
Navigating Heterogeneous Processors with Market Mechanisms

Marisabel Guevara
Duke University

mg@cs.duke.edu

Benjamin Lubin
Boston University
blubin@bu.edu

Benjamin C. Lee
Duke University

benjamin.c.lee@duke.edu

Abstract

Specialization of datacenter resources brings performance and

energy improvements in response to the growing scale and

diversity of cloud applications. Yet heterogeneous hardware

adds complexity and volatility to latency-sensitive applications.

A resource allocation mechanism that leverages architectural

principles can overcome both of these obstacles.

We integrate research in heterogeneous architectures with

recent advances in multi-agent systems. Embedding architec-

tural insight into proxies that bid on behalf of applications,

a market effectively allocates hardware to applications with

diverse preferences and valuations. Exploring a space of het-

erogeneous datacenter configurations, which mix server-class

Xeon and mobile-class Atom processors, we find an optimal

heterogeneous balance that improves both welfare and energy-

efficiency. We further design and evaluate twelve design points

along the Xeon-to-Atom spectrum, and find that a mix of three

processor architectures achieves a 12× reduction in response

time violations relative to equal-power homogeneous systems.

1. Introduction

As datacenters proliferate and access to them is democratized,

increasingly diverse cloud applications will demand compu-

tation. To accommodate the rise in demand, traditional data-

center servers have relied on Moore’s Law. Yet this strategy is

insufficient as Dennard scaling ends and constrains the power

efficiency of processor servers [28].

Instead of relying on process technology for datacenter

efficiency, we turn to new system architectures and microar-

chitectures. Recent research and industry trends highlight

opportunities for building servers with lightweight proces-

sors that were originally designed for mobile and embedded

platforms [3, 59]. These small cores are several times more

energy-efficient than high performance processors.

However, lightweight cores have limited applicability.

While memory- or IO-intensive applications benefit from small

core efficiency, the era of big data is introducing more so-

phisticated computation into datacenters. Tasks may launch

complex analytical or machine learning algorithms with strict

targets for service quality [32]. To guarantee service, high-

performance cores must continue to play a role. To this end,

heterogeneous datacenter servers can balance big core perfor-

mance and small core efficiency.

Not only must we design heterogeneous hardware, we must

deploy it in large, dynamic systems. Doing so successfully re-

quires mitigating performance risk and uncertainty as diverse

applications contend for heterogeneous hardware. Addition-

ally, datacenters must shield increasingly non-expert users

from the complexity of underlying heterogeneity.

To address these challenges, we coordinate the design of het-

erogeneous architectures with recent advances in multi-agent

systems. We present a market where diverse applications bid

for heterogeneous architectures. On behalf of users, a proxy

profiles hardware-software interactions, infers preferences for

heterogeneous hardware, and translates preferences into bids.

Both early research [61] and more recent markets [44, 10]

assume fungible processor cycles, an assumption that no

longer holds given processor heterogeneity. Ours is the first

to incorporate microarchitectural preferences of the applica-

tions into an economic mechanism for hardware allocation. In

particular, we make the following contributions:

• Processor Heterogeneity in the Datacenter (§2). We

identify a new design space where heterogeneous proces-

sor architectures allow a datacenter to combine the benefits

of specialization with the performance guarantees of tradi-

tional high-performance servers.

• Economic Mechanisms and Optimization (§3). We de-

velop a market that manages resources and navigates

performance-efficiency trade-offs due to microarchitectural

heterogeneity. Inferring application preferences for hard-

ware, proxies compose bids on behalf of applications within

the market. A mixed integer program allocates resources to

maximize welfare, which is user value net datacenter cost.

• Application to Big/Small Cores (§4). We apply the eco-

nomic mechanism to explore a space of heterogeneous dat-

acenters, varying the mix of server- and mobile-class pro-

cessors. We find an optimal heterogeneous balance that

improves welfare and reduces energy. Moreover, 30% of

tasks incur response time violations in homogeneous sys-

tems but not in heterogeneous ones.

• Application to Further Heterogeneity (§5). We further

explore the microarchitectural design space and tailor pro-

cessor cores to application mixes. With processors that

differ in pipeline depth, superscalar width, and in-order

versus out-of-order execution, we find that a combination

of three processor architectures can reduce response time

violations by 12× relative to a homogeneous system.

Thus, we present a management framework that allows data-

centers to exploit the efficiency of heterogeneous processors

while mitigating its performance risk.

2. Heterogeneity – Principles and Strategies

The largest datacenters today are equipped with high-

performance processors. Despite diversity due to process

technology or generations, these cores all reside at the high-

performance end of the design spectrum. Thus, we refer to the

processors in state-of-the-art datacenters as homogeneous by

design. While such homogeneity can provide near-uniform

performance, it also keeps datacenters from exploiting recent

advances in energy-efficient hardware. For example, small

processor cores are far more power efficient than conventional,

high-performance ones. Since only certain tasks are amenable

to small core execution, big cores must also remain as guaran-

tors of service quality.

2.1. Heterogeneity as a Design Space

Server heterogeneity is efficient but requires sophisticated

resource managers to balance performance risk and reward.

This balance requires a novel type of design space exploration

to survey and appraise a variety of datacenter configurations.

To illustrate the challenge, Figure 1 depicts the design space

for two core types: a high-performance, server-class core

and its low-power, mobile-class counterpart. Combinations

of these two processor types fall into three regions shown

in the Venn diagram. Two regions represent homogeneous

configurations, where the datacenter is comprised of only

server or mobile cores. Heterogeneous mixes lie in the third

region, the intersection of the sets.

The colorbar shows the percentage of allocation intervals

that suffered a quality-of-service degradation for a pair of task

streams; this data is collected through simulation with parame-

ters found in §4. For the workloads in this experiment, the two

homogeneous configurations violate quality-of-service agree-

ments at least 6% of the time. 1 As some high-performance,

power-hungry nodes are replaced by a larger number of low-

power processors, datacenter heterogeneity improves quality-

of-service and reduces the frequency of violations to < 1%.

Indeed, ensuring service quality poses the greatest challenge

to heterogeneity in datacenters. Several design questions arise

when we consider how to populate a datacenter with diverse

processor types. First, what are the right core types for a

given set of applications? In this paper we trade-off efficiency

and performance by considering two existing processors: the

mobile-class Atom and the server-class Xeon (§4). Addition-

ally, we design and evaluate up to twelve cores that lie along

the efficiency-vs-performance spectrum (§5).

Second, how many of each processor type do we provision

in the datacenter? Using microarchitectural and datacenter

simulation, we evaluate performance and energy consumption

for mixes of Xeons and Atoms, and mixes of the twelve cores.

Third and equally important is the resource management

of heterogeneous components. How do we allocate heteroge-

neous processing resources to diverse applications? It turns

1These are equal power datacenters, and there are more than five times

more mobile than server processors in the homogeneous configurations.

Low−powerHigh−performance

Heterogeneous

Homogeneous 0%

1%

2%

3%

4%

5%

6%

7%

8%

Figure 1: Venn diagram that illustrates a datacenter design
space for low-power and high-performance proces-
sors; the intersection harbors heterogeneous de-
sign options. Colored points depict QoS violations.

out that we cannot answer the first two questions without

first designing a solution to the third. A policy for match-

ing applications to processing resources is vital to ensuring

quality-of-service guarantees for datacenter applications.

Our effort to differentiate preferences for heterogeneous

cycles is driven by a desire to exploit low-power cores when

possible. Small cores are efficient but exact a task-specific

performance penalty. Thus, we encounter a tension between

design and management in heterogeneous systems. When de-

signing for efficiency, we would prefer to tailor processor mix

to task mix. Each task would run only on the processor that is

most efficient for its computation, but datacenter dynamics pre-

clude such extreme heterogeneity and its brittle performance

guarantees. In contrast, when managing for performance, we

would favor today’s homogeneous systems and suffer their

inefficiencies.

