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The sustainable governance and management of small-scale fisheries (SSF) is

challenging, largely due to their dynamic and complex nature. Agent-based modeling

(ABM) is a computational modeling approach that can account for the dynamism and

complexity in SSF by modeling entities as individual agents with different characteristics

and behavior, and simulate how their interactions can give rise to emergent phenomena,

such as over-fishing and social inequalities. The structurally realistic design of agent-

based models allow stakeholders, experts, and scientists across disciplines and sectors

to reconcile different knowledge bases, assumptions, and goals. ABMs can also be

designed using any combination of theory, quantitative data, or qualitative data. In

this publication we elaborate on the untapped potential of ABM to tackle governance

and management challenges in SSF, discuss the limitations of ABM, and review its

application in published SSF models. Our review shows that, although few models

exist to date, ABM has been used for diverse purposes, including as a research tool

for understanding cooperation and over-harvesting, and as a decision-support tool, or

participatory tool, in case-specific fisheries. Even though the development of ABMs is

often time- and resource intensive, it is the only dynamic modeling approach that can

represent entities of different types, their heterogeneity, actions, and interactions, thus

doing justice to the complex and dynamic nature of SSF which, if ignored can lead to

unintended policy outcomes and less sustainable SSF.

Keywords: interdisciplinary methods, interactions, data paucity, integrated systems, complex adaptive systems,

social–ecological systems
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INTRODUCTION

The sustainable governance and management of small-scale
fisheries (SSFs) has proven to be a tremendous challenge,
exacerbated by their complex nature (Mahon et al., 2008;
McClanahan et al., 2009; The World Bank, 2012; FAO, 2014).
At the heart of this complexity lies the high diversity of the
social, institutional, and ecological entities in SSF, the interactions
within and among these entities, and the range of outcomes
that arise from these interactions (Degnbol and McCay, 2007;
Ostrom, 2007; Smith and Basurto, 2019). The wider context that
SSF are embedded in adds to this complexity, e.g., international
trade relationships, fishers’ migration, technological change,
and increased tourism (Kittinger et al., 2013; Crona et al.,
2015; Eriksson et al., 2015). Apart from this complexity, the
frequent lack of fine resolution cultural, socio-economic, and
ecological data complicates the development, implementation,
and evaluation of policies and management strategies that are
sensitive to the local context (Jentoft, 2017; Johnson et al., 2017;
Agapito et al., 2019). The combination of complexity and lack
of information limits our understanding of how a policy will be
received, and often lie at the heart of unintended policy outcomes
(Degnbol and McCay, 2007; Lewison et al., 2019). Important
advances have been made by meta-studies highlighting common
factors that can be linked to sustainable outcomes, such as
leadership, social cohesion, and co-management (Gutierrez et al.,
2011; Ovando et al., 2013; Crona et al., 2015; Cinner et al., 2016).
However, less attention has been paid to why and how these
factors and processes occur in the first place, how they interact
to produce (un)intended results, or how they can be promoted
through policies.

Agent-based modeling (ABM) is a computational modeling
approach that may help embrace complexity and overcome
information paucity-related problems. Different from other
modeling approaches, ABM allows for the assessment of why and
how interactions between different actors and their environment
result in a particular outcome, while accounting for the impacts
of different external drivers (Bousquet and Le Page, 2004). In a
fisheries context, ABM allows exploration of how agents (e.g.,
fishers, traders, fleets) change their behavior in response to
changes in their environment. This is different from standard
fisheries models, which typically aim at predicting future states
of a fishery by modeling variables at the macro-level (e.g., fleet
behavior, fishing effort, market demand) as characteristic of
the whole fleet (Quinn, 2003; van Putten et al., 2012; Nielsen
et al., 2018). Even though standard fishery models are powerful,
they are often not adequately flexible or sensitive to the micro-
level complexities of SSF (Weber et al., 2019), nor able to fully
represent the social dimension in fisheries (Fulton et al., 2011;
van Putten et al., 2012; Burgess et al., 2018).

There are a number of advantages to using ABMs over
traditional fisheries models. They enable qualitative and
quantitative data to be combined to understand the underlying
processes of empirical phenomena (An et al., 2005; Edmonds,
2017; Magliocca et al., 2018). Similarly, ABMs can be interactive
and collaborative and have the potential to bring together
different stakeholder groups, thus reconciling different

knowledge bases, assumptions, and goals (Poteete et al.,
2010; Étienne, 2013; Taylor et al., 2016). Finally, they allow the
integration of diverse knowledge to ask questions about how
particular behaviors at the individual level could give rise to
patterns at larger scales and what interactions and processes
may have produced a given outcome or pattern (An et al., 2005;
Heckbert et al., 2010; Conte and Paolucci, 2014).

This paper aims to elaborate on the untapped potential of
ABM to tackle complex governance and management challenges
in SSFs. We first outline what ABM is and how the development
process of an agent-based model may take place. We present
a short review of SSF publications that use ABMs, detail
three challenges for SSF management and governance, and
use examples from our review to illustrate how ABMs have
been used to help address them. We end with a discussion on
the potential usefulness of ABM to address contemporary SSF
challenges and discuss what is needed to unlock this potential.
The intended audience of this paper are those interested in having
more tools available to address SSF management and governance
issues and questions that relate to complexity, those curious
about using ABM, and those who design, manage, or participate
in ABM projects.

