
12.2

 176

 Navigating Registers in Placement for Clock
Network Minimization

Yongqiang Lua, C. N. Szeb, Xianlong Honga, Qiang Zhoua,
Yici Caia, Liang Huanga, Jiang Hub

 aDept. of Computer Science and Technology
Tsinghua University

Beijing, 100084, China
86-10-62795428

hxl-dcs@mail.tsinghua.edu.cn

bDept. of Electrical Engineering
Texas A&M University

 College Station, TX 77843, U.S.A.
1-979-847-8768

jianghu@ee.tamu.edu

ABSTRACT
The progress of VLSI technology is facing two limiting factors:
power and variation. Minimizing clock network size can lead to
reduced power consumption, less power supply noise, less number
of clock buffers and therefore less vulnerability to variations.
Previous works on clock network minimization are mostly focused
on clock routing and the improvements are often limited by the
input register placement. In this work, we propose to navigate
registers in cell placement for further clock network size reduction.
To solve the conflict between clock network minimization and
traditional placement goals, we suggest the following techniques
in a quadratic placement framework: (1) Manhattan ring based
register guidance; (2) center of gravity constraints for registers; (3)
pseudo pin and net; (4) register cluster contraction. These
techniques work for both zero skew and prescribed skew designs
in both wirelength driven and timing driven placement.
Experimental results show that our method can reduce clock net
wirelength by 16%~33% with no more than 0.5% increase on
signal net wirelength compared with conventional approaches.

Categories and Subject Descriptors
B.7.2 Design Aids

General Terms
Algorithms, Performance, Design

Keywords
Clock network, placement, low power, variation tolerance

1. INTRODUCTION
The progress of VLSI technology is facing two limiting factors:
power and variation. Clock network is a sub-circuit with
paramount importance for both of these two issues. Due to its
huge fanout size and frequent switching nature, clock network is a
major power consumer that can consume as much as 40% of entire
chip power budget [1]. Moreover, the huge current drawn by clock
network contributes considerably to power supply noise which is a
major source of variations [2]. In addition to being a variation
generator, clock network is also a vulnerable victim of variations
since it needs to match delays of signals propagated through long
distance in different regions.

Minimizing clock network size/wirelength can obviously reduce
power consumption and power supply noise. Furthermore, small
clock network size/wirelength implies less number of clock
buffers which are very sensitive to both power supply noise and
process variations [3]. Previous works on clock wirelength
minimization are mostly concentrated on the clock routing stage
[4-6] or exploiting certain clock skew flexibility [7]. Since clock
routing is based on given clock sink (register) locations, the
register placement may affect clock network wirelength greatly.
For a poor register placement, the wirelength reduction from clock
routing can be very limited. In prescribed skew designs [6], if a
register has small clock signal delay target and is placed far away
from the clock source, then registers with greater delay targets
have to have long wire path to the source to satisfy the skew
specification even when they are located close to the clock source.
Therefore, placing registers in coherence with their delay targets
may reduce wire detour and wirelength.

However, registers are strongly connected with logic cells and
placing registers only for clock network may affect ordinary
placement adversely. Indeed, the mainstream of previous works
does not differentiate registers from logic cells in placement, and
its objectives usually include minimizing total wirelength of signal
nets [9], improving routability [10] and timing performance [11].
In [12], a clock skew aware placement post processing heuristic is
suggested to improve timing performance. In a clock driven
placement work [13], register locations from a global placement
result are adjusted to match leaf nodes of an independently
designed balanced binary tree. However, this technique is
restricted to only zero skew designs and only evenly distributed
clock sinks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DAC 2005, June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006…$5.00.

 177

In order to solve the conflict between the clock network
minimization and traditional placement goals, we propose the
following techniques in a quadratic placement framework: (1)
Manhattan ring based register guidance; (2) center of gravity
constraints for registers; (3) pseudo pin and net; (4) register cluster
contraction. These techniques can navigate registers toward
locations in favor of clock network minimization without intrusive
interference to traditional placement goals. As a result, register
placement is integrated with traditional placement in a seamless
manner. Experimental results show that our method can reduce
clock network wirelength remarkably with negligible increase on
signal wirelength and critical path delay.