We strike a balance by moderating heterogeneity and in-

creasing manager sophistication. Using the market as a man-

agement mechanism, we explore types and ratios of heteroge-

neous processors as a coordinated study of this novel design

space. Balancing allocative efficiency loss against computa-

tional speed, our approach approximates complex heteroge-

neous hardware allocations by simpler, canonical ones. Doing

this well requires microarchitectural insight that properly cap-

tures software preferences for hardware. With such insight,

the market can quickly trade-off performance and efficiency

across heterogeneous processors.

2.2. Accommodating Architectural Heterogeneity

Up to 5× more efficient than big ones, small processor cores

are increasingly popular for datacenter computation [32].

Small cores are well balanced for the modest computational

intensity of simple web search queries, distributed memory

caching, and key-value stores [3, 32, 53]. Such research in

2

unconventional datacenter hardware has spurred broader com-

mercial interest [4, 12] and analogous research in other tech-

nologies, such as DRAM [45, 66].

Performance variations across processor types are well-

studied in architecture, yet such detail is abstracted away in

markets for systems. Since Sutherland’s market for a shared

PDP-1 [61], allocators have considered simple, exchangeable

slots of computer or network time. This limited model of

the architecture has persisted despite large strides in computa-

tional economies during the past two decades, most notably by

Waldspurger in 1992 [64], by Chase in 2001 [10], and Lubin

in 2009 [44]. Simply counting cycles is insufficient when the

value of each hardware cycle depends on software-specific

preferences.

The heterogeneity required for the largest efficiency gains

demands sophisticated architectural insight. For heteroge-

neous processors, performance differences depend on com-

puter architecture’s classical equation:

Tasks

Sec
=

Cycles

Sec
×

Insts

Cycle
×

Tasks

Inst
(1)

To scale
Cycles

Sec
, we must consider software compute-memory

ratios and sensitivity to processor frequency. To scale Insts
Cycle

,

we must consider software instruction-level parallelism and

its exploitation by hardware datapaths. And, if code is tuned

or re-compiled, we must also scale Tasks
Inst

.

Heterogeneous Processors and Hard Constraints. Some

processors may be incapable of providing the desired service.

By obtaining application performance characteristics, a re-

source manager can account for machine restrictions. For

example, the manager might determine the suitability of small

cores based on memory, network, or I/O activity. The mar-

ket uses profiling information to determine if an application

derives no value from certain processors. These hard restric-

tions are enforced by constraints when we clear the market by

solving a mixed integer program.

Heterogeneous Cycles and Soft Constraints. Suppose a

processor is suited to execute a task. Then service rate and

queueing delay are determined by core microarchitecture. For

compute-bound workloads, a cycle on a superscalar, out-of-

order core is worth more than one from an in-order core. How

much more depends on the task’s instruction-level parallelism.

Memory-bound tasks are indifferent to heterogeneous cycles.

To account for cycles that are not fungible, we introduce

scaling factors that translate task performance on heteroge-

neous cores into its performance on a canonical one. Appli-

cations constrained by memory or I/O will not necessarily

benefit from the additional compute resources of a big, out-of-

order core. On the other hand, a big core might commit 3×
more instructions per cycle than a small core for applications

with high instruction-level parallelism.

We differentiate cycles from each core type with a vector

of scaling factors, κ = (κbig,κsmall), that accounts for the

Market

(Datacenter Manager)

ProcW (CostW)

ProcX (CostX)

ProcY (CostY)

ProcZ (CostZ)

B
id

s
(P

ro
x

y
)

A
sk

s (D
a

ta
ce

n
te

r)

(ActivityA, ValueA) AppA

(ActivityB, ValueB) AppB

(ActivityC, ValueC) AppC

(ActivityD, ValueD) AppD

Figure 2: Market Overview.

application-specific performance variation of the two core

types. For example, an agent sets κ = (1, 1
3) for the application

with high ILP, and κ = (1,1) for the memory-intensive job.

To calculate scaling factors, we rely on application profiling

data. In this paper, we assume that existing profilers provide

this data (see §7 for a survey of related work). Although more

advances are needed, existing profilers are sophisticated and

allow us to focus on the allocation mechanism.

3. The Market Mechanism

To ensure quality-of-service, we introduce a novel market

in which proxies, acting on behalf of applications, possess

microarchitectural insight. Heterogeneous system design al-

lows us to tailor resources to task mixes for efficiency. Yet

specialization increases performance risk and demands sophis-

ticated resource allocation. In this work, we balance efficiency

and risk by identifying datacenter designs that provide robust

performance guarantees within the market framework.

We present a market for heterogeneous processors that

builds on two prior efforts. Chase et al. manage homoge-

neous servers by asking users to bid on performance [10].

Lubin et al. extend this formulation with processor frequency

scaling, a novel modeling and bidding language, and a mixed

integer program to clear the market [44]. We start from the

latter market, which assumes fungible processor cycles, and

extend it to account for architectural heterogeneity.

Figure 2 illustrates such market mechanism with three op-

erations:: (i) hardware performance is evaluated to calculate

bids for each user application (buyer proxy), (ii) hardware effi-

ciency is used to calculate costs (seller proxy), (iii) a welfare

maximizing allocation is found (mixed integer program).

This approach has several advantages in our setting with

non-fungible cycles. First, proxies are made to account for

performance variation across heterogeneous cycles based on

instruction-level parallelism in the datapath. Second, proxies

will bid for complex, heterogeneous combinations of cores,

while hiding the complexity of the heterogeneous hardware

from users who are ill-equipped to reason about it. Lastly, an

optimizer maximizes welfare according to the submitted bids

when clearing the market and allocating resources.

3

Figure 3: Proxy Bids

3.1. Proxies and Value Analysis

In this paper, we present extensions for our novel setting, em-

bedding greater hardware insight into the market. Buyers are

task streams with diverse requirements and valuations. Sellers

are datacenters with processors that differ in performance and

energy efficiency. Proxies infer hardware preferences and bid

for candidate hardware allocations. Figure 3 summarizes the

role of the proxy.

Resource allocations are optimized periodically. Prior to

each period, each application’s proxy anticipates task arrivals

and estimates the value of candidate hardware assignments.

The bidding process has several steps: (i) estimate task arrival

distribution, (ii) estimate task service rates, (iii) estimate task

latency, and (iv) translate latency into bid.

Estimate Task Arrival Distribution. At the start of an

allocation period t, the proxy has historical task arrival rates

for h prior periods: λH = (λt−1, . . . ,λt−h). To estimate the

current period’s rate λt , the proxy fits a Gaussian distribu-

tion to the history and estimates task arrival rate by sampling

from N(E[λH],Var(λH)). Thus, we drive the market with a

predicted distribution of arrivals as in prior work [44].

Estimate Task Service Rate. To serve these arriving tasks,

an optimizer searches an allocation space of heterogeneous

cores. Prior efforts assume fungible processor cycles [10, 44],

an assumption that breaks under microarchitectural hetero-

geneity. In contrast, we scale each candidate allocation into a

canonical one based on application-architecture interactions.

Suppose we have n core types. Let q = (q1, . . . ,qn) de-

note a heterogeneous allocation of those cores and let κ =
(κ1, . . . ,κn) denote their task-specific performance relative

to a canonical core. Let Q denote an equivalent, homoge-

neous allocation of canonical cores. Finally, P denotes task

performance (i.e., throughput) on the canonical core. In this

notation, the canonical allocation is Q = κT q, which provides

task service rate µ = PQ.

The system can determine P and κ with little effect on

performance. The proxy profiles a new task on the canonical

core to determine P and initializes κi = 1, i∈[1,n] to reflect

initial indifference to heterogeneity. As allocations are made

and as tasks are run, the proxies accrue insight and update κ .

