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Navigation is the process of directing the movements of a ship or aircraft form one point to another. 
Both art and science are involved in conducting a ship safely to its destination. 

 (Dunlap, 1975) 
 
 

1. Introduction     

Autonomous Underwater Vehicles (AUVs) are powerful tools for exploring, investigating 

and managing our ocean resources. As the capabilities of these platforms continue to 

expand and they continue to mature as operational assets, navigation remains a 

fundamental technological component.  

This chapter presents a road map for the vehicle designer to aid in integrating the latest 

navigation methods into new platforms for science, industry and military platforms. Along 

the way, we point to emerging needs where new research can lead directly to an expansion 

of the operational abilities of these powerful tools.  To accomplish this we start by 

describing the problem, explaining the needs of vehicle users and the challenges of 

autonomous localization. Next we explain the state of practice, how operational assets 

currently solve this difficult problem. To expand this explanation we present new research 

targeted at helping AUV builders to make the complex tradeoffs in creating a platform with 

the appropriate navigation solution.  We conclude with an overview of the latest research 

and how these advances might soon become available for AUV operations in new 

environments such as the littoral zone, at the poles and under-ice.  Throughout this chapter 

we attempt to reach across the disciplinary boundaries that separate the researcher from the 

operator. 

2. Motivation 

2.1 The challenge of autonomous underwater navigation 
Navigating an AUV presents unique challenges to the researcher and the practitioner.  One 

way to understand the particularities of this challenge is to consider two important facets of 

AUV operations: the marine environment and desired results.   

The ocean environment presents both challenges and opportunities for autonomous 

navigation.  The challenges are well documented: seawater is opaque to electromagnetic 

signals making Global Positioning System (GPS) solutions infeasible; acoustic communication O
pe
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is limited in bandwidth, scale and reliability (Catipovic, 1990) and the ocean environment is 

observationally limited and ever-changing.   

On the other hand the deep-sea environment can be an ideal place for autonomous vehicle 

operations.  The unstructured environment can be structured by the addition of acoustic 

transponders moored to the seafloor or through close communication with a surface ship.  

Either method provides an absolute position reference which decreases the demands on 

real-time perception and decision making. Also, deep-water can be one of the most 

forgiving acoustic environments because of the homogeneous and stable sounds speed 

structure and low ambient noise.  

The opportunity for novel observation counterbalances these operational difficulties.  We 

have better maps of Mars, Venus and the Moon that we have of the Earth’s ocean, creating a 

great potential to advance our observational capability through technology.   

2.2 Creating new data products 
Typically a gap between the needs of the AUV user and the capabilities of the navigation 

solution.  The user is often not directly interested in the navigation, but instead is focused on 

producing a data product, an gestalt representation of the underwater environment.  The 

vehicle designer should incorporate the right navigation instruments and the right data 

processing to provide a navigation solution appropriate for the desired data product.  This 

perspective, having the requirements of the data product drive the design decisions, leads to 

closing the gap illustrated in Fig. 2. 
 
 

 

Fig. 1. Illustration of how vehicle design decisions are driven by the needs of the application 
(the desired data product) and the capabilities of the navigation sensors and algorithms. 

It is only a slight over simplification to consider the resolution of any observation to be directly 

proportional to the navigation precision. Fig. 2 shows a common situation to illustrate this 

notion.  In this case the data products are a photomosaic and a small-scale bathymetry map, 

both shown in the figure. The remotely operated vehicle (ROV) JASON is shown as it surveys 

the seafloor. Navigation allows all the measurements (e.g., sonar bathymetry) and 

observations (e.g., optical images) to be placed in a common coordinate system. How well we 

can resolve two disparate data sources, i.e., the resolution of our data product, depends on the 

uncertainty in our navigation. Summarized another way, the spatial size of each “pixel” in our 

final image is fundametnally limited to the uncertainty in our navigation solution. 
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Fig. 2. Illustration of the concept of co-registered data.  The ROV JASON is shown 
performing a survey collecting optical images and bathymetry data.  Range-based 
navigation provides a common coordinate system. Component images are courtesy of the 
Deep Submergence Lab (DSL) at the Woods Hole Oceanographic Institution. 

3. State of practice 

AUV operations require a reliable navigation solution. Methods currently in operation on 
autonomous platforms are simple and robust. These real-world solutions typically make use 
of just a few key sensors:  

• GPS receivers to measure position at the surface 

• Long baseline transponders to measure the distance from the AUV to transponders in 
known locations. 

