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Abstract— In order to allow severely disabled people who
cannot move their arms and legs to steer an automated
wheelchair, this work proposes the combination of a non-
invasive EEG-based human-robot interface and an autonomous
navigation system that safely executes the issued commands.
The robust classification of steady-state visual evoked potentials
in brain activity allows for the seamless projection of qualitative
directional navigation commands onto a frequently updated
route graph representation of the environment. The deduced
metrical target locations are navigated to by the application of
an extended version of the well-established Nearness Diagram
Navigation method. The applicability of the system proposed
is demonstrated by a real-world pilot study in which eight out
of nine untrained subjects successfully navigated an automated
wheelchair, requiring only some ten minutes of preparation.

I. INTRODUCTION

People who are severely disabled, quadriplegics in par-

ticular, may not be able to comfortably control an electric

wheelchair and are thus confined to a push-chair, relying on

external help. Here, the research area of human-robot inter-

action (HRI) can help by providing sophisticated interface

techniques. General literature overviews [1], [2] list at least

45 research projects that aim at the development of smart

wheelchairs. Many of these projects support specialized input

methods that allow the paraplegic to control his or her

vehicle without a standard joystick. Common approaches

are Natural Language Communication [3], [4], Head Posture

Interpretation [5], [6], and recently the application of Brain-

Computer Interfaces (BCI).

A BCI system analyzes specific patterns in the user’s

brain activity and translates them into commands to control

soft- or hardware devices [7]. The principal goal of BCI

research is to provide severely disabled people a form of

communication which varies from spelling applications [8],

[9] to complex rehabilitation systems [10], or prostheses [11].

Navigating a wheelchair with the help of a BCI is a recently
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Fig. 1. A person wearing an EEG-cap and navigating the Bremen
Autonomous Wheelchair Rolland. The system comprises the wheelchair’s
sensorial equipment, an LED-panel generating the visual stimuli, an EEG-
Cap connected to a medical signal amplifier, and a processing laptop.

grown area in the BCI community. Starting from the idea of

manipulating smart environments [12], a person can move a

wheelchair to a predefined goal position by using a BCI [13].

But also a low-level navigation of a wheelchair is possible

with a limited number of commands [14]. The connection of

an SSVEP (steady-state visual evoked potential) based BCI

that supports many more commands (13 commands reported

in [15]) to a wheelchair has not yet been demonstrated.

This work describes the control of the Bremen Autonomous

Wheelchair Rolland using the SSVEP-based BremenBCI.

The remainder of the paper is structured as follows:

Section II gives an overview of the system’s components,

including the hardware modules and the software modules

involved. Section III continues with the physiological back-

ground of steady-state visual evoked potentials and the EEG

signal processing structure to handle nuisance components

in EEG data and to classify the desired frequency. Section

IV follows with a presentation of the Voronoi graph as the

fundamental spatial representation for describing the environ-

ment and its embedded navigable paths. Afterwards, Sections

V and VI illustrate the path selection scheme applied as well

as the extended version of the Nearness Diagram Navigation

approach employed. Finally, Section VII presents the results

and a discussion of an experimental pilot study that supports

the essential ideas of this work.

II. SYSTEM OVERVIEW

With an electrical wheelchair that comprises autonomous

navigation capabilities, and an EEG-based HRI that interprets



SSVEPs, this work introduces a complete navigation solution

for the paraplegic.

A. The Wheelchair

Serving as the experimental platform, the Bremen Au-

tonomous Wheelchair Rolland (cf. Fig. 1) is based on the

battery-powered wheelchair Meyra Champ 1.594. Rolland

has a differential drive in the back and passive castor wheels

in the front. It is equipped with two laser range finders

that sense nearby obstacles in a height of about 12cm.

The system also provides two incremental encoders which

measure the rotational velocities of the two independently

actuated rear wheels, allowing for odometric pose estima-

tions. The software architecture used to control Rolland is

based on the framework of the GermanTeam [16]. In its

version for Rolland, the system embeds all navigational

software modules necessary, ranging from the acquisition and

maintenance of local and global spatial representations, to

high-level path selection, and low-level obstacle avoidance.