In steady state, κ will reflect task preferences for hardware.

With many tasks, sub-optimal hardware allocations to a few

tasks for the sake of profiling have no appreciable impact on

latency percentiles.

Estimate Task Latency. Service rate determines task la-

tency. Agents estimate M/M/1 queueing effects, which is

sufficiently accurate in our setting because the coefficients of

variation for inter-arrival and service times are low; see §6 for

details. We estimate latency percentiles with Equation (2) and

use the 95th percentile as the figure of merit, p = 0.95.

p-th latency percentile | T =−ln(1− p)/(µ −λ) (2)

service rate inflections | µ̂t = λt − ln(1− p)/T̂ (3)

Translate Latency into Bid. Latency determines user

value. To faithfully represent their users, proxies must create

a chain of relationships between hardware allocation, service

rate, response time, and dollar value (Equations (4)–(6)).

datacenter profiler | Pa : {hwa}→ {service rate} (4)

datacenter queues | T : {service rate}→ {latency} (5)

user value | V : {latency}→ {dollars} (6)

market welfare | W = ∑
a∈A

(

V◦T◦Pa(hwa)
)

−C(hw)(7)

A profile Pa maps proxy a’s hardware allocation to an

application-specific service rate. A queueing model T maps

service rate to latency. Finally, the user provides a value func-

tion V, mapping latency to dollars. Note that only V requires

explicit user input.

These functions are composed when proxy a bids for a

candidate hardware allocation: V◦T◦Pa(hwa). To compose

V◦T, the proxy identifies inflections in the piecewise-linear

value function V. Then, the proxy translates each inflection

in time T̂ into an inflection in service rate µ̂ by inverting the

queueing time equation (Equation (3)). Thus, service rate

maps to dollar value. Note that service rate inflections depend

on the arrival rate λt of tasks. To accommodate load changes,

the proxy determines new inflection points for each period.

3.2. Seller Cost Analysis

For an accurate estimate of electricity use, the market requires

information about server and processor power modes from

the datacenter [47, 48]. For example, we model server power

modes as three possible states: active, idle (but in an active

power mode), and sleep.

In Equation (8), the datacenter accounts for the number of

servers (n∗) in each mode and power (P∗) dissipated over the

allocation time period (∆) [44]. Servers that transition between

4

Xeon Atom

Number of Nodes 0−160 0−225

Number of Cores 4 16

Frequency 2.5 GHz 1.6 GHz

Pipeline 14 stages 16 stages

Superscalar 4 inst issue 2 inst issue

Execution out-of-order in-order

L1 I/D Cache 32/32KB 32/24KB

L2 Cache 12MB, 24-way 4MB, 8-way

Table 1: Architecture parameters with for
Xeons, Atoms [20, 21, 31].

Xeon Atom

Core sleep 0 W

Core idle 7.8 W 0.8 W

Core active 15.6 W 1.6 W

Platform sleep 25 W

Platform idle 65 W

Platform active 65 W

Sleep → Active 8 secs, $0.05

Active → Sleep 6 secs, $0.05

Table 2: Power modes and pa-
rameters [32].

Proc Sensitive (PS) Proc Insensitive (¬PS)

P – task profile 70 50
(Mcycles/task)

λ – peak load 1000 500
(Ktasks/min)

V – value $5000 if T≤10ms $4500 if T≤10ms
($/month) $0 if T≥80ms $0 if T≥80ms

κ – scaling factor κX = 1.0 κX = 1.0
κA = 0.33 κA = 1.0

Table 3: Application Characteristics. For a task

stream, T is 95th percentile queueing time.

E =
(

naPact +niPidle +nsPsleep
)

∆
︸ ︷︷ ︸

no power transition

+nis
(

Pidleδ is +Psleep(∆−δ is)
)

︸ ︷︷ ︸

idle→sleep

+nsa
(
Pactδ sa +Pact (∆−δ sa)

)

︸ ︷︷ ︸

sleep→active

(8)

modes incur a latency (δ ∗). For example, a server that enters

a sleep mode will dissipate Pidle over δ is as it transitions and

dissipate Psleep for the remaining ∆−δ is. Similarly, a server

that wakes from sleep will require δ sa during which Pact is

dissipated but no useful work is done. Energy is multiplied

by datacenter power usage effectiveness (PUE) and then by

electricity costs [6].

3.3. Welfare Optimization

Proxies submit complex bids for candidate hardware allo-

cations on behalf of users. Sellers submit machine profiles

and their cost structure. The market then allocates processor

cores to maximize welfare, or buyer value minus seller cost

(Equation (7)). Welfare optimization is formulated as a mixed

integer program (MIP), which determines the number and

type of cores each user receives. For MIP details, see Lubin’s

formulation [44]. Allocations are optimized at core granu-

larity but each core is ultimately mapped to processors and

servers in post-processing. For example, active and sleeping

cores cannot map to the same server if machines implement

server-level sleep modes.

Heterogeneity increases optimization difficulty. In a naïve

approach, value is a multi-dimensional function of hetero-

geneous quantities q = (q1, . . . ,qn). However, the proxies

would need to construct piecewise approximations for multi-

dimensional bids, which is increasingly difficult as n grows.

Each new core type would add a dimension to the problem.

Scaling to a canonical resource type improves tractability

by imposing an abstraction between user proxies and data-

center hardware. By encapsulating this complexity, the proxy

determines the relative performance of heterogeneous quanti-

ties κ = (κ1, . . . ,κn) and computes Q = κT q. Bids for Q are

one-dimensional.

4. Managing Heterogeneous Processors

For a heterogeneous datacenter with big Xeon and small Atom

cores, we exercise three key aspects of the economic mech-

anism. First, heterogeneous microarchitectures are well rep-

resented by Xeons and Atoms. Cycles from in-order and

out-of-order datapaths are not fungible. Second, heteroge-

neous tasks contend for these cycles with different preferences

and valuations. Third, large processor power differences are

representative of trends in heterogeneity and specialization.

4.1. Experimental Setup

Our evaluation uses an in-house datacenter simulator. A proxy

predicts demand from history, predicts latency using a closed-

form response time model, and constructs a bid. The frame-

work then clears the market, identifying welfare-maximizing

allocations by invoking CPLEX to solve a MIP. The MIP so-

lution is an allocation for the next 10-minute interval. For

this interval, the simulator uses response time models, cost

models, application demand, and the allocation to compute

value produced and energy consumed. The simulator does ex-

actly what a real cluster manager would do, providing hints at

future prototype performance. The simulator does not perform

per-task microarchitectural simulation, which is prohibitively

expensive.

Tables 1–2 summarize platform parameters. The hypo-

thetical sixteen-core Atom integrates many cores per chip to

balance the server organization and amortize platform com-

ponents (e.g., motherboard, memory) over more compute re-

sources [32, 59]. Xeon core power is 10× Atom core power.

Servers transition from active to sleep mode in 6 secs and from

sleep to active in 8 secs, powering off everything but the mem-

ory and network interface [1, 18]. Power usage effectiveness

(PUE) for the datacenter is 1.6, an average of industry stan-

dards [15, 62]. Energy costs are $0.07 per kWh, an average of

surveyed energy costs from prior work [56].

We explore a range of heterogeneous configurations, vary-

ing the ratio of Xeons and Atoms. The initial system has 160

Xeon servers, a number determined experimentally to accom-

modate the load of the evaluated applications. We sweep the

Atom to Xeon ratio by progressively replacing a Xeon with the

number of Atom servers that fit within a Xeon power budget.

A 20kW datacenter accommodates 160 Xeons, 225 Atoms, or

some combination thereof.

Workloads. We study tasks that are generated to follow

a time series, which is detailed in Table 3 and illustrated in

5

0 200 400 600 800 1000
0

2

4

6

8
x 10

14

Simulation Time (10 min intervals)

L
o

a
d

 p
e
r

P
e
ri

o
d

 (
c
y
c
le

s
/p

e
ri

o
d

)

Total
PS

¬PS

Figure 4: Demand for processor
sensitive (PS) and in-
sensitive (¬PS) appli-
cations.

