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Abstract 

We performed GWAS on 2514 complex traits from the UK Biobank using a linear mixed 

model, identifying 40,620 independent significant associations (p<5x10
-8

). We estimate that 

winner’s curse incurs substantial overestimation of effect sizes in a mean of 35% of 

discovered associations per trait. We use these results to estimate that the polygenicity of 

most complex traits is below 10000 common causal variants. We evaluated the impact of 

winner’s curse on causal effect estimation and hypothesis testing in Mendelian randomization 

analyses. We show that winner’s curse substantially amplifies the magnitude of weak 

instrument bias, though any inflation of false discovery rates tends to be low or modest. We 

designed a process of pseudo-replication within the UK Biobank data to generate GWAS 
estimates that minimise bias in MR studies using these data. Our resource is integrated into 

the OpenGWAS platform and enables a convenient framework for researchers to minimise 

bias or maximise precision of causal effect estimates. 

Introduction 

Genome-wide association studies (GWAS) are a powerful tool to identify associations 

between traits of interest and genetic variants. The rapid growth in genotyped samples, partly 

due to the emergence of large national biobanks, enables well powered causal inference via 
Mendelian randomization (MR)

1,2
. MR represents a statistical framework for estimating the 

causal effect of one phenotype (henceforth the ‘exposure’) on another (henceforth the 

‘outcome’), which reduces the potential for biases that often influence observational 

associations due to factors such as confounding or reverse causation
3
. This is achieved by 

using results from GWAS to identify genetic variants that are robustly associated with the 

exposure, to use as instrumental variables. However, there are a number of biases that can 

affect MR estimates that have been widely documented
4
. In this paper we focus on weak 

instrument bias in the context of MR performed on GWAS summary level data. Several 

factors relating to the design of an MR study contribute to the extent to which weak 
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instrument bias manifests, and here we attempt to generate recommendations for addressing 

this issue in practice along with an extensive GWAS summary data resource based on the UK 
Biobank. 

 

The problem of weak instruments for MR studies has been described previously
5–8

. MR is 
predicated on determining the relationship between exposure and outcome through the lens of 

only the known genetic factors for the exposure, which typically represent a small fraction of 

the total variance of the phenotype, though this is a fraction of the variance which is less 

susceptible to confounding and reverse causation. When the core assumptions are met, the 

difference in the outcome across values of the genotype (instrument) can be ascribed to 

differences in the exposure. However, if the instrument-exposure association is weak, then a 

fraction of the observed association is likely to be due to chance associations with 

confounding factors. The weaker the instrument-exposure association, the larger the fraction 

of the error term from the SNP-exposure estimation that correlates with confounders. The 
consequence of this phenomenon is that MR associations obtained using weak instruments 

will be biased. In the case that the exposure and outcome effects are estimated in a single (i.e. 

fully overlapping) sample, the bias will be in the direction of the (confounded) observational 
association. When SNP-exposure and SNP-outcome estimates are obtained from two non-

overlapping samples, the bias is in the direction of the null. Partial sample overlap will lead 

to an estimate that lies between these two extremes. Weak instrument bias is conceptually 
similar to regression dilution bias: in the single sample setting due to non-differential 

measurement error and in the two sample setting due to classical measurement error
9,10

. Since 

the latter bias is always conservative, studies often go to substantial lengths to avoid any 

sample overlap between the exposure and outcome
8
. However, limiting analyses to studies 

with no sample overlap discards data, hence reducing statistical power. 

 

Navigating the issue of weak instrument bias in practice requires two further elements that 

have not previously been considered: the impact of winner’s curse of GWAS estimates on the 

bias, and whether the bias impacts false discovery rates. Winner’s curse
11

 in the GWAS 

context describes an ascertainment bias in which the true genetic effect of GWAS 

‘significant’ SNPs are on average smaller than the GWAS estimated effect, especially when a 

strict significance threshold is applied. Despite there being a clear theoretical basis 

underpinning weak instrument bias, it is tempting to dismiss the issue in the GWAS context 

because strict significance thresholds are typically employed when selecting instruments. For 
example, a p-value of 5x10

-8
 relates to an F value of approximately 29, which is much larger 

than the threshold traditionally used to determine a weak instrument of F > 10.  An F-statistic 

of 10 approximately means that the bias due to weak instruments is no more than 10% of the 
confounded observational bias in a one-sample setting. This relationship grows in complexity 

when considering the influence of winner’s curse on the perceived strength of an instrument 

from GWAS. Under a polygenic architecture of complex traits, a large fraction of effects may 
be too weak to surpass strict thresholds, but repeated sampling across many true small effects 

means that some will be overestimated to a sufficient extent that they surpass the threshold. 