2. BACKGROUND
2.1 Clock Network Layout
A clock network delivers a clock signal from the clock source to a
set of clock sinks (registers) such that the clock skew constraints
are satisfied. Clock skew is the difference between clock signal
delays to two registers. If clock signal delays to register i and j are
denoted as ti and tj, respectively, the skew specification ti – ti can
be obtained in a skew scheduling procedure [8] to meet the long
path and the short path constraints. The skew specification can
also be expressed as delay target to each register directly [6].
Given a register placement and skew specification, a clock
network, which is usually a tree, is constructed through clock
routing [4-6]. In clock routings, the location of the clock tree root
is usually at the center among the registers and does not have to
overlap with the clock source. The root node can always be
connected to the clock source directly, i.e., clock routing
algorithms do not rely on the location of the clock source.

2.2 Quadratic Placement
A hypergraph G(V, E) is given to describe a circuit with V = { v1,
v2, …, vn+p} indicating n movable cells and p fixed cells and E =
{e1, e2, …, em} representing the connections of the circuit. Every
edge is assigned a weight w(e). The quadratic placement can be
formulated as a Linearly-constrained Quadratic Programming
(LQP) problem:

Min {Φ(X,Y) =1/2XTCX + dx
TX + 1/2YTCY + dy

TY |

A(m)X = u(m); A(m)Y = v(m) } (1)

The X and Y are the x-coordinate and y-coordinate vectors of the
movable cells. The n × n matrix C represents the information of
weighted edge connections among movable cells. The vector dx
and dy indicate the connections between the movable cells and the
fixed cells. The quadratic programming is performed iteratively
together with recursive partitioning [9]. The (u(m),v(m)) is the center
coordinates of regions at the m-th partitioning level. The equality
constraints in (1) force the center of gravity of the cells in each
region to be at the center of their corresponding region. The
partitioning is initially based on the location results of quadratic
programming in previous iteration [9]. Then, KL-algorithm [14]
based adjustment and terminal propagation [15] are performed. To
save the runtime, the hybrid star/clique net model [16] is
employed.

The proposed register navigation techniques are also integrated
with a path based timing-driven quadratic placement [11]. For

each timing critical path, the following Elmore delay based
constraint is enforced together with solving the LQP of (1):

() () () TyyxxCCRf
path pathe

jijipinunitunit
ij

≤−+−∑ ∑
∈

22,, ,

where Runit, Cunit are the unit resistance and capacitance for wires,
respectively, Cpin is the load capacitance of pins; eij connecting
(xi,yi), (xj, yj), is an edge on the path and T is the clock cycle time.

3. PROPOSED TECHNIQUES
The basic idea of our approach is to match the distance of a
register from the clock root, which does not necessarily overlap
with the clock source, with its clock signal delay target. In other
words, registers with large (small) delay targets are preferred to be
placed far away (close to) the clock root so that the wire detours
can be minimized. The major technique is to generate a set of
Manhattan rings to indicate preferred distance for registers. Then,
registers are navigated toward their corresponding Manhattan
rings.

3.1 Manhattan Rings as Guides for Registers
A convenient yet effective gadget indicating the preferred distance
from the clock root is a Manhattan ring [4], which is a square
tilted by 45° (Figure 1). Every point on the Manhattan ring has the
same Manhattan distance (Manhattan radius) from the center. For
a register, if its preferred distance R from the clock root is known,
we try to place it on a Manhattan ring centered at the clock root
with radius R. Before clock routing, the clock root can be
approximated by the center of the circuit layout. In prescribed
skew designs, there could be a set of co-centered rings (Figure
1(a)) spanning most of the layout area so that each register has a
good chance to find a ring nearby.

Figure 1. Manhattan rings for prescribed skew in (a) for zero
skew in (b).

For zero skew designs, ideally we want to place registers on a
single Manhattan ring since every register has the same delay
target. However, attracting registers to a single Manhattan ring
may leave large areas without registers and logic cells in those
areas need huge wirelength to make connections with registers on
the ring. Therefore, we propose to apply four (or more) smaller
Manhattan rings driven by an H-tree as shown in Figure 1(b). The
four small Manhattan rings span more area than a single big ring
and therefore reduce the chance of dragging registers far away
from their associated logic cells. Of course, the scheme of Figure

(a) (b)

 178

1(b) can also be applied for prescribed skew designs. Further,
more rings can be applied depending on circuit size.