AGENT-BASED MODELING IN A
NUTSHELL

What Is Agent-Based Modeling?
Agent-based modeling1 is a dynamic, computational approach
that represents the actions and interactions of agents and
their environment, and simulates how these result in emergent
patterns and relationships (Sterman, 2001). In ABMs it is possible
to represent agents of different types, their heterogeneity, and
the interactions between agents and their environment over
time (Box 1). These interactions can be conditional on agents’
own characteristics, the behavior of other agents, and the
state of their social–ecological environment. These micro-level
interactions result in macro-level (or system-level) outcomes
that, in turn, feedback to affect the interactions occurring at
the micro-level (Figure 1). This capacity to study micro–macro
dynamics and adaptive behavior of agents makes ABM better
able to represent complex adaptive system dynamics than other
(aggregate) modeling approaches (Levin et al., 2012).

Developing an Agent-Based Model
There are several phases in the development of ABMs: design,
implement/build, test, experiment and analyze, and communicate.
The exact shape these different development phases take is linked
to the purpose and the context of which the model is developed
within. The purpose of an ABM can range from basic theoretical
understanding of a phenomenon or problem to assessing a case
specific policy or management intervention (Edmonds, 2017).
Models can be developed as part of individual research projects

1Also sometimes referred to as individual-basedmodels (IBMs). Although they are
methodologically the same as ABMs, their label is predominantly used in ecology
where agents are often ecological entities, e.g., deer, fish, or trees (Grimm, 1999).
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BOX 1 | The main elements of agent-based models and their characteristics.

Agents

• Diversity of agent types: Agents can reflect different types of entities.

“Social” types such as a fisher, trader, household, company, and

market, or “ecological” types such as a species or population

of species.

• Heterogeneity within agent types: Within types, agents can have

different individual characteristics (e.g., gender, social class, skills, or

size classes of fish) and/or different preferences (e.g., fishers being

more or less risk averse).

• Agent behavior and intelligence: Agents can be reactive by perceiving

their environment and responding to change. Agents can also be

proactive by taking decisions to reach a goal. Agent behavior can be

modeled using behavioral theories such as rational, bounded rational,

habitual, or modeled based on empirical data (Smajgl and Barreteau,

2017). The “intelligence” of agents can range from simple decision

rules to the use of complex mental models (Lindkvist and Norberg,

2014; Schlüter et al., 2017).

• Agent interactions: Agent decisions, behaviors, and states can be

affected by interaction with other agents (e.g., human agents can learn,

share knowledge, sell and buy commodities, biological agents can

prey, feed, or compete for territory), or with their environment (e.g.,

making decisions based on their catches).

Environment

• Environment representation: Agents are situated in an environment that

can be spatially and/or socially structured (e.g., situated in a land- or

seascape, or in a social network).

• Ontological correspondence: The model world and its elements often

have clear links to their real-world counterpart, including agent type,

behavior, rules and norms, and space.

Dynamics and Interactions

• Time-dynamic: The model moves the simulated world through time by

letting the agents act/interact, often reflected in discrete steps (e.g.,

daily or annual time steps).

• Emergence: Overall (system-level) behaviors and patterns arising from

individual agents’ (micro-level) behavior and interactions is called

emergence. These patterns can in turn affect the agents (labeled

immergence, 2nd order emergence, or downward causation). An

agent-based model is by nature multi-level and represents how

different scales co-evolve (e.g., how a fishery system changes over

time as fishers and fish stocks adapt to each other over time).

Also see, e.g., Conte and Paolucci (2014); Gilbert and Troitzsch (2005), or

Railsback and Grimm (2011).

or multi-stakeholder collaboration processes, which will also
influence the purpose and characteristics of the models.

In the design phase the agents and processes relevant
to the problem are detailed, and a conceptual model of
the ABM is developed. This includes the context in which
agents are embedded, assumptions about agent behavior and
interactions. The level of complexity of, and focus on, the
social and ecological components are also decided upon. The
design phase builds on any combination of literature, expert
knowledge, and data (e.g., from interviews, surveys, network
analysis, laboratory experiments, or participatory processes), and
is often a collaborative process between modelers and/or other
stakeholders (e.g., researchers, fishery actors, decision makers).

In the implementation phase a programmer translates the
conceptual model into code. It often entails even further
specification of model details. The type of data and level of detail
depend on the focus and purpose of the project. A decision
management tool developed for a specific case requires a strong
base of case-specific data, whereas an exploration of general
phenomena can be based on representative approximations
of theoretically derived dynamics. In the testing phase the
built model is verified and validated according to the model’s
purpose, for instance verifying the model behavior and outputs
according to model specifications and validating them according
to empirical observations (Balci, 2010; David et al., 2017).