B. The Safety Layer

Since the navigation method employed (cf. Section VI) is

heuristic in nature, it cannot guarantee collision-free motion.

Hence, the wheelchair is equipped with a safety layer that

ensures that the vehicle will stop in time before a collision

can occur. 30 times per second, the safety layer makes a

binary decision. Either the current driving command is safe,

and it can be sent to the wheelchair, or it is not, and the

wheelchair has to stop instead. “Safe” means that if a stop

command would be initiated in the next processing cycle

(i.e. 33 ms later), the wheelchair would still be able to

stop without a collision. Otherwise, it has to be stopped

in this cycle, because in the next cycle it would be too

late. Whether the wheelchair can stop in time depends on

the actual speeds of the two drive wheels and the current

drive command, because it will influence the current speeds

in the future, the shape of the wheelchair, and its current

surroundings. The surroundings are measured using the laser

scanners and a model of the environment is maintained in

a local obstacle map (cf. Section IV), treating stationary

and moving obstacles as equal. Based on the current speeds

and the commanded speeds, a safety area is searched for

obstacles in the map. If the safety area is free of obstacles,

the current driving command is safe. Since the shape of such

a safety area is rather complex, a large number of safety areas

were pre-computed and stored in a lookup table. Two such

safety areas are shown in Fig. 3 (the wheelchair turns to the

left) and in Fig. 4(b) (the wheelchair drives straight ahead).

C. The BCI System

The stimulus for the SSVEP-based BremenBCI is imple-

mented as an LED-panel of four different diodes oscillat-

ing with different frequencies. These diodes relate to the

commands chosen to navigate the wheelchair (13 Hz = left,

14 Hz = right, 15 Hz = front and 16 Hz = back). A given

command is not interpreted as an ongoing movement waiting

for a stop command, i.e. the wheelchair stops itself after

Fig. 2. Typical SSVEP response of an EEG signal acquired during visual
stimulation with a flickering frequency of 9 Hz. High peaks at the stimulus
frequency and two harmonics are observable in the spectral density of the
frequency spectrum.

reaching a nearby target position. Therefore and because of

the safety layer, an explicit stop command is not required.

The software structure of the BCI corresponds to the usual

signal processing structure of data acquisition, preprocessing,

feature extraction, classification, and application interface.

For data acquisition, an electroencephalography (EEG) cap

with non-invasive electrodes placed on the scalp is used. The

signal is amplified with a gUSBamp biosignal amplifier from

g.tec already equipped with an analog-to-digital converter.

The TCP/IP protocol is used as the application interface.

III. STEADY-STATE VISUAL EVOKED POTENTIALS

Electrical potential changes in brain activity due to an

external stimulus are known as evoked potentials (EP) and

can be observed in the sensor cortex of the brain. Steady-state

visual evoked potentials (SSVEP) are periodic components

of the same frequency as a continuously blinking visual

stimulus (higher than 4 Hz), as well as a number of harmonic

frequencies that can be obtained in brain activity in the visual

cortex, when a person is focusing on that stimulus [17], [18].

The SSVEP response can be detected quite robustly, because

its characteristic varies from spontaneous brain activity. The

strongest response is measurable for stimulation frequencies

in the range of 5 - 20 Hz [19]. Figure 2 shows a typical

SSVEP response in the visual cortex for a test person focus-

ing on a flickering stimulus of 9 Hz. Peaks at the fundamental

frequency as well as two harmonics are observable.

A. Combining Electrode Signals into Channel Signals

We consider visual stimulation with a flicker frequency of

fHz. If a person is focusing attention on that stimulus, the

SSVEP response in the EEG signal measured as the voltage

between a reference electrode and the electrode number i
can be estimated as:

yi(t) =

k=Nh
∑

k=1

(ai,ksin(2πkft + Φi,k)) + b(t) (1)

where 0 ≤ t < TS, b describes the noise, TS is the time

segment, Nh is a number of harmonics. Each sinusoid on

each electrode has its own amplitude (ai,k) and phase (Φi,k).

