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Abstract

We present an Õ(m
10

7 ) = Õ(m1.43)-time1 algorithm for the maximum s-t flow and the
minimum s-t cut problems in directed graphs with unit capacities. This is the first improvement
over the sparse-graph case of the long-standing O(mmin{√m,n2/3}) running time bound due to
Even and Tarjan [ET75] and Karzanov [Kar73]. By well-known reductions, this also establishes

an Õ(m
10

7 )-time algorithm for the maximum-cardinality bipartite matching problem. That, in
turn, gives an improvement over the celebrated O(m

√
n) running time bound of Hopcroft and

Karp [HK73] and Karzanov [Kar73] whenever the input graph is sufficiently sparse.
At a very high level, our results stem from acquiring a deeper understanding of interior-point

methods – a powerful tool in convex optimization – in the context of flow problems, as well as,
utilizing certain interplay between maximum flows and bipartite matchings.

The core of our approach comprises a primal-dual algorithm for (near-)perfect bipartite b-
matching problem. This algorithm is inspired by path-following interior-point methods and
employs electrical flow computations to gradually improve the quality of maintained solution
by advancing it toward (near-)optimality along so-called central path. To analyze this process,
we establish a formal connection that ties its convergence rate to the structure of corresponding
electrical flows. Then, we exploit that connection to obtain a convergence guarantee for our
algorithm that improves upon the well-known barrier of Ω(

√
m) iterations corresponding to

the generic worst-case performance bounds for interior-point-method-based algorithms. This
improvement is based on refining certain insights into behavior of electrical flows that stem
from the work of Christiano et al. [CKM+11] and combining them with a new technique for
preconditioning primal-dual solutions.

The final ingredient of our approach is a simple reduction of the maximum s-t flow problem
to the bipartite b-matching problem. This reduction is then composed with the recent sub-
linear-time algorithm for finding perfect matchings in regular graphs of Goel et al. [GKK10], to
derive an efficient procedure for rounding fractional s-t flows and bipartite matchings.

∗Part of this work was done when the author was with Microsoft Research New England.
1We recall that Õ(f) denotes O(f logc f), for some constant c.



1 Introduction

The maximum s-t flow problem and its dual, the minimum s-t cut problem, are two of the most
fundamental and extensively studied graph problems in combinatorial optimization [Sch03, AMO93,
Sch02]. They have a wide range of applications (see [AMOR95]), are often used as subroutines
in other algorithms (see, e.g., [AHK12, She09]), and a number of other important problems –
e.g., bipartite matching problem [CLRS09] – can be reduced to them. Furthermore, these two
problems were often a testbed for development of fundamental algorithmic tools and concepts.
Most prominently, the Max-Flow Min-Cut theorem [EFS56, FF56] constitutes the prototypical
primal-dual relation.

Several decades of extensive work resulted in a number of developments on these problems (see
Goldberg and Rao [GR98] for an overview) and many of their generalizations and special cases.
Still, despite all this effort, the basic problem of computing maximum s-t flow and minimum s-t cut
in general graphs has resisted progress for a long time. In particular, the current best running time
bound of O(mmin{m 1

2 , n
2
3 } log(n2/m) logU) (with U denoting the largest integer arc capacity)

was established over 15 years ago in a breakthrough paper by Goldberg and Rao [GR98] and this
bound, in turn, matches the O(mmin{m 1

2 , n
2
3 }) bound for unit-capacity graphs that Even and

Tarjan [ET75] – and, independently, Karzanov [Kar73] – put forth over 35 years ago.
Recently, however, important progress was made in the context of undirected graphs. Christiano

et al. [CKM+11] developed an algorithm that allows one to compute a (1+ε)-approximation to the
undirected maximum s-t flow (and the minimum s-t cut) problem in Õ(mn

1
3 ε−11/3) time. Their

result relies on devising a new approach to the problem that combines electrical flow computations
with multiplicative weights update method (see [AHK12]). Later, Lee et al. [LRS13] presented a
quite different – but still electrical-flow-based – algorithm that employs purely gradient-descent-
type view to obtain an Õ(mn1/3ε−2/3)-time (1 + ε)-approximation for the case of unit capacities.
Finally, very recently, this line of work was culminated by Sherman [She13] and Kelner et al.
[KLOS14] who independently showed how to integrate non-Euclidean gradient-descent methods
with fast poly-logarithmic-approximation algorithms for cut problems of Mądry [Mąd10] to get an
O(m1+o(1)ε−2)-time (1 + ε)-approximation to the undirected maximum flow problem.

Finally, we note that, in parallel to the above work that is focused on designing weakly-
polynomial algorithms for the maximum s-t flow and minimum s-t cut problems, there is also
a considerable interest in obtaining running time bounds that are strongly-polynomial, i.e., that do
not depend on the values of arc capacities. The current best such bound is O(mn) and it follows
by combining the algorithms of King et al. [KRT94] and Orlin [Orl13].

Bipartite Matching Problem. Another problem that we will be interested in is the (maximum-
cardinality) bipartite matching problem – a fundamental assignment problem with numerous ap-
plications (see, e.g., [AMO93, LP86]) and long history, with its roots in the works of Frobenius
[Fro12, Fro17] and König [Kön15, Kön16, Kön23] from the early 20th century (see [Sch05]). Al-
ready in 1931, König [Kön31] and Egerváry [Ege31] provided first constructive characterization of
maximum matchings in bipartite graphs. This characterization can be turned into a polynomial-
time algorithm. Then, in 1973, Hopcroft and Karp [HK73] – and, independently, Karzanov [Kar73]
– devised the celebrated O(m

√
n)-time algorithm. Till date, this bound is the best one known

in the regime of relatively sparse graphs. It can be improved, however, when the input graph is
dense, i.e., when m is close to n2. In this case, one can combine the algebraic approach of Rabin
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and Vazirani [RV89] – that itself builds on the work of Tutte [Tut47] and Lovász [Lov79] – with
matrix-inversion techniques of Bunch and Hopcroft [BH74] to get an algorithm that runs in O(nω)
time (see [Muc05]), where ω ≤ 2.3727 is the exponent of matrix multiplication [CW90, VW12].
Also, later on, Alt et al. [ABMP91], as well as, Feder and Motwani [FM95] developed combinatorial
algorithms that offer a slight improvement – by a factor of, roughly, logn

n2

m – over the O(m
√
n)

bound of Hopcroft and Karp whenever the graph is sufficiently dense.
Finally, it is worth mentioning that there was also a lot of developments on the (maximum-

cardinality) matching problem in general, i.e., not necessarily bipartite, graphs. Starting with the
pioneering work of Edmonds [Edm65], these developments led to bounds that essentially match the
running time guarantees that were previously known only for bipartite case. More specifically, the
running time bound of O(m

√
n) for the general-graph case was obtained by Micali and Vazirani

[MV80, Vaz94] (see also [GT91] and [GK04]). While, building on the algebraic characterization of
the problem due to Rabin and Vazirani [RV89], Mucha and Sankowski [MS04] and then Harvey
[Har09] gave O(nω)-time algorithms for general graphs.

1.1 Our Contribution

In this paper, we develop a new algorithm for solving maximum s-t flow and minimum s-t cut
problems in directed graphs. More precisely, we prove the following theorem.

Theorem 1.1. Let G = (V,E) be a directed graph with m arcs and unit capacities. For any two
vertices s and t, one can compute an integral maximum s-t flow and minimum s-t cut of G in
Õ(m

10
7 ) time.

This improves over the long-standing O(mmin{√m,n2/3}) running time bound due to Even and
Tarjan [ET75] and, in particular, finally breaks the Ω(n

3
2 ) running time barrier for sparse directed

graphs.
Furthermore, by applying a well-known reduction (see [CLRS09]), our new algorithm gives the

first improvement on the sparse-graph case of the seminal O(m
√
n)-time algorithms of Hopcroft-

Karp [HK73] and Karzanov [Kar73] for the maximum-cardinality bipartite matching problem.

Theorem 1.2. Let G = (V,E) be an undirected bipartite graph with m edges, one can solve the
maximum-cardinality bipartite matching problem in G in Õ(m

10
7 ) time.

This, again, breaks the 40-year-old running time barrier of Ω(n
3
2 ) for this problem in sparse graphs.

Additionally, we design a simple reduction of the maximum s-t flow problem to perfect bipartite
b-matching problem (see Theorem 3.1). (This reduction can be seen as an adaptation of the
reduction of the maximum vertex-disjoint s-t-path problem to the bipartite matching problem due
to Hoffman [Hof60] – cf. Section 16.7c in [Sch03].2) As the reduction in the other direction is well-
known already, this establishes an algorithmic equivalence of these two problems. We also show (see
Theorem 3.3 and Corollary 3.4) how this reduction, together with the sub-linear-time algorithm for
perfect matching problem in regular bipartite graphs of Goel et al. [GKK10], leads to an efficient,
nearly-linear time, rounding procedure for s-t flows.3

2We thank Lap Chi Lau [Lau13] for pointing out this similarity.
3Recently, it came to our attention that a very similar rounding result was independently obtained by Khanna et

al. [KKL13].
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Finally, our main technical contribution is a primal-dual algorithm for (near-)perfect bipartite
b-matching problem (see Theorem 3.2). This iterative algorithm draws on ideas underlying interior-
point methods and the electrical flow framework of Christiano et al. [CKM+11]. It employs electrical
flow computations to gradually improve the quality of maintained solution by advancing it toward
(near-)optimality along so-called central path.

We develop a way of analyzing this algorithm’s rate of convergence by relating it to the structure
of the corresponding electrical flows (see Theorem 5.5). This understanding enables us to devise a
way of perturbing (see Section 6.1) and preconditioning (see Section 6.2) our intermediate solutions
to ensure a convergence in only Õ(m

3
7 ) iterations and thus improve over the well-known barrier of

Ω(m
1
2 ) iterations that all the previous interior-point-methods-based algorithms suffer from. (To the

best of our knowledge, this is the first time that this barrier was broken for a natural optimization
problem.)

We also note that most of this understanding of convergence behavior of interior-point methods
can be carried over to general LP setting. Therefore, we are hopeful that our techniques can be
extended and will eventually lead to breaking the Ω(m

1
2 ) iterations barrier for general interior-point

methods.

1.2 Our Approach

The core of our approach comprises two components. One of them is combinatorial in nature and
exploits an intimate connection between the maximum s-t flow problem and bipartite matching
problem. The other one is more linear-algebraic and relies on interplay of interior-point methods
and electrical flows.

Maximum flows and bipartite matchings. The combinatorial component shows that not
only one can reduce bipartite matching problem to the maximum s-t flow problem, but also that a
reduction in the other direction exists. Namely, one can reduce, in a simple and purely combinatorial
way, the maximum s-t flow problem to a certain variant of bipartite matching problem (see Theorem
3.1). Once this reduction is established, it allows us to shift our attention to the matching problem.

Also, as a byproduct, this reduction – together with the algorithm of Goel et al. [GKK10] –
yields a fast procedure for rounding fractional maximum flows (see Corollary 3.4). This enables us
to focus on obtaining solutions that are only nearly-optimal, instead of being optimal.

Bipartite Matchings and Electrical Flows. The other component is based on using the
interior-point method framework in conjunction with nearly-linear time electrical flow computa-
tions, to develop a faster algorithm for the bipartite matching problem.

The point of start here is a realization that the recent approaches to approximating undirected
maximum flow [CKM+11, LRS13, She13, KLOS13], despite achieving impressive progress, have
fundamental limitations that make them unlikely to yield improvements for the exact undirected or
(approximate) directed setting.4 Very roughly speaking, these limitations stem from the fact that,
at their core, all these algorithms employ some version of gradient-descent method that relies on
purely primal arguments, while almost completely neglecting the dual aspect of the problem. It
is well-understood, however, that getting a running time guarantee that depends logarithmically,

4Note that it is known – see, e.g., [Mąd11] – that computing exact maximum s-t flow in undirected graphs is
algorithmically equivalent to computing the exact or approximate maximum s-t flow in directed graph.
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instead of polynomially, on ε−1 – and such dependence is a prerequisite to making progress in
directed setting – one needs to also embrace the dual side of the problem and take full advantage
of it.

Interior-point methods and fast algorithms. The above realization motivates us to consider
a more sophisticated approach, one that is inherently primal-dual and achieves logarithmic depen-
dence on ε−1: interior-point methods. These methods constitute a powerful optimization paradigm
that is a cornerstone of convex optimization (see, e.g., [BV04, Wri97, Ye97]) and already led to
development of polynomial-time exact algorithms for a variety of problems. Unfortunately, despite
all its advantages and successes in tackling hard optimization tasks, this paradigm has certain short-
comings in the context of designing fast algorithms. The main reason for that is the fact that each
iteration of interior-point method requires solving of a linear system, a task for which the current
fastest general-purpose algorithm runs in O(nω) = O(n2.3727) time [AHU74, CW90, VW12]. So,
this bound becomes a bottleneck if one was aiming for, say, even sub-quadratic-time algorithm.

Fortunately, it turns out that there is a way to circumvent this issue. Namely, even though the
above bound is the best one known in general, one can get a better running time when dealing with
some specific problem. This is achieved by exploiting the special structure of the corresponding
linear systems. A prominent (and most important from our point of view) example here is the
family of flow problems. Daitch and Spielman [DS08] showed that in the context of flow problems
one can use the power of fast (approximate) Laplacian system solvers [?, KMP10, KMP11, KOSZ13]
to solve the corresponding linear systems in nearly-linear time. This enabled [DS08] to develop a
host of Õ(m

3
2 )-time algorithms for a number of important generalizations of the maximum flow

problem for which there was no such algorithms before.
Unfortunately, this bound of Õ(m

3
2 ) time turns out to also be a barrier if one wants to obtain

even faster algorithms. The new difficulty here is that the best worst-case bound on the number
of iterations needed for an interior-point method to converge to near-optimal solution is Ω(m1/2).
Although it is widely believed that this bound is far from optimal, it seems that our theoretical
understanding of interior-point method convergence is still insufficient to make any progress on this
front. In fact, improving this state of affairs is a major and long-standing challenge in mathematical
programing.

Beyond the Ω(m
1
2 ) barrier. Our approach to circumventing this Ω(m

1
2 ) barrier and obtaining

the desired Õ(m
10
7 )-time algorithm for the bipartite b-matching problem consists of two stages.

First one – presented in Section 5 – corresponds to setting up a primal-dual framework for
solving the near-perfect b-matching problem. This framework is directly inspired by the principles
underlying path-following interior-point methods and, in some sense, is equivalent to them. In it,
we start with some initial sub-optimal solution (that is encoded as a minimum-cost flow problem
instance) and gradually improve its quality up to near-optimality. These gradual improvements are
guided by certain electrical flow computations – the flows are used to update the primal solution
and the corresponding voltages update the dual one – and our solution ends up following a special
trajectory in the feasible space: so-called central path.

We analyze the performance of this optimization process by establishing a formal connection
that ties the size of each improvement step to a certain characteristic of the corresponding electrical
flow. Very roughly speaking, this size (and thus the resulting rate of convergence) is directly related
to how much the electrical flow we compute resembles the current primal solution (which is also a
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flow). Once this connection is established, a simple energy-based argument immediately recovers
the generic O(m

1
2 ) iterations bound known for interior-point methods. So, as each electrical flow

computation can be performed in Õ(m) time, this gives an overall Õ(m
3
2 )-time algorithm.

Finally, to improve upon the above O(m
1
2 ) iterations bound and deliver the desired O(m

10
7 )-

time procedure, in Section 6, we devise two techniques: perturbation of arcs – that can be seen as
a refinement of the edge removal technique of Christiano et al. [CKM+11]; and solution precon-
ditioning – a way of adding auxiliary arcs to the solution to improve its conductance properties.
We show that by a careful composition of these techniques, one is able to ensure that the guiding
electrical flows align better with the primal solution – thus allowing taking larger progress steps and
guaranteeing faster convergence – while keeping the unwanted impact of these modifications on the
quality of final solution minimal. The analysis of this process constitutes the technical core of our
result and is based on understanding of the interplay between the interior-point method and both
the primal and dual structure of electrical flows.

We believe that this approach of understanding interior-point methods through the lens of
electrical flows is a promising direction and our result is just a first step towards realizing its full
potential.

1.3 Organization

We begin the technical part of the paper in Section 2 where we present some preliminaries on
maximum flow problem, electrical flows, and bipartite (b-)matching problem, as well as, introduce
some theorems we will need in the sequel. In Section 3, we provide a general outline of our results
and the structure of our proof.

In Section 4, we describe the reduction of maximum s-t flow problem to the bipartite b-matching
problem. Next, in Sections 5 and 6, we explain how our path-following algorithms and electrical
flows can be used to get an improved algorithm for the bipartite b-matching problem, with Section 7
presenting the analysis of our path-following primitive. Finally, we conclude in Section 8 by showing
how to round fractional b-matchings to integral ones.

2 Preliminaries

In this section, we introduce some basic notation and definitions we will need later.

2.1 σ-Flows and the Maximum s-t Flow Problem

Throughout this paper, we denote by G = (V,E,u) a directed graph with vertex set V , arc set E
(we allow parallel arcs), and (non-negative) integer capacities ue, for each arc e ∈ E. We usually
define m = |E| to be the number of arcs of the graph in question and n = |V | to be the number of
its vertices. Each arc e of G is an ordered pair (u, v), where u is its tail and v is its head.

The basic notion of this paper is the notion of a σ-flow in G, where σ ∈ R
n, with

∑
v σv = 0, is

the demand vector. By a σ-flow in G we understand any vector f ∈ R
m that assigns values to arcs

G and satisfies the flow conservation constraints:
∑

e∈E+(v)

fe −
∑

e∈E−(v)

fe = σv, for each vertex v ∈ V . (1)
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Here, E+(v) (resp. E−(v)) is the set of arcs of G that are leaving (resp. entering) vertex v.
Intuitively, these constraints enforce that the net balance of the total in-flow into vertex v and the
total out-flow out of that vertex is equal to σv, for every v ∈ V .

Furthermore, we say that a σ-flow f is feasible in G iff f obeys the non-negativity and capacity
constraints:

0 ≤ fe ≤ ue, for each arc e ∈ E. (2)

One type of σ-flows that will be of special interest to us are s-t flows, where s (the source) and t
(the sink) are two distinguish vertices of G. Formally, a σ-flow f is an s-t flow iff its demand vector
σ is equal to F · χs,t for some F ≥ 0 – we call F the value of f – and the demand vector χs,t that
has −1 (resp. 1) at the coordinate corresponding to s (resp. t) and zeros everywhere else.

Now, the maximum s-t flow problem corresponds to a task of finding for a given graph G =
(V,E,u), a source s, and a sink t, a feasible s-t flow f ∗ in G of maximum value F . We call such a
flow f ∗ that maximizes F the maximum s-t flow of G and denote its value by F ∗.

Sometimes, we will be also interested in (uncapacitated) minimum-cost σ-flow problem (with
non-negative costs). In this problem, we have a directed graph G with infinite capacities on arcs
(i.e., ue = +∞, for all e) and certain (non-negative) length (or cost) le assigned to each arc e. Our
goal is to find a feasible σ-flow f in G whose cost l(f ) :=

∑
e lefe is minimal. (Note that as we have

infinite capacities here, the feasibility constraint (2) just requires that fe ≥ 0 for all arcs e.)
Finally, one more problem that will be relevant in this context is the minimum s-t cut problem.

In this problem, we are given a directed graph G = (V,E,u) with integer capacities, as well as,
a source s and sink t, and our task is to find an s-t cut C ⊆ V in G minimizes the capacity
u(C) :=

∑
E−(C) ue among all s-t cuts. Here, a cut C ⊆ V is an s-t cut iff s ∈ C and t /∈ C, and

E−(C) is the set of all arcs (u, v) with u ∈ C and v /∈ C. It is well-known [EFS56, FF56] that
the minimum s-t cut problem is the dual of the maximum s-t problem and, in particular, that the
capacity of the minimum s-t cut is equal to the value of the maximum s-t flow, as well as, that
given a maximum s-t flow one can easily obtain the corresponding minimum s-t cut.

2.2 Undirected Graphs

Although the focus of our results is on directed graphs, it will be crucial for us to consider undirected
graphs too. To this end, we view an undirected graph G = (V,E,u) as a directed one in which the
ordered pair (u, v) ∈ E does not denote an arc anymore, but an (undirected) edge (u, v) and the
order just specifies an orientation of that edge from u to v. (Even though we use the same notation
for these two different types of graphs, we will always make sure that it is clear from the context
whether we deal with directed graph that has arcs, or with undirected graph that has edges.) From
this perspective, the definitions of σ-flow f that we introduced above for directed graphs transfer
over to undirected setting almost immediately. The only (but very crucial) difference is that in
undirected graphs a feasible flow can have some of fes being negative - this corresponds to the flow
flowing in the direction that is opposite to the edge orientation. As a result, the feasibility condition
(2) becomes

|fe| ≤ ue, for each arc e ∈ E. (3)

Also, the set E+(v) (resp. E−(v)) denotes now the set of incident edges that are oriented towards
(resp. away) from v, and E(v) := E+(v)∪E−(v) is just the set of all edges incident to v, regardless
of their orientation.
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Finally, given a directed graph G = (V,E,u), by its projection Ḡ we understand an undirected
graph that arises from treating each arc of G as an edge with the corresponding orientation. Note
that if G had two arcs (u, v) and (v, u) then Ḡ will have two parallel edges (u, v) and (v, u) that
have opposite orientation and, possibly, different capacities.

2.3 Electrical Flows and Potentials

A notion that will play a fundamental role in this paper is the notion of electrical flows. Here, we
just briefly review some of the key properties that we will need later. For an in-depth treatment we
refer the reader to [Bol98].

Consider an undirected graph G and some vector of resistances r ∈ R
m that assigns to each

edge e its resistance re > 0. For a given σ-flow f in G, let us define its energy (with respect to r)
Er (f ) to be

Er (f ) :=
∑

e

ref
2
e = f TRf , (4)

where R is an m×m diagonal matrix with Re,e = re, for each edge e.
For a given undirected graph G, a demand vector σ, and a vector of resistances r , we define

an electrical σ-flow in G (that is determined by resistances r) to be the σ-flow that minimizes
the energy Er (f ) among all σ-flows in G. As energy is a strictly convex function, one can easily
see that such a flow is unique. Also, we emphasize that we do not require here that this flow is
feasible with respect to capacities of G (cf. (3)). Furthermore, whenever we consider electrical flows
in the context of a directed graph G, we will mean an electrical flow – as defined above – in the
(undirected) projection Ḡ of G.

One of very useful properties of electrical flows is that it can be characterized in terms of vertex
potentials inducing it. Namely, one can show that a σ-flow f in G is an electrical σ-flow determined
by resistances r iff there exist vertex potentials φv (that we collect into a vector φ ∈ R

n) such that,
for any edge e = (u, v) in G that is oriented from u to v,

fe =
φv − φu

re
. (5)

In other words, a σ-flow f is an electrical σ-flow iff it is induced via (5) by some vertex potential
φ. (Note that orientation of edges matters in this definition.)