The experiment and analysis phase involves using the model
as a virtual laboratory to ask the model questions by developing
virtual experiments. Some settings are changed in the model
and outcomes are observed. As in the model design phase, the
experimentation and analysis is often performed in collaboration
with project members and/or other stakeholders. Stakeholders
and project members (indirectly or directly) use the model to
understand various issues, such as the implications of different
assumptions or policies, trade-offs, distributional patterns, and
emergent phenomena. The last phase, model communication,
should, besides regular science communication, be done through
publishing the model in an open source library accompanied
standardized model documentation, such as the ODD + D
(Overview, Design Concepts, and Details + Decision; Müller
et al., 2013) and/or TRACE (TRAnsparent and Comprehensive
Ecological modeling documentation; Grimm et al., 2014). For
further readings onmodel development see Gilbert and Troitzsch
(2005) or Railsback and Grimm (2011).

HOW HAS AGENT-BASED MODELING
ADDRESSED SMALL-SCALE FISHERIES
CHALLENGES THUS FAR?

Review of Agent-Based Models in
Small-Scale Fisheries
We reviewed the literature on the application of ABMs in SSF.
A keyword search of Web of Science [(“small-scale fisher∗”)
OR (“artisanal fisher∗”) OR (“subsistence fisher∗) OR (“coastal
fisher∗”)] AND (Agent-based ORmulti-agent OR ABM) resulted
in six relevant publications based on the criteria that the models
should include both social and ecological components, and be
linked to governance, management, or policy issues. Through
an extended search for papers on fish trade and references
within the first set of papers, six additional publications were
found. For further details on the review procedure, see the
Supplementary Material.

The published models were used to understand a number
of different phenomena, such as increased harvests emerging
from cooperative forms of management (Gutierrez et al., 2017);
factors facilitating the emergence of self-governance (Wilson
et al., 2007); increased harvests in relation to the placement of
marine protected areas (Rudd et al., 2003); the emergence of
either fishing cooperatives or patron–client relationships as the
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FIGURE 1 | Conceptual description of an ABM. In a co-evolving process, actions at the micro-level change the aggregated variables at the macro-level, which in

turn influences actions and interactions at the micro-level. This co-evolutionary process continues until the end of the simulation. (1) Agents perceive their

environment, including other agents, and act according to their goal. (2) The micro-level dynamics influences the macro-level, possibly influenced by exogenous

drivers. (3) The state of the macro-level variables in turn influences the behavior of the agents at the micro-level. (4) During and after the simulation distributional

patterns within micro-level variables may be observed and measured, and emergent properties at the macro-level.

dominant form of self-governance (Lindkvist et al., 2017); the
emergence of balanced harvesting (Plank et al., 2017); long-term
effects of tourism and urbanization on coral reef health and
fisheries (Perez et al., 2009; Melbourne-Thomas et al., 2011);
and causes of overfishing and environmental (reef) degradation
(Bousquet et al., 1993, 1994a,b; Worrapimphong et al., 2010;
Forrester et al., 2014). In all papers, a single fishery or fishing
community was modeled, with a notable exception of Perez et al.
(2009) and Melbourne-Thomas et al. (2011) who move beyond a
single community to study four geographical areas of economic
development that depended on one shared coral reef and several
shared fisheries.

We identified three different purposes of the ABMs uncovered
in our review: (1) to understand how some SSF phenomena
emerge, and to explain the mechanisms (i.e., factors and
processes) that were effective (Wilson et al., 2007; Lindkvist et al.,
2017; Plank et al., 2017); (2) as policy assessment tools to identify
and explain the mechanisms behind why some policy, or way
of organizing the fishery, may be better than another (Rudd
et al., 2003; Melbourne-Thomas et al., 2011; Gutierrez et al.,
2017); and (3) as a participatory tool to co-produce knowledge
about a fishery with stakeholders, as pioneered by the Companion
Modeling team2 (Bousquet et al., 1993, 1994a,b; Worrapimphong
et al., 2010). Perez et al. (2009) and Forrester et al. (2014) also

2https://www.commod.org

developed their ABM through participatory approaches but did
not use role playing games.

The flexibility of ABM creates a diversity of possible ABM
applications on how to solve some of themost pressing challenges
of studying and managing SSF. Figure 2 draws out some of
the key diversities along four axes and situates the reviewed
publications. We find that half of the studies aimed to understand
a phenomenon or problem and half to evaluating a policy
or management plan (Figure 2A). Models more often had an
ecological, or social–ecological focus than a purely social focus
(Figure 2B). The models tended to build on detailed empirical
data rather than on theories (Figure 2C). Finally, models more
commonly had a participatory focus than a purely academic
focus (Figure 2D). Specific features of the models’ agents, agent
behaviors and interactions, linkages to globalized drivers, and
how the models deal with data input and output, are further
described in the Supplementary Material. Next, we draw on the
strengths of ABM and its applicability to SSF challenges.

