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ABSTRACT 
The progress of VLSI technology is facing two limiting factors: 
power and variation. Minimizing clock network size can lead to 
reduced power consumption, less power supply noise, less number 
of clock buffers and therefore less vulnerability to variations. 
Previous works on clock network minimization are mostly focused 
on clock routing and the improvements are often limited by the 
input register placement. In this work, we propose to navigate 
registers in cell placement for further clock network size reduction. 
To solve the conflict between clock network minimization and 
traditional placement goals, we suggest the following techniques 
in a quadratic placement framework: (1) Manhattan ring based 
register guidance; (2) center of gravity constraints for registers; (3) 
pseudo pin and net; (4) register cluster contraction. These 
techniques work for both zero skew and prescribed skew designs 
in both wirelength driven and timing driven placement. 
Experimental results show that our method can reduce clock net 
wirelength by 16%~33% with no more than 0.5% increase on 
signal net wirelength compared with conventional approaches.      
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1. INTRODUCTION 
The progress of VLSI technology is facing two limiting factors: 
power and variation. Clock network is a sub-circuit with 
paramount importance for both of these two issues. Due to its 
huge fanout size and frequent switching nature, clock network is a 
major power consumer that can consume as much as 40% of entire 
chip power budget [1]. Moreover, the huge current drawn by clock 
network contributes considerably to power supply noise which is a 
major source of variations [2].  In addition to being a variation 
generator, clock network is also a vulnerable victim of variations 
since it needs to match delays of signals propagated through long 
distance in different regions.   

Minimizing clock network size/wirelength can obviously reduce 
power consumption and power supply noise. Furthermore, small 
clock network size/wirelength implies less number of clock 
buffers which are very sensitive to both power supply noise and 
process variations [3]. Previous works on clock wirelength 
minimization are mostly concentrated on the clock routing stage 
[4-6] or exploiting certain clock skew flexibility [7]. Since clock 
routing is based on given clock sink (register) locations, the 
register placement may affect clock network wirelength greatly. 
For a poor register placement, the wirelength reduction from clock 
routing can be very limited. In prescribed skew designs [6], if a 
register has small clock signal delay target and is placed far away 
from the clock source, then registers with greater delay targets 
have to have long wire path to the source to satisfy the skew 
specification even when they are located close to the clock source. 
Therefore, placing registers in coherence with their delay targets 
may reduce wire detour and wirelength. 

However, registers are strongly connected with logic cells and 
placing registers only for clock network may affect ordinary 
placement adversely. Indeed, the mainstream of previous works 
does not differentiate registers from logic cells in placement, and 
its objectives usually include minimizing total wirelength of signal 
nets [9], improving routability [10] and timing performance [11]. 
In [12], a clock skew aware placement post processing heuristic is 
suggested to improve timing performance. In a clock driven 
placement work [13], register locations from a global placement 
result are adjusted to match leaf nodes of an independently 
designed balanced binary tree. However, this technique is 
restricted to only zero skew designs and only evenly distributed 
clock sinks.  
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In order to solve the conflict between the clock network 
minimization and traditional placement goals, we propose the 
following techniques in a quadratic placement framework: (1) 
Manhattan ring based register guidance; (2) center of gravity 
constraints for registers; (3) pseudo pin and net; (4) register cluster 
contraction. These techniques can navigate registers toward 
locations in favor of clock network minimization without intrusive 
interference to traditional placement goals. As a result, register 
placement is integrated with traditional placement in a seamless 
manner. Experimental results show that our method can reduce 
clock network wirelength remarkably with negligible increase on 
signal wirelength and critical path delay.  

2. BACKGROUND 
2.1 Clock Network Layout 
A clock network delivers a clock signal from the clock source to a 
set of clock sinks (registers) such that the clock skew constraints 
are satisfied. Clock skew is the difference between clock signal 
delays to two registers. If clock signal delays to register i and j are 
denoted as ti and tj, respectively, the skew specification ti – ti can 
be obtained in a skew scheduling procedure [8] to meet the long 
path and the short path constraints. The skew specification can 
also be expressed as delay target to each register directly [6]. 
Given a register placement and skew specification, a clock 
network, which is usually a tree, is constructed through clock 
routing [4-6]. In clock routings, the location of the clock tree root 
is usually at the center among the registers and does not have to 
overlap with the clock source. The root node can always be 
connected to the clock source directly, i.e., clock routing 
algorithms do not rely on the location of the clock source.  