• Doppler velocity logs to measure velocity relative to the bottom, supported by attitude 
and heading measurements 

These sensors are dedicated navigation sensors, distinct from the remote sensing payload 
sensors which collect measurements which are not processed for real-time perception.  
These relatively simple sensing modalities, configured and combined in a variety of 
interesting ways, have proven to provide a variety of solutions that are robust to the 
complexities of the ocean environment.   

3.1 An example 
It is informative to consider a particular example.  This example, like the data shown in Fig. 
2, is taken from work with the JASON ROV system from the Deep Submergence Lab at 
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Woods Hole Oceanographic.  The ROV is instrumented with a combination that has become 
standard in AUV and ROV applications: absolute positioning using LBL transponders and 
seafloor odometry from a DVL and heading reference. 
To understand the tradeoffs in designing an appropriate navigation system it is useful to 
contrast modalities that exhibit unbounded error growth with those that have bounded 
error. Fig. 3 illustrates this contrast. The dead-reckoning solution provided by the DVL 
alone is shown to drift over time; the error growth is unbounded. In Fig. 3  the DVL track 
begins at the origin (shown in the figure as a large “X”) and then diverges from the absolute 
reference provided by the LBL reference. In what follows we show how quantitative models 
of this error accumulation can be used to improve design and operation. 
 

 

Fig. 3. Three navigation tracks from the ROV Jason, lowering #230.  The “DVL” track shows 
the dead-reckoning resulting from the DVL odometry alone.  The “Exact LBL” track shows 
the standalone LBL solution.  The “EKF Estimate” track shows the combination of both the 
DVL and LBL information using an extended Kalman filter framework.  All tracks are 
started at the “Origin”.  The tracklines were executed over 3.5 hours at an average depth of 
2,265 m. 

The LBL position solution complements the DVL dead-reckoning.  Returning to Fig. 3  we 
see that the Exact LBL provides a solution with bounded uncertainty, but with a high degree 
of random errors or noise. We can see outliers (shown by widely spaced data points) and 
zones where no LBL is returns are received (eg., the Exact LBL track dissappears in the 
northwest corner of the figure). A particularly insidious form of error is the consistent, but 
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off-set position solutions shown in the southwest section of the survey.  This type of error 
can be difficult to filter autonomously. 
Finally, to illustrate the possibility of leveraging the complementary nature of the two 
navigation tracks, we show the results of an extended Kalman filter (EKF) estimator.  This 
track uses absolute positioning from the LBL source to constrain the unbounded uncertainty 
in the DVL dead-reckoning.  By simultaneously using both sources of information, the EKF 
solution combines the strengths of both methods. This example highlights the contrasts 
between the unbounded uncertainty of DVL dead-reckoning, the bounded uncertainty of 
LBL positioning and the utility of combining these two solutions. 

3.2 Long Baseline (LBL) positioning 
Long baseline (LBL) positioning is a standard in underwater navigation.  First used in the 
1960’s and 1970’s (Hunt, Marquet, Moller, Peal, Smith, & Spindel, 1974), the foundational 
idea of using acoustic transponders moored to the seafloor has been used to fix the position 
of a wide spectrum underwater assets:  submersibles, towed instrumentation, ROVs and 
AUVs.  Fig. 4 illustrates the basic LBL method for use with an AUV.  For each navigation 
cycle the vehicle measures the two-way time-of-flight for an acoustic signal sent round trip 
between the platform and fixed transponders on the seafloor.  Position is determined by 
multilateration, typically implemented as a non-linear least-squares solution to the spherical 
positioning equations. 
Due to the particular challenges and constraints of working in marine environments, a large 
variety of range-based positioning solutions have been put into practice. The ability to 
precisely measure the range between two acoustic nodes is the foundation of any such 
solution. For example, short baseline (SBL) techniques are equivalent to the LBL positioning 
except that the transponders are in closer proximity, often mounted to the surface ship or 
platform (Milne, 1983) (Smith & Kronen, 1997). Wired configurations are used in small 
environments and allow one-way range measurement (Bingham, Mindell, Wilcox, & Bowen, 
2006). Such solutions can be particularly useful for confined environments such as small test 
tank (Kinsey, Smallwood, & Whitcomb, 2003). 
There are many implementations of the basic LBL positioning method.  Commerical systems 
are available to provide support for scientific, military and industry application.  Typical 
systems operate at frequencies near 10 kHz with maximum ranges of 5-10 km and range 
resolution between 0.5 and 3 m1.  Specific purpose systems are also available for small-scale 
high-resoution positioning2 or even subsea geodetics. 
Fig. 5 is a conceptual sketch of the method of spherical positioning which can be generalized 
with a stochastic measurement model. Each spherical positioning solution is based on 
observing individual range values (権追日) between known fixed beacon locations (姉長日) and an 

unknown mobile host position (姉朕) where the individual range measurements is indexed by 件. 権追日 噺 弁姉朕 伐 姉長日弁 髪 降追日 (1) 