The simplest result of this process is that the effect of genotype on exposure may be 

overestimated and therefore the causal effect of exposure on outcome in turn 

underestimated
12

. Supplementary figure 1 shows the distribution of F-statistics across 

GWAS in the OpenGWAS database
13

 for the significant associations using the p-value 

threshold of 5x10
-8

. The mass of associations close to the threshold suggests that there is 

potential for substantial winner’s curse bias amongst the set of instruments routinely obtained 

from GWAS and used in MR, and that many apparently strong instruments may in fact be 
weak. 
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In this study, we use simulations to demonstrate that weak instrument bias grows 
dramatically in the presence of winner’s curse, and then explore one, two and three sample 

study designs for controlling weak instrument bias in two-sample MR. We go on to generate 

GWAS summary data for 2514 traits in the UK Biobank, and additionally make available 
split-sample discovery and replication versions of these GWASs for use in MR studies. We 

use these resources to estimate the extent of winner’s curse in practice, and implications for 

trait polygenicity. Finally, we explore empirically the impacts of different sample study 

designs on weak instrument bias and corresponding power and false discovery rates using 

these GWAS summary datasets. 

Results 

Winner’s curse substantially exacerbates weak instrument bias 

Simulations mimicking real GWAS studies were conducted in order to estimate weak 

instrument bias in MR as a function of sample overlap in the presence of the winner’s curse. 
We estimated SNP effects on the exposure and outcome using the Inverse Variance 

Weighting (IVW) according to the schematic diagram shown in Supplementary Figure 2. 

Figure 1A shows the bias for all instruments and for varied magnitudes of confounding. As 
expected, the direction of the bias is towards null when exposure and outcome samples are 

independent, and towards the observed (confounded) estimate when there is complete sample 

overlap. Amongst these simulations the largest bias appears when the set of instruments are 
weakest and the confounding effect is largest. For example, when there is complete overlap 

between the discovery and the outcome datasets, our simulated scenario with the weakest 

instrument and largest confounding effect overestimated the true causal effect by 30%. 

 

We then expanded the simulations to introduce winner’s curse, where only the SNPs that pass 

the significance threshold for p < 5x10
-8

 were selected as instruments. Figure 1B illustrates 

that this form of instrument selection dramatically amplifies the weak instrument bias. For 

example, in our full sample overlap scenario where instruments are weakest and the 

confounding effect is largest, the percentage bias rises to being 280% larger than the true 
causal effect. Given conventional GWAS and two-sample MR current practice, it is 

impossible for weak instruments to not suffer from winner’s curse as the standard 

significance threshold for instrument selection corresponds to a high F-value. 

Managing bias through choice of study samples  

We next used simulations to explore sampling and analytical strategies for overcoming the 
weak instrument bias issues in the context of a summary-data based MR analysis. We define 

three potential data sources to generate a summary-MR dataset: the exposure discovery data 

source D for discovering exposure instruments; an exposure replication data source “R” that 

shares no sample overlap with “D”, from which discovery effects are re-estimated to 

overcome winner’s curse; and the outcome data source “Out”, from which the (exposure) 

instrument effects on the outcome trait are estimated. The samples used to generate GWAS 

outcome estimates could overlap with the samples used in the discovery and/or replication 

data sources. We simulated (a) full sample overlap of D and Out, (b) full sample overlap of R 

and Out, (c) partial sample overlap of both D and R with Out, (d) no sample overlap of either 
D and R with Out and (e) direct use of D with no replication. 

