if d(oi,t , oj,t−1) < ϑ

and not_exists ok,t : d(ok,t , oj,t−1) < d(oi,t , oj,t−1)

and not_exists ol,t−1 : d(oi,t , ol,t−1) <

d(oi,t , oj,t−1)

then return true;
else return false;

coarse approximation of the true motion. The approximation,
however, has proven to work sufficiently well at a cycle time
of less than 100 ms for motion detection, motion estimation,
and computation of an evasive course. At a slower cycle time,
a more sophisticated, nonlinear model for estimating the ve-
locity and heading of an object may be appropriate.

5.2. Motion Planning Using Velocity Obstacles

In this section, we briefly summarize the concept of velocity
obstacle for a single obstacle and multiple obstacles. For
simplicity, we model the robotic wheelchair and the obstacles
as circles, thus considering a planar problem with no rotations.
This is not a severe limitation, since general polygons can be
represented by a number of circles. Obstacles move along
arbitrary trajectories, and their instantaneous state (position
and velocity) is estimated by MAid’s sensors, as discussed
earlier.

To introduce the velocity obstacle concept, we consider the
two circular objects, A and B, shown in Figure 5, at time t0,
with velocities vA and vB. Let circle A represent the mobile
robot, and let circle B represent an obstacle. To compute the
velocity obstacle, we first map B into the configuration space
of A by reducing A to the point Â and enlarging B by the
radius of A to B̂, and represent the state of the moving object
by its position and a velocity vector attached to its center.
Then, the set of colliding relative velocities between Â and
B̂, called the collision cone, CCA,B , is defined as CCA,B =
{vA,B | λA,B ∩ B̂ �= ∅}, where vA,B is the relative velocity of
Â with respect to B̂, vA,B = vA − vB, and λA,B is the line
of vA,B. This cone is the light gray sector with apex in Â,
bounded by the two tangents λf and λr from Â to B̂, shown
in Figure 6. Any relative velocity that lies between the two
tangents to B̂, λf and λr , will cause a collision between A and
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Fig. 5. The mobile robot A and the moving obstacle B.

Fig. 6. The relative velocity vA,B, the collision cone CCA,B ,
and the velocity obstacle V OB .

B. Clearly, any relative velocity outside CCA,B is guaranteed
to be collision free, provided that the obstacle B̂ maintains its
current shape and speed.

The collision cone is specific to a particular pair of
robot/obstacle. To consider multiple obstacles, it is useful
to establish an equivalent condition on the absolute velocities
of A. This is done by simply adding the velocity of B, vB,
to each velocity in CCA,B and forming the velocity obstacle
V O, V O = CCA,B ⊕ vB, where ⊕ is the Minkowski vector
sum operator, as shown in Figure 6 by the dark gray sector.
The velocity obstacle partitions the absolute velocities of A

into avoiding and colliding velocities. Selecting vA outside of
the velocity obstacle would avoid collision with B. Velocities
on the boundaries of the velocity obstacle would result in A

grazing B.

To avoid multiple obstacles, we consider the union of the
individual velocity obstacles, V O = ∪m

i=1V OBi
, where m

is the number of obstacles. The avoidance velocities, then,
consist of those velocities vA that are outside all the velocity
obstacles.

In the case of many obstacles, obstacle avoidance is prior-
itized so that those with imminent collision will take prece-
dence over those with a long time to collision. Furthermore,
since the velocity obstacle is based on a linear approximation
of the obstacle’s trajectory, using it to predict remote colli-
sions may be inaccurate if the obstacle does not move along
a straight line. By introducing a suitable time horizon Th, we
limit the collision avoidance to those occurring at some time
t < Th.