The nuisance signals b can have several origins: the

environment and its effect on the subject, a natural physical



disturbance such as other brain processes, and noise of each

electrode on the cap. Therefore, one goal is to magnify the

SSVEP response and to decrease the noise to improve the

detection of the desired frequency.

A channel s is used as a linear combination of the signals

measured by the Ny electrodes. With 0 ≤ l < Ns and Ns is

the number of channels, s is defined by:

sl(t) =

Ny
∑

i=1

wi,lyi(t) (2)

For a channel, the information from the electrodes is resumed

in a single scalar at a time t. For the EEG signal processing,

the first goal is to find an optimal set wi,l, 1 ≤ i < Ny .

For the creation of a single or several channel signals, the

minimum energy combination [20] is used in this paper. This

method allows the combination not only of pairs or groups

of electrodes but also of an arbitrary number of electrodes

that cancel the noise as much as possible. The advantage of

this method is that the number of electrodes does not need to

be chosen beforehand. Its good performance was validated

in different applications [21], [22].

B. Feature Extraction and Frequency Classification

For the detection of the stimulus frequencies in the ac-

quired data, the total power P̂ at the SSVEP frequency is

estimated. SSVEP stimulation frequencies and its harmonics

do not always coincide with the Discrete Fourier Transform

(DFT). Therefore, slightly different to the squared DFT mag-

nitude, a more general formula that can estimate the power in

any frequency is taken into account for estimating the power

in the kth SSVEP harmonic frequency in the lth channel

signal sl. With Xk is an SSVEP model (excluding the noise)

for each harmonic frequency according to equation 1, the

power is estimated to:

P̂k,l = ‖XT
k sl‖

2 (3)

After the power of each stimulus frequency is calculated

in the acquired brain activity, we use a linear classifier to

classify the frequency the subject is focusing on. To consider

a stimulus frequency as the desired one and therefore to

generate a new command, the corresponding power of that

frequency has to exceed a threshold. If more than one power

exceeds the threshold, the frequency with the highest power

is classified.

IV. REPRESENTING SPATIAL ENVIRONMENTS:

ROUTE GRAPHS

The basic representation of the environment, the so-called

evidence grid [23], is a two-dimensional array of cells each

of which stores the evidence that the corresponding location

in the environment is occupied by an obstacle. The current

implementation maintains a 7.5×7.5m2 grid out of 300×300
cells resulting in a spatial resolution of 2.5 × 2.5cm2. In

definition (4) EGC(x, y) = 0 denotes a surely unoccupied,

and EGC(x, y) = 1 a surely occupied cell respectively.

EGC : N × N → [0...1] (4)

The so-called distance grid is derived from the evidence grid

and contains the distance to the closest obstacle for each cell.

It is calculated by a fast double sweep-line algorithm [24]

that computes for each free cell the metric distance to the

next occupied cell. Formally it consists of cells as defined

in (5), where c is the resolution of the grid, i.e. 2.5cm.

DGC : N × N → R

DGC(x, y) = min
x′,y′:EGC(x′,y′)>0.5

c

∣

∣

∣

∣

(

x − x′

y − y′

)
∣

∣

∣

∣

(5)

The final stride in the line of spatial representations is an

instantiation of the route graph concept [25], [26]. A route

graph is a multi-layered and graph-structured representation

of the environment in which each graph layer describes the

workspace on a different level of abstraction. For this work

the route graph comprises a single graph layer, the so-called

Voronoi graph VG (7). Its construction is directly based on

the distance grid. In a first step, the algorithm computes

for every DGC(x, y) whether the distance between two of

its generating points, e.g. the occupied cells EGC(x′, y′)
and EGC(x′′, y′′) that gave DGC(x, y) its value, is greater

than a given threshold ǫ. In the formal definition of the

resulting Voronoi diagram V D (6), the constant value ǫ
determines the minimal free space that is required to mark a

region as navigable. We use ǫ = 70cm, i.e. the wheelchair’s

maximal width plus 6cm. Note that the evidence grid, the

distance grid, and the voronoi diagram are updated at the

same frequency as the safety layer, i.e. every 33ms.