(a) Transition Cost (b) Energy

Figure 5: Seller costs due to (a) energy and (b) transition penalty, as the ratio of Atom:Xeon
processors varies. Energy cost corresponds closely to application behavior
across datacenter configurations. Ridges in transition cost are due to a $0.05
penalty per transition that accounts for increased system wear-out [24].

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

80

10 Minute Interval

9
5

th
 P

e
rc

e
n

ti
le

 W
a

it
 T

im
e

 (
m

s
)

PS

¬PS

(a) 0 Atoms::160 Xeons

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

80

10 Minute Interval

9
5

th
 P

e
rc

e
n

ti
le

 W
a

it
 T

im
e

 (
m

s
)

PS

¬PS

(b) 147 Atoms::55 Xeons

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

80

10 Minute Interval

9
5

th
 P

e
rc

e
n

ti
le

 W
a

it
 T

im
e

 (
m

s
)

PS

¬PS

(c) 225 Atoms::0 Xeons

Figure 6: 95th percentile waiting time for (a) only Xeons, (b) mix of Atoms and Xeons, and (c) only Atoms. Heterogeneous system
(b) violates performance targets less often than homogeneous configurations (a), (c).

Figure 4. We simulate a week of task load that is a composite

of two sinusoids, one with a week-long period and one with a

day-long period. The sinusoid determines the average arrival

rate around which we specify a Gaussian distribution to reflect

load randomness. Such patterns are representative of real-

world web services [47].

Applications specify value (SLA) as a function of 95th per-

centile response time. Value degrades linearly up to a cut-off

of 80ms, after which computation has no value. The value

functions express priorities for applications. Since the market

maximizes welfare, users with higher value per requested cycle

are more likely to receive hardware. The economic mechanism

does not accommodate under-bidding and valuations must at

least cover the cost of computation.

4.2. Architectural Preferences

We consider two workloads that contend for Xeons and Atom

servers, yet value the cores differently. The first is a processor

sensitive (PS) application that prefers cycles from the high-

throughput Xeon and values an Atom cycle less, scaling its

value down by κ = 1
3 . The second, on the other hand, is a

processor insensitive (¬PS) application indifferent between

the two processor types.

The architecture scaling factors κ are consistent with prior

datacenter workload characterizations. Reddi et al. find Inst
Cycle

on Atom is 33% of that on Xeon for Microsoft Bing web

search [32]. Lim et al. find performance on the mobile-class

Intel Core 2 Turion is 34% of that on the Intel Xeon [42].

These applications exhibit instruction-level parallelism, which

benefits from wider pipelines and out-of-order execution in

server-class cores: κX = 1,κA = 1
3 .

In contrast, ¬PS does not benefit from extra capabilities in

server-class processors and is representative of web, file, or

database servers [13, 34]. Andersen et al. propose embedded

processors for distributed key-value store servers [3]. Servers

that deliver Youtube-like traffic can run on small cores with

negligible performance penalties [42]. Higher processor per-

formance does not benefit such workloads. ¬PS applications

are indifferent to Xeons and Atoms: κX = κA = 1.

4.3. Improving Welfare

A heterogeneous mix of Xeons and Atoms enhances welfare.

To understand this advantage, we study homogeneity’s limita-

tions on both sides of the ledger: value and cost.

Value. A Xeon-only system provides less value because it

cannot meet performance targets during traffic spikes. Users

derive no value when latencies violate the target (waiting time

≤ 80ms), which happens in more than a third of the allocation

periods. Periods of low welfare arise directly from periods of

poor service quality; in Figure 6a see periods 130-380.

6

(a) Xeon Allocation for PS (b) Xeon Allocation for ¬PS (c) Xeon Sleep

(d) Atom Allocation for PS (e) Atom Allocation for ¬PS (f) Atom Sleep

Figure 7: Allocation measured in fraction of configured nodes as Atom:Xeon ratio varies. For example, a 50% Atom allocation
in a A:X=168:40 configuration maps to 84 Atom nodes. Atom and Xeon cores at each datacenter configuration may be
allocated to the processor sensitive (PS), processor insensitive (¬PS), or neither (sleep) application.

As we replace Xeons with Atoms, we increase system ca-

pacity within the 20kW budget. Each four-core Xeon server

can be replaced by 1.4 sixteen-core Atom servers. Equiva-

lently, each Xeon core is replaced by 5.6 Atom cores. And

if we account for the frequency difference, each Xeon cycle

is replaced by 3.6 Atom cycles. This extra capacity enhances

value and welfare during traffic peaks even after scaling down

core capability by κ .

Moreover, applications successfully bid for preferred archi-

tectures. As Xeons become scarce, PS receives more of its

preferred Xeons at the expense of ¬PS, which is indifferent

between Xeons and Atoms. As Xeons are replaced by Atoms,

Figure 7a shows the market allocating a larger fraction of the

remaining Xeons to PS thus improving its response time. Si-

multaneously, Figure 7b shows the market allocating fewer

Xeons to ¬PS.

Cost. On the other side of the ledger, energy costs degrade

welfare. Cores incur transition costs when they change power

modes. During a transition, cores dissipate power but do not

add value. As shown in Figure 5a, a charge is imposed for

every transition to account for increased wear and reduced

mean-time-to-failure as machines power-cycle [24].

Per server, Xeons and Atoms incur the same transition cost.

Yet the Atom-only system incurs larger transition costs than

alternate systems as it manages more servers. Since an Atom

system contributes fewer cycles and less value than a Xeon

server, such costs reduce allocation responsiveness. This iner-

tia of the Atom-only system causes a response time spike at

the first load peak (period 200) but not the second (Figure 6c).

4.4. Balancing Atoms and Xeons

Number of Atoms. Given a mix of applications and hardware

preferences, there exists a maximum number of Atoms that can

be usefully substituted into the system. Beyond this number,

additional Atoms are not useful to either application, leaving

the absolute number of allocated Atoms unchanged.

In our datacenter, the maximum number of useful Atom

servers is 147. This maximum marks a point of diminishing

marginal returns for substituting Atoms. Beyond this point,

additional Atoms are put to sleep (Figure 7f) and the fraction

of Atoms allocated to PS and ¬PS decline (Figure 7d and

Figure 7e, respectively). In fact, adding Atoms beyond this

point can harm welfare as transition costs are incurred to turn

them off. This cost produces the highest ridge of Figure 5a,

where spare Atom servers are transitioned to sleep.

Number of Xeons. A related conclusion can be made for

Xeons: there exists a minimum number of Xeons necessary

to provide the PS application adequate performance. Beyond

this point, as Atoms are added and Xeons are removed, the

number of Xeons available to be allocated to PS steadily de-

creases – Atoms are used for part of the processor-sensitive

computation (Figure 7a and Figure 7d, respectively), decreas-

ing performance. As we replace most of the Xeons in the

system with Atoms, the few Xeons remaining in the system

are either allocated to PS or put to sleep during PS activity

troughs (Figure 7a and Figure 7c, respectively). Clearly, as

they become scarce, the remaining Xeons are increasingly

precious to PS.

Based on this, our datacenter should have at least 55 Xeon

7

servers. This minimum marks a point of increasing marginal

penalties incurred when removing Xeons. Strikingly, this

minimum occurs in a heterogeneous configuration with 55

Xeons and 147 Atoms, which coincides with our analysis for

the maximum number of Atoms.

Max/Min Heterogeneity. We refer to this balance of 147

Atom and 55 Xeon servers as the max/min configuration for

the datacenter. This heterogeneous configuration provides

better service quality and fewer SLA violations. As seen in

Figure 6b, this mix of Xeons and Atoms provide queueing

times that are stable and far below the 80ms cut-off.