We consider the additive noise in each measurement (降追日) as an independent, zero-mean, 

Gaussian variable with variance 購追態. 

                                                                 
1 Examples include solutions from Teledyne Benthos, Sonardyne International Ltd. and 
LinkQuest Inc. 
2 Examples include solutions from Desert Star Systems or Marine Sonics Technology, Ltd. 
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降追日 漢 室岫ど, 購追態岻 (2) 

Fig. 4. Illustration of long baseline (LBL) positioning of an AUV in an instrumented 
environment. Three transponders are shown moored to the seafloor. Three time-of-flight 
range observations are represented by dashed lines between the seafloor transponders and 
the mobile host, in this case an autonomous underwater vehicle. 

Fig. 5.  Illustration of a standalone spherical positioning solution, shown in two dimensions.  
Each of the three transponders is represented by a mark at the center of the three circles 

www.intechopen.com



Navigating Autonomous Underwater Vehicles 39 

(捲長日).  By measuring a range from each transponder we know the radius of each circle.  With 

three ranges the position is estimated by the intersection of the three circles. 

3.3 Doppler Velocity Log (DVL) dead-reckoning 
A Doppler velocity log (DVL), integrated with a precise heading reference, is another 
standard instrument for underwater robotics. As a standalone solution, DVL navigation 
provides a dead-reckoning estimate of position based on discrete measurements of velocity 
over the seafloor. To produce this dead-reckoning estimate in local coordinates sequential 
DVL measurements are related to a common coordinate system. Because the raw 
measurements are made relative to the sensor, the attitude (heading, pitch and roll) of the 
sensor relative to the common coordinate system must be measured. Once compensated for 
attitude, the velocity measurements are accumulated to estimate position. 
The position uncertainty for standalone DVL dead-reckoning grows with both time and 
distance. Fig. 6 illustrates a simple example of this error growth based on a vehicle moving 
at a constant speed along the x-axis. Velocity uncertainty causes uniform error growth in 
both directions while heading uncertainty dominates the error growth in the across track 
direction. To further quantify the dynamics of uncertainty in such a situation we propose an 
observation model compatible with the LBL uncertainty model presented above. 
 

 

Fig. 6. Illustration of odometry uncertainty dynamics. The ellipses illustrate the 1-購 
uncertainty in the along track (捲) and across track (検) directions. Five discrete vehicle 
positions are shown, indexed by 件.  The distance between consecutive positions is indicated 
by 穴. 
The DVL instrument provides independent measurements of velocity (権塚入) in each of three 
dimensions (indexed by 倦).  権塚入 噺 懸賃 髪 降塚入 (3) 

We characterize the uncertainty as mutually independent additive, zero-mean, Gaussian 
white noise. 降塚入 漢 室岫ど, 購塚入態 岻 (4) 

Transforming these sensor frame measurements into a local coordinate frame requires 
knowledge about sensor and vehicle attitude. Heading is the most important and difficult to 
accurately observe measurement for this coordinate rotation. Again we use a simple 
additive Gaussian noise model to represent the heading (閤) measurement. 
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Underwater Vehicles 40 権泥 噺 閤 髪 降泥 (5) 降泥 漢 室岫ど, 購泥態岻 (6) 

It is possible to carry forward the complete three dimensional (倦 噺 岶な,に,ぬ岼) formulation 
(Eustice, Whitcomb, Singh, & Grund, 2007), but it is non-limiting to simplify this 
representation to a two dimensional representation. In particular we assume the pitch and 
roll are transformations that do not affect the uncertainty growth. We also consider the 
uncertainty along-track to be independent of the uncertainty across track. These 
considerations capture the dominant dynamics of error growth (velocity and heading 
uncertainty) and allow us to simplify our two-dimensional model, preserving intuition. The 
resulting odometry measurement model considers discrete observations of incremental 
distance (子墜乳), where 倹 is the temporal index for sequential velocity measurements. 子墜乳 噺 岫姉朕乳 伐 姉朕乳貼迭岻 髪 磁墜 (7) 