Agent-Based Modeling for Addressing
Small-Scale Fisheries Challenges
Small-scale fisheries management is exposed to many
challenges that are rooted in their complexity and data scarcity
characteristics, as evidenced by the models from our review.
We outline three challenges for SSF management that ABM
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FIGURE 2 | Key differences in ABM purpose and development issues for different SSF models. The colored labels represent the SSF models, which are subjectively

placed along four gradients based on the results from the review. The gradients represent: (A) a stronger model purpose of understanding (participatory or not)

versus assessment; (B) model design has a more social focus versus ecological focus (midpoint indicates equal social and ecological focus); (C) the model is more

strongly based on theories versus data; and (D) the development process of the model involves mostly researchers versus a strong participatory focus. B, Bousquet

et al. (1993; 1994a; 1994b); F, Forrester et al. (2014); G, Gutierrez et al. (2017); L, Lindkvist et al. (2017); MT, Melbourne-Thomas et al. (2011); Pl, Plank et al. (2017);

Pe, Perez et al. (2009); R, Rudd et al. (2003); Wi, Wilson et al. (2007); and Wo, Worrapimphong et al. (2010).

could help to address: (1) improve the way collective action and
heterogeneity in human behavior is incorporated in research
and management; (2) develop policies that are sensitive to local
contexts while also accounting for regional and global contexts;
(3) tackle data paucity and uncertainty. We reflect on how ABM
could contribute to solving these three challenges and illustrate
this with the SSF models from our review.

Challenge 1: Collective Action and Human Behavior

A key challenge for the sustainable governance and management
of SSF revolves around collective action, cooperation, and human
behavior (Townsend et al., 2008; Gutierrez et al., 2011; Basurto
et al., 2013; Ovando et al., 2013). Locally this can occur through
self-governance and co-management initiatives, but at broader
scales by linking to other organizations at regional, national, and
global levels, as well as by connecting to neighboring fishing
communities to gain support for locally managed resources
(Marín et al., 2012; Finkbeiner and Basurto, 2015; Oliver et al.,
2015). Such initiatives require social cohesion and trust between
actors (Ostrom, 1990; Gutierrez et al., 2011; Basurto et al., 2013;
Ovando et al., 2013; Kosamu, 2015; Oliver et al., 2015).

Agent-based modeling can represent collective action by: (1)
simulating how self-organization can emerge; (2) simulating
how trust or loyalty increases or decreases within a group;
(3) simulating how fishers harvest a resource based on their
self-organization and the levels of trust; (4) accounting for the
spatial distribution of resources and fishers movements; and (5)
modeling interactions such as information exchange between
fishing organizations.

The model by Lindkvist et al. (2017) was developed to
investigate under which conditions cooperative and non-
cooperative forms of self-governance may establish and persist
in a hypothetical fishing community in Northwest Mexico. Their
ABM was based on in-depth fieldwork, surveys with fishers,
interviews with fish buyers, and a fish buyers’ logbook, to
capture key hypotheses of fishers’ day-to-day fishing and trading.
Model results indicated that high diversity in fishers’ reliability,

and low initial trust between members of the cooperative,
makes the establishment of cooperatives difficult. Their results
also showed that once cooperatives establish, they cope better
with seasonal variability in fish resources and provide long-
term security for fishers compared to non-cooperative forms of
self-governance.

Wilson et al. (2007) designed an ABM to understand the
emergence of self-governance in the lobster gangs of Maine,
United States. Results show that in the Maine lobster fishery
biological and technological circumstances combined with
individual self-interest created conditions favorable for collective
action. The model describes the way collective action emerges
from the adaptive behavior of competing fishers. The model
simulates the dynamic adaptation (learning) of fishers interacting
in a complex, changing (social) environment, and provides an
example of analyzing micro-level processes that emerged into
social–ecological fishery patterns at the macro-level.

Gutierrez et al. (2017) developed a spatially explicit ABM for
the sea urchin fishery off San Diego, CA, United States. They
assessed the benefits of cooperative harvesting by incorporating
spatial and temporal variation in fishery yields. They found
that the marketability of sea urchin roe depended on gonad
(reproductive organs) yield and quality, which in turn depended
on the spatial and temporal conditions of associated kelp beds.
However, competition among divers within a non-cooperative
system created a “race for shellfish” preventing higher gonad
yield per unit of effort. Model results showed that, for the most
cooperative scenario where information sharing among divers
was greatest and harvest was coordinated, sea urchin catches
were at least 10% higher and gonad yield 35% higher than in
the non-cooperative scenario. As such, information sharing and
organized harvesting typical of well-functioning cooperatives led
to the more sustainable use of local resources.

Plank et al. (2017) investigated the consequences of allowing
a fixed number of fishers in a SSF to choose the size of the
fish they aim to catch. They examine this from a game-theoretic
perspective and test their predictions using an agent-based model
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for fishers’ decisions coupled with a size-spectrum model for
the dynamics of a single fish species. They show that small-
scale gillnet fishers, operating without size-based regulations,
end up catching small and large fish in proportion to their
productivity, in other words balanced harvesting. This is
significant because it shows that, far from being unachievable,
balanced harvesting can emerge without external intervention
under some circumstances. Controls are needed to prevent
overfishing, butminimum size regulations alone are not sufficient
to achieve this. Instead, size regulations can reduce sustainable
yields by confining fishing to a relatively unproductive part of
the size-spectrum.