Using vertex potentials, we are able to express the energy Er (f ) (see (4)) of an electrical σ-flow
f in terms of the potentials φ inducing it as

Er (f ) =
∑

e=(u,v)

(φv − φu)
2

re
. (6)

One of the consequences of this characterization of electrical flows via vertex potentials is that
one can view the energy of an electrical σ-flow as being a result of optimization not over all the
σ-flows but rather over certain set of vertex potentials. Namely, we have the following lemma that,
for completeness, we prove in the Appendix A.

Lemma 2.1. For any graph G = (V,E), any vector of resistances r , and any demand vector σ,

1

Er (f ∗)
= min

φ|σTφ=1

∑

e=(u,v)∈E

(φv − φu)
2

re
,
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where f ∗ is the electrical σ-flow determined by r in G. Furthermore, if φ∗ are the vertex potentials
corresponding to f ∗ then the minimum is attained by taking φ to be equal to φ̃ := φ∗/Er (f ∗).

Note that the above lemma provides a convenient way of lowerbounding the energy of an elec-
trical σ-flow. One just needs to expose any vertex potentials φ such that σTφ = 1 and this will
immediately constitute an energy lowerbound. Also, another basic but useful property of electrical
σ-flows is captured by the following fact.

Fact 2.2 (Rayleigh Monotonicity). For any graph G = (V,E), demand vector σ and any two vectors
of resistances r and r ′ such that re ≥ r′e, for all e ∈ E, we have that if f (resp. f ′) is the electrical
σ-flow determined by r (resp. r ′) then

Er (f ) ≥ Er ′(f ′).

2.4 Laplacian Solvers

A very important algorithmic property of electrical flows is that one can compute very good ap-
proximations of them in nearly-linear time. Below, we briefly describe the tools enabling that.

To this end, let us recall that electrical σ-flow is the (unique) σ-flow induced by vertex potentials
via (5). So, finding such a flow boils down to computing the corresponding vertex potentials φ. It
turns out that computing these potentials can be cast as a task of solving certain type of linear
system called Laplacian systems. To see that, let us define the edge-vertex incidence matrix B being
an n×m matrix with rows indexed by vertices and columns indexed by edges such that

Bv,e =





1 if e ∈ E+(v),

−1 if e ∈ E−(v),

0 otherwise.

Now, we can compactly express the flow conservation constraints (1) of a σ-flow f (that we view
as a vector in R

m) as
Bf = σ.

On the other hand, if φ are some vertex potentials, the corresponding flow f induced by φ via
(5) (with respect to resistances r) can be written as

f = R−1BTφ,

where again R is a diagonal m×m matrix with Re,e := re, for each edge e.
Putting the two above equations together, we get that the vertex potentials φ that induce the

electrical σ-flow determined by resistances r are given by a solution to the following linear system

BR−1BTφ = Lφ = σ, (7)

where L := BR−1BT is the (weighted) Laplacian L of G (with respect to the resistances r). One
can easily check that L is an n× n matrix indexed by vertices of G with entries given by

Lu,v =





∑
e∈E(v) 1/re if u = v,

−1/re if e = (u, v) ∈ E, and

0 otherwise.

(8)
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One can see that the Laplacian L is not invertible, but – as long as, the underlying graph is
connected – it’s null-space is one-dimensional and spanned by all-ones vector. As we require our
demand vectors σ to have its entries sum up to zero (otherwise, no σ-flow can exist), this means
that they are always orthogonal to that null-space. Therefore, the linear system (7) has always a
solution φ and one of these solutions5 is given by

φ = L†σ,

where L† is the Moore-Penrose pseudo-inverse of L.
Now, from the algorithmic point of view, the crucial property of the Laplacian L is that it is

symmetric and diagonally dominant, i.e., for any v ∈ V ,
∑

u 6=v |Lu,v| ≤ Lv,v. This enables us to
use fast approximate solvers for symmetric and diagonally dominant linear systems to compute an
approximate electrical σ-flow. Namely, building on the work of Spielman and Teng [ST03, ST04],
Koutis et al. [KMP10, KMP11] designed an SDD linear system solver that implies the following
theorem. (See also recent work of Kelner et al. [KOSZ13] that presents an even simpler nearly-
linear-time Laplacian solver.)

Theorem 2.3. For any ε > 0, any graph G with n vertices and m edges, any demand vector σ,
and any resistances r , one can compute in Õ(m logm log ε−1) time vertex potentials φ̃ such that
‖φ̃−φ∗‖L ≤ ε‖φ∗‖L, where L is the Laplacian of G, φ∗ are potentials inducing the electrical σ-flow
determined by resistances r , and ‖φ‖L :=

√
φTLφ.

To understand the type of approximation offered by the above theorem, observe that ‖φ‖2L =

φTLφ is just the energy of the flow induced by vertex potentials φ. Therefore, ‖φ̃ − φ∗‖L is the
energy of the electrical flow f̄ that “corrects” the vertex demands of the electrical σ̃-flow induced
by potentials φ̃, to the ones that are dictated by σ. So, in other words, the above theorem tells
us that we can quickly find an electrical σ̃-flow f̃ in G such that σ̃ is a slightly perturbed version
of σ and f̃ can be corrected to the electrical σ-flow f ∗ that we are seeking, by adding to it some
electrical flow f̄ whose energy is at most ε fraction of the energy of the flow f ∗. (Note that electrical
flows are linear, so we indeed have that f ∗ = f̃ + f̄ .) As we will see, this kind of approximation is
completely sufficient for our purposes.

2.5 Bipartite b-Matchings

A fundamental graph problem that constitutes both an application of our results, as well as, one of
the tools we use to establish them, is the (maximum-cardinality) bipartite b-matching problem. In
this problem, we are given an undirected bipartite graph G = (V,E) with V = P ∪ Q – where P
and Q are the two sets of bipartition – as well as, a demand vector b that assigns to every vertex v
an integral and positive demand bv. Our goal is to find a maximum cardinality multiset M of the
edges of G that forms a b-matching. That is, we want to find a multi-set M of edges of G that is
of maximum cardinality subject to a constraint that, for each vertex v ∈ V , the number of edges of
M that are incident to v is at most bv. (When bv = 1 for every vertex v, we will simply call such
M a matching.)

We say that a b-matching M is perfect iff every vertex in V has exactly bv edges incident to
it in M . Note that a perfect b-matching - if it exists in G - has to necessarily be of maximum

5Note that the linear system (7) will have many solutions, but each two of them are equivalent up to a translation.
So, as the formula (5) is translation-invariant, each of these solutions will yield the same unique electrical σ-flow.
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cardinality. Also, if a graph has a perfect b-matching then it must be that
∑

v∈P bv =
∑

v∈Q bv.
Now, by the perfect bipartite b-matching problem we mean a task in which we need to either find
the perfect b-matching in G or conclude that it does not exist.

Finally, by a fractional solution to a b-matching problem, we understand an |E|-dimensional
vector x that allocates non-negative value of xe to each edge e and is such that for every vertex v
of G, the sum

∑
e∈E(v) xe of (fractional) incident edges in x is at most bv. Also, we define the size

of a fractional b-matching x to be |x |1.
An interesting class of graphs that is guaranteed to always have a perfect matching are bipartite

graphs that are d-regular, i.e., that have the degree of each vertex equal to d. A remarkable algorithm
of Goel et al. [GKK10] shows that one can find a perfect matching in such graphs in time that is
proportional only to number of its vertices and not edges. (Note that a d-regular bipartite graph has
exactly dn

2 edges and thus this number can be much higher than n when d is large.) In particular,
they prove the following theorem that we will use later.

Theorem 2.4 (see Theorem 4 in [GKK10]). Given an n × n doubly-stochastic matrix M with m
non-zero entries, one can find a perfect matching in the support of M in O(n log2 n) expected time
with O(m) preprocessing time.

3 From Flows to Matchings, and Back

As we already mentioned, our results stem from exploiting the interplay between the maximum s-t
flow and bipartite b-matching problem, as well as, from understanding the performance of interior-
point methods – when applied to these two problems – via the structure of corresponding electrical
flows. To highlight these elements, we decompose the proof of our main theorem (Theorem 1.1)
into three natural parts.

Reducing Maximum Flow to b-Matching

First, we focus on analyzing the relationship between the maximum s-t flow and the (maximum-
cardinality) bipartite b-matching problem. It is well-known that the latter can be reduced to the
former in a simple way. As it turns out, however, one can also go the other way – there is a simple,
combinatorial reduction from the maximum flow problem to the task of finding a perfect bipartite
b-matching.6

Before making this precise, let us introduce one definition. Consider a b-matching problem
instance corresponding to a bipartite graph G = (V,E) with P and Q (V = P ∪Q) being two sides
of the bipartition. For any edge e = (p, q) ∈ E, let us define the thickness d(e) of that edge to be
d(e) := min{bp, bq}. (So, d(e) is an upper bound on the value of xe in any feasible b-matching x .)
We say that a b-matching instance is balanced iff

∑

e∈E
d(e) ≤ 4|b|1. (9)

Now, in Section 4, we establish the following result.

6One can view this as one possible explanation of why the techniques used in the context of bipartite matchings
and maximum flows are so similar.
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Theorem 3.1. If one can solve a balanced instance of a perfect bipartite b-matching problem in
a (bipartite) graph with n̄ vertices and m̄ edges in T (n̄, m̄, |b|1) time, then one can solve the max-
imum s-t flow problem in a graph G = (V,E,u) with m arcs and capacity vector u in Õ((m +
T (Θ(m), 4m, 4|u |1)) log |u |1) time.

This connection between maximum flows and bipartite matchings is useful in two ways. Firstly,
it enables us to reduce the main problem we want to solve – the maximum s-t flow problem with
unit capacities – to a seemingly simpler one: the perfect bipartite b-matching problem. Secondly,
the fact that this reduction works also for fractional instances provides us with an ability to lift
our b-matching rounding procedure that we develop later (see Theorem 3.3) to the maximum flow
setting (see Corollary 3.4).

The Algorithm for Near-Perfect b-Matching Problem

Once the above reduction is established, we can proceed to designing an improved algorithm for the
perfect bipartite b-matching problem. This algorithm consists of two parts.

The first one – constituting the technical core of our paper – is related to the (fractional)
near-perfect bipartite b-matching problem, a certain relaxation of the perfect bipartite b-matching
problem. To describe this task formally, let us call a b-matching x near-perfect if its size |x |1 is at
least |b|1

2 − Õ(m
3
7 ), i.e., it is within Õ(m

3
7 ) additive factor of the size of a perfect b-matching. Now,

given a bipartite graph G = (P ∪Q,E) and demand vector b, the near-perfect b-matching problem
is a task of either finding a near-perfect b-matching in G or concluding that no perfect b-matching
exists in that graph.

Our goal is to design an algorithm that solves this near-perfect b-matching problem in Õ(m
10
7 )

time. To this end, in Sections 5 and 6 we prove the following theorem.

Theorem 3.2. Let G = (V,E) with V = P ∪ Q be an undirected bipartite graph with n vertices
and m edges and let b be a demand vector that corresponds to a balanced b-matching instance
with |b|1 = O(m). In Õ(m

10
7 ) time, one can either find a fractional near-perfect b-matching x or

conclude that no perfect b-matching exists in G.

(Observe that whenever we have an instance of maximum s-t flow problem that has m̄ arcs and
unit capacities, |u |1 is exactly m̄. So, if we apply the reduction from Theorem 3.1 to that instance
then the resulting b-matching problem instance will be balanced, have m ≤ 4m̄ edges, as well as,
|b|1 ≤ 4|u |1 = 4m̄ ≤ 2m. Therefore, we will be able to apply the above Theorem 3.2 to it.)

At a very high level, our algorithm for the near-perfect b-matching problem is inspired by the
way the existing interior-point method path-following algorithms (see, e.g., [Ye97, Wri97, BV04])
can be used to solve it. Basically, our algorithm is an iterative method that starts with some initial,
far-from-optimal solution and then gradually improves this maintained solution to near-optimality
(pushing it along so-called central path) using appropriate electrical flows as a guidance. We then
show how to tie the convergence rate of this process to the structure of the guiding electrical flows.
At that point, one can use a simple energy-bounding argument to establish a generic convergence
bound that yields an (unsatisfactory) Õ(m

3
2 )-time algorithm.

To improve upon this bound and deliver the desired Õ(m
10
7 )-time algorithm, we show how one

can appropriately “shape” these guiding electrical flows to make their guidance more effective and
thus guarantee faster convergence. Very roughly speaking, it turns out there is a way of changing
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the maintained solution to make it essentially the same from the point of view of our b-matching
instance, while dramatically improving the quality of corresponding electrical flows that guide it.

Our way of executing this idea is based on a careful composition of two techniques. One of
them corresponds to perturbing, in a certain way, the arcs that are most significantly distorting the
structure of electrical flow – this technique can be viewed as a refinement of edge removal technique
of Christiano et al. [CKM+11]. The other technique corresponds to preconditioning the whole
solution by adding additional, auxiliary, arcs to it. These arcs are chosen so to significantly improve
the conductance properties of the solution (when viewed as a graph with resistances) while not
leading to too significant deformation of the final obtained solution.

Rounding Near-Perfect b-Matchings

Finally, our final step on our way towards solving the perfect b-matching problem (and thus the
maximum s-t flow problem) is related to turning the approximate and fractional answer returned
by the algorithm from Theorem 3.2 into an exact and integral one. To this end, note that if that
algorithm returned a near-perfect b-matching that was integral, there would be a standard way to
either turn it into a perfect b-matching or conclude that no such perfect b-matching exists. Namely,
one could just use repeated augmenting path computations. It is well-known that given an integral
b-matching, one can perform, in O(m) time, an augmenting path computation that either results in
increasing the size of our b-matching by one, or concludes that no further augmentation is possible
(and thus no perfect b-matching exists). So, as our initial near-perfect b-matching has size at least
|b|1
2 −Õ(m

3
7 ), after at most Õ(m

3
7 ) iterations, i.e., in time Õ(m

10
7 ), we would get the desired answer.

Unfortunately, the above approach can fail completely once our near-perfect b-matching is frac-
tional. This is so, as in this case we do not have any meaningful lowerbound on the progress on the
size of the b-matching brought by the augmenting path computation.

Therefore, to deal with this issue, we develop the last ingredient of our algorithm: a nearly-
linear time procedure that allows one to round fractional b-matchings. More precisely, in Section 8,
building on the work of Goel et al. [GKK10] (see Theorem 2.4), we establish the following theorem.

Theorem 3.3. Let G = (V,E) be an undirected bipartite graph with m edges and let b be a demand
vector, if x is a fractional b-matching in G of size k = |x |1 then one can find in Õ(m) time an
integral b-matching in G of size ⌊k⌋.

Clearly, if we apply the above rounding method to the fractional near-perfect matching x com-
puted by the algorithm from Theorem 3.2, it will give us an integral b-matching x ∗ whose size is
still at least |b|1

2 − Õ(m
3
7 ). So, the augmenting path-based approach we outlined above will let us

obtain the desired integral and exact answer to the perfect b-matching problem within the desired
time bound.

In the light of all the above, we see that combining all the above pieces indeed yields an Õ(m
10
7 )-

time algorithm for the perfect bipartite b-matching problem in graphs with |b|1 = O(m). Now,
using the reduction from Theorem 3.1, this gives us the analogous algorithm for the maximum s-t
flow problem in unit-capacity graphs and that, in turn, results in an algorithm for the bipartite
matching problem. So, both Theorem 1.1 and Theorem 1.2 hold.
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Rounding s-t Flows

Finally, we mention the other byproduct of our techniques – the fast rounding procedure for flows.
Namely, using the reduction described in Theorem 3.1 and the rounding from Theorem 3.3 we can
obtain a fast rounding procedure not only for fractional b-matchings but also for fractional s-t flows.
Specifically, the proof of the following corollary appears in Appendix B.

Corollary 3.4. Let G = (V,E,u) be a directed graph with capacities and let f be some feasible
fractional s-t flow in G of value F . In Õ(m) time, we can obtain out of f an integral s-t flow f ∗ of
value ⌊F ⌋ that is feasible in G.

Again, we note that a very similar rounding result was independently obtained by Khanna et al.
[KKL13].

4 From Maximum Flows to Perfect Matchings

In this section, we show how to reduce the maximum s-t flow problem in a directed capacitated
graph G = (V,E,u) to solving O(log |u |1) balanced instances of the perfect bipartite b-matching
problem, i.e., we prove Theorem 3.1. We note that our reduction can be seen as an adaptation of
the reduction of the maximum vertex-disjoint s-t path problem to the bipartite matching problem
due to Hoffman [Hof60] – cf. Section 16.7c in [Sch03].

To this end, let G = (V,E,u) with n = |V | vertices and m = |E| arcs, as well as, the source s
and sink t be our input instance of the maximum s-t flow problem. Without loss of generality, we
can assume that there is no arcs entering s and no arcs leaving t, as these arcs do not affect the
maximum s-t flow. Also, let F ∗ be the value of the maximum s-t flow in G.

4.1 The Reduction

We show that for any integral value of F , we can setup, in Õ(m) time, a balanced bipartite b-
matching problem instance, for some demands b and bipartite graph Ḡ = (P ∪ Q, Ē), such that:
(1) there will be a perfect b-matching in Ḡ if there is a feasible s-t flow of value F in G; and (2)
given a perfect b-matching in Ḡ one can recover in Õ(m) time an s-t flow of value F that is feasible
in G. Observe that once such a reduction is designed, Theorem 3.1 will follow by noticing that
1 ≤ F ∗ ≤ |u |1 and applying a simple binary search strategy to find the value of F ∗ and extract the
corresponding maximum s-t-flow.

Given the input graph G = (V,E,u), source s, sink t and the value of F , the construction of
our desired balanced bipartite b-matching instance Ḡ = (P ∪Q, Ē) is as follows. First, for each arc
e ∈ E, we create two vertices pe ∈ P and qe ∈ Q and an edge (pe, qe) between them, as well as, we
set the demand bpe and bqe of these vertices to ue. Next, for every vertex v of G other than s and
t, we add a vertex pv to P and a vertex qv to Q. Also, we create an edge (pv, qv), as well as, an
edge (pv, qe) (resp. (qv, pe)) for every arc e that is incoming to (resp. outgoing of) v in G. We set
the demands bpv (resp. bqv) to be equal to

∑
e∈E+(v) ue (resp.

∑
e∈E−(v) ue). Finally, we create a

vertex qs ∈ Q (resp. pt ∈ P ) and add an edge (qs, pe) (resp. (qe, pt) for each arc e that is leaving
s (resp. incoming to t) in G. We put the demand bqs (resp. bpt) to be (

∑
e∈E−(s) ue) − F (resp.

(
∑

e∈E+(t) ue)− F ). (Note that we can assume here that both these quantities are non-negative as
both

∑
e∈E−(s) ue and

∑
e∈E+(t) ue are obvious upperbounds on the value of F ∗.)
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Figure 1: a) An example directed s-t flow instance G. Numbers next to arcs denote their capacities.
b) The b-matching instance corresponding to the example from a) in case of F = 2. Here, numbers
next to vertices denote their demands.

An example s-t flow instance and the corresponding instance of the bipartite b-matching can be
found in Figure 1.

To see that this instance is balanced, note that every edge h of Ḡ that is incident to some vertex
pe or qe has its thickness d(h) equal to ue = bpe = bqe . So, the contribution of these edges to the
total thickness

∑
h∈Ē d(h) of edges of Ḡ is at most 3

∑
e∈E ue ≤ 3

2 |b|1. On the other hand, the only
edges that are not incident to some pe or qe are the ones of the form (pv, qv). However, the total
contribution of these edges to the total thickness is at most

∑

v 6=s,t

min{
∑

e∈E+(v)

ue,
∑

e∈E−(v)

ue} ≤
∑

v 6=s,t

∑
e∈E+(v) ue +

∑
e∈E−(v) ue

2
≤ |u |1 ≤ |b|1,

as needed.
Now, the proof of correctness of this reduction appears in Appendix C.

5 Basic Õ(m
3

2 )-Time Algorithm for Bipartite b-Matching Problem

Over the next two sections, we prove Theorem 3.2. That is, we present an algorithm for the near-
perfect bipartite b-matching problem in the setting where the input instance is balanced (see (9))
and |b|1 is O(m). In what follows we assume, for convenience, that |b|1 is at most 2m and that the
graph G is sparse, i.e., m = O(n).7

7It is easy to see that these assumptions are made without loss of generality. Whenever |b|1 is O(m), one can
ensure that |b|1 ≤ 2m and m = O(n) by adding an appropriate – but still O(m) – number of dummy copies of
complete bipartite K6,6 graph with uniform demands. Adding each such dummy isolated copy brings the ratio of
|b|1 and m, as well as, of m to n down towards 18

12
, while never leading to violation of the balance condition (9) and

preserving the b-matching structure of the original input graph.
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In this section, we show a basic algorithm that runs in Õ(m
3
2 ) time. Later, in Section 6, we

refine this algorithm to obtain the desired running time of Õ(m
10
7 ).

For the sake of clarity, in our description and analysis we assume that the nearly-linear time
Laplacian system solver (see Theorem 2.3) always returns an exact solution, i.e., all the electrical
σ-flows we compute are exact. We discuss how to handle the approximate nature of the solver’s
output in Appendix E.9.

From b-Matching to Min-Cost σ-flow

Let us fix our instance of the bipartite b-matching problem in bipartite graph G = (V,E) with
V = P ∪Q. We will solve our b-matching instance by reducing it to a task of finding a minimum-
cost σ̂-flow in a certain related directed graph Ĝ = (V̂ , Ê, l̂) with l̂ being a length vector.

a) b)

p1 p2 p3 p4

q1 q2 q3

v∗

sp1 sp2 sp3 sp4

tq1 tq2 tq3
2 1 4

2 1 3 1 -2 -1 -3 -1

412

0

Figure 2: a) An example instance of bipartite b-matching problem. Numbers next to vertices
represent their demands. b) The minimum-cost σ̂-flow problem instance corresponding to the
example from a). All arcs have cost l̂e equal to 1 and the numbers next to vertices denote their
demands in σ̂. There are two parallel copies of the arc (sp1 , tq1) and three parallel copies of the
arc (sp3 , tq3). Also, each dashed arc represents two arcs that have the same endpoints but opposite
orientation.

The reduction is performed as follows (see Figure 2 for an example). The vertex set V̂ of the
graph Ĝ consist of a special vertex v∗, as well as, vertices sp (resp. tq), for every vertex p ∈ P (resp.
q ∈ Q) of the graph G. Next, for every edge e = (p, q) in G, we add to Ĝ d(e) copies of an arc
(sp, tq), where we recall that d(e) := min{bp, bq} is the thickness of e. Finally, for each vertex p ∈ P

(resp. q ∈ Q) of G, we add to Ĝ arcs (sp, v
∗) and (v∗, sp) (resp. (v∗, tq) and (tq, v

∗)). We set the
lengths l̂e of all arcs e to 1.

To gain some intuition on this reduction, note that if a perfect b-matching indeed exists in G
then the flow that encodes it in Ĝ is fully supported on the arcs (sp, tq) and does not send more
than one unit of flow on any of these arcs. So, the purpose of including the extra vertex v∗ and the
arcs incident to it is to support (and appropriately penalize) the initial and intermediate solutions
as they approach optimality.