The additive noise is characterized by a two-dimensional covariance matrix (鮮誰) in the along 
track and across track directions. 磁墜 漢 室岫ど, 鮮誰岻 (8) 

鮮誰 噺 峪建購塚態 どど 穴態購泥態崋 (9) 

The diagonal matrix in equation (9) is a consequence of the independent along track and 
across track uncertainty growth. The along track term, in the upper left, captures growth of 
position uncertainty as a function of velocity uncertainty, based on random walk 
uncertainty growth. The across track term, in the lower right, is dominated by heading 
uncertainty; therefore, the across track uncertainty grows linearly with distance travelled.   
Returning to Fig. 6 we can predict how the odometry error will grow for a straight line 
vehicle trajectory.  The figure shows the along track uncertainty the 捲 direction and across 
track uncertainty in the 検 direction. The aspect ratio of error ellipses increases with time, 
illustrating combination of linear growth of the along track uncertainty (growing with 
distance travelled) and growth proportional to the square root of time of the along track 
position. 

3.4 Data fusion 
These two standalone navigation solution, LBL positioning and DVL dead-reckoning, are a 

complementary pair of information sources. Fusing these sources can exploit both the 

precision of the DVL solution and the accuracy of the LBL reference. The introduction to this 

section provided a qualitative discussion of this integration, and there are many excellent 

references with the details of how to combine these two sensing modalities. 

(Whitcomb, Yoerger, & Singh, 1999) (Larsen M. B., 2000). 

4. Tradeoffs in designing navigation solutions 

How does the vehicle designer decide which navigation solutions to employ and how to 
configure them? This section describes a framework for making these decisions based on 
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applications of estimation theory to the problem of estimating position based on noisy 
measurements. This model enables designers to predict the performance of candidate 
designs based on their quantitative performance metrics. Using this analysis framework we 
present the answer to particular questions often asked when designing and deploying a 
range-based positioning system: • What is the “best” geometry of the fixed acoustic nodes and mobile nodes in an LBL 

network? What is the sensitivity of the system precision with respect to changes in this 
geometry? • What is the relative importance of geometry vis-á-vis range precision in an LBL network? • What is the best range-based configuration (geometry and update rate) to integrate with 
dead-reckoning solutions. 

To quantify these tradeoffs we propose metrics for positioning precision based on standard 
terrestrial positioning problems. We use the Cramér Rao lower bound (CRLB) to frame the 
question in a way that affords thorough analysis. Based on this framework, we articulate 
particular design tradeoffs, e.g., how design choices affect precision of the position estimate.  

4.1 Analytical framework for predicting performance 
Navigation is an estimation problem; a set of unknown parameters, location and attitude, 
are estimated from a set of observations. The CRLB is a standard tool for determining the 
uncertainty in the estimate based on uncertainty in the observations and a model relating 
the observed and estimated quantities.  
Consider the estimation of an unknown parameter vector 姉 from a set of observations 子 with 
known probability density 喧子岫子; 姉岻. An estimator extracts the information from these 
observations to derive and estimate of the parameters based on the measurements, 姉赴岫子岻.  
The uncertainty in this estimate is a direct consequence of how much information is 
available from the measurements. When it exists, the CRLB gives the lower bound on the 
variance of any valid unbiased estimator (Bar-Shalom, Li, & Kirubarajan, 2001). The Fisher 
information, 薩子岫姉岻 is the information about the parameters, 姉 contained in the observations, 子.   

薩子岫姉岻 噺 継 峪 絞態絞捲態 ln 喧子岫子; 姉岻崋 子墜乳 噺 岫姉朕乳 伐 姉朕乳貼迭岻 髪 磁墜 (10)

Where 継岷 峅 is the expectation operator. The CRLB, 詮岫姉赴岫子岻岻, is the inverse of the Fisher 
information, i.e.,  詮盤姉赴岫子岻匪 噺 岷薩子岫姉岻峅貸怠 (11)

The CRLB is the minimum uncertainty achievable by an unknown optimal estimator. An 
estimator that approaches this existence of the lower bound is efficient, but the bound does 
not guarantee that an efficient estimator exists or that one can be found. Another 
consequence of this principle is that an efficient estimator extracts all the available 
information from the observations. Efficiency amounts to the extracted information being 
equal to the existing information.  