 

We initially ran the simulations in the unrealistic scenario, where no significance threshold 
was imposed and no winner’s curse occurred since all the instruments are known. Figure 2A 

and Supplementary figure 3A shows that across a range of scenarios the bias in the MR 
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estimate tends to be modest. Next, we introduced winner’s curse into this analysis by 

applying a significance threshold for instrument selection. Figure 2B and Supplementary 

figure 3B demonstrates that the level of bias in the MR estimate was dependent upon the 

sampling strategy and the manner in which winner’s curse was handled. The theoretically 

ideal scenario is where winner’s curse is eliminated by re-estimating the discovered 
instrument-exposure effects in an independent sample, and the SNP-outcome estimates come 

from a third independent sample (scenario d above)
14

. Our simulations confirm that for this 

scenario the MR estimators are unbiased. A strategy that is used commonly in practice is to 

use discovery SNP-exposure effect estimates without replication, and to allow sample 

overlap between the discovery and outcome data sources. In this scenario the bias of the MR 

estimate occurs in the direction of the observational association and is substantially 

magnified in comparison to the case where there is no winner’s curse. This bias in MR only 

occurs if the observational association is biased by confounding. Correspondingly, when 

there is no overlap between the discovery and outcome data source samples, the bias is large 
but in the direction of the null hypothesis. 

 

The pattern of bias changes when winner’s curse correction is introduced through the use of 
independent replication to re-estimate the SNP-exposure effects. In the case that the SNP-

outcome association is estimated using samples with full overlap with the original instrument 

discovery data source (scenario a), bias in the MR estimate persists. However, in the case that 
the SNP-outcome association is estimated in a data source with samples overlapping with the 

replication data source (scenario b), bias of the MR estimates is minimised to be very similar 

to the three sample scenario despite requiring only two samples. In addition to using the raw 

replication estimates, we can also attempt to improve their precision by combining with the 

discovery associations using the Uniformly Minimum Variance Conditionally Unbiased 

Estimator (UMVCUE)
15,16

. We note that either approach provides comparable results. 

 

An issue pertaining to weak instrument bias which is seldom investigated is the impact on 

hypothesis testing, and in particular, whether the false discovery rate is elevated due to the 

bias. Figure 3 demonstrates that across all scenarios the false discovery rate is relatively 

constant, despite the large disparities in the level of bias, though. The two sample scenario in 

which outcome samples overlap with the replication (scenario b) approximates the ideal three 

sample scenario in terms of hypothesis testing (scenario e). Performing this two sample 

scenario in both directions (e.g. alternating data sources A and B for the exposure and 
outcome), and meta-analysing the results, gives rise to substantially improved power without 

increasing false discovery rates.  

 
In summary, winner’s curse magnifies weak instrument bias. Adjusting for winner’s curse 

with an independent replication dataset does not solve the weak instrument problem when 

there is substantial sample overlap between the discovery and the outcome samples. Any 
overlap between replication and outcome samples has a small impact on bias, and the impact 

on the false discovery rate of most weak instrument bias scenarios appears to be minimal. 

A resource of GWAS summary data from the UK Biobank 

We performed GWAS on 2514 heritable traits measured in the UK biobank using a linear 

mixed model on 460k European samples. After strict quality control we identified at least one 

significant genetic association (p < 5x10
-8

) for 1131 traits, and summing across all traits 

40,612 independent (clumping R
2
 < 0.001) associations overall, involving 22,181 unique 

variants.  
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Given that a major use of these summary statistics will be for MR analyses, in which the 

exposure and outcome estimates could be obtained from amongst these results, our 
simulations indicate that the resource suffers from two limitations. First, MR estimates 

amongst these UKB GWAS will suffer from both winner’s curse and sample overlap, 

meaning that the weak instrument bias in the direction of the observational association will 
be magnified. Second, if a dataset from this resource is analysed (e.g. as the exposure) with 

an outcome dataset obtained from non-overlapping samples, the winner’s curse will magnify 

any bias that arises in the direction of the null. Therefore we re-generated GWAS summary 

data for these traits, dividing the samples into two sets and generating two new sets of 

summary statistics for each trait. These data enable MR analyses resembling scenario b 

described above.  