For contrast, consider Figure 6a and Figure 6c. 38% and

19% of allocation periods violate the 80ms cut-off for PS

queueing time in Xeon- and Atom-only systems, respectively.

In the Xeon-only system, ¬PS suffers longer waiting times

due to contention with PS for limited computational capacity.

In the Atom-only system, ¬PS experiences volatile waiting

times during time periods 147-217.

Thus, by replacing Xeon with Atom nodes within a fixed

power budget, the mixed configurations increase the system’s

computational capacity. This clear benefit of specialization

will play an important role towards sustaining the rapidly

growing demand on datacenters.

4.5. Saving Energy

The allocation mechanism activates servers only in response

to demand. The datacenter saves energy by putting unneeded

servers to sleep. As shown in Figure 8, a homogeneous Xeon-

only datacenter saves 900kWh over a week of simulated time.

When Atoms are first introduced, cycles become scarce and

fewer servers exploit sleep modes; the datacenter saves only

600kWh. Note, however, that the heterogeneous datacenter

saves this energy while simultaneously improving service qual-

ity (Figure 6). Energy savings from server activation plateau

at 1200kWh for most heterogeneous systems, including the

max/min configuration. While an Atom-only system could

save up to 1280kWh, it would sacrifice service quality and

violate performance targets during the PS activity trough.

Datacenters may prefer to schedule low-priority batch jobs

rather than exploit sleep states [7]. Presumably, the value of

batch computation exceeds servers’ operating and amortized

capital costs. Spot prices for Amazon EC2 are one measure

of these costs. Given batch jobs with sufficient value, a policy

that replaces sleep modes with active batch computing will

only increase welfare.

Even in such datacenters, heterogeneity improves efficiency.

A mix of active Xeons and Atoms consumes less energy (Fig-

ure 5b). The max/min configuration consumes 4.0kWh per

allocation period. In contrast, the Xeon-only system consumes

5.4kWh yet exhibits more volatile service quality.

4.6. Evaluating Optimization Time

Given that the market and proxy implementation include all

the elements required in a real system, market clearing perfor-

mance is important. Across allocation periods in all datacenter

0:160 56:120 112:80 168:40 225:0
600

700

800

900

1000

1100

1200

1300

E
n
e
rg

y
 S

a
v
e
d
 (

k
W

h
)

Atom:Xeon Ratio

Figure 8: Energy saved
from sleep modes.

0 2 4 6 8 10
0

0.25

0.5

0.75

1

Solve Time (sec)

Atom
Max/min
Xeon

Figure 9: Solve time CDF
across all periods.

configurations, solve time (wall clock) varies but is less than

800ms for 98% of allocation periods. All other periods clear

the market in less than 10s as shown in Figure 9. Solve time in-

creases when resources are scarce and contention is high. And

contention is highest in a Xeon-only system, which provides

the worst service quality.

We implement the market and proxy in Java as it would

be in a real distributed system. Inputs are task arrival history

and user value functions. Outputs are resource allocations,

which maximize welfare. Welfare is optimized with a mixed

integer program, which is quickly solved to exact optimality

by commercial CPLEX 12.1 MIP solver codes despite the

formally NP-Hard nature of the problem.

We obtain this computational speed by representing hetero-

geneous resources as scaled canonical ones, and thus keeping

the MIP tractable. Further, in our MIP formulation the task ar-

rival rate and the number of servers in the system simply affect

coefficients, not MIP computational complexity. However, the

number of user applications and heterogeneous resource types

does impact MIP complexity, and for sufficiently complex

data centers it is possible that CPLEX might solve only to

approximate optimality within time allotted for computation.

Fortunately, previous work has shown that such approximate

solutions are efficient with high probability [44].

5. Increased Processor Heterogeneity

Increasing processor diversity allows for tailoring datacenter

resources to the application mix. In this section we investigate

the design space of sets of diverse processor types, when the

goal is to obtain an effective mix within a datacenter. To do so,

we cluster processor/core designs and identify representative

individuals. We then study combinations of these cores for

datacenters that span a spectrum of heterogeneity.

5.1. Experimental Setup

Atom efficiency is derived from three key design elements:

static instruction scheduling, narrower issue width, and lower

frequency. We define a space around these elements, produc-

ing twelve designs with parameters in Table 4. We simulate

these designs with the gem5 cycle-accurate simulator in syscall

emulation mode [8].

For this experiment, we consider the preferences of SPEC

CPU2006 applications on heterogeneous processors. These

8

Out-of-order InOrder

Clock 1.0GHz 2.4GHz 1.0 2.4

Width 2 6 8 1 2 4

ROB 192 320 342 –

RF 80 120 160 –

L1 I-$ 64 KB 4-way 32 KB 4-way

L1 D-$ 64 KB 4-way 32 KB 4-way

L2 $ 4 MB 8-way 1 MB 8-way

Table 4: Parameters for the twelve
cores simulated in gem5.

io1w10 io1w24 io4w24 oo6w24

Num 18 18 12 6

Area (mm2)

Core 12.31 12.31 17.31 36.89

Die < 225

Power (W)

Core 1.10 2.63 8.40 28.10

Sys 65.00

Tot 85 114 168 235

Table 5: Area and power estimates for four
core types.

libq lbm

P – task profile (Mcycles/task) 67 149

λ – peak load (Ktasks/min) 480 80

V – value ($/month)
if T≤20ms $5000 $2500
if T≥160ms $0 $0

κ – scaling factor
κio1w10 0.50 1.45
κio1w24 0.40 1.09
κio4w24 0.56 1.26
κoo6w24 1.00 1.00

Table 6: Application characteristics.

benchmarks are sensitive to processor choice, and we study

the opportunity of using low-power cores even for applications

with high instruction-level parallelism. We simulate 100M

instructions from gobmk, hmmer, h264ref, mcf, libquantum,

bzip2, sjeng, gcc, xalancbmk, milc, gromacs, namd, calculix,

deallII, soplex, and lbm. Applications are cross-compiled into

ALPHA with level -O2 optimizations.

These architectures and applications offer a wide range of

performance scaling factors for evaluating heterogeneity. The

market allocates resources for streams of computational tasks.

We define a stream for each SPEC application with service-

level agreements defined in Table 6, which shares parameters

from §4 where possible.

5.2. Architectural Preferences

Only a subset of the twelve cores is necessary to reap the

efficiency of heterogeneity. To identify this subset, we cluster

cores with similar performance for the application suite. For

each core, we define an n-element vector specifing its per-

formance for n applications. We cluster these vectors with

multi-dimensional, hierarchical clustering [55]. In this for-

mulation, each application adds a dimension. Hierarchical

clustering constructs a dendrogram that quantifies similarity

using Euclidean distance. By examining this tree at different

levels, we choose results for a particular number of clusters k.

Figure 10b shows k = 4 clusters. The twelve original cores

are ordered by increasing power on the x-axis. For each core,

we plot the performance for various applications. Across the

application suite, cores in the same cluster provide similar

performance. From each cluster, we select the core with the

lowest variation in performance (Table 5). We refer to cores

with the tuple: [IO/OO][width][frequency]. For example,

io1w10 denotes a 1-wide, in-order core with a 1.0GHz clock.

We organize these cores into servers that use equal-area

processors; area and power are estimated with McPAT models

[40], and calibrated to real Xeon and Atom measurements.

We normalize silicon area since it is the primary determinant

of a processor’s marginal cost. We align server power with

estimates from related work [32].

Finally, we determine the number of servers that fit in a

15KW datacenter. We explore a mix of heterogeneous pro-

cessors and servers. Because a full sweep of heterogeneous

combinations is prohibitively expensive for more than two

core types, we simulate datacenters comprised of 1
4 , 1

2 , 3
4 , or

entirely of each core type within the power budget.