2.2 Quadratic Placement 
A hypergraph G(V, E) is given to describe a circuit with V = { v1, 
v2, …, vn+p} indicating n movable cells and p fixed cells and E = 
{e1, e2, …, em} representing the connections of the circuit. Every 
edge is assigned a weight w(e). The quadratic placement can be 
formulated as a Linearly-constrained Quadratic Programming 
(LQP) problem: 

Min {Φ(X,Y) =1/2XTCX + dx
TX + 1/2YTCY + dy

TY | 

A(m)X = u(m); A(m)Y = v(m) }     (1) 

The X and Y are the x-coordinate and y-coordinate vectors of the 
movable cells. The n × n matrix C represents the information of 
weighted edge connections among movable cells. The vector dx 
and dy indicate the connections between the movable cells and the 
fixed cells. The quadratic programming is performed iteratively 
together with recursive partitioning [9]. The (u(m),v(m)) is the center 
coordinates of regions at the m-th partitioning level. The equality 
constraints in (1) force the center of gravity of the cells in each 
region to be at the center of their corresponding region. The 
partitioning is initially based on the location results of quadratic 
programming in previous iteration [9]. Then, KL-algorithm [14] 
based adjustment and terminal propagation [15] are performed. To 
save the runtime, the hybrid star/clique net model [16] is 
employed. 

The proposed register navigation techniques are also integrated 
with a path based timing-driven quadratic placement [11]. For 

each timing critical path, the following Elmore delay based 
constraint is enforced together with solving the LQP of (1): 
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where Runit, Cunit are the unit resistance and capacitance for wires, 
respectively, Cpin is the load capacitance of pins; eij connecting 
(xi,yi), (xj, yj), is an edge on the path and T is the clock cycle time.  

3. PROPOSED TECHNIQUES 
The basic idea of our approach is to match the distance of a 
register from the clock root, which does not necessarily overlap 
with the clock source, with its clock signal delay target. In other 
words, registers with large (small) delay targets are preferred to be 
placed far away (close to) the clock root so that the wire detours 
can be minimized. The major technique is to generate a set of 
Manhattan rings to indicate preferred distance for registers. Then, 
registers are navigated toward their corresponding Manhattan 
rings. 

3.1 Manhattan Rings as Guides for Registers 
A convenient yet effective gadget indicating the preferred distance 
from the clock root is a Manhattan ring [4], which is a square 
tilted by 45° (Figure 1). Every point on the Manhattan ring has the 
same Manhattan distance (Manhattan radius) from the center. For 
a register, if its preferred distance R from the clock root is known, 
we try to place it on a Manhattan ring centered at the clock root 
with radius R. Before clock routing, the clock root can be 
approximated by the center of the circuit layout. In prescribed 
skew designs, there could be a set of co-centered rings (Figure 
1(a)) spanning most of the layout area so that each register has a 
good chance to find a ring nearby.  

Figure 1. Manhattan rings for prescribed skew in (a) for zero 
skew in (b). 

For zero skew designs, ideally we want to place registers on a 
single Manhattan ring since every register has the same delay 
target. However, attracting registers to a single Manhattan ring 
may leave large areas without registers and logic cells in those 
areas need huge wirelength to make connections with registers on 
the ring. Therefore, we propose to apply four (or more) smaller 
Manhattan rings driven by an H-tree as shown in Figure 1(b). The 
four small Manhattan rings span more area than a single big ring 
and therefore reduce the chance of dragging registers far away 
from their associated logic cells. Of course, the scheme of Figure 

(a) (b) 
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1(b) can also be applied for prescribed skew designs. Further, 
more rings can be applied depending on circuit size. 

For prescribed skew designs, there is a single Manhattan ring at 
the beginning. This single Manhattan ring is called base ring. 
Along with the partitioning in the placement, the base ring is split 
into a set of rings with granularity corresponding to the 
partitioning level. For example, in Figure 2(a), there is one 
Manhattan arc P that spans region A, B and C at certain 
partitioning level m. The dashed lines indicate the partitioning 
lines. In the next partitioning level m+1, two new Manhattan arcs 
are split out from Manhattan arc P as shown in Figure 2(b). The 
two new Manhattan arcs span six smaller regions of level m+1 
adjacent to P.   

Figure 2. An example of splitting Manhattan arcs at different 
partitioning levels in (a), (b) and (c). 