Optimising discovery/replication sample splits for MR analysis 

A number of factors need to be considered in determining the proportion by which to split the 
samples. We conducted simulations that showed that the optimal split depends on a) whether 

power or bias are being optimised and b) the genetic architecture of the traits. For traits with 

a high heritability, our simulations showed that the power of an MR analysis was maximised 
when the exposure discovery sample was smaller than the exposure replication sample 

(Figure 4A), though this relationship was reversed for traits with a low heritability and was 

conditional on at least one instrument being discovered. Weak instrument bias generally 
reduced as the exposure replication sample grew larger (Figure 4B). By contrast, the number 

of instruments discovered increased almost linearly as the fraction of the sample used for the 

exposure discovery grew larger (Figure 4C). Selecting a single splitting proportion across all 

traits is practically most advantageous, because then any combination of traits can guarantee 

complete sample independence between the discovery and outcome datasets. Hence we 

determined that splitting the UK Biobank sample into two sets of 50% each would provide 

the most flexibility and our simulations indicate that this does not incur major statistical 

disadvantages. Researchers performing specific analyses may wish to determine the sample 

split based on the heritabilities of the traits under their consideration. 

Analysis of winner’s curse in the UK Biobank 

We split the 460k European samples into two equally sized random subsamples (A and B), 
and re-analysed each of the 2514 UKBB traits within each subsample. We found at least one 

significant genetic association (p < 5x10
-8

) in either the A or B subsample for 590 traits. 

There was a median of 3 significant associations amongst traits with at least one association. 
In total 13,673 and 13,723 independent associations were discovered in subsamples A and B, 

respectively. Amongst these instruments we identified 681 as being ‘weak’, defined as 

having an association at p < 5x10
-8

 in one subsample but having a replication F value < 10 in 

the other subsample. However, 2589 instruments had substantially overestimated effect 

estimates in which the replication estimate was lower than the 2.5% confidence interval of 

the discovery estimate. By this definition, 14% of traits had only over-estimated genetic 

associations. The mean proportion of instruments being substantially overestimates per trait 

was 35% (median=23%). 

 

We next conducted simulations to contrast our empirical estimates of winner’s curse against 

expectations for a range of genetic architectures and sample sizes. Under polygenic 

architectures, our results indicate that the fraction of detected variants that are weak or 

overestimated decreases as the number of discovered variants increase (Figure 5A), 

suggesting that the problem of weak instrument bias will likely reduce as GWAS sample 
sizes continue to grow because the fraction of instruments that are substantially 

overestimated due to winner’s curse will shrink.  
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Next we used these observations to infer the polygenicity of the analysed traits, by 
superimposing the UK Biobank results against a range of simulation scenarios. We found that 

the observed pattern of winner’s curse in the empirical data for the majority of traits is 

consistent with scenarios in which fewer than 10000 causal variants contribute to the trait 
(Figure 5B). 

Empirical analysis of weak instrument bias in the UK Biobank 

To examine the extent to which weak instrument bias, winner’s curse and sample overlap 

influence MR results empirically, we performed pairwise MR analysis of all 2514 traits 

across a range of different sample configurations using the GWAS summary data generated 

for these traits. Results described here are based on the IVW method, but similar trends are 

seen for other summary-based MR methods such as the weighted median, weighted mode or 

Egger regression. We conducted the MR analyses in the sample configurations described in 
Table 1. 

 

We use configuration 1A/1B, which has no winner’s curse and no discovery-outcome sample 
overlap, as the baseline in the comparisons that follow. We observed that introducing only 

winner’s curse (configuration 2A/2B) or only sample overlap between the instrument 

discovery and outcome datasets (configuration 3A/3B) induced a moderate bias (Pearson 
correlation of effect sizes versus configuration (1A/1B) of r = 0.79 and 0.76, respectively). 