V D |=












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dx,y
x′,y′ = dx,y

x′′,y′′ = DGC(x, y)


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




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where dx,y
x′,y′ = c
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∣

∣

∣
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x − x′

y − y′

)
∣

∣

∣

∣

(6)

The second step searches the Voronoi diagram V D for

elements that hold one or more than two neighbors in

V D. These cells correspond to terminating or branching

nodes respectively, and they are inserted into the Voronoi

graph’s set of nodes VG.N . The Voronoi graph’s set of edges

comprises pairs of references to elements in VG.N that are

connected by points out of V D.

N ⊂ {(x, y) | x, y ∈ R}
E ⊂ {(ns, ng) | ns, ng ∈ N, ns 6= ng}
VG |= (N, E)

(7)

V. INTERPRETING QUALITATIVE NAVIGATION

COMMANDS ON ROUTE GRAPHS

The interpretation of a qualitative driving command such

as go left basically asks for an adequate projection of the

given direction onto the spatial knowledge of the robot. As a

primary source of information, this work applies the Voronoi

graph VG for the extraction of the set of navigable paths

NP (8). In a second step, each path np ∈ NP is evaluated

against the command given, resulting in the best matching

path to be forwarded to the local navigation module.



Fig. 3. Assuming a given command BCIcmd = right, represented as the
vector from on to cmd, the algorithm for the interpretation of qualitative
navigation commands (cf. Section V for details) basically evaluates the angle
between the vectors | cmd − on | and | npj − on |.

NP ⊂















np = (e1, ..., ei)

∣

∣

∣

∣

∣

∣

∣

∣

i ∈ N,
e1, ..., ei ∈ E,
ei.ng = ei+1.ns∧
ei.ng 6= ej .ns∀i ≥ j















(8)

In order to derive the set of navigable paths NP from a given

Voronoi graph VG, its set of nodes VG.N is first enriched

by the node on, representing the current odometry position.

Furthermore, VG.E is augmented by edges that connect on
with all nodes lying in a given circumference of on.

The computation of NP continues by applying an A*-

algorithm [27] that searches VG for all paths that connect on
to all other nodes in VG.N , i.e. all possible target positions.

The resulting set of paths NP is then filtered for paths the

goal of which is not included as an interim node of any other

path in NP , with the only exception of paths ending in a

branching node with more than two incoming edges. This

process leaves NP holding only paths that lead to spatially

emphasized target nodes, however covering all in-between

goals by the way.

Evaluating each of the navigable paths in NP against a

qualitative directional command is a special case of the inter-

pretation of common spatial relations against a given route

graph. First described in the context of interpreting coarse

verbal route descriptions [4], a qualitative directional com-

mand can be given in four different levels of granularity. Due

to the limited set of available channels coming from the BCI,

i.e. four, we apply a four-valued directional system holding

the commands BCIcmd ∈ {front, right, back, left}.

α = atan2

(

npj .ei.n
g.y − on.y,

npj .ei.n
g.x − on.x

)

| j ∈ {1... |NP |}

β =















0 : BCIcmd = front
3
2π : BCIcmd = right
π : BCIcmd = back
π
2 : BCIcmd = left

score(npj) = e−
1

2 (
|α−β|

c )
2

(9)

The final computation of a single path’s score is done in

two steps. We start by computing the angle α between i) the

vector that connects the odometry node on with the goal node

npj .ei.n
g , and ii) the vector that is based in on and aligned

to the current heading θ of the wheelchair. Taking the most

compatible angle β for the given command BCIcmd, which

is right = 3/2π in the illustrative example in Fig. 3, and the

normalizing constant c, we can now compute score(npj) as

can be seen in (9). With the straightforward maximization of

score(npj) over all j ∈ {1... |NP |} the algorithm outputs

the best matching path, the final node of which is to be

forwarded to the local navigation module.