4.1.1 The CRLB for standalone spherical positioning 
When LBL positioning is used alone, without other complementary references, the precision 
of such a solution is based on (1) the precision of the range measurements, (2) the geometry 
of the fixed transponders and mobile host, (3) the accuracy of estimate of the speed of sound 
and (4) the uncertainty in the estimated location of the fixed seafloor transponders. We can 
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consider each of these sources of uncertainty by applying the CRLB framework to the 
spherical positioning measurement model described in Section 3.2. The range measurements 
are assembled into an measurement vector of length 券. 燦追 噺 版権追日繁 噺 酸盤姉朕, 姉産餐匪 髪 始追 (12)

where 酸岫 岻 is the non-linear function for spherical positioning (equation (1)) and 始追 is a 
zero mean random vector with covariance 鮮嘆. 始追 漢 室岫ど, 鮮嘆岻 (13)

The CRLB is calculated by linearizing the measurement model about an operating point, 姉朕任. The result is summarized by the first derivative of the measurement equation evaluated 

at the operating point, i.e., the Jacobian matrix 察.  For the linearized measurement model 
with additive Gaussian noise, the CRLB is a matrix combination of the Jacobian, 
representing the current system geometry, and the measurement covariance quantifying the 
observation uncertainty. 詮 噺 察参鮮嘆貸怠察 (14)

The CRLB is the best-case performance of an unbiased estimator designed to estimate the 
mobile host position based on uncertain range observations. The CRLB matrix is the 
minimum value of the covariance matrix for any unbiased estimate of position, i.e.,  詮 隼拍 鮮淡塘 噺 撮範岷姉赴朕 伐 姉拍朕峅岷姉赴朕 伐 姉拍朕峅脹飯 (15)

where 姉拍朕is the unknown true position of the host and 姉赴朕 is the estimated mobile host 
position.  To summarize, the CRLB is a best-case estimate of the state covariance of the 
position solution as expressed in based on the geometry of the static acoustic beacons, the 
location of the host relative to the beacons and the range uncertainty. 

4.1.2 The CRLB for combined odometry and positioning 
The CRLB framework is also capable of analyzing the tradeoffs inherent in combining 
observations into an integrated navigation solution. In particular, we are interested in 
quantifying the tradeoffs involved in combining LBL absolute positioning with DVL  dead-
reckoning.   
To apply the CRLB framework to this case requires a measurement model including both 
the high update rate odometry measurements of relative distance travelled and infrequent 
absolute position updates. In one-dimension the absolute position measurement uncertainty 
is equivalent to the range uncertainty (購追). To consider two-dimensional the odometry 
observation model from equations (7)-(9) we sum the two independent components of 
uncertainty. This simplification is similar to the notion of scalar horizontal precision 
discussed in the next section. 購墜態 噺 t 購塚態 髪 d態 購泥態詮 隼拍 鮮淡塘 噺 撮範岷姉赴朕 伐 姉拍朕峅岷姉赴朕 伐 姉拍朕峅脹飯 (16)

Now we can create a combined one-dimensional measurement model for a set of 券 absolute 
position updates with 券 伐 な interspersed odometry measurements. 
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燦算 噺  
菌衿芹
衿緊 x怠教x樽岫x態 伐 x怠岻教岫x樽 伐 x樽貸怠岻近衿謹

衿襟 髪 創達 (17)

The additive noise vector, 創達, is modelled using a zero-mean Gaussian distribution.  The 
individual measurements are considered to be independent, resulting in a covariance matrix 
that based on the standalone range measurements and odomentry measurements. 降頂 漢 室岫ど, 鮮達岻 (18)

鮮達 噺 釆購追態 薩津 どど 購墜態 薩津貸怠挽 (19)

Where 薩津is an 券 抜 券 identity matrix. 

4.2 Metrics for positioning performance 
Horizontal dilution of precision (HDOP) and circular error probable (CEP) provide a quantifiable 
measure to succinctly convey the positioning precision for design and deployment 
decisions.  The two positioning metrics are based the uncertainty in host (mobile station or 
vehicle) position estimate.  The covariance matrix of the unknown error is the state estimate is  

鮮景塘 噺 頒 購掴態 購掴槻態 購掴佃態購掴槻態 購槻態 購槻佃態購掴佃態 購槻佃態 購佃態 番 (20)

Because typical positioning geometries afford different performance in the horizontal plane 
as compared with the vertical dimension, the three-dimensional covariance is often 
decomposed into the horizontal (2D) and vertical components.  The horizontal components 
(捲 and 検) of the covariance represented an uncertainty ellipses as illustrated in Fig. 6. 