5.2.1. The Avoidance Maneuver

An avoidance maneuver consists of a one-step change in ve-
locity to avoid a future collision within a given time horizon.
The new velocity must be achievable by the moving robot;
thus, the set of avoidance velocities is limited to those ve-
locities that are physically reachable by robot A at a given
state over a given interval. This set of reachable velocities is
represented schematically by the polygon KLMH shown in
Figure 7. The set of reachable avoidance velocities (RAV) is
defined as the difference between the reachable velocities and
the velocity obstacle. A maneuver avoiding obstacle B can
then be computed by selecting any velocity in the RAV set.
Figure 7 shows schematically the RAV set consisting of two
disjoint closed subsets. For multiple obstacles, the RAV set
may consist of multiple disjoint subsets.

It is then possible to choose the type of avoidance maneu-
ver by selecting the side of the obstacle the mobile robot will
pass. As discussed earlier, the boundary of the velocity obsta-
cle, VO, {δf , δr}, represents all absolute velocities generating

Fig. 7. The reachable avoidance velocities (RAV).
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trajectories tangent to B̂, since their corresponding relative
velocities lay on λf and λr . For example, the only tangent
velocities in Figure 7 are represented by the segments KH and
LM of the RAV set. By choosing velocities in the set bound
by segment HK or ML, we ensure that the corresponding
avoidance maneuver will avoid the obstacle from the rear or
the front, respectively.

The possibility of subdividing the avoidance velocities
RAV into subsets, each corresponding to a specific avoidance
maneuver of an obstacle, is used by the robotic wheelchair to
avoid obstacles in different ways, depending on the perceived
danger of the obstacle.

5.2.2. Computing the Avoidance Trajectories

A complete trajectory for the mobile robot consists of a se-
quence of single avoidance maneuvers that avoid static and
moving obstacles, move toward the goal, and satisfy the
robot’s dynamic constraints. A global search has been pro-
posed for off-line applications, and a heuristic search is most
suitable for on-line navigation of the robotic wheelchair. The
trajectory is generated incrementally by selecting a single
avoidance velocity at each discrete time interval using some
heuristics to choose among all possible velocities in the RAV
set.

The heuristics can be designed to satisfy a prioritized se-
ries of goals, such as survival of the robot as the first goal, and
reaching the desired target, minimizing some performance in-
dex, and selecting a desired trajectory structure as secondary
goals. Choosing velocities in the RAV set (if they exist) au-
tomatically guarantees survival. Among those velocities, se-
lecting the ones along the straight line to the goal would ensure
reaching the goal (the to-goal strategy shown in Fig. 8). Se-
lecting the highest feasible velocity in the general direction
of the goal may reduce motion time (the maximum veloc-
ity heuristics shown in Fig. 8). Selecting the velocity from
the appropriate subset of RAV can ensure a desired trajectory
structure (front or rear maneuvers) (the structure heuristics
shown in Fig. 8). It is important to note that there is no guar-
antee that any objective is achievable at any time. The purpose
of the heuristic search is to find a “good” local solution if one
exists.

In the experiments described in the following section, we
used a combination of the TG and ST heuristics to ensure that

Fig. 8. (a) To-goal strategy, (b) maximum velocity strategy,
(c) structure strategy.

the robotic wheelchair moves toward the goal specified by the
user. When the RAV sets include velocity vectors aimed di-
rectly at the goal, the largest among them is chosen for the next
control cycle. Otherwise, the algorithm computes the centers
of the RAV sets and chooses the velocity corresponding to
the center closest to the direction to the goal. This heuristic
adds an additional safety margin to the mobile robot trajec-
tory, since the velocity chosen is removed from the boundary
of its RAV set, thus accounting for unmodeled uncertainties
on the obstacle shapes and trajectories.

6. Experimental Results

MAid’s performance was evaluated in two steps. Before tak-
ing the system to a real-world environment such as the con-
course of a railway station, we conducted extensive tests un-
der the simplified and controlled conditions of our laboratory.
The laboratory embodiment of a rapidly changing environ-
ment consisted of an empty, delimited, and locked area where
a second mobile robot moved on prescribed paths with known
velocity profiles, or groups of three and four people were
asked to walk at moderate speed in front of MAid.