The splitting toward the clock root is called inward splitting. 
Similarly, the splitting away from the clock root is called outward 
splitting. For example, if the clock root is located in the southeast 
direction in Figure 2, then the generation of Manhattan arc Q is an 
outward splitting. It is not always necessary to perform splitting on 
both directions. In Figure 2(c), only the inward splitting is 
performed for Manhattan arc Q.  

The Manhattan ring splitting can be applied for zero skew designs 
as well. In zero skew designs, even though we prefer that all 
registers are located on the four Manhattan rings as indicated in 
Figure 1(b), moving some registers toward the centers of the rings 
will not increase clock wirelength very much and may help on 
reducing signal wirelength. Therefore, we encourage inward 
splitting especially when the registers are overly crowded at the 
Manhattan rings. 

The Manhattan ring splitting is performed from partitioning level 
K – q to level K if there are K partitioning levels in total. In 
prescribed skew designs, the value of q is determined by the delay 
target difference. Large difference on delay targets suggests a 
large value of q so as to increase the scale of the spreading. For 
zero skew designs, the splitting is performed only at deep 
partitioning levels and the parameter q is an indication of the 
degree of spreading or aggressiveness on pushing registers toward 
preferred distance. A small value of q tends to drive registers 
closer to a few Manhattan rings. A large value of q may reduce 
impact to traditional placement goals.  

We let the base Manhattan ring be a reference point by associating 
its radius Rbase to the average delay targets tave for all registers. In 
order to cover the entire chip region evenly, we let the radius of 
the base Manhattan ring be Rbase ≈  min( W, H ) /4 where W and H 

are the circuit width and height, respectively. The preferred 
distance between register i and the base Manhattan ring can be 
decided as: 

                   
rc

tt avei
i

)(2 −=∆ α                          (2) 

where r and c are wire resistance and capacitance, and α  is a user 
specified parameter. Register i is preferred to be at a Manhattan 
ring of radius Rbase + Δ i if ti > tave; or Rbase −  Δ i otherwise. The 
maximum inward and outward splitting is decided by the preferred 
radius. Starting from partitioning level K – q, skew scheduling [8] 
needs to be performed at each level to generate the delay targets.  

3.2 Navigating Registers toward Manhattan 
Rings 
Since registers have strong connections to logic cells, placing 
registers at preferred Manhattan ring directly may adversely affect 
the traditional placement goals including signal net wirelength, 
routability and critical path delay. Therefore, registers need to be 
placed as close to their corresponding Manhattan rings as possible 
with the minimal negative impact to traditional placement goals. 
We propose two techniques that can navigate registers placement 
in a soft manner: (1) center of gravity constraint for registers and 
(2) pseudo pin and pseudo net. 

3.2.1 Center of Gravity Constraint for Registers 
In a GORDIAN-like placement [9], the center of gravity (COG) of 
the cells in a region is constrained to be at the center of the region 
in the subsequent quadratic programming. In our approach, we 
enforce separated COG constraints for registers. More specifically, 
we force the COG of registers in a region to be at the center of the 
Manhattan arc in the region. In Figure 3, after the initial quadratic 
placement, the entire region is quadrisected into four regions at the 
first partitioning level as shown in Figure 3(a). For the subsequent 
quadratic placement, we force the COG of registers in each region 
to be at the small filled circles. The COG of logic cells in each 
region is constrained to be at the center (star) of the region as 
before. When the quadratic placement and partitioning proceed, 
registers are spread out along the Manhattan ring as shown in 
Figure 3(b).  The COG constraints can be applied to bi-sections as 
well.  

The enforcement of the COG constraints can be illustrated through 
just the x-coordinate part. The x-coordinate vector for cells in a 
region can be decomposed as Xf for the registers and Xg for logic 
cells. Then the LQP at certain partitioning level m becomes (x-
direction): 

       

φ:    

 s.t.     

T T
x

(m) (m)
f f f

(m) (m)
g g g

Min  (X) = 1/2X CX + d X
 A X = u

           A X  = u

                   (3) 

where uf is the center of the Manhattan arc and ug is the 
center of the region. The two linear equality constraints can 
be merged as: 

                      (m) (m)A X = u ,       (4) 
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where  
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Thus, this new formulation retains the same number of variables 
and the same matrix size as traditional quadratic placement [9]. 
Since we only enforce the center of gravity, not the exact locations 
of registers, to be on the Manhattan arc, registers are only attracted 
to the preferred distance softly and there is no intrusive 
disturbance to traditional placement goals. This COG technique is 
primarily applied at early stages of partitioning where the number 
of registers in each region is relative large. At deep partitioning 
levels, the number of registers in each region becomes small and 
the COG constraint becomes less soft. In the extreme case where 
there is only one register in a region, the COG constraint is 
equivalent to force the register on the Manhattan arc and such 
constraint is too rigid to compromise with traditional placement 
goals. For deep partitioning levels, we switch to another soft 
navigation technique – pseudo pin/net. 