0

0.5

1

1.5

2

2.5

3

IP
C

 S
c

a
li

n
g

 F
a

c
to

rs
 (

re
la

ti
v

e
 t

o
 o

o
8

w
2

4
)

io
1w

10

io
2w

10

io
1w

24

io
4w

10

io
2w

24

oo2w
10

io
4w

24

oo2w
24

oo6w
10

oo8w
10

oo6w
24

oo8w
24

libq lbm SPEC average

(a) IPC scaling factors

0.5

1

1.5

2

2.5

3

3.5

4

B
IP

S

io
1
w
1
0

io
2
w
1
0

io
1
w
2
4

io
4
w
1
0

io
2
w
2
4

o
o
2
w
1
0

io
4
w
2
4

o
o
2
w
2
4

o
o
6
w
1
0

o
o
8
w
1
0

o
o
6
w
2
4

o
o
8
w
2
4

1 2 3 4

(b) Core clustering k=4

Figure 10: gem5 simulation results, cores on the horizontal
axis are in order of increasing peak dynamic power.

5.3. Improving Service Quality

Increased processor diversity benefits service quality. Figure

11 compares the number of allocation periods where response

time exceeds target cutoffs on each datacenter configuration,

which are ordered by increasing computational capacity on

the x-axis. Data is shown for libquantum and lbm, which

are representative of diversity in the broader application suite

(Figure 10a).

As in the Xeon and Atom case, a homogeneous system

that uses the highest performing core provides the fewest

number of these cores within a limited power budget. In fact,

homogeneous systems of any core type violate performance

targets for 20% or more of the allocation periods.

Replacing the oo6w24 core with io*w** cores produces a

configuration with strictly more compute cycles available per

unit time. However, these cycles do not necessarily translate

into better performance. Cycles are scaled by diverse factors

that reflect heterogeneous preferences for hardware.

On its own, each core type is inadequate. But as part of a

heterogeneous mix, diverse cores can improve service quality.

Specifically, the worst of the homogeneous systems uses only

oo6w24 cores. Yet oo6w24 cores are included in more than

half of the most effective heterogeneous mixes, which produce

the fewest service violations.

This observation showcases the complexity of navigating a

heterogeneous design space. Had oo6w24 been discarded as

a candidate design due to its poor performance in a homoge-

neous setting, several heterogeneous systems that include this

core type would remain undiscovered.

More generally, combinations of io1w24, io4w24, and

oo6w24 provide the best service quality for libquantum and

9

0

200

400

600

800

N
u

m
 R

T
 V

io
la

ti
o

n
s

(A
)0

.0
.0

.6
4

(F
)0

.0
.2

2.
48

(F
)0

.0
.4

5.
32

(E
)0

.3
3.

0.
48

(F
)0

.0
.6

7.
16

(L
)0

.3
3.

22
.3

2

(J
)4

4.
0.

0.
48

(B
)0

.0
.9

0.
0

(L
)0

.3
3.

45
.1

6

(N
)4

4.
0.

22
.3

2

(E
)0

.6
6.

0.
32

(G
)0

.3
3.

67
.0

(N
)4

4.
0.

45
.1

6

(L
)0

.6
6.

22
.1

6

(K
)4

4.
33

.0
.3

2

(I)
44

.0
.6

7.
0

(G
)0

.6
6.

45
.0

(O
)4

4.
33

.2
2.

16

(J
)8

9.
0.

0.
32

(E
)0

.9
9.

0.
16

(M
)4

4.
33

.4
5.

0

(N
)8

9.
0.

22
.1

6

(G
)0

.9
9.

22
.0

(K
)4

4.
66

.0
.1

6

(I)
89

.0
.4

5.
0

(M
)4

4.
66

.2
2.

0

(K
)8

9.
33

.0
.1

6

(C
)0

.1
32

.0
.0

(M
)8

9.
33

.2
2.

0

(J
)1

34
.0

.0
.1

6

(H
)4

4.
99

.0
.0

(I)
13

4.
0.

22
.0

(H
)8

9.
66

.0
.0

(H
)1

34
.3

3.
0.

0

(D
)1

79
.0

.0
.0

libq
lbm

Figure 11: Number of 95th percentile waiting time violations. The horizon-
tal axis indicates the number of servers of each type as the tuple
[io1w10].[io1w24].[io4w24].[oo6w24]. Prepended letters mark the
corresponding region in Figure 12.

oo6w24

io4w24 io1w24

io1w10

A

B C

D

E

F

G

H

I

J

K

L M

N

O

2%

4%

6%

8%

10%

12%

14%

16%

18%

Figure 12: Sum of libq and lbm waiting time vio-
lations, shown on a Venn diagram.

lbm. For example, a system with 33 io1w24 cores and 67

io4w24 cores (00.33.67.0 in Figure 11) has the fewest re-

sponse time violations. Our applications prefer designs with

deeper pipelines and higher frequencies. However, if applica-

tions had exhibited complex control flow and poorly predicted

branches, shallower pipelines would have been preferred.

5.4. Balancing Core Types

Figure 12 depicts the datacenter design space for four pro-

cessor types. Colored dots show the percentage of allocation

intervals that incurred waiting time violations for a system

servicing libquantum and lbm task streams. Configurations in

regions A-D are homogeneous. And those in regions E-J, K-N,

and O are heterogeneous combinations of two, three, and four

core types respectively.

Microarchitectural Heterogeneity. Various combinations

of io1w24, io4w24, and oo6w24 provide attractive service

quality. Heterogeneity with design elements that span in-

struction scheduling and superscalar width are best suited to

accommodate the diversity of libquantum and lbm. In contrast,

despite the power savings, the decreased performance of a

shallower pipeline is unattractive for these applications.

The design space has a few unambiguous conclusions. A

mix of io4w24 and io1w24 cores performs well. This intersec-

tion, region G, contains the configuration with the best service

quality, incurring quality-of-service violations for 1.6% of the

time intervals. The two other points in this region are almost

as good at 1.7%.

Also clear, configurations that include io1w10 unanimously

provide poor service quality. Its ellipse is solely populated by

light colored points, marking waiting time violations for up to

15.5% of the experiment. Datacenter configurations within this

ellipse can likely be trimmed from a subsequent, fine-grained

sweep of remaining regions. In general, discarding core com-

binations is not straightforward because of inconsistent trends

like those in regions E and L.

Number of Heterogeneous Microarchitectures. Hetero-

geneous design space exploration is iterative and expensive.

For tractability, this study has assumed four heterogeneous

core types but this choice might also be parameterized to pro-

duce subtle effects.

If we had chosen k = 3 clusters, io1w10 would have been

absorbed into the io1w24 cluster. Moreover, io1w10 would

have replaced io1w24 as the representative core from this clus-

ter since we select cores to minimize performance variation.2

In this scenario, regions E, G and L of Figure 12 would not

have been explored. Missing the opportunity to explore G is

particularly unfortunate since its heterogeneous configurations

produced the best service quality.

Choosing more clusters k > 4 might have produced other

trade-offs. But related work in heterogeneous microarchi-

tectures have illustrated diminishing marginal returns, which

coincidentally arise as heterogeneity increases beyond four

designs [38]. Moreover, datacenters with more than four core

types may produce impractical capital and maintenance costs.

This complex design space and its sophisticated trade-offs

call for further innovation in the heuristics and metrics that

guide optimization. The benefits to specialization of datacenter

resources are manifold, and the market mechanism provides

necessary abstractions and management capabilities.

6. Qualifications and Assumptions

We assume users submit jobs that are comprised of tasks.

For these tasks, we assume the 95th percentile response time

determines service quality. This task stream model does not

extend naturally to batch jobs with deadlines. Accommodating

such workloads requires further research, especially since a

single job offers no representative task to profile.