6.1. Experiments under Laboratory Conditions

To examine MAid’s motion detection and tracking capability,
a commercial mobile robot Nomad XR4000 was programmed
to move along a rectangular trajectory in front of the robotic
wheelchair, equipped with the laser range finder, at a dis-
tance of 2 m. The Nomad robot followed a velocity profile
that made its center follow the polygonal trajectory repre-
sented by the solid line shown in Figure 9. The wheelchair
is identified by the cross mark at coordinates (0, 0) in Figure
9, and its position or orientation was not changed during the
experiment.

Fig. 9. Tracking a single moving object with ground truth.
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The dotted line in the figure represents the motion of the
Nomad robot as it was sensed and tracked by MAid. The
estimated trajectory shows a maximum tracking error of less
than 15 cm, which can possibly reduce the performance of the
navigation algorithm. However, this is not the case, since the
error is always reducing the estimate of the obstacle distance
and, therefore, increases the navigation safety margins. The
nature of the error can be easily understood by noticing that
the trajectory estimation is carried out by tracking the center of
the contour of the mobile obstacle as it is perceived by the laser
range finder. Since the visible part of the obstacle is smaller
than the true obstacle, its center will always be closer than its
real position. Furthermore, the estimation error affects only
the magnitude of the avoidance velocity and not its direction,
which is computed using the left and right boundaries of the
visible obstacle.

In a second set of experiments, we asked a number of peo-
ple to move at a comfortable walking speed along prescribed
trajectories in an experimental area of approximately 4 × 7
m2. The wheelchair with the range finder was again kept sta-
tionary. The results of this set of experiments are shown in
Figures 10a-d.

During the first experiment, a single person was asked to
walk along a given rectangular trajectory in the area facing
the range finder sensor. After several laps, the person headed
back to his initial position. The tracking algorithm tracked
his motion in real time without any problem. The trajectory
estimated by the tracking algorithm is shown in Figure 10a.

In the second experiment, three people moved across the
field of view of the wheelchair along straight lines, more or
less parallel to each other, and the leftmost person made a
sudden left turn and headed back to the wheelchair, as shown
in Figure 10b. The subjects moved at slightly different speeds,
so that their complete walk was visible by the range finder. As
shown in the figure, the tracking algorithm could easily track
the motion of the three people. In the experiment shown in
Figure 10c, we tracked the motion of three subjects moving
in parallel straight lines directly away from the wheelchair.
This time the subjects moved at a similar speed.

The last experiment deserves a more detailed discussion.
We let two subjects move along straight lines that crossed
each other in front of the wheelchair. Accordingly, for a short
period of time one person was occluding the other from the
view of the range finder. Apparently, the algorithm was unable
to track the occluded person during this period of time. This
loss of tracking manifests itself as the interruption of one of the
trajectories, as shown in Figure 10d. Our algorithm lost the
occluded person for two time steps. It detected and continued
to track the motion after the subject became visible.

Tracking moving objects whose trajectories cross each
other is a very general problem and not specific to our tracking
algorithm. Problems of this type cannot be eliminated even
by very sophisticated methods such as those described in Bar-
Shalom and Fortmann (1987), which assume the knowledge

Fig. 10. Tracking a group of people in a lab environment.
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of a model of the motion of the objects to be tracked. As men-
tioned above, we cannot make such an assumption, since valid
models of human motion are not available for our application
domain. Experimental results showing the performance of
MAid’s motion detection and tracking algorithm in a real en-
vironment are described in Prassler et al. (1998).

To complete the laboratory experiments, we evaluated the
performance of the complete system, including motion de-
tection, tracking, and computation of avoidance maneuvers
under controlled conditions. This is a difficult task, since
no metric is available to quantify the behavior of on-line al-
gorithms reacting to unpredictable external events. Our ex-
periment consisted of asking two subjects to approach the
wheelchair at walking speed (approximately 1 m/s). The
wheelchair’s initial velocity was set to 0.5 m/s. The reac-
tion of the system after it noticed the approaching objects is
shown in a sequence of snapshots in Figure 11. In the figure,
the wheelchair is represented by a rectangle, whereas the two
subjects are represented by circles. The arrows attached to
the rectangle and the circles represent the motion direction
and velocity of MAid and the two people, respectively. The
length of each arrow represents the distance traveled in 1 s.
The entire experiment lasted less than 5 s, as can be seen from
the time stamps attached to the snapshots.