The reviewed papers thus have been used to study the
emergence of collective action and the establishment and
persistence of cooperative groups by Wilson et al. (2007) and
Lindkvist et al. (2017), respectively; Gutierrez et al. (2017)
demonstrated the benefits of cooperative harvesting strategies
while Plank et al. (2017) model self-interested non-cooperative
agents that obtain the goal of balanced harvesting. All models
from these publications were based on individual fishers and
their decision-making. However, none of the models studied
the different levels and scales that SSF are a part of, such as
the implications of connecting horizontally across communities
or connecting vertically up to other organizations at regional,
national, or international level.

Challenge 2: Developing Policies That Are Sensitive

to Local Contexts While Accounting for Regional and

Global Dynamics

Fisheries policies come in different forms, each with different
benefits and constraints, and it is unlikely there is a one-size fits-
all solution (Degnbol and McCay, 2007; Ostrom, 2007; Berkes,
2012; Chaigneau and Brown, 2016). On the one hand, an effective
policy has to account for the local context of a fishing community
and for the heterogeneity in fisher characteristics, perceptions,
and behavior (Mwaipopo et al., 2010; Bennett and Dearden,
2014; Gelcich and O’Keeffe, 2016; Singh et al., 2018; Wosu,
2019). At the same time, SSF are embedded within, and interact
with, larger scales such as regional and national institutions,
and global markets (Crona et al., 2015; Pace and Gephart,
2017; Bennett and Basurto, 2018). An effective policy should
address a specific governance problem while considering the
complexity and interactions within the broader fishery system.
For instance, to obtain sustainable social–ecological outcomes
across geographical scales for one fishery, a policy needs to
account for any interdependencies with other fisheries, both
in terms of potential food web interactions, and in terms of
displacements of fishing effort when fishers enter or exit a fishery
area (Gaines et al., 2010; Berkes, 2012).

Agent-based models can be used to represent and thus study
the role of context and scales over time because they can
reflect heterogeneous agents; history, culture, and individual
differences between fishers (such as fishers’ perceptions and
typical behaviors). ABMs are, however, also able to represent
interactions beyond a local SSF with other distal interactions
such as global market dynamics or climate change. This may be

helpful in the process of integrating knowledge from different
stakeholders, experts, and researchers (Weber et al., 2019).

Several ABMs we reviewed were aimed at assisting in the
design process of policy development and a governance plan
while accounting for the cross-scale and embedded nature of
the socio-ecological system (Bousquet et al., 1993, 1994a,b; Perez
et al., 2009; Worrapimphong et al., 2010; Melbourne-Thomas
et al., 2011; Forrester et al., 2014). The model developed by Perez
et al. (2009) is an exemplary ABM that combines knowledge
from different stakeholders and researchers. The focus of their
study was on the interactions between tourism, urbanization,
fishing, and coral reef health in four fishing communities
that shared the same reefs and fisheries in the Quintana Roo
region, Mexico. Model results revealed an interesting causality
of increasing tourism and urbanization leading to degraded
reefs, concomitantly causing a decrease in tourism, which
in turn forced tourism workers to turn to (illegal) fishing,
causing a sequential collapse of three fisheries. The model was
able to re-produce time series and projected future scenarios.
However, the authors claimed that the strength of the model
lay in its capacity to integrate social, economic, and ecological
components into a coherent framework that can inform multi-
level governance issues and public policy. Melbourne-Thomas
et al. (2011) extended Perez et al.’s (2009) model by coupling
it with a biophysical model of the Quintana Roo region.
A preliminary evaluation of the coupled model system gave
reasonable predictions for fisheries and ecological variables and
indicated that the model could be used to examine scenarios for
future social–ecological change in Quintana Roo.

The study in the upper gulf of Thailand by Worrapimphong
et al. (2010) addressed the relationships between increasing
tourism in the coastal wetlands and the increasing pressure on
locally important razor clam populations. The purpose of this
modeling study was to develop a management plan and to engage
the different stakeholders in collective discussions. This was
achieved through combining an ABM with role-playing games.
The games promoted alternative clam management plans, such
as establishment and rotation of zones closed for harvesting,
and quota systems. These plans were more deeply investigated
with the ABM to simulate different scenarios (reserve, quota,
and combinations of reserve and quota), which enabled better-
informed discussions between different stakeholders. As a result
of the work, stakeholders were able to present a sustainable
management plan to regional policy-makers.

Forrester et al. (2014) depart from the assumption that
complex social–ecological systems are not amenable to simple
mathematical modeling and posit that solving sustainability
challenges calls for an integrated approach. Based on empirical
knowledge of local stakeholders and experts, they mapped
conceptions of beach management units in Kenya. Two models
were developed: one local-level ABM; and one overarching
multiple-entity conceptual model of the system which provided
a general landscape within which the structurally realistic ABM
could exist and be understood. The two representations together
contributed to understanding the links between the local system
and other levels of decision-making. The authors stated that this
model combination helped develop easily accessible tools for
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stakeholders, by representing the system both in a bottom-up
the (the ABM) and top-down (the conceptual model) manner
and by capturing and conceptualizing ecosystem dynamics and
processes, and the broader system it is embedded within.