Also, observe that this new graph hasˆ:= n + 1 vertices and, due to our b-matching instance

15



being balanced, we have that the total number m̂ of arcs is at most

2n+
∑

e=(p,q)∈G
d(e) ≤ 2n+O(m) = O(m).

So, bounding our running time in terms of m̂ provides a bound in terms of the number of edges m
of our original b-matching instance that is asymptotically the same.

Now, consider a demand vector σ̂ that has surplus of bp at each vertex sp, a deficit of bq at
each vertex tq and a zero demand at vertex v∗. (Note that such a demand vector will be valid,
i.e.,

∑
v σ̂v = 0, as we can assume that

∑
p bp =

∑
q bq – otherwise it would be impossible to have

a perfect b-matching in G.) We claim that any near-optimal σ̂-flow gives us a solution to our
near-perfect b-matching instance. (Recall from Section 3 that a b-matching is near-perfect if its
size is at least |b|1

2 − Õ(m̂
3
7 ). Although, in the lemma below it suffices that we have a slack of only

1
2 instead of Õ(m̂

3
7 ).)

Lemma 5.1. Given any feasible σ̂-flow f in Ĝ whose cost l̂(f ) is within additive 1
2 of the optimum,

in Õ(m̂) time, we can either compute a (fractional) near-perfect b-matching x in G or conclude
that no perfect b-matching exists in G.

Proof. First, observe that if there exists a perfect b-matching x ∗ in G then a flow f ∗ that just puts,
for each e = (p, q) of G, x∗

e

d(e) ≤ 1 units of flow on each (of d(e)) copies of the arc (sp, tq) in Ĝ,

is a feasible σ̂-flow with cost |b|1
2 . (Recall that in the minimum-cost problem we assume that arc

capacities are infinite, thus feasibility condition (2) boils down to non-negativity of all f∗
e s.) So, we

can assume that our σ̂-flow f has its cost l̂(f ) at most |b|1
2 + 1

2 . (Otherwise, we know that there is
no perfect b-matching in G.)

Now, given any feasible σ̂-flow in Ĝ, we can decompose it into a collection of flow-paths and
flow-cycles, where each of these flow-paths transports some amount of flow from some vertex sp to
some vertex tq. By our construction of the graph Ĝ, each such flow-path has to have a length at
least 1. On the other hand, if this flow-path is indeed of length exactly 1 then it has to correspond
to a single arc (sp, tq) that reflects the existence of edge (p, q) in G. As a result, our feasible σ̂-flow

f in Ĝ has to have its cost l̂(f ) to be at least |b|1
2 and, furthermore, l̂(f )− |b|1

2 is an upper bound on
the total amount of flow in f that is not transported over the direct one-arc flow paths (and thus
passes through the vertex v∗).

So, as we argued that the cost of f has to be at most |b|1
2 + 1

2 , there is only at most 1
2 units of

flow in f that passes through the vertex v∗. Now, to extract the desired (fractional) near-perfect
b-matching x , we just take xe = f(sp,tq), for each edge e = (p, q) in G. Clearly, the size of such

fractional matching is at least |b|1
2 − 1

2 , which is well above our lowerbound of |b|1
2 − Õ(m

3
7 ) for a

near-perfect matching. Also, our construction works in Õ(m̂) time, as desired.

Slack Variables

In the light of the above, our goal now is to compute the near-optimal solution to our minimum-
cost σ̂-flow problem instance in the graph Ĝ. Our approach to this task is inspired by so-called
path-following interior-point methods [Ye97, Wri97, BV04]. At a very high level, we will start with
certain initial solution that is far from being optimal, and then we will gradually improve – in an
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iterative manner – its quality until close-to-optimal solution is obtained. This gradual improvement
will be performed in a very specific way. It will always try to push the current solution further down
so-called central path.

Before we can define the central path, let us first mention that, in general, there are two natural
ways of tracking the progress of a current solution towards optimality. One of them is purely primal
and relies on just maintaining a feasible solution f and comparing its cost against some estimate of
the cost of the optimal solution. The second one – and the one that we will actually use here – is
based on primal-dual paradigm. Namely, in addition to maintaining a feasible primal solution f , we
will also keep a dual feasible solution y . This dual solution provides an embedding of all the vertices
in Ĝ into a line, i.e., y just assigns a real number yv to each vertex v of Ĝ. Its feasibility condition
is that for any arc e = (v, w) of Ĝ it should be the case that its slack variable se := l̂e − yw + yv
is always non-negative, i.e., that the length of the arc e in this embedding is never larger than its
length according to the length vector l̂ .

Before we proceed further, we note that the dual solution y is uniquely determined – up to a
translation – by the vector s (given the length vector l̂). So, for notational convenience, from now
on, we will describe the dual solutions in terms of the vector s instead of y .

Duality Gap

It is not hard to see that any feasible dual solution s provides a lower-bound on the cost of the
optimal solution (after all, this is just a consequence of weak duality). In particular, one has that
for any pair (f , s) of feasible primal and dual solutions, the so-called duality gap, i.e., the difference
between the upper bound on the value of optimal solution that is provided by the primal solution
f and the lower bound provided by the dual solution s is exactly

f T s = µT
1 =

∑

e

µe,

where µe := fese, for each arc e, and 1 is all-ones vector (of dimension m̂).
This means that one can obtain a close-to-optimal solution by devising a procedure that (quickly)

converges to a pair of primal and dual solutions (f , s) whose duality gap |µ|1 is small (in our case,
at most 1

2).

γ-Centered Solutions and the Central Path

To describe in more detail the convergence process we will employ, let us associate with each arc e a
measure νe ≥ 1. One can view νe as a certain notion of importance of a given arc. (The motivation
behind introducing this notion will be clear later.) We will always make sure that the measures of
arcs are not smaller than 1 and also that their total sum is never too large. That is, we will make
sure to maintain the following invariant.

Invariant 5.2. We have that νT
1 =

∑
e νe ≤ 4m̂ and for each arc e, νe ≥ 1.

We want to note that when discussing the preservation of the above invariant we will only
focus on ensuring that the upperbound is not violated. The fact that νe ≥ 1 for all arcs e will be
automatically enforced as we will make sure that the initial measure of all the arcs is always at least
1 and our algorithm will never decrease any measures – they only might increase.
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γ-centered solutions. Now, let us define, for each arc e, µ̂e := µe

νe
= fese

νe
to be the normalized

value of µe and let

µ̂(f , s,ν) :=

∑
e fese∑
e νe

=

∑
e µe∑
e νe

=

∑
e νeµ̂e∑
e νe

(10)

be the weighted average value of µ̂e with weights given by the measures ν.
We will call a solution (f , s,ν) (where ν represents the associated measures) γ-centered, for

some γ ≥ 0, if

‖µ̂− µ̂(f , s,ν)1‖ν,2 =
√∑

e

νe(µ̂e − µ̂(f , s,ν))2 ≤ γµ̂(f , s,ν), (11)

where, for a given vector x ∈ Rm̂,

‖x‖ν,p :=
(
∑

e

νex
p
e

) 1
p

, (12)

i.e., ‖x‖ν,p is the ℓp-norm of the vector x reweighed by the measures ν.
Note that in a 0-centered solution (f , s,ν) we have all µ̂e equal to µ̂(f , s,ν). More generally, a

simple but very useful observation is that

Fact 5.3. For any γ-centered solution (f , s,ν) we have that

(1− γ)µ̂(f , s,ν) ≤ µ̂e =
fese
νe
≤ (1 + γ)µ̂(f , s,ν),

for each arc e.

µ̂(f , s,ν) as a measure of progress. The quantity µ̂(f , s,ν) will be important to us for one
more reason. It will constitute our measure of progress on the quality of our maintained solution.
To see why it indeed can serve this role, recall that by Invariant 5.2 we have that

f T s =
∑

e

µe = µ̂(f , s,ν)(
∑

e

νe) ≤ 4µ̂(f , s,ν)m̂. (13)

So, if our goal is to obtain a solution whose duality gap is at most 1
2 we just need to make sure that

the corresponding value of µ̂(f , s,ν) is at most 1
8m̂ .

The main reason why we choose to measure our progress in terms of µ̂(f , s,ν) instead of the
actual duality gap f T s is that in our algorithm we will sometime end up increasing measures of
arcs. Such increases lead to an increase of the duality gap, so measuring our progress in terms of
f T s would require dealing with such local non-monotonicity of this quantity. Continently, once we
focus on keeping track of µ̂(f , s,ν) (and ensure that Invariant 5.2 is never violated), these issues
will be avoided.

The central path. Finally, after introducing the above definitions, we can define the central path
to be the set of all the 0-centered solutions.8 One can show that this set constitutes an actual path

8Strictly speaking, in the literature, the central path corresponds to 0-centered solutions with the measures of all
arcs being one.
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in feasible space that spans all the 0-centered solutions and passes arbitrarily close to (but never
reaches) an optimal solution to our minimum cost flow problem. This explains the name of “path-
following” interior-point methods, as they start with some initial 0-centered solution and gradually
advance along the central path to get increasingly more optimal γ-centered solution for some small
fixed γ.

Traversing the Central Path with Electrical Flows

Motivated by this path-following approach, our algorithm for computing near-optimal solution to
the minimum-cost σ̂-flow problem will start with some 0-centered solution (f 0, s0,ν0) that has
fairly large value of µ̂(f 0, s0,ν0) (and thus is far from being optimal). Then, we will devise a
sequence of solutions (f t, st,νt), where t is the step index, that have increasingly smaller value
of µ̂(f t, st,νt) (and thus, indirectly, the duality gap) while making sure that they always are γ̂-
centered for some small constant γ̂ := 1

400 . This way, our algorithm will eventually converge to the
desired close-to-optimal solution.

To implement this approach, we start with the following lemma that shows we can get the initial
0-centered solution (f 0, s0,ν0) – its proof appears in Appendix D.1.

Lemma 5.4. There exists an explicit 0-centered primal-dual feasible solution (f 0, s0,ν0) with∑
e ν

0
e ≤ 3m̂ and µ̂(f 0, s0,ν0) = 1.

Note that the bound on the total measure of the arcs ensures that the Invariant 5.2 is preserved.
Furthermore, there is a slack of at least m̂ remaining between

∑
e ν

0 and the upperbound of 4m̂ from
Invariant 5.2. It will be used to accommodate future measure increases in our improved algorithm
(see Section 6).

We now proceed to explaining how given some γ̂-centered solution (f t, st,νt), we can modify it
to obtain a γ̂-centered solution (f t+1, st+1,νt+1) that has a smaller value of µ̂(f t, st,νt).

The associated flow f̂
t
. For a given solution (f , s,ν) let us call it σ-feasible, for some demand

vector σ, if it is dual feasible (i.e., s ≥ 0) and if f is a feasible σ-flow. (So, a σ̂-feasible solution
is a solution that is primal-dual feasible for our minimum-cost σ̂-flow problem.) Next, given a
σ-feasible solution (f , s,ν), let us define an associated electrical flow f̂ to be the electrical σ-flow
in (the undirected projection of) Ĝ determined by resistances r that are given as

re :=
se
fe

=
µe

(fe)2
, (14)

for arc e. (Whenever we use this definition, it will be always the case that all fes are positive and
thus the resistances re are well-defined.)

Making an improvement step. The central object in our procedure for taking an improvement
step will be the electrical flow f̂

t
that is associated with the solution (f t, st,νt). The fundamental

property of this flow is that it allows us to simultaneously update our solution (f t, st,νt) both in

the primal (flow) space – via the flow f̂
t

itself – and in the dual (line embedding) space – via the

vertex potentials φ̂
t

that induced f̂
t

(see (5)). (In Section 7, we provide a detailed description of
the whole improvement step.)
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As we will see, such a guided update not only decreases the duality gap of our solution, but also
perfectly maintains its centering when only first-order terms (i.e., terms linear in the updates) are
accounted for. Unfortunately, the second-order terms (i.e., the ones depending on the product of
primal and dual updates) can disturb the centering. So, to be able to control this deficiency, we
need to ensure that the step size δt that governs the “aggressiveness” of the improvement step is
sufficiently small.

Of course, on the other hand, it is important for us to have this step be as large as possible.
After all, the extent of our duality gap improvement – and thus overall convergence rate of our
algorithm – is directly proportional to this size. So, it is crucial for us to develop a good grasp on
how the size of that step relates to the properties of the flow f̂

t
.

To this end, let us define, for some – not necessarily feasible – flow f and a positive vector x > 0,
ρ(f ,x ) to be the vector of congestions inflicted in Ĝ by f with respect to capacities given by x .
That is,

ρ(f ,x )e :=
|fe|
xe

, (15)

for each arc e in Ĝ.
Now, in Section 7, we present a precise implementation and analysis of our update step. (This im-

plementation can be viewed as a direct analogue of the update steps of path-following interior-point
methods.) The result of this analysis is presented in the following theorem, which, in particular, ties

the congestion vector ρ(f̂
t
, f t) inflicted by the electrical flow f̂

t
with respect to the primal solution

f t, to an upperbound on the size δt of the improvement step.

Theorem 5.5. Let (f t, st,νt) be a solution that is γ̂-centered and σ̂-feasible, and let f̂
t

be the
associated electrical flow. We can compute in Õ(m̂) time a γ̂-centered and σ̂-feasible solution
(f t+1, st+1,νt+1) with µ̂(f t+1, st+1,νt+1) ≤ (1− δt)µ̂(f t, st,νt), as long as,

0 < δt ≤ min

{ √
γ̂

‖ρ(f̂ t
, f t)‖νt,4

,
1

2

}
.

Furthermore, we have that the measures do not change, i.e., νt+1 = νt, and if for each arc e, we

define (1 + κte) :=
(1−δt)st+1

e f t
e

f t+1
e ste

= (1−δt)rt+1
e

rte
and (1 + κ̄te) :=

(1−δt)f t
e

f t+1
e

to make κt (resp. κ̄t) reflect the

relative change (scaled by (1− δt)) of resistances r t (resp. flows f t) then ‖κt‖∞, ‖κ̄t‖∞ ≤ 1
2 and

|κte|, |κ̄te| ≤ 4(δtρ(f̂
t
, f t)e + κ̂te),

for some vector κ̂t with ‖κ̂t‖νt,2 ≤ 1
16 .

So, we see that the allowed size δt of the improvement steps is proportional to how much the
guiding flow f̂

t
resembles the current primal solution f t. Thus, for example, if there is some arc e

that flows much larger flow in f̂
t
than in f t, i.e., an arc e with large value of ρ(f̂

t
, f t)e, this arc will

be severely penalized by the ℓ4-norm measuring the quality of the resemblance.
Also, it is worth pointing out that it is very important that the above bound is based on ℓ4

instead, say ℓ2 norm. In fact, one can show (see Lemma 6.8) that in case of our problem the ℓ2
norm of congestion vector is always Ω(m̂

1
2 ). So, using ℓ2 norm would not lead to any improvement

over the Ω(m̂
1
2 ) iteration bound.
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5.1 Bounding the Running Time

At this point, we want to present a fairly elementary proof of δ := Ω(m̂− 1
2 ) lowerbound on our

allowed improvement step size δt. Note that once we achieve that then, by Lemma 5.4 and Theorem
5.5, we will have that the value of our measure of progress µ̂(f t, st,νt) after T steps is at most

µ̂(f T , sT ,νT ) ≤
T∏

t=1

(1− δt) ≤ (1− δ)T .

So, by setting T := δ−1 log 8m̂ = Õ(m̂
1
2 ), we recover the O(m̂

1
2 ) iterations convergence bound of

interior-point methods. This leads to a simple Õ(m̂δ−1) = Õ(m
3
2 )-time procedure that produces a

solution with duality gap at most

4m̂µ̂(f T , sT ,νT ) ≤ 4m̂(1− δ)T ≤ 1

2
,

where we used Invariant 5.2 (see (13)). This, in turn, by Lemma 5.1 provides us with a solution to
our instance of near-perfect b-matching problem.

Therefore, to conclude the analysis of the simple Õ(m
3
2 )-time algorithm for the near-perfect

b-matching problem, it remains to establish the claimed lowerbound on δt.

Congestion and energy. By Theorem 5.5, performing such lowerbounding of δt boils down to
upperbounding ‖ρ(f̂ t

, f t)‖νt,4. To understand how the latter can be done, one should observe the
following simple but crucial fact. (This fact follows from Fact 5.3 and definition of the resistances
r t (14).)

Fact 5.6. For any γ-centered solution (f t, st,νt) and any flow f̂ in Ĝ we have that

rtef̂
2
e =

ste
f t
e

f̂2
e ≥ (1− γ)νte

µ̂(f t, st,νt)

(f t
e)

2
f̂2
e = (1− γ)νteµ̂(f

t, st,νt)ρ(f̂ , f t)2e,

and, similarly,
rtef̂

2
e ≤ (1 + γ)νteµ̂(f

t, st,νt)ρ(f̂ , f t)2e,

for any arc e in Ê.

Observe that the above inequalities state that – up to a (1 ± γ) factor – the square of the
congestion ρ(f̂ , f t)e incurred by an arc e in the flow f̂ is upperbounded by

rtef̂
2
e

νteµ̂(f
t, st,νt)

,

which corresponds to normalized (by νteµ̂(f
t, st,νt)) contribution of the arc e to the energy Er t(f̂ )

of the flow f̂ with respect to resistances r t.
This simple connection between the congestion of an arc in f̂ and its contribution to the energy

of that flow that is provided by Fact 5.6 will be fundamental to the rest of our discussion. In
particular, it gives us an intuition on why we even expect the guiding electrical flows f̂

t
to inflict

small congestion with respect to f t and thus allow us to take a larger step size. This intuition is
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based on an observation that the main goal of electrical flows is to minimize energy. So, by choosing
the resistances appropriately, we in some sense align this goal with our goal of making as large step
sizes as possible. Roughly speaking, we are employing here the ℓ2 norm minimization offered by
electrical flows to achieve the desired ℓ4-minimization corresponding to larger step sizes.

Now, an immediate consequence of the above connection is an elementary way of upperbounding
‖ρ(f̂ t

, f t)‖νt,4: we just bound the ℓ2-energy of the guiding electrical flow f̂
t
that is associated with

our solution (f t, st,νt) and exploit the generic relationship between ℓ2 and ℓ4 norms.
To implement this approach, let us start with the following lemma that gives us a bound on the

ℓ2-energy of the electrical flow f̂
t
.

Lemma 5.7. For any σ-feasible solution (f , s,ν) and associated electrical flow f̂ , we have that

Er (f̂ ) ≤ Er (f ) ≤ 4m̂µ̂(f , s,ν).

Proof. The fact that Er (f̂ ) ≤ Er (f ) follows directly from the definition of f̂ and the fact that
electrical σ-flow minimizes energy among all the σ-flows (which includes f ).

Now, by definition (14) of r and that of µ̂(f , s,ν) (10) we have that

Er (f ) =
∑

e

se
fe

f2
e =

∑

e

sefe = µ̂(f , s,ν)(
∑

e

νe) ≤ 4m̂µ̂(f , s,ν),

where the last line follows by Invariant 5.2.

Once we establish this upperbound on ℓ2-energy, we simply use it to upperbound the ℓ4-energy
of the congestion vector. Specifically, by applying Cauchy-Schwarz inequality and the fact that
‖x‖∞ ≤ |x |1, for any vector x , we get that

‖ρ(f̂ t
, f t)‖4νt,4 =

∑

e

νteρ(f̂
t
, f t)4e ≤

(
∑

e

√
νteρ(f̂

t
, f t)2e

)2

≤
(
∑

e

νteρ(f̂
t
, f t)2e

)2

= ‖ρ(f̂ t
, f t)‖4νt,2,

where we also used the fact that νte ≥ 1.
Now, to bound the ℓ2 norm (instead of ℓ4 norm) of the congestion vector, we just note that by

Fact 5.6 and Lemma 5.7
(
∑

e

νteρ(f̂
t
, f t)2e

)2

≤
(
∑

e

νter
t
ef

2
e

(1− γ̂)νteµ̂(f
t, st,νt)

)2

=

(
Er t(f̂

t
)

(1− γ̂)µ̂(f t, st,νt)

)2

≤ O(m̂2). (16)

Therefore, we can conclude with the following lowerbound on δt.

Fact 5.8. For any t, δt ≥ 1
O(

√
m̂)

.

It is worth pointing out that, as we discussed before, the fact that we settled here for an ℓ2-
norm-based (instead of an ℓ4-norm-based) dependence of δt on the congestion vector ρ(f̂

t
, f t), this

1
O(

√
m̂)

lowerbound is the best possible to achieve with this approach. Therefore, to have any hope

of obtaining an improvement that goes beyond this bound (as we will do in the next section), we
crucially require to be working with ℓ4-norm-based (instead of only ℓ2-norm-based) arguments.
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6 An Improved Algorithm for Bipartite b-Matching Problem

After setting up our primal-dual framework and presenting the Õ(m
3
2 )-time algorithm in the pre-

vious section, we can now proceed to developing our improved algorithm with the running time of
Õ(m

10
7 ) = Õ(m

3
2
−η), for η := 1

14 − o(1).
Given our analysis and discussion in the previous section, a tempting approach to obtaining

such an improved bound could be trying to simply tighten our analysis performed there (e.g., by
taking advantage of ℓ4-norm-based instead of only ℓ2-norm-based arguments) and thus improve the
worst-case lowerbound on δt that we established (cf. Fact 5.8).

It turns out, however, that getting an improved bound is not merely a matter of performing
a better analysis. In the worst-case, our O(m̂− 1

2 ) bound is actually tight. After all, if there is
an arc that incurs Ω(m̂

1
2 ) congestion in the associated electrical flow, the resulting ℓ4-norm of the

congestion vector will be Ω(m̂
1
2 ). So, even though the connection between congestion and energy

we established before (see Fact 5.6 and Lemma 5.7) tells us that there cannot be too many such
arcs (as each one of them would need to contribute a very significant, Ω(1), fraction of the total
energy of the electrical flow), having just one such arc is already enough to prevent us from taking
larger than O(m̂− 1

2 ) improvement step.
Therefore, as we cannot rule out that such worst-case situation arises in each iteration of our

algorithm9, getting our desired improvement requires developing a strategy that explicitly ensures
that this is not the case (or, at least, not too often).

At a high level, our general approach to accomplishing this goal is based on “massaging” the
solution that we maintain. That is, we devise and carefully combine two methods of altering
our solutions. These methods, on one hand, significantly improve the behavior of the associated
electrical flow while, on other hand, only slightly perturb the characteristics of that solution that
are vital to recovering the desired near-perfect b-matching at the end.

The first of these two methods is related to edge removal technique of Christiano et al. [CKM+11].
Their technique is based on repeated removal from the graph of the edges that suffer too much con-
gestion. As [CKM+11] showed (via a simple energy-based argument), when such edge removal is
applied to electrical flows that guide multiplicative-weight-update-based optimization routine, one
obtains a significantly faster convergence to approximately optimal solution.

Unfortunately, as our primal-dual framework has much more delicate nature than the multiplicative-
weight-update method, such removal of “bottlenecking” arcs would be too drastic and, in particular,
could destroy the structure of our dual solution. Therefore, we apply a more careful approach.