4.2.1 Dilution of precision 
Dilution of precision metrics are common in GPS applications.  The horizontal dilution of 
precision comes directly from the Cartesian components (捲 and 検) of the position estimate 
covariance matrix in equation (20). 

購朕鳥墜椎 噺 謬購掴態 髪 購槻態購追  
(21)

The HDOP metric is normalized by the range uncertainty (購追岻to isolate the sensitivity of the 
metric to the solutions geometry. Fig. 7 illustrates how this Cartesian interpretation 
overestimates the uncertainty by describing a rectangular boundary of uncertainty ellipse. 

4.2.2 Circular error probable 
In contrast to the DOP metric, the CEP metric is volumetric and non-normalized.  The CEP 
defines the radius of the smallest circle, centered at the estimate, that has a 50% probability 
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of containing the true value.  A linear approximation of the CEP can be derived from the 
estimate covariance. 系継鶏 蛤 ど.の9 岫購挑 髪 購聴岻 (22)

where 購挑  and 購聴 are the major and minor axes of the uncertainty ellipse as shown in Fig. 7.  
The major and minor axes are the eigenvalues of the two-dimensional covariance matrix. 
The difference between the true CEP and the approximation of equation (22) is less than 
1.5% when the uncertainty ellipse has a low aspect ratio (ど.の購挑 判 購聴 判 購挑0.5), otherwise a 
quadratic approximation should be used (Nelson, 1988). 
The CEP metric is volumetric because it uses the principle directions rather than the 
Cartesian directions, but is not normalized and therefore is a function of both the geometry 
and the range uncertainty. 
 

Fig. 7. Illustration of the covariance metrics. Geometrically the 2D covariance can be 
represented with an ellipse. The diagonal terms of the fully populated 2x2 matrix are 購掴態 and 購槻態. The square root of the two eigenvalues are one half major (購挑) and minor (購聴) axes of the 

ellipse. (Figure is adapted from (Kaplan, 1996).) 

4.3 Results: Predicting performance metrics using the CRLB 
Using the estimation framework of Section 4.1 and the performance metrics from Section 4.2 
we can quantify the tradeoffs involved in designing standalone LBL positioning and 
integrated LBL/DVL navigation.  

4.3.1 Standalone LBL configuration 
Applying the CRLB to standalone LBL positioning enables the designer to predict the 
influence of transponder geometry, host location and range uncertainty on the LBL solution.  
Fig. 8 shows the results of this analysis. To generate these results the CRLB (equation (14)) is 
evaluated at each point in the two-dimensional space. The figure shows the results for a 
prototypical configuration, where the transponders are arranged in an equilateral triangle.  
The specific example shown in Fig. 8 illustrates the general process. This process has proven 
useful in deciding how to configure a LBL solution or deciding the level of range precision 
necessary to meet a particular performance specification. 
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Fig. 8. Positioning performance prediction for standalone LBL positioning.  The transponder 
locations are indicated by the red markers in an equilateral triangle near the origin.  The 
contours show lines of constant HDOP. 

4.3.2 Integrated LBL/DVL solution 
Building on the standalone analysis of the previous section, next we use the CRLB framework 
to consider design decisions inherent in combining absolute positioning (LBL) and odometry 
dead-reckoning (DVL+Heading). The sensing modalities are best used in concert, where the 
two information sources can complement each other. The CRLB framework, using the 
measurement model in equation (17), quantifies the benefits of this combination. 
The LBL and DVL sensing modalities must be matched to realize the potential of the 
complementary nature of these two navigation methods. Fig. 9 illustrates the constructive 
combination of LBL range observations, DVL velocity measurements and heading reference 
using a simple one-dimensional model. This comparison guides the selection of relative 
precision of the various sensors and the required update rate to leverage ability of absolute 
positioning to constrain the drift inherent to dead reckoning. 
The two asymptotes in Fig. 9 are illustrative. On the right, in Region 3, we see that as 
odometry error is large, the overall positioning uncertainty is limited to be approximately 
equivalent to the absolute positioning uncertainty, indicated by 購墜 鳩 購追 簡 な.ど when the dead-
reckoning uncertainty is greater than twice the absolute uncertainty (購墜 伴 に.ど 購追).  This 
could be caused by either high uncertainty in the velocity or heading measurements or large 
update times between absolute position updates. Conversely, the left side of the figure, 
Region 1, shows how precise odometry between absolute position updates links the 
sequential updates together. As the odometry becomes more precise the overall position 
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uncertainty approaches the bound of 購掴 噺 購追/√軽, where 軽 is the number of discrete 
position updates (in this case 軽 噺 などど).  This limiting case represents perfect odometry, 
where the distance between absolute reference updates is known. 
 