These models represent the interdisciplinary, multi-sector,
and multi-scale approach called for by many SSF researchers
(McClanahan et al., 2009; Kittinger et al., 2013; Bennett and
Dearden, 2014; Crona et al., 2015; Purcell and Pomeroy, 2015;
Chaigneau and Brown, 2016; Gelcich and O’Keeffe, 2016; Basurto
et al., 2017). Whether these modeling projects have been
successful in improving governance and management in SSFs is
yet to be determined.

Challenge 3: Dealing With Data Paucity and

Uncertainty

In most SSFs data on catches, stock status and environmental,
economic, and social attributes are often unavailable (Kalikoski
and Franz, 2014; Jentoft and Chuenpagdee, 2015; Johnson et al.,
2017; Giron-Nava et al., 2018; Agapito et al., 2019). Furthermore,
the data that are available are often misreported or patchy
(The World Bank, 2012; Cisneros-Montemayor et al., 2013).
This generates a gap in the possibilities to understand how
specific policies and changes in fisher behavior might affect
a fishery from an ecological, social, or economic perspective
(Fulton et al., 2011). In light of this information paucity it
is difficult to know what empirical data are most useful to
inform management (FAO, 2017; Jentoft, 2017). This challenge
becomes even larger given the need to tailor policies to the
local context and to account for external drivers. As such,
information on other system variables such as how fishers
respond to particular policies or incentives, how fishers are
organized, levels of trust in a fishery and market dynamics may
be more important for the design and implementation of policies
(Basurto et al., 2013; Crona et al., 2015; Finkbeiner et al., 2017;
Battista et al., 2018).

The challenge of data paucity in design and analysis concerns
every modeling approach including ABM. Data enable models
to be grounded in reality, but post hoc data also provide a
means for testing the link between model results and the real
world. A lack or absence of data can in some cases prevent
model development in the first place. However, even in data-
poor situations ABM can make use of qualitative data from
experts or anthropological studies (Ghorbani et al., 2015), thus
contributing toward understanding complex issues by testing
and comparing different theories, explanations, and important
variables in a “virtual” model-based laboratory. ABM can also
inform priorities for future data collection (Worrapimphong
et al., 2010; Cooper and Jarre, 2017; Lindkvist et al., 2017;
Burgess et al., 2018). For example, testing how sustainable
resource use, profits, and satisfaction are affected by different
assumptions for fishers’ behavior can give insight into priorities
for data collection (Burgess et al., 2018). In the case of the
aforementioned razor clam fishery in the gulf of Thailand
(Worrapimphong et al., 2010) there was a lack of data for
the population parameters (natural mortality rate, carrying
capacity, and number of recruits per female), which led to
uncertainties in the outcomes of different management options.

This knowledge gap indicated which parameters needed to be
further studied, but also that some management options, such
as quota schemes, could better account for this uncertainty and
still result in sustainable harvests. Similarly, in the absence of
location choice data, simulating fisher movements as a response
to different drivers such as price, increased catches, or crowding
could help to understand the dynamics of fisheries exploitation
(e.g., Carpenter and Brock, 2004; Soulié and Thébaud, 2006;
Barbier and Watson, 2016).

The complex adaptive systems’ nature of SSFs means that
incorporating additional data cannot always reduce uncertainty.
While more data will certainly enhance understanding, key
structural uncertainties about processes and interactions in SSF
and fisher responses to different policies are likely to remain.
Policy-making thus needs tomanage this uncertainty through the
design of adaptive and reflexive processes (Dunn et al., 2016).
ABM can help assess the possible range of expected outcomes,
given uncertainty about human behavior (Fulton et al., 2011),
and to test how robust management strategies are based on key
uncertainties (van Putten et al., 2012).

OPPORTUNITIES AND LIMITATIONS

Agent-based modeling is a tool that can deal with the
complexity of SSFs by assessing consequences of interactions and
assumptions on how these interactions occur. Ironically this also
creates complex challenges for the model development process by
requiring decisions on what parameters and processes to include
in the model and which to leave out. In the analysis phase,
questions may arise around what exact variables are driving the
results, and more general questions such as: “will the model
output change if we increase the number of agents?,” or “if we
simulate a longer time period will results change?.” Consequently,
time, resources, and active collaboration between those involved
in designing, developing, and interpreting an ABM are key to
successful outcomes of the modeling project.

The complexity, and the extent to which SSF are embedded
into a larger-scale contexts, mean that a thorough investigation
of policy solutions to a place-based problem will not be simple.
The cultural, socio-economic, and ecological characteristics of
a local SSF fishery or fishing community, and their wider
context must be considered. While an agent-based model can
be developed to incorporate these dimensions, the type of
nuanced understanding that an ABM can provide may not
be the policy-maker’s priority because they may need concrete
results with minimal uncertainty, and solutions that fit within
the current policy schemes (Taylor et al., 2016; Allison et al.,
2018). In these situations, models can instead be used to
test interdependencies, investigate trade-offs among policies,
while simultaneously including important heterogeneity among
fisheries actors.