Instead of removing arcs, we only perturb them by moderately increasing their lengths (and thus
their slack variables). (Note that, by (14), increasing arc’s slack variable increases its resistance.)
Furthermore, to avoid significant distortion of the dual solution, we do not apply this perturbation
to all “bottlenecking” arcs, but only the ones that are “heavy” in the primal solution (see Definition
6.7 below).

We then use a certain refinement of the original energy-based argument of Christiano et al.
[CKM+11] (that needs, in particular, to deal with the fact that – in contrast to the multiplicative-
weight-update-based framework of [CKM+11] – in our framework the arc’s resistances can change

9One would suspect, however, that such situations are indeed rare. This might be one explanation of why in
practice interior-point methods are able to take most of its step sizes to be very large and thus converge much faster

than indicated by the worst-case bound of O(m̂
3

2 ).

23



in a completely non-monotonic fashion) to show that the behavior of our guiding electrical flows on
such “heavy” arcs is indeed improved.

Now, our second method – that is somewhat complementary to the first one and aims at accom-
modating the “light” arcs – is based on an appropriate preconditioning of our solution by augmenting
it with auxiliary arcs. The purpose of adding these arcs is to improve the connectivity (and thus
electrical conductance) of the underlying solution (when treated as a graph with resistances) while
changing the structure of our original solution in only minimal way (that can be fixed later). We
then show via a certain dual-based argument that existence of these auxiliary arcs ensures that
“light” arcs are never the bottlenecking ones (and thus do need to be dealt with anymore).

We proceed now to detailed description and analysis of our improved algorithm.

The Sets Sl(f̂ ) and θ-Smoothness

We start by specifying the behavior of associated electrical flows that is “good” from our perspective.
To this end, for a flow f̂ in Ĝ, a solution (f , s,ν), and integer l, let us define Sl(f̂ ) to be the set of
all the arcs e such that √

m̂

2l+1
< ρ(f̂ , f )e ≤

√
m̂

2l
, (17)

i.e., the collection of all the arcs whose congestion in the flow f̂ (with respect to capacities given by

f ) is between
√
m̂

2l+1 and
√
m̂
2l

.
Now, we introduce a definition that will be fundamental to the rest of our discussion.

Definition 6.1. For some 0 ≤ θ ≤ 1, a flow f̂ , and solution (f , s,ν) (that will be always clear from
the context), we say that f̂ is θ-smooth on some of arcs S ⊆ Ê iff, for any integer l ≤ log θ−3, we
have that

ν(Sl(f̂ ) ∩ S) ≤ ⌊θ323l⌋,
where ν(S′) :=

∑
e∈S′ νe. Furthermore, we simply say that f̂ is θ-smooth if S = Ê, i.e., S contains

all the arcs.

Clearly, the θ-smoothness constraints the distribution of the arcs that suffer high congestion in
f̂ . In particular, it implies that there is no arcs whose congestion ρ(f̂ , f )e is larger than θ

√
m̂.

Observe that the tight worst-case example for the lowerbound on δt (cf. Fact 5.8) corresponds

to situation where the electrical flow f̂
t
associated with the maintained γ̂-centered solution solution

(f t, st,νt) makes some arcs highly-congested, i.e., makes them suffer congestion of Ω(
√
m̂). How-

ever, the above definition of θ-smoothness, forbids existence of such arcs. Therefore, the hope is that
once our electrical flows f̂

t
are θ-smooth, a better lowerbound on δt (and thus faster convergence)

is possible. As the following lemma shows, this hope is indeed well-founded.

Lemma 6.2. Let (f t, st,νt) be a σ-feasible and γ̂-centered solution and let f̂
t

be the associated
electrical flow that is θ-smooth, for some 0 ≤ θ ≤ 1. We have that

δt ≥ 1

Cδθ
√
m̂
,

for some sufficiently large constant Cδ ≥ 1.
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Proof. By Theorem 5.5, in order to lowerbound δt we need to upperbound the quantity

‖ρ(f̂ t
, f t)‖4νt,4 =

∑

e

νteρ(f̂
t
, f t)4e.

To this end, note that

∑

e

νteρ(f̂
t
, f t)4e ≤

∑

l

νt(Sl(f̂
t
))
m̂2

24l
≤
∑

l

⌊θ323l⌋m̂
2

24l
≤

∑

l≥⌊log θ−1⌋

θ3m̂2

2l
≤ 4θ4m̂2,

where we used the θ-smoothness of f̂
t

(cf. Definition 6.1) and the fact that ⌊θ323l⌋ = 0 whenever
l < ⌊log θ−1⌋. So, the lemma follows once Cδ > 0 is chosen to be an appropriately large constant.

In the light of the above lemma, if we somehow knew that all – or, at least, most of – the flows f̂
t

that we compute are indeed θ-smooth for some θ = O(m̂−η), we would immediately get the desired
faster algorithm. Unfortunately, as we already discussed, it seems to be hard to argue that this
is what happens in the worst-case. Therefore, to address this problem we develop a perturbation
approach that we carefully apply to our maintained solutions to ensure that most of the flows f̂

t
is

indeed θ-smooth for some small enough value of θ.

α-Stretching

One of the main operations that we will use to implement our perturbations is called α-stretching.
To describe it, consider a solution (f , s,ν) that is γ-centered and a parameter α ≥ 0. We define an
α-stretching of an arc e to be an operation that returns a solution (f ′, s ′,ν ′) obtained from (f , s,ν)
by, first, increasing the length l̂e of the arc e (and thus the value of se) by αse and, then, increasing
the measure νe of e by a factor of (1 + β), where

β :=
αfese

νeµ̂(f , s,ν)
. (18)

The remaining part of the solution remains the same.
The property of α-stretching that is key from our point of view, is that after applying it to some

arc e its resistance re := se
fe

increases by a factor of exactly (1 + α). Furthermore, our choice of
value of β is justified by the lemma below – its proof appears in Appendix E.1.

Lemma 6.3. If (f , s,ν) was a γ-centered solution with γ ≤ 1
2 then so will be (f ′, s ′,ν ′) and

µ̂(f ′, s ′,ν ′) = µ̂(f , s,ν). Furthermore, (1− γ)α ≤ β ≤ (1 + γ)α.

So, we see that applying α-stretching with this setting of β does not perturb our measure of
progress µ̂(f , s,ν), even though the duality gap f T s changes due to corresponding increase in
measure. (Again, this is one reason why we chose µ̂(f , s,ν) to measure our progress.)

On the other hand, besides the increase in measure, another undesirable byproduct of α-
stretching is the increase of arc’s length. To mitigate the effect of this process on the validity of our
final solution, we will ensure that the following invariant is maintained throughout the algorithm.

Invariant 6.4. The overall increase of arcs’ length due to α-stretching is at most Õ(m̂
1
2
−η) and no

individual arc has its total increase of length larger than 1.
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Maintaining this invariant will be important for two reasons. One is captured by the following
simple lemma, whose proof appears in Appendix E.2.

Lemma 6.5. If Invariant 6.4 is preserved then for any σ-feasible solution (f , s,ν), we have that
se is at most 6, for any arc e.

The other, and even more important one, is that as long as this invariant is preserved the final
close-to-optimal solution (f t, st,νt) to our perturbed problem still allows us to recover the desired
near-perfect b-matching in the (original) graph G (or conclude that no perfect b-matching exists).
More precisely, in Appendix E.3 we prove the following lemma.

Lemma 6.6. Provided Invariant 6.4 holds, given any feasible σ̂-flow f in Ĝ whose cost is within
additive 1

2 of the optimum, we can recover in Õ(m̂) time a (fractional) near-perfect b-matching in
G, or conclude that no perfect b-matching exists in G.

Heavy Arcs

As we already mentioned, an important role in our improved algorithm is played by a classification
of arcs into two classes, “heavy” and “light”, depending on their current flow in the primal solution.
We make this classification precise below.

Definition 6.7. Given a γ-centered solution (f , s,ν) with γ ≤ 1
2 , we call an arc e heavy if fe ≥

νeFH , where
FH := C−1

H m̂
1
2
−3ηµ̂(f , s,ν),

for some sufficiently large constant CH > 1 that we will fix later (see Lemma 6.15). We say that an
arc is light if it is not heavy.

The motivation for the above classification stems from a desire to control the increase in arc’s
length due to an application of α-stretching. Namely, observe that if we α-stretch an heavy arc e
then the increase in this arc’s length is by at most

αse ≤
α(1 + γ)νeµ̂(f , s,ν)

fe
≤ CH(1 + γ)α

m̂3η

√
m̂
,

where we used Fact 5.3. So, as long as we apply α-stretching operations only to heavy arcs – which
essentially will be the case in our algorithm – we can guarantee that the resulting change in arc
length is relatively small. This will be important to ensuring that Invariant 6.4 is never violated.

Having introduced the above concepts, we are ready to proceed to presenting our improved
algorithm. In this presentation, we fix for the rest of this section θ̂ := m̂−η, where

η :=
1

14
− Cη

log log n

log n
(19)

and Cη is a sufficiently large constant to be fixed later.
We describe our algorithm in two stages. First, in Section 6.1, we present a variant of the

algorithm that works under an ad-hoc assumption that all the electrical flows f̂
t

that we compute
are always θ̂-smooth on the set of light arcs. (So, we need to deal there only with its possible non-θ̂-
smoothness on the set of heavy arcs.) Then, in Section 6.2, we show how to apply a preconditioning
technique to obtain an augmented version of our graph such that when we run our algorithm it is
indeed true that the above ad-hoc assumption holds.
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6.1 Perturbing Heavy Arcs

In this section, we work under an ad-hoc assumption that the electrical flows f̂
t
that are associated

with the maintained solutions (f t, st,νt) are always θ̂-smooth – with θ̂ := m̂−η – on the set of arcs
that are light with respect to that solution. We present an Õ(m̂

3
2
−η)-time algorithm for this setting.

θ̂-Improvement Phase

The core of this algorithm is an implementation of a primitive we call a θ̂-improvement phase.
This primitive, given a σ̂-feasible and γ̂-centered solution (f t0 , st0 ,νt0), returns in Õ(m̂1+2η) time
a σ̂-feasible and γ̂-centered solution (f tf , stf ,νtf ) such that

µ̂(f tf , stf ,νtf ) ≤ λ̂µ̂(f t0 , st0 ,νt0), (20)

where λ̂ :=
(
1− 1

2Cδ θ̂
√
m̂

)θ̂−2

and Cδ is the constant from Lemma 6.2.

Observe that once we obtain an implementation of such a θ̂-improvement phase, we can get
the desired improved algorithm as follows. We start with a σ̂-feasible and γ̂-centered solution
(f 0, s0,ν0) as in Lemma 5.4. Next, we apply T̂ iterations of θ̂-improvement phase to it, with

T̂ := 2Cδ θ̂
3
√
m̂ ln 8m̂ = O(m̂

1
2
−3η log m̂). (21)

Note that after doing this, we know that if (f F , sF ,νF ) is the final σ̂-feasible γ̂-centered solution
we compute then

µ̂(f F , sF ,νF ) ≤ λ̂T̂ µ̂(f 0, s0,ν0) =

(
1− 1

2Cδ θ̂
√
m̂

)2Cδ θ̂
√
m̂ ln 8m̂

≤ 1

8m̂
.

So, as long as we can show that (f F , sF ,νF ) satisfies Invariants 5.2 and 6.4, we can use Lemma
6.6 to recover the desired near-perfect b-matching in G or conclude that no perfect b-matching
exists in G. Also, the overall running time of this algorithm will indeed be Õ(T̂ m̂1+2η) = Õ(m̂

3
2
−η),

as desired.

Implementation of θ̂-Improvement Phase via Stretch-boosts

In the light of the above discussion, we just need to focus on implementing the θ̂-improvement
phase, as well as, ensuring that running it for T̂ iterations will not violate Invariants 5.2 and 6.4.

Our implementation – presented in Figure 3 – is an iterative procedure. We maintain a σ̂-
feasible γ̂-centered solution (f t, st,νt) – initially, (f t, st,νt) is equal to (f t0 , st0 ,νt0). Next, as long
as µ̂(f t, st,νt) > λ̂µ̂(f t0 , st0 ,νt0) we repeat the following iterative step.

We first check if the electrical flow f̂
t
associated with (f t, st,νt) is θ̂-smooth on the set of heavy

arcs.
If it is indeed the case then one can easily see that such f̂

t
needs to be 2θ̂-smooth (on the set

of all the arcs). (This uses our ad-hoc assumption that all f̂
t

we compute are always θ̂-smooth on
the set of light arcs.) So, in this situation, we can just apply an interior-point method step – as
described in Theorem 5.5 – to (f t, st,νt) with setting δt := 1

2Cδ θ̂
√
m̂

. (Note that by Lemma 6.2 this

setting of δt is valid.) For future reference, we call this step a progress step. After executing it, we
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Input : A σ̂-feasible and γ̂-centered solution (f t0 , st0 ,νt0)

Output: A σ̂-feasible and γ̂-centered solution (f tf , stf ,νtf ) with µ̂(f t, st,νt) ≤ λ̂µ̂(f t0 , st0 ,νt0)

Initialize t← t0

while µ̂(f t, st,νt) > λ̂µ̂(f t0 , st0 ,νt0) do

Compute the electrical σ̂-flow f̂
t

associated with (f t, st,νt)

if f̂
t

is θ̂-smooth on heavy arcs then

Apply interior-point method step from Theorem 5.5 to (f t, st,νt) with δt := 1

2Cδ θ̂
√
m̂

Save the resulting solution as (f t+1, st+1,νt+1) (∗ progress step ∗)
else

Let l∗ ≤ log θ̂−3 be such that νt(Sl∗(f̂
t
) ∩ Et

H) > max{θ̂323l∗ , 1}
foreach arc e in Sl∗(f̂

t
) ∩ Et

H do apply 1-stretching to e (∗ stretch-boost ∗)
Save the resulting solution as (f t+1, st+1,νt+1)

end

t← t+ 1

end

Output (f t, st,νt) as the solution (f tf , stf ,νtf )

Figure 3: Implementation of θ̂-improvement phase via stretch-boosts

set the resulting σ̂-feasible and γ̂-centered solution (f t+1, st+1,νt+1) as our current solution and
proceed to next iterative step.

Otherwise, that is, if f̂
t

is not θ̂-smooth on the set of heavy arcs, then – by Definition 6.1 –
there is an l∗ ≤ log θ̂−3 such that

νt(Sl∗(f̂
t
) ∩ Et

H) > max{θ̂323l∗ , 1}, (22)

where we used the fact that all measures of arcs are always at least one and Et
H denotes the set of

heavy arcs with respect to the solution (f t, st,νt).

To cope with this situation, we perform 1-stretching of all the arcs in Sl∗(f̂
t
)∩Et

Ht. (Note that,
by Lemma 6.3, this operation does not change the value of µ̂(f t, st,νt) and our solution remains
σ̂-feasible and γ̂-centered.) We call this operation stretch-boosting and l∗ will be referred to as the
index of this stretch-boosting. After performing stretch-boosting, we proceed to the next iterative
step.

This finishes the description of our implementation.

Analysis

To analyze the above procedure, let us note that due to our stopping condition, once this procedure
terminates the resulting solution (f tf , stf ,νtf ) satisfies our requirements. Also, there will be at
most θ̂−2 progress steps executed. This is so, as 1-stretching does not affect the value of µ̂(f t, st,νt)
and, by Theorem 5.5, each progress step decreases µ̂(f t, st,νt) by a factor of at least (1 − δt) =

λ̂
1

θ̂−2 . Thus, as each of these steps runs in Õ(m̂) time, the resulting total time of progress steps is
Õ(m̂θ̂−2) = Õ(m̂1+2η), as desired.

Therefore, we can just focus on bounding the number of stretch-boost operations executed, as
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well as, on showing that calling our implementation of θ̂-improvement phase T̂ times does not violate
Invariants 5.2 and 6.4.

We start with the former task. In this bounding of the number of stretch-boost operations, we
assume that Invariant 5.2 holds. We will justify this assumption later when proving that our two
desired invariants are indeed preserved by our algorithm.

To do the bounding, we consider the energy Er t(f̂
t
) of the electrical σ̂-flow f̂

t
(determined by

resistances r t given by (14)) that is associated with our current solution (f t, st,νt). We treat this
quantity as a potential function and show the following facts:

(a) Er t(f̂
t
) is always at least C−1

E m̂µ̂(f t, st,νt) and at most CEm̂µ̂(f t, st,νt), for some sufficiently
large constant CE > 1 – see Lemma 6.8;

(b) Er t(f̂
t
) increases by a factor of at least (1 + CS θ̂

2), for some constant CS > 0, whenever a
stretch-boosting step is applied – see Lemma 6.9;

(c) Er t(f̂
t
) decreases by a factor of at most (1 + CP θ̂

2 ln m̂) each time a progress step is executed,
where CP > 0 is some sufficiently large constant – see Lemma 6.11.

Note that once the above statements are established, it must be the case that there is at most
Ts := CPC

−1
S θ̂−2 lnC2

Em̂ = Õ(θ̂−2) stretch-boost operation overall. To see that, assume this was
not the case, i.e., that there was more than Ts stretch-boosts. Then, by the above statements and
the fact that there is at most θ̂−2 progress steps we would have that

E
r
tf (f̂

tf
) >

(1 + CS θ̂
2)TsEr t0 (f̂

t0
)

(1 + CP θ̂2 ln m̂)θ̂−2
≥ (1 + CS θ̂

2)Tsm̂µ̂(f t0 , st0 ,νt0)

CEm̂CP
≥ CEm̂µ̂(f tf , stf ,νtf ),

which would violate the upperbound on energy E
r
tf (f̂

tf
) established by statement (a).

So, it must be then indeed the case that there is at most Ts = Õ(θ̂−2) stretch-boosts, which
gives the desired Õ(θ̂−2m̂) = Õ(m̂1+2η) total running time bound.

In the light of the above, we can turn our attention to proving statements (a)-(c). We start
with statement (a). This statement essentially follow from Lemma 5.7 and some simple energy-
lowerbounding argument. The prove of the following lemma appears in Appendix E.4.

Lemma 6.8. Let (f t, st,νt) be a σ̂-feasible and γ̂-centered solution. Provided that Invariant 5.2
holds, we have that

C−1
E m̂µ̂(f t, st,νt) ≤ Er t(f̂

t
) ≤ CEm̂µ̂(f t, st,νt),

where f̂
t
is the electrical σ̂-flow associated with the solution (f t, st,νt) and CE > 1 is a sufficiently

large constant.

Next, we proceed to analyzing the effect of stretch-boosting on the energy Er t(f̂
t
). Intuitively,

by the connection between congestion and energy hinted by Fact 5.6, we know that the arcs with
large congestion have to have unusually high contribution to the energy Er t(f̂

t
). So, as 1-stretching

effectively doubles the resistances of such arcs, it is not surprising that it ends up significantly
increasing that energy. We make this formal – and thus establish statement (b) – in the lemma
below. Its proof appears in Appendix E.5.
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Lemma 6.9. Each stretch-boost increases Er t(f̂
t
) by a factor of at least

(
1 + CS θ̂

2
(
νt(Sl∗(f̂

t
) ∩ Et

H)
) 1

3

)
≥
(
1 + CS θ̂

2
)
,

for some constant CS > 0.

To complete our analysis, it remains to show that our potential Er t(f̂
t
) does not decrease too

much during the progress steps. In other words, we prove statement (c).
Note that the difficulty here stems from the fact that, in principle, the resistances of arcs can

change pretty arbitrarily during a progress step. They can either increase or decrease and even
by a constant multiplicative factor, thus possibly leading to severe and very non-monotone energy
fluctuations.

The key reason that enables us to control that energy change after all, is that we perform the
progress step only if the flow f̂

t
is θ̂-smooth. This is helpful in two ways. Firstly, because we can

use it together with the connection between the change of the resistance of an arc and its congestion
that we established in Theorem 5.5, to show that there is not too many arcs that significantly change
their resistance (see Lemma 6.10 below). Secondly (and even more importantly), our connection
between congestion and energy, allows us to conclude that θ̂-smoothness implies that there is no
small (measure-wise) set of arcs that contributes unusually high portion of the energy. So, even
if some small set of arcs changes its resistances significantly, it is not able to influence the overall
energy by too much (see Lemma 6.11). (In a sense, this intuition is one of the main motivations for
introducing the notion of θ̂-smoothness.) We, again, formalize this intuition below.

First, for a given vector λ and an integer l, let us define Tλ
l to be the set of all arcs such that

1

2l+1
≤ |λe| ≤

1

2l
. (23)

Now, we say that λ is τ -restricted, for some measure ν and τ ≥ 0 if for any l ≥ 0,

ν(Tλ
l ) ≤ τ23l. (24)

Now, the lemma below bounds the change of resistances during any of our progress steps.

Lemma 6.10. Let f̂
t
be a 2θ̂-smooth electrical flow associated with (f t, st,νt). Let (f t+1, st+1,νt+1)

be the solution obtained by applying an interior-point method step – as in Theorem 5.5 – to (f t, st,νt)
with δt := (2Cδ θ̂

√
m̂)−1. Then the vectors κt and κ̄t are all CR-restricted (with respect to νt) for

some constant CR > 0.

Proof. We will prove that both the vector δtρ(f̂
t
, f t) and the vector κ̂t are O(1)-restricted. It is

easy to see that then the bound from Theorem 5.5 will imply that κ̄t and κt are O(1)-restricted
too. So, choosing large enough constant CR will prove the lemma.

To this end, observe κ̂t is O(1)-restricted as ‖κ̂t‖νt,2 by Theorem 5.5. On the other hand, note
that if

δtρ(f̂
t
, f t)e ≥

1

2l
,

for some l ≥ 1 and arc e, then e ∈ Sl′(f̂
t
) for some

l′ ≤ l + log δt
√
m̂+ 2 ≤ l + log θ̂−1 +O(1).
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But by 2θ̂-smoothness of f̂
t
, this means that the total measure of such arcs is at most

⌊θ̂−323l
′⌋ ≤ O(23l),

which establishes that δtρ(f̂
t
, f t) is indeed O(1)-restricted. The lemma follows.

Using the above observation, we can now finish establishing property (c) by proving the following
lemma whose appears in Appendix E.6.

Lemma 6.11. Let f̂
t
be a 2θ̂-smooth electrical flow associated with the γ̂-centered solution (f t, st,νt).

Let (f t+1, st+1,νt+1) be the solution obtained by applying an interior-point methods step – as in
Theorem 5.5 – to (f t, st,νt) with δt := (2Cδ θ̂

√
m̂)−1. Then,

Er t+1(f̂
t+1

) ≥ (1 + CP θ
2 ln m̂)−1Er t(f̂

t
),

where f̂
t+1

is the electrical flow associated with (f t+1, st+1,νt+1) and CP > 1 is a sufficiently large
constant.

Preservation of Invariants 5.2 and 6.4

Now, as we completed the analysis of the running time of our θ̂-improvement phase implementation,
we establish the remaining claim, i.e., we prove that executing the above procedure T̂ times does
not lead to violation of Invariants 5.2 and 6.4.

Bounding measure increase. To this end, let us first focus on bounding the measure increases.
By Lemma 6.3, we know that whenever we 1-stretch an arc e, its measure increases by at most
(1+ γ̂)νte. So, to bound the total measure increase it suffices to bound the total measure of arcs that
are affected by 1-stretches across all the stretch-boost operations. (Here, if the same arc becomes
1-stretched multiple times, in different stretch-boosts, we account for its measure multiple times.)