For prescribed skew designs, there is a single Manhattan ring at
the beginning. This single Manhattan ring is called base ring.
Along with the partitioning in the placement, the base ring is split
into a set of rings with granularity corresponding to the
partitioning level. For example, in Figure 2(a), there is one
Manhattan arc P that spans region A, B and C at certain
partitioning level m. The dashed lines indicate the partitioning
lines. In the next partitioning level m+1, two new Manhattan arcs
are split out from Manhattan arc P as shown in Figure 2(b). The
two new Manhattan arcs span six smaller regions of level m+1
adjacent to P.

Figure 2. An example of splitting Manhattan arcs at different
partitioning levels in (a), (b) and (c).

The splitting toward the clock root is called inward splitting.
Similarly, the splitting away from the clock root is called outward
splitting. For example, if the clock root is located in the southeast
direction in Figure 2, then the generation of Manhattan arc Q is an
outward splitting. It is not always necessary to perform splitting on
both directions. In Figure 2(c), only the inward splitting is
performed for Manhattan arc Q.

The Manhattan ring splitting can be applied for zero skew designs
as well. In zero skew designs, even though we prefer that all
registers are located on the four Manhattan rings as indicated in
Figure 1(b), moving some registers toward the centers of the rings
will not increase clock wirelength very much and may help on
reducing signal wirelength. Therefore, we encourage inward
splitting especially when the registers are overly crowded at the
Manhattan rings.

The Manhattan ring splitting is performed from partitioning level
K – q to level K if there are K partitioning levels in total. In
prescribed skew designs, the value of q is determined by the delay
target difference. Large difference on delay targets suggests a
large value of q so as to increase the scale of the spreading. For
zero skew designs, the splitting is performed only at deep
partitioning levels and the parameter q is an indication of the
degree of spreading or aggressiveness on pushing registers toward
preferred distance. A small value of q tends to drive registers
closer to a few Manhattan rings. A large value of q may reduce
impact to traditional placement goals.

We let the base Manhattan ring be a reference point by associating
its radius Rbase to the average delay targets tave for all registers. In
order to cover the entire chip region evenly, we let the radius of
the base Manhattan ring be Rbase ≈ min(W, H) /4 where W and H

are the circuit width and height, respectively. The preferred
distance between register i and the base Manhattan ring can be
decided as:

rc

tt avei
i

)(2 −=∆ α (2)

where r and c are wire resistance and capacitance, and α is a user
specified parameter. Register i is preferred to be at a Manhattan
ring of radius Rbase + Δ i if ti > tave; or Rbase − Δ i otherwise. The
maximum inward and outward splitting is decided by the preferred
radius. Starting from partitioning level K – q, skew scheduling [8]
needs to be performed at each level to generate the delay targets.

3.2 Navigating Registers toward Manhattan
Rings
Since registers have strong connections to logic cells, placing
registers at preferred Manhattan ring directly may adversely affect
the traditional placement goals including signal net wirelength,
routability and critical path delay. Therefore, registers need to be
placed as close to their corresponding Manhattan rings as possible
with the minimal negative impact to traditional placement goals.
We propose two techniques that can navigate registers placement
in a soft manner: (1) center of gravity constraint for registers and
(2) pseudo pin and pseudo net.

3.2.1 Center of Gravity Constraint for Registers
In a GORDIAN-like placement [9], the center of gravity (COG) of
the cells in a region is constrained to be at the center of the region
in the subsequent quadratic programming. In our approach, we
enforce separated COG constraints for registers. More specifically,
we force the COG of registers in a region to be at the center of the
Manhattan arc in the region. In Figure 3, after the initial quadratic
placement, the entire region is quadrisected into four regions at the
first partitioning level as shown in Figure 3(a). For the subsequent
quadratic placement, we force the COG of registers in each region
to be at the small filled circles. The COG of logic cells in each
region is constrained to be at the center (star) of the region as
before. When the quadratic placement and partitioning proceed,
registers are spread out along the Manhattan ring as shown in
Figure 3(b). The COG constraints can be applied to bi-sections as
well.

The enforcement of the COG constraints can be illustrated through
just the x-coordinate part. The x-coordinate vector for cells in a
region can be decomposed as Xf for the registers and Xg for logic
cells. Then the LQP at certain partitioning level m becomes (x-
direction):

φ:

 s.t.