Like any modeling approach, ABM suffers from
misconceptions and critique, such as being costly or opaque.
However, in most cases there are two sides of the argument.
ABM can be costly in terms of time and expertise, the cost
may be higher if the purpose is predict outcomes of a policy

Frontiers in Marine Science | www.frontiersin.org 7 January 2020 | Volume 6 | Article 733

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Lindkvist et al. Agent-Based Modeling for Small-Scale Fisheries

intervention in a case-specific situation, but can be lower if the
purpose is to understand a general phenomenon. Cost can also
be higher if prior models do not exist, or if models need to be
built from scratch for different scales or situations. This cost
could be reduced if based on existing models, however, as our
review showed, few models exist thus it may be difficult to find a
model to build from. Although The Network for Computational
Modeling in Social and Ecological Sciences3 provides a library
of ABMs of social–ecological systems that are open source
and reusable, few fisheries models have been published there.
At the code hosting platform GitHub4 the agent-based model
POSEIDON is freely available for fisheries research (Bailey et al.,
2019), other examples include the DISPLACE model for spatial
fishing planning and effort displacement (Bastardie et al., 2013),
and more case-specific models (e.g., Yu et al., 2009; Cenek
and Franklin, 2017). However, using such extant models still
requires coding and there is no standard software or module
library for fisheries ABMs to date. In the future, the availability
of comprehensive libraries of (re)useable models could help to
make ABM available to a broader user community in SSF.

Rigorous conventions for documenting ABMs (e.g., ODD by
Grimm et al., 2010; and ODD + D by Müller et al., 2013)
have been adopted by large parts of the ABM community
which helps increase the accessibility and transparency of
ABMs thus facilitating sharing and adaptation of parts of
existing models. Ultimately, further experimentation with ABM
in SSF, if supported by rigorous documentation and open-
source sharing according to standardized protocols, may coalesce
into an accessible resource that would facilitate adaptation
and adoption of existing code, or even a common ABM
framework for addressing typical, regularly encountered SSF
questions. Inspiration could be taken from other modeling
frameworks such as Ecopath with Ecosim (Villasante et al., 2016),
where a common software, model, data sharing framework,
and active community of practice and training networks have
facilitated applications in diverse fisheries contexts around
the world. ABM could also be integrated with such fisheries
modeling approaches to move toward integrating more social
dynamics and agent-based features into ecologically based
models, which could also assist in reducing the cost and
broadening the use of ABMs.

In social–ecological systems research ABMs are becoming
more common and are generally regarded as a useful scientific
tool, but they still suffer from critique for inconsistent
documentation and testing, as well as lack of transparency
in communicating results (Schulze et al., 2017). Skepticism
toward ABM may partly be driven by academic expertise
and to a certain extent territorialism, but there is rightful
criticism that ABM requires better documentation, testing,
and communication to support understanding (Waldherr and
Wijermans, 2013). ABMs will only be useful for improving
SSF governance and management if they are developed
following good modeling practice. This entails a better
understanding among fisheries scientists and managers

3https://www.comses.net/
4https://github.com/

about why, when, and how to use ABM in SSF (see Box 2

for a summary).

BOX 2 | Summary points.

ABMs can improve research, management, and governance of SSF in a

globalized context while taking account of the complex nature of individual

entities and data paucity because:

• One can model interactions, processes, and mechanisms at the

micro-level to understand and explain emergent outcomes at the

macro-level.

• They do not always rely on quantitative data. Depending on the

purpose of the model it may be desirable to substantiate model design

and validate model outcomes with expert knowledge and qualitative

assessments and/or theories.

• It is possible to integrate different types of data, knowledge, and

theories in a realistic setting which makes it easier to integrate

knowledge from stakeholders, experts, and scientists across sectors

and disciplines.

• The development phase can reveal which agents and interactions are

important to understand the dynamics of a system. They can also point

to which variables and processes require further investigation,

especially with regards to individual decision-making, and give rise to

new questions that can be explored empirically or through modeling.

• They allow the exploration of how changes can affect actors or the

environment. For example, changes in micro-level distributional

patterns such as income or catch, or in macro-level variables such as

the biomass of fish, or biophysical conditions.

What is ABM less useful for?

• Problems that are simple enough that an ABM becomes redundant.

• Phenomena where the agents, their decisions, and situations do not

differ, i.e., heterogeneity is not key in emergent behavior, in which case

computationally cheaper models should be considered.

What are points of caution?

• Depending on the purpose of the study, the model development

process may be too time consuming and costly.

• Balancing the complexity of building the model with the interpretability

of the outcomes is difficult.

• Extensive documentation of agents, interactions and mechanisms

through relevant protocols need to be utilized in order to avoid making

the model opaque to others.

NB. Some of the summary points raised here may also apply to other

modeling approaches.

FRONTIERS FOR AGENT-BASED
MODELING IN SMALL-SCALE
FISHERIES

Models are models and can never replace empirical
studies, because the questions that models can answer are
often different from those that empirical studies address
(Levin et al., 2012; Schlüter et al., 2012). However, often
multi-method approaches that combine modeling and
empirical work can reveal insights and understanding
that cannot be gained by a single method. With this
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complementarity in mind, we elaborate on the empirically
defined research questions and areas of research where
the features of ABMs could be pertinent in the context
of SSF.