 
Figure 3. Dashed lines indicate partitioning in placement: level 
1 in (a) and level 2 in (b). The small circles are the center of 
gravity of the registers in each region. The stars are the 
centers for each region.  

3.2.2 Pseudo Pin and Pseudo Net 
In the last several iterations of the placement, the COG technique 
is not applied. Instead, a pseudo pin and a pseudo net are added for 
each register. The pseudo pin is on the corresponding Manhattan 
ring and has the minimum distance to the register. The pseudo net 
connects the register with the pseudo pin. This is illustrated in 
Figure 4. The pseudo pin and pseudo net are reflected in the 
vectors dx and dy of the LQP formulation (1). For example, the x-
direction dx is changed as: 

f
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d
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====     
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d d
d
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    ++++
====     
        

            (5)  

where df and dg indicate connections between fixed cells with 
registers and logic cells, respectively. The additional connections 
due to the pseudo pin and pseudo net are included in the vector d’

f. 

The pseudo pin/net attempts to drag the register closer to the 
Manhattan ring in the quadratic placement. Again, this technique 
navigates registers in a soft manner with compromise with 
traditional placement goals. The compromise can be tuned by 

changing the weight of this pseudo net. A large weight implies a 
strong force of pulling the register toward the Manhattan ring. 

Register
Pseudo net

Pseudo pin

  
Figure 4.  A pseudo pin indicated by filled circle on the 
Manhattan ring and a pseudo net indicated by the dotted line. 

We apply different net weighting schemes according to the delay 
targets of their corresponding registers. Pseudo nets for registers 
with small (large) delay targets are assigned with heavy (small) 
weight. If a register with large delay target is placed closer with 
clock root, the impact to wirelength may be very limited. This can 
be shown through the example in Figure 5. On the other hand, 
placing a register with small delay target far from the clock root 
may force all root-sink path length to increase to satisfy skew 
constraints and therefore is more harmful. 

Clock root 

Register A 

(a) (b) 
 

Figure 5. Moving register “A” closer to the clock root from (a) 
to (b) does not change the wirelength. 

In the partitioning adjustment [14], the pseudo nets are also 
counted in the min cut estimation. Therefore, a register has a good 
chance to be partitioned to the same region as its corresponding 
pseudo pin. 

3.3 Register Cluster Contraction 
If registers are placed close to each other, the clock routing 
wirelength can also be reduced due to wire path sharing. Thus, we 
cluster registers with similar delay target and in the same partition 
region by inserting clique-based pseudo nets among them. The 
clique-based pseudo nets change the edge connection entries of 
related registers in the matrix C of Equation (1). For example, the 
matrix entry for two registers R1 and R2 is changed from zero to 
non-zero if a pseudo net connects them. The registers connected 
by the same pseudo net can be pulled close to each other after 
solving the LQP (1) in subsequent iterations.   

4. EXPERIMENTAL RESULTS 
The proposed method is implemented in C++ and the experiments 
are performed on a SUN V880 workstation. Table 1 gives the 
characteristics of the DEF/LEF benchmarks. In these benchmark 
circuits, 2.7%~21.4% of cells are registers. The skew scheduling is 
obtained through the method of [8]. Prescribed skew and zero 
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skew routings are generated through clock routers of [6] and [5], 
respectively. The wirelength of signal nets are estimated through 
half perimeter model. Our placement method is compared with a 
wirelength driven placer [9] and a timing driven placer [11]. 

Table 1. The characteristics of benchmarks. 
Case #cell #net #register  Register %  

Test 4596 4674 126 2.7% 
Te2 9192 7195 252 2.7% 
F1 6090 7513 1302 21.4% 
Te4 18384 14341 504 2.7% 
F3 62050 62893 7681 12.4% 

The experimental results for the traditional wirelength-driven 
placement [9] are summarized in Table 2.  In Table 2, clock tree 
wirelength and total signal net wirelength are shown for both 
prescribed skew design and zero skew design. The corresponding 
results from our method are listed in Table 3. It can be seen that our 
method can reduce clock tree wirelength by 16%~33% with an 
average of 0.09% increase on signal wirelength. Actually, the 
increase on signal wirelength is never greater than 0.5%. Even the 
total wirelength including both clock and signal net is decreased as 
well. Therefore, our method indeed achieves our goal of reducing 
clock net wirelength significantly with negligible impact on signal 
wirelength. The CPU times for all these methods are also listed.  