T T
x

(m) (m)
f f f

(m) (m)
g g g

Min (X) = 1/2X CX + d X
 A X = u

 A X = u

 (3)

where uf is the center of the Manhattan arc and ug is the
center of the region. The two linear equality constraints can
be merged as:

 (m) (m)A X = u , (4)

P

(a)

Q

(b)

A

B

(c)

QP P

C

 179

where
()

()
()

0

0

m
fm

m
g

A
A

A

====

,
()

()
()

m
fm
m

g

u
u

u

====

.

Thus, this new formulation retains the same number of variables
and the same matrix size as traditional quadratic placement [9].
Since we only enforce the center of gravity, not the exact locations
of registers, to be on the Manhattan arc, registers are only attracted
to the preferred distance softly and there is no intrusive
disturbance to traditional placement goals. This COG technique is
primarily applied at early stages of partitioning where the number
of registers in each region is relative large. At deep partitioning
levels, the number of registers in each region becomes small and
the COG constraint becomes less soft. In the extreme case where
there is only one register in a region, the COG constraint is
equivalent to force the register on the Manhattan arc and such
constraint is too rigid to compromise with traditional placement
goals. For deep partitioning levels, we switch to another soft
navigation technique – pseudo pin/net.

Figure 3. Dashed lines indicate partitioning in placement: level
1 in (a) and level 2 in (b). The small circles are the center of
gravity of the registers in each region. The stars are the
centers for each region.

3.2.2 Pseudo Pin and Pseudo Net
In the last several iterations of the placement, the COG technique
is not applied. Instead, a pseudo pin and a pseudo net are added for
each register. The pseudo pin is on the corresponding Manhattan
ring and has the minimum distance to the register. The pseudo net
connects the register with the pseudo pin. This is illustrated in
Figure 4. The pseudo pin and pseudo net are reflected in the
vectors dx and dy of the LQP formulation (1). For example, the x-
direction dx is changed as:

f
x

g

d
d

d

====

'

' f f
x

g

d d
d

d

 ++++
====

 (5)

where df and dg indicate connections between fixed cells with
registers and logic cells, respectively. The additional connections
due to the pseudo pin and pseudo net are included in the vector d’

f.

The pseudo pin/net attempts to drag the register closer to the
Manhattan ring in the quadratic placement. Again, this technique
navigates registers in a soft manner with compromise with
traditional placement goals. The compromise can be tuned by

changing the weight of this pseudo net. A large weight implies a
strong force of pulling the register toward the Manhattan ring.

Register
Pseudo net

Pseudo pin

Figure 4. A pseudo pin indicated by filled circle on the
Manhattan ring and a pseudo net indicated by the dotted line.

We apply different net weighting schemes according to the delay
targets of their corresponding registers. Pseudo nets for registers
with small (large) delay targets are assigned with heavy (small)
weight. If a register with large delay target is placed closer with
clock root, the impact to wirelength may be very limited. This can
be shown through the example in Figure 5. On the other hand,
placing a register with small delay target far from the clock root
may force all root-sink path length to increase to satisfy skew
constraints and therefore is more harmful.

Clock root

Register A

(a) (b)

Figure 5. Moving register “A” closer to the clock root from (a)
to (b) does not change the wirelength.

In the partitioning adjustment [14], the pseudo nets are also
counted in the min cut estimation. Therefore, a register has a good
chance to be partitioned to the same region as its corresponding
pseudo pin.

3.3 Register Cluster Contraction
If registers are placed close to each other, the clock routing
wirelength can also be reduced due to wire path sharing. Thus, we
cluster registers with similar delay target and in the same partition
region by inserting clique-based pseudo nets among them. The
clique-based pseudo nets change the edge connection entries of
related registers in the matrix C of Equation (1). For example, the
matrix entry for two registers R1 and R2 is changed from zero to
non-zero if a pseudo net connects them. The registers connected
by the same pseudo net can be pulled close to each other after
solving the LQP (1) in subsequent iterations.

4. EXPERIMENTAL RESULTS
The proposed method is implemented in C++ and the experiments
are performed on a SUN V880 workstation. Table 1 gives the
characteristics of the DEF/LEF benchmarks. In these benchmark
circuits, 2.7%~21.4% of cells are registers. The skew scheduling is
obtained through the method of [8]. Prescribed skew and zero

 180

skew routings are generated through clock routers of [6] and [5],
respectively. The wirelength of signal nets are estimated through
half perimeter model. Our placement method is compared with a
wirelength driven placer [9] and a timing driven placer [11].