An alternative path selection scheme has been used in [28].

The principle idea is to iterate over the ordered sequence

of each navigable path’s edges, and to assess the angles

between all pairs of consecutive sections. In the case of

evaluating a BCIcmd = front, a single path’s score is

formulated as the product over all intermediate scores that

state how good two consecutive edges are aligned to each

other. The treatment of commands that introduce a bending

maneuver, e.g. BCIcmd = right, is different because of

the additional necessity to choose the best suiting node of a

given path for the triggering directional command. The actual

approach iterates over all nodes of a path to be evaluated,

and calculates for each possible branching node the path’s

score as the product of scores that arise from the evaluation

of BCIcmd = front between all pairs of consecutive edges.

The only exception is given by the two sections connected

to the selected branching node, where the score’s factor is

determined by the assessment of the angle between the two

edges w.r.t. the given command.

VI. LOCAL NAVIGATION APPROACH:

NEARNESS DIAGRAM NAVIGATION

Within this work we employ the Nearness Diagram Nav-

igation (NDN) approach by Minguez et al. [29], in order to

transfer Rolland from its current position to a nearby target

position, while avoiding static and dynamic obstacles. The

NDN-approach describes the sensor measurements of the

visible part of the environment along with the desired target

position pg = (xg, yg) as a unique element of an exclusive

and complete set of situations. Each of the five situations

originally defined is associated with a specific control law

that determines the translational and rotational speed to be

applied, as well as the desired direction of movement. In

order to define a situation, the workspace is divided into

sectors centered at the wheelchair’s origin. By maintaining

a list of distances to the closest obstacles1 in each of the

typically 2◦ wide sectors, i.e. the nearness diagram (cf. Fig.

4(a)), the system is able to compute free regions in-between

two consecutive gaps of the nearness diagram. Finally, a

navigable region closest to the goal location is selected.

1Actually the NDN-approach not only maintains a list of distances
between the surrounding obstacles and the robot’s bounding-polygon, but
also a list of distances between obstacles and the so-called safety-zone.
The safety-zone itself is defined by the bounding-polygon plus the constant
safety margin Ds.



TABLE I

BASIC NEARNESS DIAGRAM CONTROL LAWS AND SHEER OUT EXTENSIONS

Situation Direction Of Movement sθ Sheer Out Extensions sθ′ Translational Speed v Rotational Speed ω

HSGR sgoal sclosergap ± smax

HSWR sgoal ±
smax

2
– vmax

π−2|θ|
π

HSNR
srd+sod

2
sclosergap ± smax

LS1 sgoal ±
( smax

2
+ γ

)

sml ± ssafedriveby ωmax
2θ
π

where γ = Ds−Dsml
Ds

| (π + sml)− | srd − smax
2

||

LS2

{

smed1 ± c if | srd − smed1 |<| srd − smed2 |
smed2 ± c if | srd − smed1 |≥| srd − smed2 |

sml ± ssafedriveby vmax
Dobs
Ds

π−2|θ|
π

where smed1 = sml+smr

2
,smed2 = sml+smr+n

2

sθ |= ND-sector containing the desired direction of movement. sml/mr |= ND-sector containing next obstacle left/right of srd.

sgoal |= ND-sector containing the target pg . sclosergap |= ND-sector containing the closer border of the free
smax|= Minimal width of a wide region in number of ND-sectors. walking area, i.e. srd or sod.
srd |= ND-sector with rising discontinuity, i.e. border of the free walking ssafedriveby |= ND-sector maintaining the minimal tolerable distance

area containing an obstacle that violates the safety-zone. to the next obstacle while describing the maximal
sod |= ND-sector containing the other border of the free walking area. sheer out direction.
Ds |= Safety margin between wheelchair’s bounding-polygon and safety-zone. n |= Total number of ND-sectors.