Before 1.54 s, the two subjects moved in a safe direction
without the possibility of a collision. At 1.54 s, one person
changed direction and headed directly for the wheelchair. As
we can observe, MAid reacted to this new situation by reduc-
ing its velocity and turning right. At 3.1 s, the possibility of a
collision had disappeared, and MAid turned back to its initial
direction and accelerated to its previous velocity. At 4.14 s,
one person had already left MAid’s perceptual field when the
other person suddenly made a turn and headed directly for
MAid. Since this would have led to an immediate collision,
MAid reduced its velocity to zero and stopped. Half a second
later—the person had slowed down as well and turned right a
little—MAid accelerated again in a direction that allowed it
to finally pass the person.

6.2. Experiments in the Concourse of a Railway Station

After MAid had successfully passed a number of laboratory
experiments similar those described above, the time had come
to confront the real world. The real world was the concourse
of the central station in Ulm, a hall of approximately 25 × 40
m2. First test runs were conducted during the morning rush
hour. We thought that this would represent the worst scenario
MAid would ever have to face. In fact, after the arrival of a
commuter train, typically up to several hundred people moved
through the concourse within 2 or 3 min. We counted up to
150 people crossing the concourse within about 1 min. After 2
or 3 min, however, the concourse was practically empty again,
which did not leave us enough time to conduct experiments.
The railway station manager, who was observing our exper-

iments with great interest, finally told us that the ideal time
for our tests would have been Friday noon, which exhibits not
the densest but the most continuous passenger traffic in the
concourse. During the period between 11:00 a.m. and 1:30
p.m., in fact, typically several tens of people stay and move
around in the concourse, thus making it very suitable for the
navigation experiments.

To test MAid’s navigation performance, we let it cross the
concourse in arbitrary directions. MAid is put in motion by
pushing the joystick in the direction of the target location and
by entering a travel distance. The wheelchair then starts mov-
ing in the desired direction as long as no collision is imminent.
If a collision with an object or a person is impending, MAid,
while continuing its motion, determines a proper avoidance
maneuver and follows this new direction until it can turn back
and head again to the goal location. Snapshots of MAid’s test
runs in the crowded concourse are shown in Figure 12. The
passenger traffic in these images is moderately dense, which
actually facilitated the recording of the pictures. When the
passenger traffic became too dense, MAid occasionally sim-
ply stopped, and did what a human operator probably would
have done in that situation: it waited until the group of people
blocking its way had passed and then continued its journey.

MAid’s performance is demonstrated in the diagrams of
Figure 13, which shows the relations between some of the nav-
igation variables such as wheelchair velocity, relative veloc-
ity between wheelchair and nearest objects, and clearance be-
tween the wheelchair and the nearest object. Figure 13a shows
the wheelchair velocity plotted over the distance between the
wheelchair and the nearest object. The data in this diagram in-
dicate that with decreasing clearance, the wheelchair velocity
drops to zero. Similarly, the velocity increases as the distance
to the nearest approaching obstacle increases. It is impor-
tant to note that there is no unique causal relation between
the wheelchair velocity and the clearance between obstacles.
Rather, the wheelchair’s velocity depends on a number of
factors, such as object motion direction, object velocity, and
number of objects in MAid’s proximity. This explains the
variations in the data set. Note also that the distance to the
nearest object is measured with respect to MAid’s vertical
axis and not the boundary of the wheelchair.