In order to do that, note that by Lemma 6.9, if νi is the measure of the set of arcs that are
1-stretched in i-th stretch-boost, we have that the total increase of energy resulting from that is at
least

k∏

i=1

(1 + CS θ̂
2ν

1
3
i ).

Also, by Lemma 6.8, we know that we have to have that in any single stretch-boost, the energy
cannot increase by more than C2

E factor. So, we have that

(1 + CS θ̂
2ν

1
3
i ) ≤ C2

E

and thus νi ≤ νmax := C6
E θ̂

6 = O(m̂6η), for each i.
As a result, we can lowerbound the total increase of energy due to stretch-boosts by

k∏

i=1

(1 + CS θ̂
2ν

1
3
i ) ≥ (1 + CS θ̂

2ν
1
3
max)

ν
νmax ,

where ν :=
∑

i νi.
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Finally, by Lemma 6.8 and Lemma 6.11, as well as, the fact that we have at most θ̂−2 progress
steps, we know that the overall (multiplicative) increase of energy resulting from all the stretch-
boosts can be at most

(1 + CS θ̂
2ν

1
3
max)

ν
νmax ≤

k∏

i=1

(1 + CS θ̂
2ν

1
3
i ) ≤ C2

E(1 + CP θ̂
2 log m̂)θ̂

−2
.

Therefore, as θ̂2ν
1
3
max is Ω(1), we have that the total measure increase ν is at most

ν ≤ Õ(νmax) = Õ(m̂6η). (25)

As a result, after executing at most T̂ θ̂-improvement phases, the overall increase of measure can
be bounded by

T̂ · Õ(m̂6η) = Õ(m̂
1
2
+3η) < m̂. (26)

Now, given that by Lemma 5.4, we start with our measure being at most 3m̂ and thus have a slack
of at least m̂ measure left before Invariant 5.2 becomes violated, this overall increase will indeed
not lead to violation of this invariant.

Bounding arc length increase. To show that Invariant 6.4 is preserved as well, let us first note
that the only way for length of arcs to increase is due to 1-stretching occurring during stretch-boosts.
Furthermore, we only 1-stretch an arc if it is heavy. So, if a given (heavy) arc e gets 1-stretched at
some step t then its length increases by at most

ste ≤
(1 + γ̂)νteµ̂(f

t, st,νt)

f t
e

≤ (1 + γ̂)CHm̂3η

√
m̂

.

On the other hand, by Lemma 6.3, the increase of measure of such arc is at least (1− γ̂)νte. So, as
νte ≥ 1, the increase of measure of an arc is within a factor of O( m̂

3η√
m̂
) = O(m̂−4η) of increase of the

length. So, as we just proved that the total measure increase is at most Õ(m̂
1
2
+3η) (cf. (26)), the

desired bound of Õ(m̂
1
2
−η) on the total length increase follows.

Finally, as each 1-stretch increases the measure by a factor of at least (2− γ̂) ≥ 3
2 and – as we

discussed above – we never 1-stretch anymore an arc whose measure is bigger than νmax = O(m̂6η),
no single arc will get 1-stretched more than O(log νmax) = O(log m̂) times. As a result, no single
arc has its length increased by more that O(m̂−4η log m̂) that is much smaller than 1. Therefore,
the Invariant 6.4 is also preserved. This concludes our analysis.

6.2 Preconditioning the Graph Ĝ

Our analysis from the previous section was crucially relying on the assumption that all the flows f̂
t

are always θ̂-smooth on the set of light arcs. Unfortunately, this assumption is not always valid.
To cope with this problem, we develop a modification of our algorithm that ensures that this

θ̂-smoothness assumption holds after all. Roughly speaking, we achieve that by an appropriate
preconditioning our solution at the beginning of each θ̂-improvement phase. This preconditioning
is based on augmenting the graph Ĝ with additional, auxiliary arcs and correspondingly extending
our solution on them. These arcs are very light (i.e., have small value f t

e of flow flowing through
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them in augmented solution), while providing good connectivity (and thus relatively low effective
resistance) between different vertices of the augmented graph.

The underlying intuition here is that the over-congestion of a light arc e is caused by amounts
of flow that are at most

√
m̂FH (cf. Definition (6.7)) and thus are relatively small compared to the

whole duality gap. So, by deploying these very light auxiliary arcs we encourage the electrical flow
f̂
t
to reroute such over-congesting flow from e and send it along auxiliary arcs. On the other hand.

as the small value of this rerouted flow is small, the perturbation of our desired (non-augmented)
solution introduced by these rerouting is relatively minor. Thus, we are able to deal with it relatively
easily at the end of the whole θ̂-improvement phase, while still ending up making overall progress
on the quality of our solution.

Augmenting the Graph and the Solution

The exact implementation of our preconditioning is based on modifying the execution of θ̂-improvement
phase that was presented in the previous section in the following way. Let (f t0 , st0 ,νt0) be the γ̂-
centered and σ̂-feasible solution at the beginning of some θ̂-improvement phase.

We start with augmenting the graph Ĝ by adding to it a new vertex v̄, as well as, av copies of
an arc (v, v̄) and av copies of an arc (v̄, v), for each vertex v of Ĝ other than v∗, where

av :=
∑

e∈E(v)

νt0e (27)

is the total measure (with respect to νt0) of all the arcs adjacent to v in Ĝ. We will call these newly
added arcs auxiliary and denote the augmented graph as Ḡ.

Next, we extend the solution (f t0 , st0 ,νt0) to that augmented graph Ḡ by assigning f t0
e := FA,

st0e := µ̂(f t0 ,st0 ,νt0 )
fe

and νt0 := 1 to each auxiliary arc e, where

FA :=
Cδµ̂(f

t0 , st0 ,νt0)m̂
1
2
−3η

CAT̂
(28)

with CA being some sufficiently large constant to be fixed later, and the lengths of the auxiliary
arcs being chosen so that the extended solution is still dual feasible. (As we will soon see, the actual
lengths of auxiliary arcs are irrelevant.) Note that after this extension, the solution (f t0 , st0 ,νt0)
remains γ̂-centered, σ̂-feasible and the value of µ̂(f t0 , st0 ,νt0) is unchanged. Also, observe that
by Invariant 5.2, the number m̄ of arcs of the augmented graph Ḡ is still only O(m̂). So, relating
various quantities – in particular, the running times of our procedures – to either m̂ or m̄ results in
only a constant-factor discrepancy (that we will ignore in what follows).

Now, after the above preprocessing, we run the θ̂-improvement phase implementation, as de-
scribed in the previous section, on the extended solution in the augmented graph Ḡ. (In Section
6.2, we will prove that the assumption that underlies the analysis from the previous section, i.e.,
that all the flows f̂

t
are θ̂-smooth on light arcs, is indeed valid.) The only further modification

here is that after each progress step we m̂2η|κ̄te|-stretch each auxiliary arc e with |κ̄te| ≥ θ̂2 (cf.
Theorem 5.5). We will call this stretch operation freezing. (Note that as α-stretching only increases
the resistances of arcs, this modification is compatible with the energy-based potential argument
we employed in the previous section.) This freezing ensures that the flows on auxiliary arcs do not
change to significantly in our solution and thus the impact of preconditioning provided by auxiliary
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arcs on the quality of the final solution is minimized. We make this more precise in the following
lemma whose proof appears in Appendix E.7.

Lemma 6.12. During the whole θ̂-improvement phase, we have that for each auxiliary arc e,
C−1
F FA ≤ f t

e ≤ CFFA, for some constant CF > 0. Also, the total increase of measure of auxil-
iary arcs in that phase is at most Õ(m̂8η).

Finally, once the execution of the above θ̂-improvement phase finishes, we end up with a γ̂-
centered and σ̂-feasible solution (f t, st,νt) such that µ̂(f t, st,νt) ≤ λ̂µ̂(f t0 , st0 ,νt0), as desired.
However, this solution corresponds to the augmented graph Ḡ instead of to the original graph Ĝ.

To deal with this deficiency, we first simply discard all the auxiliary arcs and correspondingly
truncate the solution (f t, st,νt) to non-auxiliary arcs. Unfortunately, doing that might, in partic-
ular, render that solution not σ̂-feasible. So, to alleviate this problem, in Section 6.2 below, we
describe a fixing procedure that, given such a truncated solution, produces the intended solution
(f tf , stf ,νtf ) that corresponds to the original graph Ĝ, is γ̂-centered, σ̂-feasible and

µ̂(f tf , stf ,νtf ) ≤ λ̂(1 +O(m̂− 1
2 ))µ̂(f t0 , st0 ,νt0).

(Note that in our algorithm we are executing only T̂ = Õ(m̂
1
2
−3η) θ̂-improvement phases overall.

So, this additional (1 +O(m̂− 1
2 )) factor above is inconsequential.)

As we will see, a byproduct of this fixing procedure is an increase in the measure of (non-
auxiliary) arcs. However, we will show that this increase is bounded by O(CF m̂

CAT̂
). Thus, taking

CA to be sufficiently large ensures that the resulting measure increases do not lead to violation of
Invariant 5.2. (Note that the auxiliary arcs are always discarded at the end, so from the point of
view of Invariant 5.2, it suffices that by Lemma 6.12 the measure of these arcs is always o(m̂).)

In the light of the above discussion, all that remains is to describe and analyze the fixing
procedure and to show that one can indeed assume that all the electrical flows f̂

t
computed during

such θ̂-improvement phase are θ̂-smooth on the set of light arcs.

Fixing Procedure

We start by describing and analyzing the fixing procedure that we employ at the end of each θ̂-
improvement phase. Recall that in this procedure we are given as input a γ̂-centered and σ̂-feasible
solution (f t, st,νt) in the augmented graph Ḡ such that µ̂(f t, st,νt) ≤ λ̂µ̂(f t0 , st0 ,νt0). Our goal
is to obtain a γ̂-centered σ̂-feasible solution (f tf , stf ,νtf ) in the original graph Ĝ that satisfies
µ̂(f tf , stf ,νtf ) ≤ λ̂(1 +O(m̂− 1

2 ))µ̂(f t0 , st0 ,νt0).
We do this in two steps. First, we simply truncate the solution (f t, st,νt) to the original graph

Ĝ by discarding all the auxiliary arcs and flow on them. Let us denote the resulting solution as
(f ′, s ′,ν ′). It is not hard to see that this solution is still γ̂-centered. In the following lemma – whose
proof appears in Appendix E.8 – we argue that also the value of µ̂(f ′, s ′,ν ′) has not increased by
much.

Lemma 6.13. µ̂(f ′, s ′,ν ′) ≤ λ̂(1 +O(m̂− 1
2 ))µ̂(f t0 , st0 ,νt0).

At this point, we know that the solution (f ′, s ′,ν ′) is γ̂-centered and µ̂(f ′, s ′,ν ′) is as small as
needed. Unfortunately, this solution can still be not σ̂-feasible.

Therefore, in the second step of our procedure, we address this last shortcoming. Our approach
here requires introducing a certain simple operation. For a given some solution (f , s,ν), as well as,
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some α ≥ 0 and an arc e, let us define α-widening of e (in (f , s,ν)) as an operation in which we
increase the value of fe by a factor of (1+α) and increase νe by a factor of (1+β), where β is given
via (18).

We can view the α-widening operation as a counterpart of the α-stretching operation. In fact,
one can see that due to symmetric nature of fe and se and our choice of β, Lemma 6.3 also holds for
α-widening operation. (Note that in the proof of Lemma 6.3 the roles of fe and se are completely
interchangeable.)

Now, our way of obtaining the desired solution (f tf , stf ,νtf ) is very simple. Let us denote by
σ̄ the actual demand vector of f ′ and let σ̃ := σ̂ − σ̄ be the vector of demand differences. We
start with (f ′, s ′,ν ′) and for each vertex v of Ĝ other than v∗, we do the following. If σ̃v ≥ 0 (resp.
σ̃v < 0), we apply αv-widening to the arc e(v) := (v, v∗) (resp. e(v) := (v∗, v)) with αv := |σ̃v |

f ′

e
.

We take (f tf , stf ,νtf ) to be the resulting solution. It is easy to see that this solution is σ̂-feasible
now. Also, by Lemma 6.3, we know that this solution remains γ̂-centered and that µ̂(f tf , stf ,νtf ) =

µ̂(f ′, s ′,ν ′) ≤ λ̂(1 +O(m̂− 1
2 ))µ̂(f t0 , st0 ,νt0), as needed.

So, we just need to establish the claimed bound of O(CF m̂

CAT̂
) on total measure increase resulting

from this procedure. To this end, note that by Lemma 6.3 this increase is at most

(1 + γ̂)
∑

v 6=v∗

αvν
t
e(v) = (1 + γ̂)

∑

v 6=v∗

|σ̃v|
νte(v)

f ′
e(v)

≤ (1 + γ̂)2
∑

v 6=v∗

|σ̃v|
s′e(v)

µ̂(f ′, s ′,ν ′)

= O


∑

v 6=v∗

|σ̃v|
µ̂(f ′, s ′,ν ′)


 = O

( |σ̂ − σ̄|1
µ̂(f ′, s ′,ν ′)

)
,

where we used the Fact 5.3 and Invariant 6.4, as well as, we applied Lemma 6.5 to conclude that
each s′e(v) is O(1).

Thus, in the light of the above, it only remains to bound |σ̂ − σ̄|1.

Lemma 6.14. |σ̂ − σ̄|1 = O(CF m̂µ̂(f ′,s ′,ν′)

CAT̂
)

Proof. One can see that we can bound |σ̂− σ̄|1 by bounding the total (additive) change of the flow
f t on all auxiliary arcs during the whole execution of θ̂-improvement procedure. Furthermore, as
the flow f t changes only during progress steps, and there is at most θ̂−2 = m̂2η of them, it suffices
to prove that in each progress step this change is at most O(CF µ̂(f

′, s ′,ν ′) m̂
1−2η

CAT̂
)).

Now, by Theorem 5.5 and Lemma 6.12, this (additive) change at step t can be bounded as

∑

e∈S
|κ̄te|f t

e ≤ CFFA

∑

e∈S
|κ̄te| ≤ 4CFFA

(
∑

e∈S
δtρ(f̂

t
, f t)e +

∑

e∈S
κ̂te

)
, (29)

where S is the set of auxiliary arcs. By Cauchy-Schwarz inequality, we get that

∑

e∈S
ρ(f̂

t
, f t)e ≤

∑

e∈S
νteρ(f̂

t
, f t)e ≤

√
‖ρ(f̂ t

, f t)‖2
νt,2ν

t(S) ≤ O(m̂),

where we used (16) and the fact that by Lemma 6.12 νt(S) is O(m̂). Similarly, we obtain that
∑

e∈S
κ̂te ≤

∑

e∈S
νteκ̂

t
e ≤

√
‖κ̂t‖2

νt,2ν
t(S) ≤ O(

√
m̂),
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where we used that fact that ‖κ̂t‖νt,2 ≤ 1
16 .

Plugging the above to bounds back into (29) and recalling that we always set δt := (2Cδ θ̂
√
m̂)−1,

we obtain that

|σ̂ − σ̄|1 ≤ 4CFFA

(
∑

e∈S
δtρ(f̂

t
, f t)e +

∑

e∈S
κ̂te

)
≤ O

(
CFFA

√
m̂

Cδ θ̂

)

≤ O

(
CF µ̂(f

t0 , st0 ,νt0)m̂1−2η

CAT̂

)
≤ O

(
CF µ̂(f

′, s ′,ν ′)m̂1−2η

CAT̂

)
,

where we utilized (28), as well as, the fact that, due to our stopping condition for θ̂-improvement
phase, we can always assume that µ̂(f t0 , st0 ,νt0) is O(µ̂(f ′, s ′,ν ′)). The lemma follows.

Clearly, by setting CA to be a sufficiently large constant, we can ensure that the total measure
increase due to fixing procedure will not lead to violation of Invariant 5.2.

θ̂-smoothness on Light Arcs

As the final step of our analysis, we prove now that in the course of our algorithm – after the
modifications described above – all the electrical flows f̂

t
that we compute are indeed θ̂-smooth on

the set of light arcs. That is, the assumption underlying the analysis performed in Section 6.1 is
indeed justified.

To this end, let us fix some σ̂-feasible and γ̂-centered solution (f t, st,νt) in our augmented

graph Ḡ and let f̂
t

be the associated electrical σ̂-flow. For convenience, we drop from now on all
the references to t in our notation.

Our proof will take advantage of the dual nature of electrical flows. In particular, it will be
instrumental for us to consider the vertex potentials φ that induce the electrical flow f̂ via (5). The
crucial property of these potentials is that they provide an embedding of all the vertices of Ḡ into
a line. To make it precise, for a given arc e = (u, v), let us denote by φ−

e (resp. φ+
e ): the value of

φu (resp. φv), if φu ≤ φv; and the value of φv (resp. φu), otherwise. In other words, φ−
e (resp. φ+

e )
is the coordinate of the left-most (resp. right-most) endpoint of e in this line embedding.

Observe that by (5) and definition of resistances r (cf. (14)), we have that for a given arc
e = (u, v), the distance ∆e between the embeddings of its endpoints is

∆e := φ+
e − φ−

e = |φu − φv| = |f̂e|re =
µe|f̂e|
f2
e

=
µeρ(f̂ , f )e

fe
,

and thus by Fact 5.3

(1− γ̂)µ̂(f , s,ν)
ρ(f̂ , f )e

fe
≤ ∆e

νe
≤ (1 + γ̂)µ̂(f , s,ν)

ρ(f̂ , f )e
fe

. (30)

Furthermore, for two subsets T, U ⊆ V̄ of vertices of Ḡ, let us define the distance dist(T, U) between
these sets to be

dist(T, U) := min
v∈T,u∈U

|φv − φu|. (31)

Also, let us call two such subsets T ⊆ V̄ and U ⊆ V̄ , (∆, k)-separated, for some ∆ > 0 and integer
k ≥ 0, if dist(T, U) ≥ ∆ and min{a(T ),a(U)} ≥ k, where a(U ′) :=

∑
v∈U ′ av and av is defined in

(27).
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Now, assume for the sake of contradiction that f̂ is not θ̂-smooth on the set of light arcs, i.e.,
there exists an l∗ ≤ log θ̂−3 such that

ν(Sl∗(f̂ ) \ Et
H) = ν(S∗) > ⌊θ̂323l∗⌋, (32)

where S∗ denotes Sl∗(f̂ ) \Et
H with the set Sl∗(f̂ ) defined by (17) and Et

H denotes the set of heavy
arcs. Our main goal is to show that in this case there exist two subsets T, U ⊆ V̄ of vertices that
are (∆∗, k∗)-separated with

∆∗ :=
CHm̂3η

14 · 2l∗ and k∗ :=
22l

∗

m̂1−6η(µ̂(f , s,ν))2

CKF 2
A

, (33)

where CH is the constant from Definition 6.7, FA is given by (28), and CK is a sufficiently large
constant that does not depend on CH and will be set later.

To motivate this goal, we prove the following lemma.

Lemma 6.15. If there exist T, U ⊆ V̄ that are (∆∗, k∗)-separated then

Er (f̂ ) > CEm̂µ̂(f , s,ν),

provided CH is chosen to be large enough.

Observe that the conclusion of this lemma violates the bound from Lemma 6.8. Thus, the
resulting contradiction would allows us to conclude that f̂ indeed needs to be θ̂-smooth on the set
of light arcs, as we wanted to prove.

Proof. Note that as dist(T, U) ≥ ∆∗, it must be the case that either dist({v̄}, U) ≥ ∆∗

2 or
dist({v̄}, T ) ≥ ∆∗

2 . (Recall that v̄ is the special vertex of Ḡ that is adjacent to all the auxiliary
arcs.) Let us assume – without loss of generality – that the first case holds.

Now, as min{a(T ),a(U)} ≥ k∗, we know that, in particular, a(U) ≥ k∗. This, in turn, means
that at least k∗ of auxiliary arcs e must have ∆e ≥ ∆∗

2 . Furthermore, by Lemma 6.12, we know that

all but O(m̂8η) of these arcs have measure 1. So, as k∗ is Ω̃(m̂1−6η), by ensuring that the constant
Cη in the definition of η ((19)) is big enough, we can conclude that the set Ŝ of auxiliary arcs with
∆e ≥ ∆∗

2 and νe = 1 has size of at least k∗

2 .
So, by (30) and Lemma 6.12, we have that, for any such arc e in Ŝ,

ρ(f̂ , f )e ≥
∆efe

(1 + γ̂)νeµ̂(f , s,ν)
≥ ∆eFA

(1 + γ̂)CF µ̂(f , s,ν)
≥ ∆∗FA

4CF µ̂(f , s,ν)
,

where we used the fact that ∆e ≥ ∆∗

2 and νe = 1, for all e in Ŝ.
Now, the above inequality enables us to lowerbound the energy Er (f̂ ) of the flow f̂ using sole

contribution of arcs in Ŝ. We get that

Er (f̂ ) ≥
∑

e∈Ŝ

ref̂
2
e ≥

∑

e∈Ŝ

(1− γ̂)µ̂(f , s,ν)ρ(f̂ , f )2e ≥ (1− γ̂)µ̂(f , s,ν)|Ŝ|
(

∆∗FA

4CF µ̂(f , s,ν)

)2

≥ µ̂(f , s,ν)k∗
(

∆∗FA

8CF µ̂(f , s,ν)

)2

≥ Ω

(
µ̂(f , s,ν)m̂1−6η22l

∗

(
C2
Hm̂6η

C2
FCK22l∗

))

≥ Ω

(
µ̂(f , s,ν)m̂

(
C2
H

C2
FCK

))
,
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where we used the definition of r (14) and Fact 5.3.
So, once CH is chosen to be large enough constant – which we can always ensure to be the case

– the lemma follows. (Note that at this point the constant CF is fixed already and we will make
sure that when we later set the constant CK , it does not depend on the value of CH .)

Finding the (∆∗, k∗)-separated Sets

In the light of the above, it remains to establish how condition (32) implies the existence of such
(∆∗, k∗)-separated sets T ∗ and U∗. To this end, for a given x ∈ R, let us define V −

x (resp. V +
x ) to

be the set of vertices v with φv ≤ x (resp. φv ≥ x). Also, let Ex denote the set of arcs e of Ḡ such
that φ−

e ≤ x ≤ φ+
e .

Now, let x∗ be the smallest x such that a(V −
x ) ≥ k∗. If a(Vx∗+∆∗) ≥ k∗ then taking T ∗ := V −

x∗

and U∗ = V +
x∗+∆∗ will clearly constitute the (∆∗, k∗)-separated sets we are looking for.

So, we can focus on the case that a(Vx∗+∆∗) < k∗. Let us then take T ∗ := V +
x∗ ∩ V −

x∗+∆∗ . Note
that, as 3k∗ is smaller than the number of all auxiliary arcs, we need to have a(T ∗) ≥ k∗. Next,
let us take U∗ := V −

x∗−∆∗ ∪ V +
x∗+2∆∗ . Clearly, dist(T ∗, U∗) ≥ ∆∗. Therefore, once we show that

a(U∗) ≥ k∗, T ∗ and U∗ will constitute the desired (∆∗, k∗)-separated sets.
We proceed now to showing that indeed a(U∗) ≥ k∗. Let us define F (x) :=

∑
e∈Ex

fe (resp.