Dsml|= Distance to obstacle in ND-sector sml that triggered LS1/LS2-situation. θ |= Direction of movement (θ = π − 2π
sθ
n

).

This so-called free walking area along with its determining

obstacles define a specific situation.

In the following we will informally survey necessary

conditions for the five basic situations (cf. [30] for a broad

analysis). Abbreviations, constant- and variable declarations,

as well as the resulting control laws can be found in Table I.

• High Safety Goal in Region – The free walking area

contains sgoal. The closest obstacle to the bounding-

polygon does not conflict with the safety-zone.

• High Safety Wide Region – The free walking area does

not contain sgoal. The closest obstacle to the bounding-

polygon does not conflict with safety-zone. The width

of free walking area exceeds smax.

• High Safety Narrow Region – The free walking area

does not contain sgoal. The closest obstacle to the

bounding-polygon does not conflict with safety-zone.

The width of free walking area is below smax.

• Low Safety 1 – An obstacle conflicts with the safety-

zone at the border of the free walking area closest to

sgoal.

• Low Safety 2 – Obstacles conflict with the safety-zone

at both sides of the free walking area.

Since Rolland is an example for a non-circularly shaped

mobile robot that cannot independently control its kinematic

degrees of freedom, i.e. its x- and y-position and its heading

θ, the application of the basic NDN-approach has a major

drawback. Although sufficient for circular robots being able

to turn around their midpoint while entering a narrow pas-

sage, the NDN-approach does not model a necessary sheer

out movement, needed by vehicles that turn around a point

located on their rear axle.

For this reason we have augmented the basic NDN control

laws in such a way that they look ahead for upcoming turn

maneuvers and initiate a preparatory sheer out movement

when necessary (cf. [31] for an in-depth discussion). The

most significant advancement is the algorithmic analysis of

situations HSGR, HSNR, LS1, and LS2 w.r.t. the effective

width ew, and the perspective width pw of the free walking

area (cf. Fig. 4(b) for an example). The situations mentioned

are checked for a sufficient width of ew and pw, indicating

whether or not a sheer out movement has to be initiated. If

necessary, the original direction of movement sθ is replaced

by sθ′ , resulting in a temporary circular navigation around

srd (cf. Table I for the sheer out control laws).

VII. EXPERIMENTAL EVALUATION

A. Subjects and Procedure

Nine healthy subjects, between 19 and 38 years old

(mean = 26.67), participated in this study. The subjects had

different levels of experience in BCI studies. Some of them

took already part in earlier BCI studies, while some of

them were naive. But none of the subjects had experience

in controlling the wheelchair Rolland with or without the

BremenBCI. All subjects completed a consent form and a

screening questionaire and would have been rejected if they

ever had a seizure, epilepsy, mental or physical disorders or

skin contact allergies. Table II shows the subjects in terms

of age, gender, vision, and experience level in BCI studies.

The SSVEP response in the subject’s brain activity was

non-invasively acquired with an EEG-cap. The electrodes for

data acquisition were placed at sites PO3, PO4, O9, O10,

Oz and Pz using the extended 10-20 system of electrode

placement [32] with Cz as reference and AFz as ground. The

data was sampled with a sampling frequency Fs = 128Hz.

After placing the electrodes, the subject obtained the task

to randomly focus attention on each stimulus frequency of

the LED panel described in Section II. During this initial

task, the threshold for classification of the desired frequency

was set individually for each subject. The wheelchair was

not moving during the calibration step. Afterwards, a short

training phase started. The subject had up to 10 minutes to

train the stimulus frequencies and their corresponding com-

mands to navigate the wheelchair, and to become comfort-



(a) Nearness diagram representation of the environment (cf. Sec-
tion VI) describing the distances to the closest obstacles.