All standard fisheries models recognize the importance
of aggregate fishing effort, but ABMs offer the potential to
understand the micro-level processes that generate this effort.
An understanding of total fishing effort as an emergent
outcome from individual fishers’ characteristics and decisions
offers more realistic policy levers to influence effort; not by
unenforceable attempts to command and control fishing effort,
but by influencing the context and outcome of individual
interactions that ultimately determine the total effort. An ABM
focuses on decision-making processes of fisheries actors and their
embeddedness in social and ecological contexts. Therefore, new
empirical questions related to the behavior of fishers can emerge
in the modeling development phase (Cooper and Jarre, 2017;
Lindkvist et al., 2017; Schlüter et al., 2019). In a similar way, ABM
is also well suited to explore how individuals may react differently
to new interventions (Epstein, 2008). An illustrative example
of how this can be done is suggested by Battista et al. (2018),
who present a step-wise approach of how new interventions
at the individual level can be introduced in a fishery, but do
not recognize the utility of ABM in their approach. In this
case, ABM offers an additional step of virtual experimentation,
before the proposed step of experimentally testing interventions
in laboratory or field experiments. ABM thus can help assess,
understand, and explain SSF outcomes in a way that accounts
for heterogeneity in behavior, the characteristics of fisheries
actors, and the diversity of the ecosystem, to do justice to the
complex nature of SSF. This is something that no other modeling
approach can do.

Small-scale fisheries are inherently multi-level with important
interactions across geographic or organizational scales such as
trade or climate change impacts. ABMs are a suitable method
for the study of cross-scale interactions, which are difficult to
represent using simpler mathematical models. However, none
of the models we reviewed addressed interactions beyond the
local or regional level such as global market dynamics. The
potential for ABM to explore interactions with regional or
global processes thus remains an important frontier for future
exploration. In fact, none of the ABMs include trade dynamics at
any scale yet it is one of the most challenging issues faced by SSF
(Béné et al., 2010; Crona et al., 2015; Pace and Gephart, 2017).
Classical ABMs on trade by Epstein and Axtell (1996), Kirman
and Vriend (2001), and Tesfatsion (1997) provide insights into
heterogeneous trading actors and factors that mediate trade
relationships such as loyalty, that influence trade patterns and
price dynamics. A possible frontier is to couple or reuse parts of
these trade models in fisheries contexts to help understand how
trade at one or multiple scales affects SSF.

Another topical domain where ABM has a large potential is
the mobility and migration of fishers, which is a well recognized
adaptation strategy in SSF around the world (FAO, 2017).
Movements of fishers can be connected to international markets
through teleconnections, which is a known driver of sequential
overexploitation in some fisheries (Berkes et al., 2006; Eriksson

et al., 2015). However, the conditions that trigger or constrain
fishers’ movements has to date been neglected (Swartz et al.,
2010; Anderson et al., 2011). ABMs are a viable choice to analyze
exploitation patterns and the diverse mechanisms driving these
from the bottom-up, even in situations in which there is a lack of
quantitative data on the movement patterns of fishers. Instead,
expert knowledge or data about what drives fishers to move
can be modeled to understand the emergent movement patterns
of individual fishers. Here, the ontological realism of ABMs is
an advantage because it is easier to relate characteristics and
behaviors of agents to real world experiences than determining
a mathematical functional form of a variable relationship.
Carpenter and Brock (2004) have studied fisher mobility between
lakes, while Soulié and Thébaud (2006) modeled mobility in a
theoretical, highly regulated fishery; however, our review has not
identified any studies on mobility or migration in coastal SSF.

Finally, the challenge of dealing with data scarcity and
uncertainty opens up a novel pathway for using ABMs in SSF.
As Cooper and Jarre (2017) highlight, ABMs may provide novel
grounds for identifying and understanding what social and
economic data are useful to quantitatively collect over time or to
further investigate qualitatively.

We conclude that the ability of ABM’s to address SSF as
complex adaptive systems, taking account of diversity and
heterogeneity of actors and interactions within and across
scales, can improve our understanding of SSF dynamics, and
inform policy and management actions. ABMs can serve as
boundary objects and virtual laboratories to integrate different
knowledge sources or problem perceptions and test assumptions
and possible explanations of phenomena in a collaborative
or participatory process, with the aim of exploring their
consequences for system outcomes or unraveling complex
underlying causes. The need to better understand complex
causation and causal mechanisms in the governance of social–
ecological systems has recently been highlighted (Biesbroek
et al., 2017; Ferraro et al., 2019; Schlüter et al., 2019).
While policy assessment in virtual ABM laboratories can help
assess the uncertainty associated with a policy or management
intervention, using ABM to scrutinize possible explanations of
SSF phenomena can help build understanding and theory for
enhanced governance (Schlüter et al., 2019). In summary, ABM is
a promising approach to develop complexity-based analyses and
understand the governance of the dynamics of SSF, particularly
when applied in larger processes involving multiple stakeholders.
While such processes can be time intensive, they can do justice
to the complex and dynamic nature of SSF, which, if ignored can
lead to unintended policy outcomes.
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