In our case studies, the k vectors collected from simulation

do not account for performance degradation due to task co-

location. Mars et al. [46] propose a technique for mapping

applications to machine groups such that co-located tasks

incur minimal interference. With such schemes, contention is

modest and profiling k vectors is straight-forward. Without

such schemes, more sophisticated profilers to accommodate

contention effects will be needed.

We also assume M/M/1 queues are sufficient approxima-

tions for datacenter dynamics. M/M/1 models make three

assumptions: (i) inter-arrival times are distributed exponen-

tially; (ii) service times are distributed exponentially; (iii) a

single server executes tasks. The first two assumptions break

when the coefficient of variation Cv = σ/µ is large. However,

we find Cv to be small for inter-arrival times. Although Cv

2Alternatively, we could limit the clustering methodology to microarchi-

tecture alone and apply dynamic frequency scaling to include both designs.

10

increases with job and task heterogeneity, our framework uses

different queues for different jobs to limit task heterogeneity.

Thus, Cv ≈ 1 for inter-arrival times. Moreover, inter-arrival

times for university datacenter services and Google queries

follow a near-exponential distribution [49, 47].

For service times, we compare an exponential distribution

(M) against a general distribution (G). A standard queueing

time approximation indicates that M/M/1 is close to M/G/1

when Cv ≈ 1.3 Assumptions of exponential distributions break

when Cv is large (e.g., 20 or 100) [25]. However, in our simu-

lations of heterogeneous processor cores with more realistic

hyperexponential distributions, we find that Cv for service

times is often near 1 and well below 2, indicating M/M/1 is a

good approximation for M/G/1, at least in expectation. More-

over, exponentially distributed service times have been applied

in prior computing markets [10, 44].

Finally, the number of parallel servers (M/M/k versus

M/M/1) affects the probability that a task must wait in the

queue. We assume a single server whose capability (i.e.,

throughput) increases with the hardware allocation. However,

with only one server, tasks queue with high probability. This

assumption means our queueing time estimates are pessimistic,

which lead to conservative hardware allocations where the

market may over-provision resources. A more accurate model

with parallel servers would only reduce queueing times and

further improve our market’s efficiency.

7. Related Work

Since the advent of chip multiprocessors, small and efficient

processor cores have been studied for datacenters. Piranha,

Niagara, and scale-out processors integrate many small cores

for throughput [5, 13, 34, 43]. Server efficiency also benefits

from re-purposing processors originally designed for mobile

platforms [32, 33, 42]. These efforts illustrate small-core ef-

ficiency for memory- and I/O-bound tasks, and warn about

performance penalties for more complex computation. In-

deed, microarchitecture increasingly affects datacenter com-

putation [16]. Our market is a step toward managing heteroge-

neous microarchitectures in datacenters.

Heterogeneity. Our treatment of heterogeneity focuses on

diverse core microarchitectures and their mix in datacenters.

Prior work studied core heterogeneity in chip multiproces-

sors [11, 35, 36, 38, 41] but does not identify the optimal

number of cores for each type in a large system as we do.

Other studies accommodate differences in serial and parallel

code portions [26, 60] or devote an efficient core to the operat-

ing system [50]. In contrast, we consider a more general mix

of datacenter computation.

Prior work in heterogeneous datacenters studied high-

performance processors from different design generations or

running at different clock frequencies [46, 51]. In contrast,

our heterogeneous cores occupy very different corners of the

3E[W M/G/1]≈
C2

v+1
2 E[W M/M/1]

design space. Efficiency gains are larger but so is performance

risk. Mitigating risk, we make novel contributions in coordi-

nating core design, core mix, and resource allocation.

In distributed systems and grid/cloud computing, prior work

emphasized virtual machine (VM) and/or software hetero-

geneity. CloudSim simulates federated datacenters with local,

shared, and public VMs that might differ in core count or

memory capacity [2, 9, 63]. And prior work matched hetero-

geneous software demands (e.g., from Hadoop tasks) with

heterogeneous VMs [22, 39]. Such work occupies a differ-

ent abstraction layer, neglects the processor microarchitecture,

and complements this work.

Resource Allocation. Early computational economies fo-

cused on maximizing performance in shared, distributed sys-

tems [17, 29, 61, 64]. Chase et al. extended these mechanisms

to account for energy costs [10]. Lubin et al. further accom-

modated dynamic voltage/frequency scaling in datacenter mar-

kets [44]. This prior work is agnostic of microarchitectural

differences and their effect on instruction-level parallelism.

Addressing this limitation, we present a multi-agent market

that navigates non-fungible processor cycles.

Prior studies relied on greedy solvers, allocating cores to

tasks in their queued order and provisioning heterogeneous

cores in a deterministic fashion (e.g., low-power cores first)

[19, 51, 58]. Both Chase and Lubin show greedy solvers

are less effective than markets for improving service time

and reducing cost. Like Lubin [44], we use a mixed integer

program to find exactly optimal allocations, but approximate

methods like gradient ascent [10, 46] may also apply.

We optimize welfare and neglect fairness, which is increas-

ingly important in federated clouds. Dominant resource fair-

ness accommodates heterogeneous demands for multiple, com-

plementary resources (e.g,. processors and memory) in a

shared datacenter [22]. However, maximizing welfare and

fairness in this setting are mutually exclusive [54]. Navigating

conflicting optimization objectives is important future work.

Profiling. Obtaining application preferences is trivial if

users explicitly request particular hardware resources. Clouds

offer a menu of heterogeneous virtual machine types, which

differ in the number of compute units and memory capacity [2].

Similarly, recent efforts in datacenter management assume that

users explicitly request processors and memory [22, 27].

As heterogeneity increases, users or agents acting on their

behalf rely on profiling tools that measure software sensitiv-

ity to hardware differences. These tools include gprof [23],

VTune [30], or OProfile [52]. At datacenter scale, profiling

every application on every node is infeasible and sampling

is required. For example, the Google-Wide Profiling infras-

tructure periodically activates profilers on randomly selected

machines and collects results for integrated analysis [57].

Given samples, inferred statistical machine learning models

might predict scaling factors as a function of software char-

acteristics and hardware parameters [65]. Such models might

be trained with profile databases, like Google’s, to produce

11

scaling factors. Such a capability requires integrating two

bodies of related work in microarchitecturally-independent

software characteristics and statistical inference [14, 37].

8. Conclusion

Collectively, our results motivate new directions in heteroge-

neous system design and management. Within datacenters, we

find opportunities to mix server- and mobile-class processors

to increase welfare while reducing energy cost. Architects may

design heterogeneous systems but they cannot ignore their de-

ployment. Market mechanisms are well suited to allocating

heterogeneous resources to diverse users. As we continue to

build bridges between computer architecture and economic

and multi-agent systems, enhancing allocation procedures with

greater architectural insight is imperative.

Acknowledgements

This work is supported, in part, by NSF grant CCF-1149252

(CAREER), a Google Faculty Research Award, and the Duke

Wannamaker Foundation. This work is also supported by

STARnet, a Semiconductor Research Corporation program,

sponsored by MARCO and DARPA. Any opinions, findings,

conclusions, or recommendations expressed in this material

are those of the author(s) and do not necessarily reflect the

views of these sponsors.

References

[1] Y. Agarwal et al. Somniloquy : Augmenting Network Interfaces to Reduce PC
Energy Usage. In NSDI, 2009.

[2] Amazon. Elastic cloud computing. http://aws.amazon.com/ec2/.
[3] D. G. Andersen et al. FAWN : A Fast Array of Wimpy Nodes. In SOSP, 2009.
[4] Anonymous. Space invaders. The Economist, 2012.
[5] L. Barroso et al. Piranha: A Scalable Architecture Based On Single-Chip Multi-

processing. ISCA, 2000.
[6] L. A. Barroso and U. Hölzle. The Case for Energy-Proportional Computing. Com-

puter, Dec. 2007.
[7] L. A. Barroso and U. Hölzle. The Datacenter as a Computer. Synthesis Lectures

on Computer Architecture, Jan. 2009.
[8] N. Binkert et al. The gem5 simulator. ACM SIGARCH Computer Architecture

News, 39(2):1, Aug. 2011.
[9] R. Calheiros et al. CloudSim: A toolkit for modeling and simulation of cloud

computing environments and evaluation of resource provisioning algorithms. Soft-

ware: Practice and Experience, 2011.
[10] J. S. Chase et al. Managing Energy and Server Resources in Hosting Centers.