F̂ (x) :=
∑

e∈Ex
|f̂e|) to be the total flow of f (resp. f̂ ) flowing through the arcs in Ex. We will be

interested in two quantities

A∗ :=
∫

R\I∗
F (x)dx and Â :=

∫

R\I∗
F̂ (x)dx,

where I∗ is an interval [x∗ − ∆∗, x∗ + 2∆∗]. (Observe that if the interval I∗ was not excluded, Â
would be equal to the energy Er (f̂ ) of the flow f̂ .)

Lowerbounding Â First, we want to lowerbound Â. To this end, we note that by (30), for any
e ∈ S∗ (recall that S∗ := Sl∗(f̂ ) \ Et

H and thus, in particular, is contain only light arcs), we have
that

∆e ≥ (1− γ̂)µ̂(f , s,ν)νe
ρ(f̂ , f )e

fe
≥ (1− γ̂)µ̂(f , s,ν)

ρ(f̂ , f )e
FH

≥ (1− γ̂)CH
ρ(f̂ , f )e

m̂
1
2
−3η

≥ (1− γ̂)CH
m̂3η

2l∗+1
≥ 6∆∗,

where we also used (17), (33), and Definition 6.7.
As the interval I∗ has length 3∆∗, this means that for any arc e ∈ S∗, the interval [φ−

e , φ
+
e ] \ I∗

has length of at least

∆e − 3∆∗ ≥ ∆e

2
.

This, in turn, implies that even if we account for contributions of the arcs from S∗ only, we have
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that

Â =

∫

R\I∗
F̂ (x)dx ≥ 1

2

∑

e∈S∗

∆e|f̂e| ≥
(1− γ̂)µ̂(f , s,ν)

2

∑

e∈S∗

ρ(f̂ , f )eνe|f̂e|
fe

≥ (1− γ̂)µ̂(f , s,ν)

2

∑

e∈S∗

ρ(f̂ , f )2eνe ≥
µ̂(f , s,ν)

5

∑

e∈S∗

νem̂

22l∗
(34)

=
µ̂(f , s,ν)

5 · 22l∗ ν(S∗)m̂ ≥ µ̂(f , s,ν)

5
θ̂32l

∗

m̂ =
µ̂(f , s,ν)

5
2l

∗

m̂1−3η,

where we used (17), (30), and (32).

Upperbounding A∗ Now, we want to upperbound the value of A∗. To do that, let us define S̄
to be the set of arcs that have at least one endpoint outside of the interval I∗. Note that by our
way of setting up the auxiliary arcs and the fact that by Lemma 6.12 and (25), the total increase
of measure of arcs during the θ̂-improvement phase is Õ(m̂8η), we have that

a(U∗) ≥ ν(S̄)

3
− Õ(m̂8η). (35)

So, if we are able to show that ν(S̄) ≥ 4k∗ = Ω̃(m̂1−6η) and ensure again that the constant Cη in
definition of η (19) is large enough, we will prove that a(U∗) ≥ k∗, as desired.

To establish such lowerbound on ν(S̄), we use (30) and observe that

A∗ =
∫

R\I∗
F (x)dx ≤

∑

e∈S̄
∆efe ≤ (1 + γ̂)µ̂(f , s,ν)

∑

e∈S̄
νeρ(f̂ , f )e,

where we noted that the only arcs that can contribute to A∗ are all in the set S̄. Therefore, by Fact
5.3 and Cauchy-Schwarz inequality, we have that

(1 + γ̂)µ̂(f , s,ν)
∑

e∈S̄
νeρ(f̂ , f )e ≤ (1 + γ̂)µ̂(f , s,ν)

√
(
∑

e∈S̄
νeρ(f̂ , f )2e)ν(S̄).

So, putting the above two bounds together, we get that

A∗ ≤ (1 + γ̂)µ̂(f , s,ν)
∑

e∈S̄
νeρ(f̂ , f )e ≤ 5µ̂(f , s,ν)

√
m̂ν(S̄), (36)

where we also used (16) and Lemma 5.7.
At this point, our last needed observation is captured by the following lemma.

Lemma 6.16. For any x ∈ R, we have that F (x) ≥ F̂ (x).

Notice that once the above lemma is established, we have that

A∗ =
∫

R\I∗
F (x)dx ≥

∫

R\I∗
F̂ (x)dx = Â,
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and, as a result, we can put (34) and (36) together to obtain

ν(S̄) ≥ 1

m̂

(
A∗

5µ̂(f , s,ν)

)2

≥ 1

m̂

(
Â

5µ̂(f , s,ν)

)2

≥ 1

m̂

(
2l

∗

m̂1−3η

25

)2

≥ Ω(22l
∗

m̂1−6η) ≥ 4k∗,

once the constant CK in the definition (33) of k∗ is taken to be large enough. (Note that the term
µ̂(f ,s,ν)

FA
in the definition of k∗ (33) is bounded by a constant that is independent of CH . So, indeed

CK does not depend on CH , as we wanted to ensure.)
Therefore, by (35), the above bounds shows that indeed a(U∗) ≥ k∗, as needed.
At this point, we just need to perform the remaining proof of the lemma and the analysis of our

improved algorithm will be concluded.

Proof. The simple, but fundamental, observation we need to make here is that the flow f̂ – being
an electrical σ̂-flow induced by vertex potentials φ via relationship (5) – is always flowing in one
direction, i.e., from left to right, with respect to the line embedding given by φ. This, together with
the fact that f̂ is a σ̂-flow, implies that

∑

v∈V +
x

σ̂v = F̂ (x).

On the other hand, f is also a feasible σ̂-flow, which means that the net inflow into V +
x of f

has to be at least
∑

v∈V +
x
σ̂v. This gives us that

F (x) ≥
∑

v∈V +
x

σ̂v = F̂ (x),

as we wanted to establish.

7 Electrical Flows and the Central Path

In this section, we describe how we can use electrical flows to advance our solution along the central
path. In other words, we describe and analyze the implementation of the improvement step and
thus prove Theorem 5.5. This implementation is directly inspired by – and, in fact, can be seen as
a reinterpretation of – the improvement steps used in path-following method.

Recall that in the improvement step, we are given a γ̂-centered σ̂-feasible solution (f t, st,νt)
and our goal is to compute, in Õ(m̂) time, a γ̂-centered σ̂-feasible solution (f t+1, st+1,νt+1) with

µ̂(f t+1, st+1,νt+1) ≤ (1− δt)µ̂(f t, st,νt). (37)

We perform this improvement in two main steps. The first one – the descent step – uses the
electrical flow f̂

t
associated with (f t, st,νt) and the corresponding vertex potentials φ̂t that induce

it, to perform a primal and dual update that results in a new, intermediate, solution (f̄
t
, s̄t, ν̄t).

This intermediate solution is σ̂-feasible and has µ̂(f̄
t
, s̄t, ν̄t) ≤ (1 − δt)µ̂(f t, st,νt) as desired, but

it might be not γ̂-centered anymore. To fix that, in the second – centering – step, we compute the
desired solution (f t+1, st+1,νt+1) out of (f̄

t
, s̄t, ν̄t) by using another electrical flow computation

that again provides a primal and dual update.
We describe and analyze both of these steps below. Note that as each of these two steps requires

only one computation of electrical flow, it can be easily implemented to run in Õ(m̂) time, as needed.
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Descent Step Let f̂
t

be the electrical σ̂-flow associated with the solution (f t, st,νt) and let φ̂
t

be the vertex potentials that induce f̂
t
. Consider a new primal-dual solution (f̄

t
, s̄t, ν̄t) given by

f̄ t
e := (1− δt)f t

e + δtf̂ t
e (38)

s̄te := ste −
δt

(1− δt)
(φ̂t

u − φ̂t
v) = ste − δt

ste
(1− δt)f t

e

f̂ t
e (39)

ν̄te := νte, (40)

for each arc e = (v, u) in Ĝ, where δt satisfies conditions of the theorem and we also used the

definition (14) of the resistances that determine f̂
t
, as well as, the relationship (5) between electrical

flow and the vertex potentials that induce it.
Observe that as f̄

t is a convex combination of two σ̂-flows – the flows f t and f̂
t

– it also is an
σ̂-flow. Furthermore, as all νte ≥ 1, we have ‖ρ(f̂ t

, f t)‖νt,4 ≥ ‖ρ(f̂
t
, f t)‖∞ and thus, for each arc e,

f̄ t
e = (1− δt)f t

e + δtf̂ t
e ≥ (1− δt)f t

e − δt|f̂ t
e| = (1− δt − δtρ(f̂

t
, f t)e)f

t
e ≥ (1− 1

2
−
√
γ̂)f t

e > 0, (41)

and similarly

s̄te = ste − δt
ste

(1− δt)f t
e

f̂ t
e ≥ ste − δt

ste
(1− δt)f t

e

|f̂ t
e| = ste − δt

ste
(1− δt)

ρ(f̂
t
, f t)e ≥ (1− 2

√
γ̂)ste > 0.

So, (f̄ t
, s̄t, ν̄t) is σ̂-feasible, as desired.

Let us now analyze the value of µ̂(f̄ t
, s̄t, ν̄t). To this end, observe that, for any arc e,

ˆ̄µt
e =

f̄ t
e s̄

t
e

ν̄te
= (νte)

−1((1− δt)f t
e + δtf̂ t

e)(s
t
e − δt

ste
(1− δt)f t

e

f̂ t
e)

= (νte)
−1

(
(1− δt)f t

es
t
e + δtf̂ t

es
t
e − δt

ste
(1− δt)f t

e

f̂ t
e(1− δt)f t

e − (δt)2
ste

(1− δt)f t
e

(f̂ t
e)

2

)

= (νte)
−1

(
(1− δt)µt

e + δtf̂ t
es

t
e − δtf̂ t

es
t
e − (δt)2

ste
(1− δt)

f t
eρ(f̂

t
, f t)2e

)
(42)

=

(
1− δt − (δtρ(f̂

t
, f t)e)

2

(1− δt)

)
µ̂t
e.

So, by definition (10) and the fact that (δtρ(f̂
t
,f t)e)2

(1−δt) ≥ 0 for all e, we see that

µ̂(f̄
t
, s̄t, ν̄t) ≤ (1− δt)µ̂(f t, st,νt)

and this inequality would be an equality if the second-order terms (i.e., terms quadratic in δt) were
ignored. (Also, if these terms were not present, the centrality of the solution would be preserved
too.)
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Finally, let us focus on analyzing the centrality of (f̄ t
, s̄t, ν̄t). To this end, note that by definition

(11) and by (42) above we have

‖ˆ̄µt − µ̂(f̄
t
, s̄t, ν̄t)1‖2ν̄t,2 ≤ ‖ˆ̄µt − (1− δt)µ̂(f t, st,νt)1‖2ν̄t,2 ≤

∑

e

ν̄te(ˆ̄µ
t
e − (1− δt)µ̂(f t, st,νt))2

=
∑

e

νte

(
(1− δt)(µ̂t

e − µ̂(f t, st,νt))− (δtρ(f̂
t
, f t)e)

2

(1− δt)
µ̂t
e

)2

≤ 2

(
(1− δt)2

∑

e

νte(µ̂
t
e − µ̂(f t, st,νt))2 +

∑

e

νte
(δtρ(f̂

t
, f t)e)

4

(1− δt)2
(µ̂t

e)
2

)
(43)

≤ 2

(
(1− δt)2‖µ̂t − µ̂(f t, st,νt)1‖2νt,2 +

(1 + γ̂)2µ̂(f t, st,νt)2

(1− δt)2
(δt)4

∑

e

νteρ(f̂
t
, f t)4e

)

≤ 2

(
(1− δt)2γ̂2µ̂(f t, st,νt)2 +

(1 + γ̂)2µ̂(f t, st,νt)2

(1− δt)2
(δt)4

∑

e

νteρ(f̂
t
, f t)4e

)

≤ 2

(
(1− δt)2γ̂2 +

(1 + γ̂)2

(1− δt)2
(δt)4‖ρ(f̂ t

, f t)‖4νt,4

)
µ̂(f t, st,νt)2

≤ 10γ̂2µ̂(f̄
t
, s̄t, ν̄t)2.

In the above derivation, the first inequality follows as the ‖µ− t1‖ν,2 is always minimized by taking
t = µ̂(f , s,ν). We also used the fact that (f t, st,νt) is γ̂-centered, Fact 5.3 and the upperbound
on δt.

Therefore, we see that the price of making progress on the duality gap is that the centrality of
our solution could deteriorate by a factor of at most three.

Centering Step To alleviate this possible increase of centrality, we apply a second step that
restores the centrality back within the desired bounds while not increasing the duality gap (so to
not to counter the progress on the duality gap that we just achieved).

To this end, consider a flow f̄
∗ in Ĝ defined as

f̄∗
e :=

ˆ̄µt
e − µ̂(f̄

t
, s̄t, ν̄t)

ˆ̄µt
e

f̄ t
e, (44)

for every arc e of Ĝ. Note that the flow f̄
∗ might (and actually will) not be feasible in Ĝ, as some

of f̄∗
e can be negative.
Now, consider a flow f̄

′ given by

f̄ ′
e := f̄ t

e − f̄∗
e = (1−

ˆ̄µt
e − µ̂(f̄

t
, s̄t, ν̄t)

ˆ̄µt
e

)f̄ t
e =

µ̂(f̄
t
, s̄t, ν̄t)

ˆ̄µt
e

f̄ t
e, (45)

for each arc e. Observe that f̄
′ is feasible in Ĝ (i.e., f̄ ′

e ≥ 0, for all e) and

f̄ ′
es̄

t
e

ν̄te
=

µ̂(f̄
t
, s̄t, ν̄t)

ˆ̄µt
eν̄

t
e

f̄ t
e s̄

t
e = µ̂(f̄

t
, s̄t, ν̄t), (46)

for each arc e. That is, (f̄ ′
, s̄t, ν̄t) is 0-centered with µ̂(f̄

′
, s̄t, ν̄t) = µ̂(f̄

t
, s̄t, ν̄t).
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So, this solution would be a perfect candidate for (f t+1, st+1,νt+1) except that the flow f̄
′ does

not need to be a σ̂-flow and thus this solution might not be σ̂-feasible.
To fix that – and obtain our desired solution (f t+1, st+1,νt+1) – let σ̃ be the demand vector of

the flow f̄
∗, and consider an electrical σ̃-flow f̃

t
that corresponds to resistances

r̃te :=
s̄te
f̄ ′
e

, (47)

for each arc e and let φ̃ be the corresponding vertex potentials.
Let us define (f t+1, st+1,νt+1) to be

f t+1
e := f̄ ′

e + f̃ t
e

st+1
e := s̄te − (φ̃t

u − φ̃t
v) = s̄te −

s̄te
f̄ ′
e

f̃ t
e (48)

νt+1
e := ν̄te,

for each arc e = (v, u).
Clearly, now f t+1 is a σ̂-flow, as desired. Let us analyze its centrality. To this end, let us fix

some arc e, and notice that

µ̂t+1
e =

f t+1
e st+1

e

νt+1
e

=
(f̄ ′

e + f̃ t
e)(s̄

t
e − s̄te

f̄ ′

e
f̃ t
e)

νt+1
e

= (ν̄te)
−1

(
f̄ ′
es̄

t
e + s̄tef̃

t
e − s̄tef̃

t
e −

s̄te
f̄ ′
e

(f̃ t
e)

2

)

= µ̂(f̄
t
, s̄t, ν̄t)− s̄te

ν̄tef̄
′
e

(f̃ t
e)

2,

where we used (46). So, we see in particular that

µ̂(f t+1, st+1,νt+1) ≤ µ̂(f̄
t
, s̄t, ν̄t) ≤ (1− δt)µ̂(f t, st,νt),

as needed.
Now, by our derivation above, we have that

‖µ̂t+1 − µ̂(f t+1, st+1,νt+1)1‖2νt+1,2 ≤ ‖µ̂t+1 − µ̂(f̄
t
, st, ν̄t)1‖2νt+1,2 =

∑

e

ν̄te

(
s̄te
ν̄tef̄

′
e

(f̃ t
e)

2

)2

.

To bound the resulting expression, let us note that by Cauchy-Schwarz inequality and the fact
that measures are always at least 1 we have

∑

e

ν̄te

(
s̄te
ν̄tef̄

′
e

(f̃ t
e)

2

)2

≤
(
max

e

s̄te
ν̄tef̄

′
e

(f̃ t
e)

2

)(∑

e

s̄te
f̄ ′
e

(f̃ t
e)

2

)
≤
(
∑

e

s̄te
f̄ ′
e

(f̃ t
e)

2

)2

.

Now, the key insight here is that by (47),

(
∑

e

s̄te
f̄ ′
e

(f̃ t
e)

2

)2

=
(
Er̃ t(f̃

t
)
)2

.
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So, by bounding the energy of the electrical flow f̃ t
e we will be able to bound the centrality of our

solution µ̂(f t+1, st+1,νt+1). To bound this energy, we will first bound the energy Er̃ t(f̄
∗
) of the

flow f̄
∗ and use the fact that both f̄

∗ and f̃
t

are σ̃-flows and thus, by definition, f̃
t

is minimizing
the energy among all the σ̃-flows.

Observe that by definition (44) of the flow f̄
∗, the fact that (f̄

t
, s̄t, ν̄t) is 3γ̂-centered – cf. (43)

– and Fact 5.3, we have that

Er̃ t(f̄
∗
) =

∑

e

s̄te
f̄ ′
e

(
ˆ̄µt
e − µ̂(f̄

t
, s̄t, ν̄t)

ˆ̄µt
e

f̄ t
e

)2

≤
∑

e

ν̄te ˆ̄µ
t
e

f̄ ′
e

(ˆ̄µt
e − µ̂(f̄

t
, s̄t, ν̄t))2f̄ t

e

(1− 3γ̂)ˆ̄µt
eµ̂(f̄

t
, s̄t, ν̄t)

≤ 1

(1− 3γ̂)

∑

e

ν̄te
(ˆ̄µt

e − µ̂(f̄
t
, s̄t, ν̄t))2f̄ t

e

µ̂(f̄
t
, s̄t, ν̄t)f̄ ′

e

=
1

(1− 3γ̂)

∑

e

ν̄te
(ˆ̄µt

e − µ̂(f̄
t
, s̄t, ν̄t))2 ˆ̄µt

e

µ̂(f̄
t
, s̄t, ν̄t)2

≤ (1 + 3γ̂)

(1− 3γ̂)

∑

e

ν̄te
(ˆ̄µt

e − µ̂(f̄
t
, s̄t, ν̄t))2

µ̂(f̄
t
, s̄t, ν̄t)

=
(1 + 3γ̂)

(1− 3γ̂)

‖ˆ̄µt − µ̂(f̄
t
, s̄t, ν̄t)1‖2

ν̄t,2

µ̂(f̄
t
, s̄t, ν̄t)

(49)

≤ (1 + 3γ̂)

(1− 3γ̂)
9γ̂2µ̂(f̄

t
, s̄t, ν̄t) ≤ 10γ̂2µ̂(f̄

t
, s̄t, ν̄t) ≤ 20γ̂2µ̂(f t+1, st+1,νt+1),

where we also used the definition (45) of the flow f̄
′.

In the light of the above discussion, we can conclude that

‖µ̂t+1 − µ̂(f t+1, st+1,νt+1)1‖2νt+1,2 ≤
∑

e

ν̄te

(
s̄te
ν̄tef̄

′
e

(f̃ t
e)

2

)2

≤
(
∑

e

s̄te
f̄ ′
e

(f̃ t
e)

2

)2

≤
(
20γ̂2µ̂(f t+1, st+1,νt+1)

)2 ≤ γ̂2µ̂(f t+1, st+1,νt+1)2,

as γ̂ ≤ 1
20 . So, indeed (f t+1, st+1,νt+1) is γ̂-centered.

Now, to prove that (f t+1, st+1,νt+1) is also σ̂-feasible, we just need to show that for any arc e,

ρ(f̃
t
, f̄

′
)e =

|f̃ t
e|
f̄ ′
e

≤ 1

2
.

To this end, note that by (46) and (49) we have

νteµ̂(f̄
t
, s̄t, ν̄t)ρ(f̃

t
, f̄

′
)2e =

s̄tef̄
′
e

(f̄ ′
e)

2
(f̃ t

e)
2 =

s̄te
f̄ ′
e

(f̃ t
e)

2 ≤ Er̃ t(f̃
t
) ≤ Er̃ t(f̄

∗
) ≤ 10γ̂2µ̂(f̄

t
, s̄t, ν̄t) ≤ 1

1600
µ̂(f̄

t
, s̄t, ν̄t).

(50)
Thus, indeed, we can conclude that we obtained a γ̂-centered σ̂-feasible solution (f t+1, st+1,νt+1)

with µ̂(f t+1, st+1,νt+1) ≤ (1− δt)µ̂(f t, st,νt), as desired.
This concludes the proof of the first part of the Theorem 5.5. The proof of the second part

appears in Appendix F.

8 Rounding Fractional Bipartite b-Matchings

In this section, we show how given a fractional b-matching x in some bipartite graph G = (P ∪Q,E)
with m = |E| edges, one can find in Õ(m) time an integral b-matching x ∗ in G whose size is at
least ⌊|x |1⌋. In other words, we prove Theorem 3.3.
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Rounding Perfect Matchings

Let us first consider the case when x is just a fractional perfect matching, i.e., bv = 1 for all vertices
and the size |x |1 of x is |b|1

2 , i.e., the fractional degree of each vertex in x is 1. We claim that in

this case we can just use Theorem 2.4 to obtain an integral perfect matching in Õ(m) time.
To see why this is the case, consider a |P | × |Q| matrix M x in which rows and columns are

indexed by vertices from P and Q, respectively, and the entries are given by Mx
p,q := x(p,q) if the

edge (p, q) exists in G; and 0, otherwise. Observe that if x is perfect and all bv are equal to 1
then we need to have |P | = |Q|. Thus, M x is a square matrix. Furthermore, M x needs to be
also doubly-stochastic, as for any row indexed by vertex p ∈ P (resp. column indexed by vertex
q ∈ Q), the sum

∑
q′∈QMx

p,q′ (resp.
∑

p′∈P Mx
p′,q) of the entries in this row (resp. column) is equal

to
∑

e∈E(p) xe = bp = 1 (resp.
∑

e∈E(q) xe = bq = 1). So, invoking Theorem 2.4, we can obtain in

Õ(m) time an integral matching x ∗ in the support of M x that is also the support of the edge set
E of our graph G.

Rounding Non-Perfect Matchings

Now, to recover the desired integral matching in the case when x is not necessarily perfect (but still
all bv are equal to 1), our first step is to extend x to a perfect matching x̄ in a certain augmented
graph Ḡ that is created from G by adding some dummy edges and vertices to it.

More precisely, let dP (resp. dQ) be the total deficits of vertices in P (resp. in Q), i.e.,

dP := |P | −
∑

e∈E(p),p∈P
xe and dQ := |Q| −

∑

e∈E(q),q∈Q
xe.