An equivalent dependency is shown in Figure 13b. There,
the relative velocity between the wheelchair and the nearest
object is plotted against the distance between the two objects.
A negative value of the relative velocity means that the ob-
ject is approaching the wheelchair, whereas a positive value
means that the object is moving away from it. According
to the data, the velocity of the nearest object relative to the
wheelchair velocity decreases as the distance between the two
objects decreases. This dependency describes the combined
effect of motion planning and control algorithms, which re-
duces MAid’s velocity whenever an object approaches the
wheelchair. Note that this is not a unique causal correlation
either.
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Fig. 11. Lab experiment: MAid on a collision course with two approaching people.
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Fig. 12. MAid traveling in the concourse of a railway station.
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Fig. 13. Illustration of MAid’s performance in terms of wheelchair velocity and distance between the vehicle and the nearest
object.

In Figure 13c, we show the relation between the relative
velocity of the nearest object and the distance at which MAid
starts an evasive maneuver. The larger the relative velocity
of an approaching object, the sooner MAid initiates an avoid-
ance maneuver, whereas the slower an object is approaching
the wheelchair, the shorter is distance at which MAid starts to
get out of its way. Figure 13d shows MAid’s average velocity
plotted over the number of approaching objects. We can see
that MAid decreases its speed as the objects approaching on
a collision course increase.

During our experiments in the concourse, MAid collided
with objects several times. Usually, these objects were bags
or suitcases lying on the floor, invisible to MAid’s laser range

finder and sonar sensors. To discover small obstacles in front
of the wheelchair, we mounted two extra sonar sensors to the
footrests of the wheelchair.

So far, MAid has survived about 18 h of testing in the con-
course of the central station in Ulm, and we plan to continue
conducting experiments in this environment.

MAid was presented to a wider audience during the Han-
nover Messe ’98. The Hannover Messe is the largest indus-
trial fair in the world. In Hannover, MAid drove through
the exhibition halls for seven days between 2 and 3 h per
day at regular visiting hours. Altogether, MAid has success-
fully navigated in crowded, rapidly changing environments
for more than 36 h.
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7. Conclusion

In this paper, we presented the hardware and software de-
sign of the navigation system of our robotic wheelchair
MAid. This navigation system enables MAid to move through
crowded, rapidly changing environments, such as shopping
malls and concourses of railway stations or airports, and
through narrow, cluttered, partially unknown environments.
In this paper, we described only the first of these two capa-
bilities, which we denoted as WAN. Three components es-
sentially contribute to the capability to navigate in a wide,
crowded, rapidly changing area: an algorithm for motion de-
tection; an algorithm for motion tracking, prediction, and the
computation of potential collisions; and an algorithm for com-
puting the avoidance maneuvers.

The algorithms for motion detection and tracking use the
range data provided by a two-dimensional laser range finder.
This sensor was chosen to facilitate the real-time capability
of the tracking system. By using a laser range finger, our ap-
proach differs from the majority of known methods for motion
detection and tracking, which are based on visual information.

The time variation of the environment is captured by a se-
quence of temporal maps, which we call time stamp maps.
A time stamp map is the projection of a range image onto a
two-dimensional grid, whose cells coinciding with a specific
range value are assigned a time stamp. Based on this rep-
resentation, we have discussed simple algorithms for motion
detection and motion tracking, respectively. One complete
cycle involving both motion detection and tracking takes ap-
proximately 6 ms. Our algorithms for motion detection and
tracking do not presuppose the existence of kinematic and dy-
namic models of purposive human locomotion. Those models
are not available in an environment such as a concourse of a
railway station. With a cycle time of 6 ms for motion detec-
tion and tracking, however, our approach is definitely “quick”
and ensures the required real-time capability.

The avoidance maneuvers are computed using the velocity
obstacle approach, which allows the fast computation of the
wheelchair velocity avoiding all static and moving obstacles.
To take into account the environment uncertainty, an avoid-
ance maneuver is computed at each sampling time, thus mod-
ifying in real time the nominal trajectory of the wheelchair.
The complete trajectory to the goal is then computed incre-
mentally by selecting the avoidance velocities according to
appropriate heuristics. The most commonly used heuristic
has been to select an avoidance velocity in the general direc-
tion of the goal and to ensure that the wheelchair does not
stray too far from its nominal trajectory and can reacquire its
original goal after obstacle avoidance.
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