 

Fig. 9.  Based on the one-dimensional model, this figure quantifies the tradeoffs in designing 
a complementary positioning solution using absolute positioning (LBL) and dead-reckoning 
odometry (DVL+Heading).  The vertical axis shows position uncertainty (購掴) normalized by 
the absolute reference uncertainty (購追). The horizontal axis shows the ratio of total odometry 
uncertainty (購墜) to absolute reference uncertainty. Designing a solution in Region 1, with 蹄任蹄認 隼 ど.どね, successfully leverages the complementary nature of the two modes of navigation. 

As an illustration we present an example using representative numbers for instruments 
typical on modern underwater platforms. Based on Fig. 9 we would like to design the 
positioning solution to operate in Region 1, where the total odometry uncertainty is less 
then 0.04 times the absolute positioning uncertainty, i.e., 購墜 噺 購塚 √建 髪 穴 購泥 隼 ど.な 購追 (23)

Typical vehicle instrumentation might consist of an 1,200 kHz RDI DVL3 (購塚 噺 ぬ mm/s), an 
Octans true north heading reference4 (購泥 噺 ど.な degrees) and Benthos LBL transponders5 

(購追 簡 ぬ.ど m).  Furthermore we can assume a typical velocity of 1.0 m/s for the purposes of 
demonstration, resulting in 穴 噺 な.ど 建.  Therefore, 

                                                                 
3 1,200 kHz Workhourse Navigator Doppler velocity log by Teledyne RD Instruments. 
4 6000 Series Transponders by Teledyne Benthos. 
5 Octans Fiber Optic Gyroscope (FOG) by Ixsea. 
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Resulting in a required update rate of 建 隼 のは seconds. Such an infrequent update rate is a 
consequence of the precision of the dead-reckoning solution. 

5. Next steps: Opportunities to improve AUV navigation 

Navigation continues to limit the application of AUV technology. As AUVs continue to be 
adopted by new users for new applications the fundamental navigation challenges must be 
addressed to further this expansion.  Starting from the current state of the art we attempt to 
identify a few fruitful areas for continued research and development; areas that promise to 
have a strong impact on the design of new AUV systems. 

5.1 Crossing chasms 
There are gaps in current AUV navigation capabilities. Two of these gaps are explored 
below along with possible directions aimed at closing these gaps. 

5.1.1 Decreasing transponder dependence 
Many efforts in navigation research and development seek to reduce (or eliminate) the role 
of seafloor moored transponders in a navigation solution. As discussed above, LBL 
transponders provide an absolute reference, but this comes at a high cost. Transponders are 
deployed and surveyed from the surface in preparation for AUV missions and then 
recovered after completion of the mission. This evolution erodes operational efficiency, 
requiring hours or even days to complete depending on the environment and the mission. 
Such a seafloor-based external reference also limits the range of an AUV; typical 
transponder networks can only cover a few square kilometres.   
Work has been done to eliminate the survey step in deploying transponders. One solution is 
to place the transponders at the surface, on floating buoys, where GPS can provide constant 
position updates.  This has been used for tracking (the position is recorded at the surface, 
but not available subsea in real-time) AUVs for survey operations (Desset, Damus, Morash, 
& Bechaz, 2003). Another approach is to concurrently localize the fixed transponders while 
navigating using the range information.  Using concurrent localization and mapping (CML), 
also known as simultaneous localization and mapping (SLAM), researchers have created a 
consistent map of the environment using only range information when the transponder 
locations are not known before the mission (Olson, Leonard, & Teller, 2006). Yet another 
approach is to have the AUV actually deploy the fixed transponders. This solution 
addresses a military need to limit the detection for AUV operations. 
Instead of reducing the time spent on survey, another possible method is to decrease the 
number of transponders necessary to provide an absolute reference.  Initial research efforts 
were focused on proving the theory of single beacon navigation (Larsen M. B., 2000).  More 
recently this effort has moved from theoretical research to practical implementation, 
including algorithm development and integration into operational platforms such as the 
REMUS AUV (Hartsfield, 2005).   
The incorporation of reliable acoustic communication has provided additional opportunity 
solutions to decrease the dependence on acoustic transponders. With the ability to transmit 
ephemeris data from a surface ship to the submerged platform, it becomes possible to 
eliminate the transponders all together and use the moving surface ship (with GPS navigation) 
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as fixed reference (Eustice, Whitcomb, Singh, & Grund, 2007).  The Hugin AUV, a successful 
commercial survey tool, has used a similar technique to provide position updates and change 
the AUV mission from the surface (Vestgard, Storkersen, & Sortland, 1999) 