Note that the size |x |1 of x has to be exactly |P | − dP = |Q| − dQ. We add to the vertex set Q,
⌈dP ⌉ (resp. to the vertex set P , ⌈dQ⌉) dummy vertices q̄1, . . . , q̄⌈dP ⌉ (resp. p̄1, . . . , p̄⌈dQ⌉). Next, we
extend the fractional matching x to x̄ by going over each non-dummy vertex p ∈ P (resp. q ∈ Q)
and fractionally matching it to the dummy vertices q̄1, . . . , q̄⌈dP ⌉ (resp. p̄1, . . . , p̄⌈dQ⌉), so to ensure
that its fractional degree becomes 1 and the fractional degree of dummy vertices never exceeds one.
It is not hard to see that by employing a simple greedy approach we can achieve this goal in Õ(m)
time and, furthermore, ensure that: (1) each non-dummy vertex is matched to at most two dummy
vertices in x̄ ; (2) at the end, there are at most two dummy vertices, say, p̄⌈dQ⌉ and q̄⌈dP ⌉, (one on
each side of the bipartition) that are yet not fully matched in x̄ . To alleviate the latter problem,
we just match these two dummy vertices to each other (one can check that their deficits have to be
equal) and take the set of edges Ē of our augmented graph Ḡ to be the support of the matching x̄ .
(Note that by property (1), the size of this support will be still O(m).)

Clearly, x̄ is a perfect matching in Ḡ, so we can use the Õ(m)-time procedure we described
above to get an integral perfect matching x̄ ∗ in that graph. Once we do that, we take our desired
integral matching x ∗ in G to be x̄ ∗ after we removed from it all the edges of x̄ ∗ that are not in G,
i.e., all the edges that are incident to dummy vertices. Obviously, x ∗ is a feasible matching in G
and it is integral. To see that its size is at least ⌊|x |1⌋, note that, as there is at most ⌈dP ⌉+ ⌈dQ⌉
dummy vertices in Ḡ, there could be at most that many edges incident to these vertices in x̄ ∗. But,
as x̄ ∗ is perfect, its size is equal to

|P |+ ⌈dP ⌉+ |Q|+ ⌈dQ⌉
2

=
|P | − ⌈dP ⌉+ |Q| − ⌈dQ⌉

2
+ ⌈dP ⌉+ ⌈dQ⌉ = ⌊|x |1⌋+ ⌈dP ⌉+ ⌈dQ⌉,
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where we used the fact that |P | − dP = |Q| − dQ = |x |1. Thus, indeed after removing at most
⌈dP ⌉+ ⌈dQ⌉ edges from x̄ ∗, the resulting integral matching x ∗ will have its size |x ∗|1 to be at least
⌊|x |1⌋, as desired.

Rounding b-Matchings

In the light of the above, it remains to show how to deal with the case when in the demand vector
b there are some bv that are bigger than 1 (and thus some of the entries of x could be bigger than
1, as well). To this end, let us observe first that if there is an edge e = (p, q) with xe ≥ 1, we can
just subtract ⌊xe⌋ copies of this edge from our matching right away, while decreasing the demands
bp and bq of e’s endpoints accordingly, i.e., by ⌊xe⌋. (Note that by feasibility of x , bp, bq ≥ ⌊xe⌋.)
So, one can see that if x̄ is the fractional matching x after we made such transformation and b̄ are
the corresponding demands, then once we compute an integral b̄-matching x̄ ∗ of size at least ⌊|x̄ |1⌋
from x̄ , we can just add back these subtracted ⌊xe⌋ copies of edge e to x̄ ∗ to obtain the desired
integral b-matching x ∗ of size at least ⌊|x̄ |1⌋+ ⌊xe⌋ = ⌊|x |1⌋.

Therefore, we can assume from now on that in our b-marching x all xes are smaller than one (but
still we can have some demands bv to be bigger than one). To round such fractional b-matchings,
for each vertex v ∈ V that has its demand bv bigger than 1, we split it into bv vertices v1, . . . , vbv –
each with demand one. Next, for every edge e that was previously incident to v, we connect it to
the new vertices and distribute its fractional weight xe in x among these new vertices. Again, by
applying a simple greedy approach we can ensure that each edge is connected to at most two among
the vertices v1, . . . , vbv and none of these vertices has its fractional degree bigger than 1. (Note
that this means, in particular, that once we apply such splitting to all vertices with bv > 1 then the
support of the corresponding “split” fractional matching is at most by a factor of four larger than
the support of x .) Clearly, at this point, we are again in situation where we just need to round a
fractional bipartite matching (with all demands being at most 1). Thus, we can use our rounding
procedure we described above and recover the integral matching we are seeking. This finishes the
proof of Theorem 3.3.
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A Proof of Lemma 2.1

Let C∗ be the value of right-hand side of the equality we need to establish, and - for notational
convenience - let us denote the energy Er (f ∗) as E∗. So, our goal is to show that C∗ = 1/E∗ and
that taking φ̃ attains the minimum C∗.

We start by noting that, for any vertex potentials φ, we have
∑

(u,v)∈E
f∗
(u,v)(φv − φu) =

∑

v

φv(
∑

e∈E+(v)

f∗
e −

∑

e∈E−(v)

f∗
e ) =

∑

v

φvσv = σTφ, (51)

where we used the fact that f ∗ is a σ-flow (cf. (1)).
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Note that by the above calculations and the definition of φ̃ we have

σT φ̃ =
1

E∗
∑

(u,v)∈E
f∗
(u,v)(φ

∗
v − φ∗

u) =
1

E∗
∑

(u,v)∈E
r(u,v)(f

∗
(u,v))

2 = 1, (52)

where we used (5) and the definition of energy (4). Therefore, we see that C∗ ≤ 1/E∗ as by (6)

∑

e=(u,v)∈E

(φ̃v − φ̃u)
2

re
=

1

(E∗)2
∑

e=(u,v)∈E

(φ∗
v − φ∗

u)
2

re
= 1/E∗. (53)

Now, let φ̂ be the potential such that
∑

(u,v)∈E
(φ̂v−φ̂u)2

r(u,v)
= C∗ and let f̂ with f̂(u,v) :=

φ̂v−φ̂u

r(u,v)
,

for each (u, v) ∈ E, be the corresponding flow induced via 5. (Note that in principle f̂ does not
need to be a σ-flow).

From (51) we get that

(f ∗)TRf̂ =
∑

e

ref
∗
e f̂e =

∑

(u,v)∈E
f∗
(u,v)(φ̂v − φ̂u) = σT φ̂ = 1, (54)

where we again used (5) and the fact that σT φ̂ = 1 by definition.
We claim that the energy Er (f̂ ) of f̂ (and thus the value of C∗) is at least 1/E∗. To this end,

let us note that

Er (f̂ ) = f̂
T
Rf̂ =

(
f ∗

E∗ + f̂ − f ∗

E∗

)T

R

(
f ∗

E∗ + f̂ − f ∗

E∗

)

=
(f ∗)TRf ∗

(E∗)2
− 2

(f ∗)T

E∗ R

(
f̂ − f ∗

E∗

)
+

(
f̂ − f ∗

E∗

)T

R

(
f̂ − f ∗

E∗

)
.

As we have seen in (54), (f ∗)TRf̂ = 1, thus (f ∗)T

E∗ R
(
f̂ − f ∗

E∗

)
= 0 and we can write

Er (f̂ ) =
(f ∗)TRf ∗

(E∗)2
− 2

(f ∗)T

E∗ R

(
f̂ − f ∗

E∗

)
+

(
f̂ − f ∗

E∗

)T

R

(
f̂ − f ∗

E∗

)

=
1

E∗ +

(
f̂ − f ∗

E∗

)T

R

(
f̂ − f ∗

E∗

)
≥ 1

E∗ ,

as f TRf ≥ 0 for any f .
So, C∗ ≥ 1/E∗ too and thus C∗ = 1/E∗. Also, by (52) and (53) we see that φ̃ indeed attains

the minimum, as desired.

B Proof of Corollary 3.4

Let f be a fractional feasible s-t flow of value F in G and let us consider first the case when F is
integral. Recall that the reduction presented in Section 4 allows one to obtain in Õ(m) time an
instance of bipartite b-matching problem – corresponding to some bipartite graph Ḡ – that has a
property that if there exists a feasible s-t flow of value F in G then Ḡ has a perfect b-matching. Now,
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the crucial observation is that the proof of that property presented in Section 4 is fully constructive
and, in particular, provides an Õ(m)-time algorithm that produces such a perfect b-matching in Ḡ
out of a feasible s-t flow in G of value F . Furthermore, this construction also works for fractional
flows, it just produces a perfect b-matching that is fractional.

In the light of the above, we can simply apply this transformation to our flow f and get a
fractional perfect b-matching x in Ḡ. Next, we can use the rounding procedure from Theorem
3.3 to obtain in Õ(m) time a perfect b-matching x ∗ in Ḡ that is integral. (Note that since b is
always integral, so is the size of any perfect b-matching.) This, in turn, allows us to utilize another
property of the graph Ḡ that was established in Section 4. Namely, that out of any integral perfect
b-matching in Ḡ, one can extract – in Õ(m) time – an integral and feasible s-t flow f ∗ in G of value
F . Clearly, by combining all of the above steps, we get our desired integral s-t flow.

Finally, to deal with the case when F is not integral, we just add an arc (s, t) to G, set its
capacity to 1, and put a flow of ⌈F ⌉ − F ≤ 1 on it. Obviously, now we have a feasible s-t flow of
value ⌈F ⌉ in such modified graph G and ⌈F ⌉ is integral. Therefore, we can use our approach we
described above to get an integral and feasible s-t flow f ∗ in this graph and f ∗ will have a value
of ⌈F ⌉. Note that f ∗ can have non-zero flow on the arc (s, t) that we added, but as this arc has
capacity of 1, there can be exactly one unit of flow on this arc. So, if we simply remove it from
f ∗, we will get an integral and feasible s-t flow in the original graph G and the value of f ∗ will be
⌈F ⌉ − 1 = ⌊F ⌋, as desired. This concludes the proof of the corollary.

C Appendix to Section 4

C.1 Correctness Analysis

It is easy to verify that the produced b-matching instance is indeed bipartite (we have edges only
between different sides of bipartition P and Q), has exactly 2(m+n−1) = Θ(m) vertices, 3m+n−2 ≤
4m edges, and |b|1 ≤ 4|u |1. So, we just need to establish the claimed connection to existence of
feasible s-t flows in the graph G.

From Flow f to Perfect b-matching x

To this end, assume that there exists a feasible s-t flow f in G of value F . To see that a perfect
b-matching in Ḡ exists, consider a b-matching x that, for each arc e = (u, v) in G, takes exactly
fe edges (pe, qe) and ue − fe edges (qu, pe) and (qe, pv). Then, for every vertex v of G other than s
and t, x takes

∑
e∈E+(v) fe copies of the edge (pv, qv).

To see that x is indeed a perfect b-matching, observe that due to feasibility of f (cf. (2)),
0 ≤ fe ≤ ue for each arc e, and thus x ≥ 0. Also, by the construction of x , all vertices pe and qe
have exactly ue edges adjacent to them in x . So, they are fully matched. To see that all vertices
pv and qv are fully matched too, consider some v 6= s, t. Indeed, by definition of x , we have exactly∑

e∈E+(v) ue − fe +
∑

e∈E+(v) fe =
∑

e∈E+(v) ue = bpv (resp.
∑

e∈E−(v) ue − fe +
∑

e∈E−(v) fe =∑
e∈E−(v) ue = bqv) edges adjacent to pv (resp. qv), where we used the fact that

∑
e∈E+(v) fe =∑

e∈E−(v) fe, as f obeys flow conservation constraints (1). Finally, in the case of vertex qs (resp.
pt) we have that their degree in x is exactly

∑
e∈E−(s) ue − fe = (

∑
e∈E−(s) ue) − F = bqs (resp.∑

e∈E+(t) ue − fe = (
∑

e∈E+(t) ue) − F = bpt), due to the value
∑

e∈E−(s) fe =
∑

e∈E+(t) fe of the
flow f being exactly F . So, indeed such x is perfect, as claimed.
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From Perfect b-matching x to Flow f

Now, to see that given a perfect b-matching x in Ḡ we can quickly, i.e., in Õ(m) time, recover an
s-t flow of value F that is feasible in G, consider a flow f given by fe = x(pe,qe) for each arc e in G.
That is, the flow fe on an arc e is equal to the number of times a copy of an edge (pe, qe) appears
in x . Note that as the demands bpe and bqe of the endpoints of each edge (pe, qe) are equal to ue, f
is feasible in G.

Finally, to prove that f also preserves flow conservation constraints (cf. (1)), note that as x is
perfect, it has to be that for any vertex v and e ∈ E+(v) (resp. e ∈ E−(v)) x(pv ,qe) = bqe−x(pe,qe) =
ue − fe (resp. x(pe,qv) = bpe − x(pe,qe) = ue − fe). So, if we do not take into account the edges
(pv, qv), each vertex pv (resp. qv) has exactly

∑
e∈E+(v) bqe − x(pe,qe) =

∑
e∈E+(v) ue − fe (resp.∑

e∈E−(v) bpe − x(pe,qe) =
∑

e∈E−(v) ue − fe) edges adjacent to it in x . This means, in particular,
that in case of qs (resp. pt) we need to have that

∑
e∈E−(s) ue− fe = bqs = (

∑
e∈E−(s) ue)−F (resp.∑

e∈E+(t) ue − fe = bpt = (
∑

e∈E+(t) ue) − F ) and thus
∑

e∈E−(s) = F (resp.
∑

e∈E+(t) fe = F ),
i.e., the value of f is F . Furthermore, for any vertex v other than s and t, as x is perfect, w
need to have that

∑
e∈E+(v) ue = bpv = x(pv ,qv) +

∑
e∈E+(v) ue − fe (resp.

∑
e∈E−(v) ue = bqv =

x(pv ,qv) +
∑

e∈E−(v) ue − fe). Therefore,
∑

e∈E+(v) fe = x(pv ,qv) =
∑

e∈E−(v) fe, i.e., f obeys all flow
conservation constraints. So, indeed f is a feasible s-t flow of value F in G, as desired.

Lastly, it is worth pointing out that even though in the above proof we assume that both the
s-t flow f and the b-matching x are integral, the proof goes through unchanged in the case when
f and x are fractional. We just will have that if f is fractional then so will be the corresponding
b-matching x and vice versa.

D Appendix to Section 5

D.1 Proof of Lemma 5.4

Let us take s0 to be the all-ones vector 1 (this corresponds to y0 assigning zero value to all vertices).
Next, let the flow f 0 and measures ν0 be defined as follows.

For each arc of the form (sp, tq) in Ĝ, we give it a measure of one in ν0 and a flow of one unit
is sent through it in f 0. Now, for each vertex sp (resp. tq) in Ĝ, let rp := |Ê−(sp)| − 1 − bp (resp.
rq := |Ê+(tq)| − 1− bq). If rp ≥ 0 (resp. rq ≥ 0) then we put a flow of one and measure of one on
the arc (sp, v

∗) (resp. (v∗, tq)) and a flow and measure of rp + 1 (resp. rq + 1) on the arc (v∗, sp)
(resp. (tq, v

∗)). On the other hand, if rp < 0 (resp. rq < 0) then we put a flow and measure of
1 − rp (resp. 1 − rq) on the arc (sp, v

∗) (resp. (v∗, tq)) and a flow and measure of one on the arc
(v∗, sp) (resp. (tq, v

∗)).
One can verify that the resulting flow f 0 is indeed a σ̂-flow (again, one needs to use here the

fact that
∑

p bp =
∑

q bq, as otherwise there is no perfect b-matching in G) and thus the solution is
primal-dual feasible.

Also, the total measure
∑

e ν
0
e of all the arcs is at most m̂ + |b|1 ≤ 3m̂. Finally, we have that

µ̂0
e = f0

e s
0
e

ν0e
= 1 for all arcs e and thus the solution is indeed 0-centered and µ̂(f 0, s0,ν0) = 1, as

desired.

53



E Appendix to Section 6

E.1 Proof of Lemma 6.3

That (1− γ)α ≤ β ≤ (1 + γ)α follows directly from Fact 5.3.
Let us show now that µ̂(f ′, s ′,ν ′) = µ̂(f , s,ν). To this end, let us define γe so as

(1 + γe) :=
β

α
=

fese
νeµ̂(f , s,ν)

.

By definition (10), we have that

µ̂(f ′, s ′,ν ′) =

∑
g f

′
gs

′
g∑

g ν
′
g

=
(
∑

g 6=e fgsg) + (1 + α)fese

(
∑

g 6=e νg) + (1 + β)νe
= µ̂(f , s,ν)

(
(
∑

g νg) + ανe(1 + γe)

(
∑

g νg) + ανe(1 + γe)

)
= µ̂(f , s,ν)

Now, to bound the centrality of (f ′, s ′,ν ′), we need to bound the value of ‖µ̂′−µ̂(f ′, s ′,ν ′)1‖ν′,2.
However, as µ̂(f ′, s ′,ν ′) = µ̂(f , s,ν) and the two solution coincide on all the arcs except e, it suffices
to analyze the change in contribution of arc e to the centrality of the solution. Namely, we just
need to show that

ν ′e

(
f ′
es

′
e

ν ′e
− µ̂(f , s,ν)

)2

= (1 + β)νe

(
(1 + α)fese
(1 + β)νe

− µ̂(f , s,ν)

)2

≤ νe(
fese
νe
− µ̂(f , s,ν))2.

To this end, observe the right side of the above inequality is just

νe

(
fese
νe
− µ̂(f , s,ν)

)2

= νeγ
2
e µ̂(f , s,ν)

2.

So, we need to show that

ν ′e
νeµ̂(f , s,ν)2

(
f ′
es

′
e

ν ′e
− µ̂(f , s,ν)

)2

= (1 + β)

(
(1 + α)(1 + γe)

(1 + β)
− 1

)2

≤ γ2e .

But this is true as

(1 + β)

(
(1 + α)(1 + γe)

(1 + β)
− 1

)2

=
((1 + α)(1 + γe)− 1− (1 + γe)α)

2

1 + (1 + γe)α
=

γ2e
1 + (1 + γe)α

≤ γ2e ,

where we used that fact that (1 + γe) ≥ 1
2 since, by Fact 5.3, (1 + γe) ≥ (1− γ) ≥ 1

2 .

E.2 Proof of Lemma 6.5

Note that by construction of the graph Ĝ and by Invariant 6.4, we have that for any two vertices v,
v′ in Ĝ there is a directed path from v to v′, as well as, a one from v′ and v, with each one of them
consisting of at most two arcs and having length at most 4. As (f , s,ν) is σ-feasible then it is, in
particular, dual feasible. So, this implies that if y is the embedding of the vertices of Ĝ into a line
corresponding to the slack variables s, then |yv − yv′′ | is at most 4 as well. Thus, we can conclude
that for any arc e = (v, v′) in Ĝ, we have that se = l̂e − yv′ + yv ≤ l̂e + |yv − yv′′ | is at most 6, as
desired.
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E.3 Proof of Lemma 6.6

Note first that all the arcs in the original version of Ĝ have length 1 and α-stretching can only
increase these lengths. This means that it is still true – as in the proof of Lemma 5.1 – that
l̂(f ) − |b|1

2 is an upper bound on the total flow between the vertices sp and tq that is not flowing
over the direct arcs (sp, qt) reflecting the original edges of G.

Furthermore, as by Invariant 6.4 the total increase in the length of the arcs of Ĝ is Õ(m̂
1
2
−η),

the cost l̂(f ∗) of the flow that encodes the perfect b-matching in G (cf. the proof of Lemma 5.1),
can increase to at most |b|1

2 + Õ(m̂
1
2
−η). (We use here the fact that f∗ never flows more than one

unit of flow through any of the arcs.) So, we can assume that the cost l̂(f ) of the flow f we have
is also |b|1

2 + Õ(m̂
1
2
−η), as otherwise we could conclude that no perfect b-matching exists in G.

However, then it must be the case that the total flow in f that does not correspond to taking
the direct arcs is at most Õ(m̂

1
2
−η). Thus, the fractional b-matching obtained by taking only the

flow that uses these direct flow-paths will still result in a near-perfect b-matching in G.

E.4 Proof of Lemma 6.8

Note first that the upperbound follows directly from Lemma 5.7 as long as we ensure that CE > 4
(which indeed will be the case).

To establish the lowerbound, let us note first that without loss of generality we can assume
that in our b-matching instance G = (P ∪ Q,E), |P | ≥ |Q| and thus, as our graph G is sparse,
|P | = Ω(m̂). (Otherwise, we just exchange the roles of P and Q in what follows below.)

Let us define a vector of resistances r̃ t given by

r̃te :=

{
rte if e ∈ Ê(sp), for some p ∈ P

0 otherwise,

where Ê(sp) := Ê+(sp) ∪ Ê−(sp) is the set of all arcs incident to sp in Ĝ. In other words, r̃ t

corresponds to setting to zero resistances (i.e., collapsing) of all the arcs that are not adjacent
to some vertex in P ; and making the resistances of arcs that are adjacent to such sp equal to
their original resistances in r t. This means, in particular, that r̃te ≤ rte, for each arc e, and thus, by

Rayleigh Monotonicity principle (cf. Fact 2.2), we know that if f̃
t
is the electrical σ̂-flow determined

by resistances r̃ t then
Er̃ t(f̃

t
) ≤ Er t(f̂

t
).

Therefore, we can just focus on lowerbounding Er̃ t(f̃
t
). To this end, note that after collapsing

all the arcs that were not adjacent to some vertex in P , we can think of Ĝ as a graph that consists
only of vertices from P and a single vertex w∗ that represents the remaining collapsed vertices.
Furthermore, as there is no arcs in Ĝ between different vertices sp, all the arcs in this collapsed
graph are of the form (sp, w

∗) or (w∗, sp) for some p ∈ P .

As a result, Er̃ t(f̃
t
) is equal to

Er̃ t(f̃
t
) =

∑

p∈P

∑

e∈Ê(sp)

rte(f̃
t
e)

2 =
∑

p∈P
Rpσ

2
sp ,

where Rp is the effective resistance between vertex sp and w∗ with respect to resistances r̃ t and the

last equality follows as f̃
t
is a σ̂-flow and all arcs are connecting to w∗.
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Now, to lowerbound Rp, for some p ∈ P , note that by definition of r t (14), the fact that νte ≥ 1
for all e, and Fact 5.3, we have that

1

Rp
=

∑

e∈Ê(sp)

1

rte
=

∑

e∈Ê(sp)

(f t
e)

2

µt
e

≤
∑

e∈Ê(sp)

(f t
e)

2

(1− γ̂)νteµ̂(f
t, st,νt)

≤
F 2
p

(1− γ̂)µ̂(f t, st,νt)
,

where Fp :=
∑

e∈Ê(sp)
f t
e and we used the well-known formula for effective resistance of a circuit

that consists solely of parallel arcs.
So, all the above considerations allow us to observe that

Er̃ t(f̃
t
) =

∑

p∈P
Rpσ̂

2
sp ≥

∑

p∈P

(1− γ̂)µ̂(f t, st,νt)

F 2
p

≥ (1− γ̂)µ̂(f t, st,νt)
|P |3
F 2

,

where F =
∑

p Fp and we used the fact that |σ̂sp | ≥ bp ≥ 1, as well as, that for any n-dimensional

vector x ,
∑n

i=1
1
x2
i

≥ n3

|x |21
.