(b) Evidence grid representation of the environment (cf. Sec-
tion IV) along with a centered and upward facing bounding-
polygon of the wheelchair. The target pg is depicted as a circle.

Fig. 4. Illustration of Nearness Diagram Navigation within a simulated
environment. Sod and Srd denote the left and right border of the free
walking area (cf. Section VI), while sgoal and θ describe the direction to
the local target pg and the current orientation of the wheelchair respectively.

able with the behavior of the wheelchair when a command

was classified. After training, the subject had to navigate

the wheelchair Rolland through a course of obstacles. The

navigation was expected to be performed in a figure of eight

as shown in Fig. 5(a) - 5(b). Starting at position S = (0, 0),
the subject had to navigate the wheelchair clockwise around

the right obstacle first and then counter-clockwise around the

left obstacle. The run ended when the wheelchair reached

a point nearby the start position, after navigating through

the entire course. Each session consists of up to four runs

(depending on the subject).

B. Experimental Setup

In order to compare and evaluate the results of the different

experimental runs, a common frame of reference is needed.

In our case, this is a global map of the environment, and the

ability to localize the wheelchair at any point in time within

the map. For creating the map (shown in Fig. 5(a) - 5(b)), we

used the GMapping implementation from OpenSLAM [33].

It is a highly efficient Rao-Blackwellized particle filer that

learns grid maps from raw laser range and odometry data

[34]. The grid map used for our experiments has a cell size

of 2×2cm2 and a total size 14×10m2. Real-time localization

during the experimental runs has been realized by a modified

version of the GMapping implementation. While leaving the

map data untouched, a small number of particles keep track

TABLE II

SUBJECT INFORMATION

Subject Gender Age Vision Exp. level

S1 female 26 OK 2
S2 male 38 glasses 1
S3 female 20 OK 0
S4 female 19 OK 0
S5 male 22 OK 0
S6 male 31 OK 0
S7 male 28 OK 2
S8 male 27 OK 2
S9 female 29 OK 1

Experience level:
0 |= Naive in BCI studies
1 |= Participated in a few earlier BCI studies (up to 3)
2 |= Participated in several earlier BCI studies (more than 3)

TABLE III

BCI ACCURACY DURING TRAINING PHASE AND RESULTS OF RUN

Training Runs
Subject

Accur. [%] Commands Accur. [%] Best time [min]

S1 100.00 14.5 100.00 3:37
S2 96.30 20.0 90.16 2:44
S3 100.00 16.0 100.00 4:31
S4 94.45 16.0 94.74 3:10
S5 98.81 18.5 94.12 2:46
S6 15.18 - - -
S7 93.61 16.7 98.61 3:48
S8 100.00 19.0 100.00 9:36
S9 95.46 16.3 91.67 2:28

of the wheelchair’s position.

C. Results

Table III shows the results of the experiment for all nine

subjects. The classification accuracy of the BCI during the

training phase is given as well as the average number of

commands and the average classification accuracy during

the runs. Also, the best time for navigating Rolland through

the course is provided. Eight of nine subjects were able to

navigate the wheelchair in a figure of eight.

The results were achieved using a segment length of 2s
of acquired EEG-data to extract the SSVEP features and to