SIGOPS Operating Systems Review, 2001.
[11] N. K. Choudhary et al. FabScalar. In ISCA, 2011.
[12] R. Courtland. The battle between ARM and Intel gets real. IEEE Spectrum, 2012.
[13] J. Davis, J. Laudon, and K. Olukotun. Maximizing CMP Throughput With

Mediocre Cores. PACT, 2005.
[14] L. Eeckhout, S. Nussbaum, J. Smith, and K. D. Bosschere. Statistical simulation:

Adding efficiency to the computer designer’s toolbox. IEEE Micro, 2003.
[15] Facebook. More Effective Computing. Technical report, 2011.
[16] M. Ferdman et al. Clearing the clouds. In ASPLOS, 2012.
[17] D. F. Ferguson et al. Economic models for allocating resources in computer sys-

tems. In Market Based Control of Distributed Systems. 1996.
[18] A. Gandhi et al. The Case for Sleep States in Servers. In 4th Workshop on Power-

Aware Computing and Systems, 2011.
[19] S. Garg, S. Sundaram, and H. Patel. Robust heterogeneous data center design: A

principled approach. In SIGMETRICS, 2011.
[20] V. George et al. Penryn : 45-nm Next Generation Intel R© Core TM 2 Processor.

In ISSCC, 2007.
[21] G. Gerosa et al. A Sub-2 W Low Power IA Processor for Mobile Internet Devices

in 45 nm High-k Metal Gate CMOS. IEEE Journal of Solid-State Circuits, Jan.
2009.

[22] A. Ghodsi et al. Dominant resource fairness: Fair allocation of multiple resource
types. In NSDI, 2011.

[23] S. Graham et al. Gprof: A call graph execution profiler. In CC, 1982.

[24] B. Guenter, N. Jain, and C. Williams. Managing Cost, Performance, and Reliabil-
ity Tradeoffs for Energy-Aware Server Provisioning. In Information communica-

tions, 2011.
[25] V. Gupta et al. On the inapproximability of M/G/k. Queueing Systems: Theory

and Applications, 2010.
[26] M. Hill and M. Marty. Amdahl’s Law in the multi-core era. IEEE Computer,

2008.
[27] B. Hindman et al. Mesos: A platform for fine-grained resource sharing in the data

center. In NSDI, 2011.
[28] M. Horowitz et al. Scaling, power, and the future of CMOS. In Electron Devices

Meeting, 2005. IEDM Technical Digest. IEEE International, pages 7 pp. –15, dec.
2005.

[29] T. Ibaraki and N. Katoh. Resource allocation problems: Algorithmic Approaches,
volume 45. MIT Press, Cambridge, MA, USA, Jan. 1988.

[30] Intel. Vtune. http://software.intel.com/en-us/intel-vtune.
[31] Intel. Intel R© 64 and IA-32 Architectures Software Developer’s Manual. Techni-

cal Report 326018, 2011.
[32] V. Janapa Reddi et al. Web Search Using Mobile Cores. In ISCA, 2010.
[33] L. Keys, S. Rivoire, and J. D. Davis. The Search for Energy-Efficient Building

Blocks for the Data Center System. In WEED, 2010.
[34] P. Kongetira and K. Aingaran. Niagara: A 32-way multithreaded sparc processor.

Micro, IEEE, 2005.
[35] R. Kumar et al. Single-ISA Heterogeneous Multi-Core Architectures. In MICRO,

2003.
[36] R. Kumar, D. M. Tullsen, and N. P. Jouppi. Core architecture optimization for

heterogeneous chip multiprocessors. In PACT, page 23, 2006.
[37] B. Lee and D. Brooks. Accurate and efficient regression modeling for microarchi-

tectural performance and power prediction. In ASPLOS, 2006.
[38] B. C. Lee and D. M. Brooks. Illustrative design space studies with microarchitec-

tural regression models. In HPCA, 2007.
[39] G. Lee, B.-G. Chun, and R. Katz. Heterogeneity-aware resource allocation and

scheduling in the cloud. In HotCloud, 2011.
[40] S. Li et al. McPAT: An integrated power, area, and timing modeling framework

for multicore and manycore architectures. In MICRO, 2009.
[41] S. Li et al. System-level integrated server architectures for scale-out datacenters.

In MICRO, 2011.
[42] K. Lim et al. Understanding and Designing New Server Architectures for Emerg-

ing Warehouse-Computing Environments. In ISCA, 2008.
[43] P. Lotfi-Kamran et al. Scale-out processors. In ISCA, 2012.
[44] B. Lubin et al. Expressive power-based resource allocation for data centers. In

IJCAI, 2009.
[45] K. Malladi et al. Towards energy-proportional datacenter memory with mobile

DRAM. In ISCA, 2012.
[46] J. Mars, L. Tang, and R. Hundt. Heterogeneity in "homogeneous" warehouse-

scale computers: A performance opportunity. CAL, 2011.
[47] D. Meisner et al. Power Management of Online Data-Intensive Services. In ISCA,

2011.
[48] D. Meisner, B. Gold, and T. Wenisch. PowerNap: eliminating server idle power.

ACM SIGPLAN Notices, 44, 2009.
[49] D. Meisner and T. F. Wenisch. Stochastic Queuing Simulation for Data Center

Workloads. In WEERT, 2010.
[50] J. Mogul et al. Using asymmetric Single-ISA CMPs to save energy on operating

systems. IEEE Computer, 2008.
[51] R. Nathuji, C. Isci, and E. Gorbatov. Exploiting platform heterogeneity for power

efficient data centers. In ICAC, 2007.
[52] Open Source. OProfile. http://oprofile.sourceforge.net.
[53] J. Ousterhout et al. The case for RAMCloud. CACM, 2011.
[54] D. Parkes, A. Procaccia, and N. Shah. Beyond dominant resource fairness: Exten-

sions, limitations, and indivisibilities. In EC, 2012.
[55] A. Phansalkar, A. Joshi, and L. K. John. Analysis of redundancy and application

balance in SPEC CPU 2006. In ISCA, 2007.
[56] A. Qureshi et al. Cutting the Electric Bill for Internet-Scale Systems. SIGCOMM,

2009.
[57] G. Ren et al. Google-wide profiling: A continuous profiling infrastructure for data

centers. IEEE Micro, 2010.
[58] C. Rusu et al. Energy-efficient real-time heterogeneous server clusters. In RTAS,

2006.
[59] Seamicro. SeaMicro Introduces the SM10000-64HD, 2011.
[60] M. Suleman et al. Accelerating critical section execution with asymmetric multi-

core architectures. In ASPLOS, 2009.
[61] I. Sutherland. A futures market in computer time. CACM, 1968.
[62] U.S. Environmental Protection Agency. Report to Congress on Server and Data

Center Energy Efficiency. 2007.
[63] C. Vecchiola et al. Deadline-driven provisioning of resources for scientific appli-

cations in hybrid clouds with aneka. FGCS, 2012.
[64] C. Waldspurger et al. Spawn: A Distributed Computational Economy. IEEE

Transactions on Software Engineering, 18, 1992.
[65] W. Wu and B. Lee. Inferred models for dynamic and sparse hardware-software

spaces. In MICRO, 2012.
[66] D. Yoon et al. BOOM: Enabling mobile memory based low-power server DIMMs.

In ISCA, 2012.

12