There are three major techniques we proposed: (1) COG: center of 
gravity constraints; (2) PPN: pseudo pin and net; (3) RCC: register 
cluster contraction. Therefore, the results in Table 3 are from 
COG+PPN+RCC. In order to see the effect of these techniques 
separately, we show the clock wirelength change from COG, 
COG+PPN and COG+RCC with respect to the result of [9] in Table 
4. For F1 and F2, which have large proportion of registers, the COG 
technique alone is not adequate and PPN is very necessary. For the 
other benchmarks, COG alone can make significant improvement as 
the number of registers is relatively small. In all of these cases, RCC 
plays an auxiliary role for further improvement.  

Our register navigation techniques are integrated with a timing 
driven placer [11]. The maximum critical path delay from [11] and 
our method on prescribed skew and zero skew design are shown in 
Table 5. We can see that our register navigation techniques can 
retain timing performance in the placement. 

5. CONCLUSIONS 
Clock network minimization can alleviate the power and variation 
problem. Distinguished from previous works which are mostly on 
clock routing, we propose to reduce clock network wirelength by 
navigating register locations in cell placement. Several techniques 
are proposed to solve the conflict between clock network 
minimization and traditional placement goals. Experimental results 
on benchmark circuits show that our techniques can reduce clock 
network wirelength for both zero and prescribed skew designs 
remarkably with negligible increase on signal wirelength and critical 
path delay.  
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Table 2. The conventional wirelength-driven placement [9] results. 

Prescribed skew Zero skew Test- 
case Clock WL Signal WL Clock WL Signal WL 

CPU 
(sec) 

Test 12540  704416 11192 704416 18 
Te2 21930 1422462  21666 1422462  36 
F1 79372 2387391 80568 2387391 31 
Te4 54366 3188446 47766 3188446 80 
F3 487833 10904591 434399 10904591 347 

Table 3.  Our clock-driven placement results. 
Prescribed skew Zero skew Test- 

case Clock 
WL  

Clock WL 
change 

Signal 
WL  

CPU 
(sec) 

Clock WL Clock WL 
change 

Signal 
WL  

CPU 
(sec) 

Test 8439 -32.7% 704467 23 8936 -20.1% 704431  20 
Te2 16945 -22.7% 1425685 58 16385 -24.4% 1425879  42 
F1 66416 -16.3% 2389333 224 67562 -16.1% 2389177 31 
Te4 38262 -29.6% 3189004 110 39987 -16.3% 3188450 89 
F3 406173 -16.7% 10918332 1448 363108 -16.4% 10918478 403 

Average signal WL change 0.091% Average signal WL change 0.089% 
Average total WL change  -0.47% Average total WL change -0.32% 

Table 4.  The clock wirelength change of only COG, COG + PPN and COG + RCC. 

 

 

 

       

 

Table 5.  The timing-driven placement results. 
Maximum critical path delay (ns) CPU (sec) Test- 

case Timing-
driven [11] 

Our prescribed 
skew  

Our zero skew Timing-
driven [11] 

Our prescribed 
skew 

 Our zero skew 

Test 1.06 1.07 1.07 83 131 129 
Te2 1.67 1.68 1.67 191 293 224 
F1 2.65 2.65 2.65 99 335 121 
Te4 0.75 0.77 0.76 451 622 537 
F3 6.48 6.48 6.49 1681 3031 1774 

      

COG  COG + PPN  COG + RCC  Test- 
case P-skew Zero skew P-skew Zero skew P-skew Zero skew 
Test -22.5% -16.1% -27.2% -18.0%  -24.2% -17.3% 
Te2 -19.4% -16.8% -24.3% -23.0%  -21.9% -17.4% 
F1 -2.0% -2.2%  -12.8%  -11.4% -4.2% -4.8% 
Te4 -19.1% -13.1% -29.2% -15.6%  -22.9% -13.9% 
F3 -2.4% -2.7% -12.9% -15.9% -4.3% -4.4% 