Thus, it remains to provide an upperbound on F . To this end, let us decompose the flow f t into
flow-paths (whose endpoints are vertices sp and tq) and flow-cycles. Clearly, the total contribution of
the flow-paths to F can be at most |σ̂|1 ≤ |b|1 = O(m̂), since our b-matching instance is balanced.
On the other hand, as length of any flow-cycle is at least two and each flow-cycle contributes its
whole volume to the duality gap (f t)T st =

∑
e µ

t
e (as flow-cycles do not exist in optimal solution),

the total contribution of flow-cycle to F is at most 1
2

∑
e µ

t
e. Thus, by (13) and Invariant 5.2, this

contribution is at most 1
2

∑
e µ

t
e =

1
2 µ̂(f

t, st,νt)(
∑

e ν
t
e) ≤ 2m̂µ̂(f t, st,νt) ≤ 2m̂.

Therefore, we can conclude that F = O(m̂) and since |P | is Ω(m̂) we have

Er̃ t(f̃
t
) ≥ (1− γ̂)µ̂(f t, st,νt)

|P |3
F 2
≥ C−1

E m̂µ̂(f t, st,νt),

where CE > 4 is an appropriately chosen constant.

E.5 Proof of Lemma 6.9

Let us denote by r , ν, and f̂ , respectively, the resistances r t, measures νt, and electrical σ̂-flow f̂
t

before stretch-boost and by r ′, ν ′, and f̂
′
the corresponding objects after stretch-boost. Also, let

as define S∗ := Sl∗(f̂
t
) ∩ Et

H , where l∗ is the index of the stretch-boost. In this notation, we want
to show that

Er ′(f̂
′
) ≥

(
1 +

ν(S∗)
36 · 22l∗

)
Er (f̂ ) ≥

(
1 +

θ̂2(ν(S∗))
1
3

36

)
Er (f̂ ) ≥

(
1 +

θ̂2

36

)
Er (f̂ ). (55)

Clearly, the last inequality follows as νe ≥ 1 for all arcs e. To see that the second inequality holds,
observe that by (22) we have that

ν(S∗) ≥ θ̂323l
∗

and thus
ν(S∗)
36 · 22l∗ ≥

(ν(S∗))
1
3 (θ̂323l

∗

)
2
3

36 · 22l∗ =
θ̂2(ν(S∗))

1
3

36
.

Therefore, once the first inequality in (55) is established, our lemma will follow by choosing CS := 1
36 .
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So, let us proceed to establishing that inequality. By Lemma 2.1, we know that if φ∗ is the
vector of vertex potentials corresponding to the flow f̂ and resistances r then

1

Er (f̂ )
=

∑

e=(u,v)∈Ê

(φ̃v − φ̃u)
2

re
, (56)

where φ̃v := φ∗
v/Er (f̂ ), for each v, and σ̂T φ̃ = 1.

Now, consider an arc e ∈ S∗. By (5), the definition of the sets Sl∗(f̂
t
) (17), and Fact 5.6, we

have that

(φ̃v − φ̃u)
2

re
=

1

Er (f̂ )2
ref̂

2
e ≥

(1− γ̂)νeµ̂(f , s,ν)ρ(f , f̂ )
2

Er (f̂ )2

≥
(

(1− γ̂)νem̂µ̂(f , s,ν)

4 · 22(l∗+1)m̂µ̂(f , s,ν)

)
1

Er (f̂ )
≥
( νe
18 · 22l∗

) 1

Er (f̂ )
,

where we also used Lemma 5.7. In other words, the contribution of arc e to the sum in (56)
constitutes at least νe

18·22l∗ -fraction of this sum.
Next, observe that, by definition of 1-stretching, we need to have that the resistance doubles,

i.e., r′e = 2re, for all the arcs e ∈ S∗, and remains the same for other arcs, i.e., r′e = re, for e /∈ S∗.
This means that

∑

e=(u,v)∈Ê

(φ̃v − φ̃u)
2

r′e
=

1

2

∑

e=(u,v)∈S∗

(φ̃v − φ̃u)
2

re
+

∑

e=(u,v)∈Ê\S∗

(φ̃v − φ̃u)
2

r′e

=
1

Er (f̂ )
− 1

2

∑

e=(u,v)∈S∗

(φ̃v − φ̃u)
2

re
≤ 1

Er (f̂ )

(
1− ν(S∗)

36 · 22l∗
)
.

But, by Lemma 2.1, we know that the above estimation provides an upper bound on the value
of 1

Er ′ (f̂
′

)
, i.e., we have

1

Er ′(f̂
′
)
= min

φ|σ̂Tφ=1

∑

e=(u,v)∈Ê

(φv − φu)
2

r′e
≤

∑

e=(u,v)∈Ê

(φ̃v − φ̃u)
2

r′e
≤ 1

Er (f̂ )

(
1− ν(S∗)

36 · 22l∗
)
,

where we used the fact that σ̂T φ̃ = 1, by definition of φ̃. Multiplying both sides by Er ′ (f̂
′

)Er (f̂ )(
1− ν(S∗)

36·2l
∗

) and

noticing that 1
(1−x) ≥ (1 + x) for any x ≥ 0, gives us the desired inequality in (55).

E.6 Proof of Lemma 6.11

Let us denote the solution (f t, st,νt) by (f , s,ν), the associated electrical flow f̂
t

by f̂ , and let

r be the resistances r t corresponding to this solution (cf. (14)). Also, let (f ′, s ′,ν ′), f̂
′
, and r ′,

denote these respective object after the interior-point method step is applied.
In this notation, our goal is to show that

Er ′(f̂
′
) ≥ (1 + CP θ̂

2 ln m̂)−1Er (f̂ ).
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To perform such lowerbounding of the energy decrease, we proceed similarly as we did in the
proof of Lemma 6.9. Namely, by Lemma 2.1, we know that

1

Er (f̂ )
=

∑

e=(u,v)∈Ê

(φ̃v − φ̃u)
2

re
,

where φ̃e := φ∗
e/Er (f̂ ) and σT φ̃ = 1. We want to show that if we keep the same vertex potentials

φ̃ and change the resistances to r ′ then still the corresponding sum – as in the equation above –
will not increase by too much (and thus provide a good upperbound on 1

Er ′ (f̂
′

)
).

More specifically, recall that by Theorem 5.5, for any arc e,

r′e
re

=
(1 + κte)

(1− δt)
,

and that ‖κt‖∞ ≤ 1
2 .

So, by Lemma 2.1, we have that

1

Er ′(f̂
′
)
≤

∑

e=(u,v)∈Ê

(φv − φu)
2

r′e
≤

∑

e=(u,v)∈Ê

(φ̃v − φ̃u)
2

r′e
≤

∑

e=(u,v)∈Ê

(1 + 2|κte|)(φ̃v − φ̃u)
2

re
,

where we use the fact that (1− x)−1 ≤ (1 + 2x) when x ≤ 1
2 and that by definition of φ̃, σT φ̃ = 1.

Furthermore, by (5) and definition of φ̃, we have

∑

e=(u,v)∈Ê

(1+2|κte|)
(φ̃v − φ̃u)

2

re
=

1

Er (f̂ )

(
1 + 2

∑

e

|κte|
(φ̃v − φ̃u)

2

re
Er (f̂ )

)
=

1

Er (f̂ )

(
1 + 2

∑

e

|κte|
re(f̂e)

2

Er (f̂ )

)
.

So, we again just need to show that

∑

e

|κte|
re(f̂e)

2

Er (f̂ )
≤ CP θ̂

2 ln m̂,

and the lemma will follow.
To establish this last claim, note that for any arc e, re(f̂e)2

Er (f̂ )
is just the fraction of energy of the

flow f̂ (with respect to resistances r) that is contributed by the arc e. So, by Fact 5.6 and Lemma
6.8, we have that

re(f̂e)
2

Er (f̂ )
≤ (1 + γ̂)νeµ̂(f , s,ν)ρ(f , f̂ )

2
e

Er (f̂ )
≤ 2CEνe

22k
, (57)

whenever e ∈ Sk(f̂ ) (cf. (17)), for some integer k.
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As a result, we can conclude that

∑

e

|κte|
re(f̂e)

2

Er (f̂ )
≤ 2

∑

l

∑

e∈Tl

re(f̂e)
2

2lEr (f̂ )
≤ 2


 ∑

l≤⌊log θ̂−2⌋

∑

e∈Tl

re(f̂e)
2

2lEr (f̂ )
+

∑

l≥⌈log θ̂−2⌉

∑

e∈Tl

2θ̂2
re(f̂e)

2

Er (f̂ )




≤ 2


 ∑

l≤⌊log θ̂−2⌋

∑

e∈Tl

νere(f̂e)
2

2lνeEr (f̂ )


+ 4θ̂2 ≤ 4CE


 ∑

l≤⌊log θ̂−2⌋

∑

k

∑

e∈Tl∩Sk(f̂ )

νe
2l22k


+ 4θ̂2

= 4CE


 ∑

l≤⌊log θ̂−2⌋

∑

k

ν(Tl ∩ Sk(f̂ ))

22k+l


+ 4θ̂2,

where Tl denotes Tκt

l (cf. (23)), (57), and the fact that

∑

l≥⌈log θ̂−2⌉

∑

e∈Tl

re(f̂e)
2

Er (f̂ )
≤
∑

e

re(f̂e)
2

Er (f̂ )
=
Er (f̂ )
Er (f̂ )

= 1.

Now, by 2θ̂-smoothness of f̂ (cf. Definition 6.1), we get that

ν(Tl ∩ Sk(f̂ )) ≤ ⌊θ̂323(k+1)⌋, (58)

for each l and k. Also, the fact that by Lemma 6.10 κt is O(1)-restricted implies that, for any fixed
l, ∑

k

ν(Tl ∩ Sk(f̂ )) = ν(Tl) ≤ O(23l).

Therefore, we can see that for any l, we have

∑

k

ν(Tl ∩ Sk(f̂ ))

22k+l
≤

k′∑

k=0

ν(Tl ∩ Sk(f̂ ))

22k+l
,

for some k′ = l+log θ̂−1+O(1). Here, we used the fact that by (58), ν(Tl∩Sk(f̂ )) = ∅, if k < 0 and
that the expression we are bounding will be maximized if the set Tl contains as many high-energy
arcs as possible. (Note that due to the constraint ν(Tl) = O(23l) and the bound (58), Tl can then
only contain all the arcs in sets Sk(f̂ ) for all k ≥ 0 up to k′.) So, we can conclude that

∞∑

k=0

ν(Tl ∩ Sk(f̂ ))

2k+l
≤

k′∑

k=0

θ̂323(k+1)

22k+l
= O(θ̂32

k′

2
−l) = O(θ̂2).

To finish our overall bound, we just need to note that by our above derivation, as well as, the
fact that Tl = ∅ if l ≤ 0 (as ‖κt‖∞ ≤ 1

2),

∑

e

|κte|
re(f̂e)

2

Er (f̂ )
≤ 4CE




⌊log θ̂−2⌋∑

l=1

∑

k

ν(Tl ∩ Sk(f̂ ))

22k+l


+4θ̂2 ≤ 4CE

(
O(log θ̂−2)O(θ̂2) + θ̂2

)
= CP θ̂

2 ln m̂,

as desired, once CP > 1 is chosen to be large enough.
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E.7 Proof of Lemma 6.12

We start by bounding the increase of measure due to freezing. Let us fix some progress step t and
some auxiliary arc e that is in Tl for some l ≤ log θ̂−2, where Tl denotes T κ̄t

l , as defined in (23).
(Note that only arcs in Tl with l ≤ log θ̂−2 can be frozen at step t.)

By Lemma 6.3 and definition of Tl, the increase of measure resulting from m̂2η|κ̄te|-stretching e
is at most

(1 + γ̂)m̂2η|κ̄te|νte ≤
2m̂2η

2l
.

However, by Lemma 6.10, we know that the vector κ̄t is CR-restricted. Therefore, the total contri-
bution to measure increase of all the frozen arcs in Tl is at most

2m̂2η

2l
CR2

3l ≤ O(m̂2η22l) = O(m̂6η),

where we used the fact that l ≤ log θ̂−2.
So, as there is at most log θ̂−2 different sets Tl that contribute in each progress step, and there is

at most θ̂−2 = m̂2η progress steps, the overall increase of measure due to freezing is at most Õ(m̂8η),
as required.

Note that once we establish below that all auxiliary have always f t
e that is within a factor of

CF of FA, the fact that FA is much smaller than FH will imply that all auxiliary arcs are always
light and thus never get stretch-boosted. So, the measure of auxiliary arc can increase only due to
freezing and we have already bounded this increase above.

Now, to prove the first part of the lemma, let us fix some auxiliary arc e. Initially, f t
e is equal

to FA. So, one just need to argue that the total multiplicative change of f t
e during the course of the

θ̂-improvement phase execution is bounded by a constant.
To this end, note that the flows on arcs change only during the progress steps. So, by Theorem

5.5, if we fix some auxiliary arc e, its overall flow changes by a factor of at most

tf∏

t=t0

(1 + |κ̄te|).

Therefore, the total change of flow of e during progress steps that have not resulted in freezing
it, can bounded by

tf∏

t=t0

(1 + |κ̄te|) ≤ (1 + θ̂2)θ̂
−2 ≤ exp(1),

that is constant, as desired.
So, now we just need to focus on bounding the change of flow on e resulting from the remaining

progress steps, i.e., the ones in which it was frozen. To this end, recall that whenever |κ̄te| ≥ θ̂−2 in
some step t then freezing m̂2η|κ̄te|-stretches e. By Lemma 6.3, the resulting increase of measure of
e is at least by a factor of (

1 + (1− γ̂)m̂2η|κ̄te|
)
,

while the change of the flow is by a factor of at most

(
1 + |κ̄te|

)
.

60



Therefore, as the former factor is significantly larger than the latter one, ‖κ̄t‖∞ ≤ 1
2 (by Theorem

5.5), and as from discussion above we know that once the measure of an arc becomes larger than
CRθ̂

−6 it will never be frozen again, the constant bound of the maximum multiplicative change of
the flow of an auxiliary arc follows. This concludes the proof of the lemma.

E.8 Proof of Lemma 6.13

By definition of µ̂(f t, st,νt) (cf. (10)), we have that

µ̂(f t, st,νt) =

∑
e ν

t
eµ̂

t
e∑

e ν
t
e

= µ̂(f t, st,νt)

(
1 +

∑
e ν

t
eλe∑

e ν
t
e

)
,

where λe :=
(µ̂t

e−µ̂(f t,st,νt))

µ̂(f t,st,νt)
, for each arc e.

On the other hand, we have that

µ̂(f ′, s ′,ν ′) =

∑
e∈S νteµ̂

t
e∑

e∈S νte
= µ̂(f t, st,νt)

(
1 +

∑
e∈S νteλe∑
e∈S νte

)
≤ λ̂µ̂(f t0 , st0 ,νt0)

(
1 +

∑
e∈S νte|λe|
νt(S)

)
,

(59)
where S is the set of non-auxiliary arcs of Ḡ.

Now, observe that by definition of γ̂-centrality (cf. (11)) we have

‖λ‖νt,2 =
‖µ̂t − µ̂(f t, st,νt)‖νt,2

µ̂(f t, st,νt)
≤ γ̂.

So, by applying Cauchy-Schwarz inequality we get that

∑
e∈S νte|λe|
νt(S)

≤
√∑

e∈S νteλ
2
e

νt(S)
=

√
‖λ‖2

νt,2

νt(S)
≤
√

γ̂2

νt(S)
≤ O(m̂− 1

2 ),

where we use the fact that νt(S) ≥ m̂.
By putting the above inequality and (59) together, the lemma follows.

E.9 Handling Approximate Nature of Electrical Flow Computations

Here, we discuss how one can adjust our algorithm developed in Sections 5–7 to nearly-linear time
electrical flow computations that are only approximate – as in Theorem 2.3 – instead of being exact.

To this end, let us first recall that we are using electrical flow computations in two places of our
algorithm. One is our improvement step described in Section 7. There, to make the descent step, we
compute the electrical flow f̂

t
associated with our solution and then, to make the centering step, we

compute the electrical flow f̃
t
. The other place where we use electrical flow computations is to check

the θ̂-smoothness condition (cf. Definition 6.1), that is to check which arcs are in the sets Sl(f̂
t
),

for l ≤ log θ̂−3. (Note that it is sufficient for us to know this classification only approximately, say
up to a constant factor.)

Observe that in all these three cases, we end up computing some electrical σ-flows that are
determined by some resistances r defined as re = se

fe
(cf. (14)), for each arc e, and where (f , s,ν) is

some γ-centered and σ̄′-feasible solution with γ ≤ 1
2 and both |σ|1 and |σ′|1 being O(m̂). Further-

more, we always have that 1
O(m̂) ≤ µ̂(f , s,ν) ≤ 1, all variables se are bounded by a constant (see
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Lemma 6.5), and the duality gap is O(m̂). (All the definitions that are relevant here can be found
in Section 5 and at the beginning of Section 6.)

This implies that, for any arc e, fe is always polynomially bounded in m̂. This is so since,
given our polynomially-bounded demands, any flow of value ω(m̂) would need to consist mostly of
flow-cycles, and such flow-cycles would contribute to duality gap (as they cannot exist in optimal
solution), which is always O(m̂).

This, in turn, together with γ-centrality (see Fact 5.3) and Invariant 5.2, allows us to conclude
that all the resistances

re =
se
fe

= (1± γ)
νeµ̂(f , s,ν)

f2
e

= (1± γ)
s2e

νeµ̂(f , s,ν)

are within a polynomial in m̂ factor of each other.
It is known (see, e.g., Theorem 2.3 in [CKM+11]) that once all the resistances are within polyno-

mial of each other, one can afford very good (and fast) approximation to all the major characteristics
of the electrical flows (including good approximation to the flow on each of the edges). In particular,

one is able to easily perform (approximate) classification of arcs into sets Sl(f̂
t
), for l ≤ log θ̂−3.

(Note that we want to classify here only arcs that contribute significant portion of the total energy
anyway.) Also, looking at our analysis of our improvement step in Section 7, one can see that the

most fundamental requirement there is that the flows f̂
t

and f̃
t

that we compute are indeed elec-
trical flow, i.e., there are voltages that induce them via (5). After all, this is what ensures that our
first-order updates to the centrality are canceling out. The fact that these flow might not have the
exact demands we requested is of lesser importance. The only effect of the latter will be that our
improvement steps will end up perturbing the σ̂-feasibility of our maintained solution. However,
given that we have polynomially bounded resistance ratio and logarithmic dependence on error, we
can always make these perturbation very small and just fix them at the end of each θ̂-improvement
steps via the fixing procedure that we already employ to fix the effects of the preconditioning – see
Section 6.2.

In the light of the above, we can conclude that indeed, having approximate, instead of exact,
electrical flow computations is acceptable for our algorithm, at least as long the dependence of the
running time on the error is only logarithmic (which is the case here).

F Appendix to Section 7

To prove the second part of the theorem, note first that indeed νt+1 = ν̄t = νt. Next, we can check
that the cumulative changes of the vectors f t and st are equal to

f t+1
e = (1− δt)

(
1 +

δtf̂ t
e

(1− δt)f t
e

)(
1−

ˆ̄µt
e − µ̂(f̄

t
, s̄t, ν̄t)

ˆ̄µt
e

)(
1 +

f̃ t
e

f̄ ′
e

)
f t
e

st+1
e =

(
1− δtf̂ t

e

(1− δt)f t
e

)(
1− f̃ t

e

f̄ ′
e

)
ste,

for each arc e in Ĝ.
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As a result, by (14), we have that for each arc e,

(1− δt)rt+1
e =

(1− δt)st+1
e

f t+1
e

=

(
1− δtf̂ t

e

(1−δt)f t
e

)(
1− f̃ t

e

f̄ ′

e

)
ste

(
1 + δtf̂ t

e

(1−δt)f t
e

)(
1− ˆ̄µt

e−µ̂(f̄
t
,s̄t,ν̄t)

ˆ̄µt
e

)(
1 + f̃ t

e

f̄ ′

e

)
f t
e

.

Recall that from the discussion above we already know that, for each arc e, | δtf̂ t
e

(1−δt)f t
e
| =

δtρ(f̂
t
,f t)e

(1−δt) ≤ 2
√
γ̂ ≤ 1

10 (cf. (41)), | ˆ̄µt
e−µ̂(f̄

t
,s̄t,ν̄t)

ˆ̄µt
e

| ≤ γ̂
(1−γ̂) ≤ 1

40 (cf. Fact 5.3), and | f̃ t
e

f̄ ′

e
| = ρ(f̃

t
, f̄

′
)e ≤

1
40 (cf. (50)). So, as rte =

ste
f t
e
, we have that

(1 + κte) =

(
1− δtf̂ t

e

(1−δt)f t
e

)(
1− f̃ t

e

f̄ ′

e

)

(
1 + δtf̂ t

e

(1−δt)f t
e

)(
1− ˆ̄µt

e−µ̂(f̄
t
,s̄t,ν̄t)

ˆ̄µt
e

)(
1 + f̃ t

e

f̄ ′

e

)

and by performing a simple Taylor expansion approximation we can obtain that

|κte| ≤ 2

(
δtρ(f̂

t
, f t)e

(1− δt)
+
| ˆ̄µt

e − µ̂(f̄
t
, s̄t, ν̄t)|

ˆ̄µt
e

+ ρ(f̃
t
, f̄

′
)e

)
≤ 4

(
δtρ(f̂

t
, f t)e + κ̂te

)
,

for each arc e, where κ̂te :=
| ˆ̄µt

e−µ̂(f̄
t
,s̄t,ν̄t)|

ˆ̄µt
e

+ ρ(f̃
t
, f̄

′
)e.

Clearly, this means, in particular, that ‖κte‖∞ ≤ 2( 2
10 + 1

40 + 1
40) =

1
2 , as desired. So, we just

need to show that ‖κ̂t‖νt,2 ≤ 1
16 too. To this end, observe that

‖κ̂t‖2νt,2 ≤ 2
∑

e

νte

(
(ˆ̄µt

e − µ̂(f̄
t
, s̄t, ν̄t))2

(ˆ̄µt
e)

2
+ ρ(f̃

t
, f̄

′
)2e

)

≤ 2

(
‖ˆ̄µt − µ̂(f̄

t
, s̄t, ν̄t)1‖2

ν̄t,2

(1− γ̂)2µ̂(f̄
t
, s̄t, ν̄t)2

+
1

µ̂(f̄
t
, s̄t, ν̄t)

∑

e

µ̂(f̄
t
, s̄t, ν̄t)ρ(f̃

t
, f̄

′
)2e

)

≤ 2

(
9γ̂2 +

Er̃ t(f̃
t
)

µ̂(f̄
t
, s̄t, ν̄t)

)
≤ 1

256
,

as desired, where we used a combination of Fact 5.3, the fact that (f̄ t
, s̄t, ν̄t) is 3γ̂-centered, as well

as, equations (46) and (49). This concludes the proof of the theorem.
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