Table 1. The characteristics of benchmarks.
Case #cell #net #register Register %

Test 4596 4674 126 2.7%
Te2 9192 7195 252 2.7%
F1 6090 7513 1302 21.4%
Te4 18384 14341 504 2.7%
F3 62050 62893 7681 12.4%

The experimental results for the traditional wirelength-driven
placement [9] are summarized in Table 2. In Table 2, clock tree
wirelength and total signal net wirelength are shown for both
prescribed skew design and zero skew design. The corresponding
results from our method are listed in Table 3. It can be seen that our
method can reduce clock tree wirelength by 16%~33% with an
average of 0.09% increase on signal wirelength. Actually, the
increase on signal wirelength is never greater than 0.5%. Even the
total wirelength including both clock and signal net is decreased as
well. Therefore, our method indeed achieves our goal of reducing
clock net wirelength significantly with negligible impact on signal
wirelength. The CPU times for all these methods are also listed.

There are three major techniques we proposed: (1) COG: center of
gravity constraints; (2) PPN: pseudo pin and net; (3) RCC: register
cluster contraction. Therefore, the results in Table 3 are from
COG+PPN+RCC. In order to see the effect of these techniques
separately, we show the clock wirelength change from COG,
COG+PPN and COG+RCC with respect to the result of [9] in Table
4. For F1 and F2, which have large proportion of registers, the COG
technique alone is not adequate and PPN is very necessary. For the
other benchmarks, COG alone can make significant improvement as
the number of registers is relatively small. In all of these cases, RCC
plays an auxiliary role for further improvement.

Our register navigation techniques are integrated with a timing
driven placer [11]. The maximum critical path delay from [11] and
our method on prescribed skew and zero skew design are shown in
Table 5. We can see that our register navigation techniques can
retain timing performance in the placement.

5. CONCLUSIONS
Clock network minimization can alleviate the power and variation
problem. Distinguished from previous works which are mostly on
clock routing, we propose to reduce clock network wirelength by
navigating register locations in cell placement. Several techniques
are proposed to solve the conflict between clock network
minimization and traditional placement goals. Experimental results
on benchmark circuits show that our techniques can reduce clock
network wirelength for both zero and prescribed skew designs
remarkably with negligible increase on signal wirelength and critical
path delay.

6. ACKNOWLEDGMENTS
This work is supported by the National Natural Science Foundation
of China (NSFC) 60476014 and 90407005, the Specialized
Research Fund for the Doctoral Program of Higher Education:
SRFDP-20020003008, and the Hi-Tech Research & Development

(863) Program of China 2004AA1Z1460. This work is also partially
supported by DAC Graduate Scholarship and SRC under contract
2004-TJ-1205.

7. REFERENCES
[1] D. E. Duate, N. Vijaykrishnan and M. J. Irwin, “A clock

power model to evaluate impact of architectural and
technology optimization,” in IEEE TVLSI, 10(6): 844-855,
Dec. 2002.

[2] S. Zhao, K. Roy and C.-K. Koh, “Estimation of inductive and
resistive switching noise on power supply network in deep
sub-micron CMOS circuits,” in Proc. IEEE ICCD, pp. 65-72,
2000.

[3] S. Zanella, A. Nardi, A. Neviani, M. Quarantelli, S. Saxena
and C. Guardiani, “Analysis of the impact of process
variations on clock skew,” in IEEE Transactions on
Semiconductor Manufacturing, 13(4): 401-407, Nov. 2000.

[4] T.-H. Chao, Y.-C. Hsu, J.-M. Ho, K. D. Boese and A. B.
Kahng, “Zero skew clock routing with minimum wirelength,”
in IEEE Transactions on Circuits & Systems II: Analog &
Digital Signal Processing, 39 (11): 799-814, Nov. 1992.

[5] J. Cong, A. B. Kahng, C.-K. Koh and C.-W. A. Tsao,
“Bounded-skew clock and Steiner routing,” in ACM
TODAES, 3(3): 341-388, Jul. 1998.

[6] R. Chaturvedi and J. Hu, “A simple yet effective merging
scheme for prescribed-skew clock routing,” in Proc. IEEE
ICCD, pp. 282-287, 2003.