5.1.2 Sensors: payload versus navigation 
Current systems differentiate between navigation sensors and payload sensors.  Navigation 
sensors are specifically for collecting measurements to position an AUV. These observations 
are processed in real-time using a variety of perception algorithms. In contrast, payload 
instruments collect data for future processing. Powerful instruments such a multibeam 
sonar, high quality still cameras, etc. are used to collect high resolution  data about the 
environment, but this information is not used in real-time. 
Many projects are seeking to alleviate this divide between payload and navigation sensors.  
Vision based algorithms promise to leverage the optical images to constrain the unbounded 
error growth for underwater applications (Huster & Rock, 2003) (Eustice, Pizarro, & Singh, 
2004). Similarly, combining course navigation with bathymetry can serve to improve both 
the positioning and final data product (Roman & Singh, 2006). Many researchers have 
developed estimation techniques that make use of the bathymetry. These terrain based 
methods make use of either a fathometer or bathymetric sonar to position the vehicle 
relative to a known (or partially unknown) map of the seafloor (Tuohy, Leonard, 
Bellingham, Patrikalakis, & Chryssostomidis, 1996) (Williams, Dissanayake, & Durrant-
Whyte, 1999). Each of these techniques offers a path toward crossing the artificial divide 
between payload sensors and navigation aids. 

5.2 Operations in challenging environments 
The application of AUV technology for exploration and investigation is moving into new 
environments. This valuable technology has improved our ability to accomplish nearbottom 
surveys in the open ocean. Now the needs of new users are necessitating adaptation of AUV 
technologies to a variety of interesting and challenging underwater environments. Under-
ice missions promise to open the important polar regions to the observational power of 
autonomous platforms (Kunz, et al., 2008) (McEwen, Thomas, Weber, & Psota, 2005).  
Obviously navigation under-ice is very important to the safety of such mission; the AUV 
must be able to return a safe region for recovery.  Possibly not so obvious are the challenges 
presented by the acoustics of under-ice environments. The upward refracting acoustic 
environment can create shadow zones, restricting the means of communication and 
positioning. Furthermore the ice cover can shift at significant speeds relative to the seafloor, 
creating dynamic environment for navigation (von der Heydt, Duckworth, & Baggeroer, 
1985) (Deffenbaugh, Schmidt, & Bellingham, 1993).   
Another environment that presents new challenges for AUV operations is coastal zones.  
The littoral zone has been recognized by military users as a key new frontier for operations.  
Similarly, environmental assessment of shallow marine environments (e.g., coral reefs) is 
pushing AUV missions towards the coast. From a navigation perspective, these shallow 
water environments can be more dynamic than the deep ocean with increased multipath 
and high background noise from breaking waves and other disturbances.   
A last example of new environments for AUV operations is the exploration of freshwater caves, 
cenotes, using novel AUVs. Research expeditions have used three dimensional SLAM-based to 
map these underwater caves. Interestingly, these expeditions are supported by resources for 
space exploration because of the analogy between cenote exploration and the environment 
operators anticipate for autonomous exploration of other planets (Kumagni, 2007). 
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6. Continued improvement in AUV navigation 

One way to set expectations for the future is to look at the past.  In the past two decades of 
AUV platform development autonomous navigation has provided fundamental supporting 
technology through new instruments, new algorithms and new methods of operation. As 
AUV platforms continue to proliferate, becoming commercially available to a wider user 
base, we can expect the opportunities for improved navigation methods to similarly expand.  
Operators and vehicle designers will need new solutions that increase efficiency, decrease 
cost and allow for the application of AUV technology to exciting new environments.   
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