classify the desired frequency. The feature extraction and

classification step of the BCI was done every 0.1s. To avoid

that the same frequency is classified over and over again,

because of the short time between two classifications, an idle

period of 2s is considered during the signal processing of the

EEG-data, i.e., after classification of a frequency, the earliest

next classification of a frequency can be done after the idle

period. Thus the subject got enough time to stop focusing

attention to that stimulus. For calculation of the classification

accuracy, only appropriate commands to fulfill the given task

were considered as true positive classifications. To minimize

the chance of false positive classifications, the behavior of

the power in the corresponding frequency was observed in

a range of 0.5s before and 0.5s after the classification of

a command. If the power showed a significant behavior

(i.e. continuous increase and decrease) over that period, that
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Fig. 5. Exemplary plots of trajectories as driven by two test persons within the scope of our pilot study. The experimental setup (cf. Section VII) asked
nine subjects to drive a figure of eight within the depicted environment, starting with a clockwise movement from position S = (0, 0), and finishing with a
counter-clockwise movement nearby S. The paths printed as solid lines are given by an estimation of the GMapping localizer (cf. Subsection VII-B), and
annotated by arrows based at the position of the wheelchair when receiving a new qualitative directional command coming from the BCI. The commands
received are indicated by bold letters (S=straight ahead, R=right, B=backwards, L=left). Please note that arrowheads describe the resulting local navigation
targets (cf. Section V) in odometry-coordinates.

command is considered as a true positive classification.

D. Discussion & Conclusion

During the training phase, eight of nine subjects showed

good classification results of the desired frequency. The mini-

mum classification accuracy was 93.61% (subject S7) during

wheelchair movement. It seems that a stressful situation

(subject is sitting in a moving wheelchair) does not affect the

SSVEP response of that subject significantly. The range of

the classification accuracy during the navigation task is quite

similar to that during the training phase. For eight subjects,

classification errors were mainly characterized as too many

classifications of the same frequency the subject is attending

to. An explanation is that some subjects showed a very high

SSVEP response for the stimulus frequencies. If the signal

processing analyzes the recent 2s of the acquired data every

0.1s, the power calculated is even quite high for some classi-

fication steps after the subject stopped focusing attention to

the stimulus, because of the high SSVEP response. In future

experiments, this can be avoided by using individual idle

periods for subjects with high power in the stimulus frequen-

cies over a long time, or by using shorter segment lengths

(but this typically affects the classification accuracy more

significantly). Only for a single subject (subject S6), the BCI

was not able to classify the desired frequency accurately. But

this corresponds to the percentage of BCI illiteracy reported

in [35]. Another important issue is that all subjects, for who

an SSVEP response could be obtained accurately, were able

to navigate the wheelchair quite well after a minimal training

phase (not more than 10 minutes) independent of their level

of experience in BCI experiments. Those subjects were even

able to correct wrong interpretations of a given command.

From the perspective of navigation, a major issue is the

desired correspondence between the calculated, and the user-

intended target position. Although general results indicate

good performance of the algorithms involved, there exist

situations in which the approach selected returns inadequate

solutions. Considering the estimated positions of some com-

mands given at locations that are marked by a solid circle

in Fig. 5(a) - 5(b), it becomes obvious that the interpretation

of the corresponding commands is not intuitive here. This

behavior is due to the leading path-selection mechanism

described in Section V that favors paths the final nodes of

which fit closely to the commanded direction. When the

Voronoi graph now includes paths that lead to currently

unobservable but still mapped regions, targets may be chosen

that do not correspond to the user’s anticipation. With the

path-selection scheme described in second place in Sec-

tion V, the described problems vanish. The critical drawback

that leaves this approach to work only under a perfect world

assumption is that it is highly prone to topological changes

in the Voronoi graph, as induced by sensor noise.

A second situation in which the navigational approach

applied did not answer the expectations of the volunteers

is exemplarily highlighted in Fig. 5(b) by a dashed circle

around the place of a given BCI-command. The depicted

case is designated by a target position that is located at

the border to a region that was unobserved at the time of

computation. While approaching the selected target, new

sensor measurements revealed it to be located completely

on the border to an occupied region. A following stop

maneuver that was initiated by the downstream NDN module

irritated the participant of the study, i.e. he/she had to give

a new command shortly after the aborted one. Although this

behavior does not meet everyday usability requirements, our

current approach of canceling a target request by the NDN

module, because of an appearing obstacle that blocks the

goal location, seems justified. As a reason for this we refer



to the reduced complexity of interactions between the path

selecting and executing modules.
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[10] T. Lüth, D. Ojdanic, O. Friman, O. Prenzel, and A. Gräser, “Low level
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