[7] C.-W. A. Tsao and C.-K. Koh, “UST/DME: a clock tree
router for general skew constraints,” in Proc. IEEE/ACM
ICCAD, pp. 400 – 405, 2000.

[8] R. B. Deokar and S. S. Sapatnekar, “A graph-theoretic
approach to clock skew optimization”, in Proc. IEEE ISCAS,
pp.1.407- 1.410, 1994.

[9] J. M. Kleinhans, G. Sigl, F. M. Johannes and K. J. Antreich,
“GORDIAN: VLSI placement by quadratic programming and
slicing optimization,” in IEEE TCAD, 10(3): 356-365, Mar.
1991.

[10] M. Wang and M. Sarrafzadeh, “Congestion minimization
during placement,” in Proc. ACM ISPD, pp. 145- 150, 1999.

[11] W. Hou, X. Hong, W. Wu and Y. Cai, “A path-based timing-
driven quadratic placement algorithm,” in Proc. IEEE/ACM
ASP-DAC, pp.745-748, 2003.

[12] Y. Liu, X. Hong, Y. Cai, W. Wu, “CEP: A clock-driven ECO
placement algorithm for standard-cell layout,” in Proc.
International Conference on ASIC, pp. 118-121, 2001.

[13] N. Venkateswaran and D. Bhatia, “Clock-skew constrained
placement for row based designs,” in Proc. IEEE ICCD, pp.
219-220, 1998.

[14] B. Kernighan and S. Lin. “An Efficient Heuristic Procedure
for Partitioning of Electrical Circuits”. Bell System Technical
Journal, pp. 291-307, 1970.

[15] A. E. Dunlop and B. W. Kernighan, “A procedure for
placement of standard-cell VLSI circuits,” IEEE TCAD, vol.
CAD-4, pp. 92-98, Jan. 1985.

[16] N. Viswanathan and C.-N Chu, “FastPlace: Efficient
Analytical Placement using Cell Shifting, Iterative Local
Refinement and a Hybrid Net Model,” in Proc. ACM ISPD,
pp. 26- 33, 2004.

 181

Table 2. The conventional wirelength-driven placement [9] results.

Prescribed skew Zero skew Test-
case Clock WL Signal WL Clock WL Signal WL

CPU
(sec)

Test 12540 704416 11192 704416 18
Te2 21930 1422462 21666 1422462 36
F1 79372 2387391 80568 2387391 31
Te4 54366 3188446 47766 3188446 80
F3 487833 10904591 434399 10904591 347

Table 3. Our clock-driven placement results.
Prescribed skew Zero skew Test-

case Clock
WL

Clock WL
change

Signal
WL

CPU
(sec)

Clock WL Clock WL
change

Signal
WL

CPU
(sec)

Test 8439 -32.7% 704467 23 8936 -20.1% 704431 20
Te2 16945 -22.7% 1425685 58 16385 -24.4% 1425879 42
F1 66416 -16.3% 2389333 224 67562 -16.1% 2389177 31
Te4 38262 -29.6% 3189004 110 39987 -16.3% 3188450 89
F3 406173 -16.7% 10918332 1448 363108 -16.4% 10918478 403

Average signal WL change 0.091% Average signal WL change 0.089%
Average total WL change -0.47% Average total WL change -0.32%

Table 4. The clock wirelength change of only COG, COG + PPN and COG + RCC.

Table 5. The timing-driven placement results.
Maximum critical path delay (ns) CPU (sec) Test-

case Timing-
driven [11]

Our prescribed
skew

Our zero skew Timing-
driven [11]

Our prescribed
skew

 Our zero skew

Test 1.06 1.07 1.07 83 131 129
Te2 1.67 1.68 1.67 191 293 224
F1 2.65 2.65 2.65 99 335 121
Te4 0.75 0.77 0.76 451 622 537
F3 6.48 6.48 6.49 1681 3031 1774

COG COG + PPN COG + RCC Test-
case P-skew Zero skew P-skew Zero skew P-skew Zero skew
Test -22.5% -16.1% -27.2% -18.0% -24.2% -17.3%
Te2 -19.4% -16.8% -24.3% -23.0% -21.9% -17.4%
F1 -2.0% -2.2% -12.8% -11.4% -4.2% -4.8%
Te4 -19.1% -13.1% -29.2% -15.6% -22.9% -13.9%
F3 -2.4% -2.7% -12.9% -15.9% -4.3% -4.4%