However, the joint introduction of winner’s curse and sample overlap (configuration 4A/4B) 

led to a more magnified bias (r = 0.43) (Figure 6). Most traits analysed here contain a 

mixture of stronger and weaker instruments, with most instruments being strong. To check if 

the results also hold when all the instruments are weaker, we performed the comparisons 

against configuration 1A/1B again but using MR analyses with only weak instruments 

(Supplementary figure 4). We found that the bias is exacerbated when only weaker 

instruments are used (e.g. the joint introduction of winner’s curse and sample overlap 

(configuration 4A/4B) further magnified the bias, r = 0.1). 
 

By contrast, the test statistics were much more strongly related across the different scenarios 

(including when only weak instruments were used). Of the associations in configuration 
1A/1B with p > 0.05, only 5.8% were found to have p < 0.05 in configuration 4A/4B, where 

there is both winner’s curse and discovery-outcome sample overlap, suggesting a minimal 
increase in FDR. Similarly, of the associations in configuration 1A/1B with p-values < 0.05, 

only 6.5% of those in configuration 4A/4B returned p > 0.05, indicating relatively minimal 

impact on power. 
 

Finally, we looked at the traits in UK Biobank that could likely give a high winner’s curse 

bias and performed the analysis in the three following ways: a. full MR, b. using only half of 
the randomly split samples for the discovery and outcome (corresponds to both sample 

overlap and winner's curse) and c. using the replication dataset that overlaps with the 

outcome (no winner’s curse, sample overlap only with the replication). The results of MR for 

causal effect of duration of walks on age at death are summarised in Table 1. Our analysis 

suggests that applying the approach proposed in this paper of using the replication and the 

outcome from the same dataset with no overlap with the discovery dataset gives a different 

result compared with full MR and the sample overlap and winner's curse scenarios. In 

particular, the proposed method gives higher association estimate as well as a significant p-

value, whereas the worst case scenario of the full sample overlap and winner’s curse leads to 
a smaller estimate and a non-significant p-value. 
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Discussion 

MR has proven to be a powerful tool for causal inference
17,18

. However, uncertainty remains 
around the best approaches to minimise bias due to weak instruments. In particular, the 

impact of weak instrument bias on MR results in the presence of winner’s curse has been 

neglected, as has the relevance of weak instrument bias to the performance of hypothesis 
testing. We have examined these using both simulations and empirical analysis, and 

generated a resource of GWAS summary data that offers flexibility in analysis. 

Much attention is given to methodological advances that attempt to minimise bias in MR 

analysis, however it is worth pausing to consider what features of the approach are of most 

practical importance. In practice, for binary outcomes the magnitude of the effect size often 

matters less than being able to correctly declare the presence or absence of a causal 

relationship and its orientation (i.e. be valid under the null hypothesis). In this study, we have 

illustrated that weak instrument bias can be considerably larger than has previously been 

thought, due to the presence of winner’s curse enabling weak instruments to appear to be 
much stronger than they truly are. 

 

Weak instrument bias has been conceptualised to take place due to the sampling error in the 
variance estimated in the exposure by the instrument. In the case that there is sample overlap, 

this sampling error will be correlated with confounders, thus biasing the two-sample MR 

estimate in the direction of the observational association. In the case of no sample overlap it 
will represent random noise, thus biasing the two-sample MR estimate in the direction of the 

null. One explanation for why winner’s curse magnifies weak instrument bias is that 

significant associations are ascertained to have larger sampling variance (i.e. due to smaller 

effect sizes or lower minor allele frequency), and therefore the fraction of the variance that is 

correlated with confounders (in cases where there is sample overlap) or random noise (in 

cases where there is no sample overlap) will be maximised. 

We have developed GWAS summary data from different sample configurations that trade off 

the impact of weak instrument bias for statistical power, giving flexibility for analysts to 

determine what is of most relevance to their study. It also provides a convenient framework 
for sensitivity analyses of the potential impact of weak instrument bias. Analyses can be 

performed using the summary data in a one-sample setting which will maximise the statistical 

power (due to larger discovery sample sizes finding more instruments, and larger outcome 
sample sizes improving the precision of the MR estimate), though the combined impacts of 

winner’s curse, weak instrument bias and sample overlap will likely magnify the bias in the 

direction of the observational association in this case. We have provided a resource of genetic 
associations in subsamples in A and B of the UK Biobank which can be used for analysis of 

traits specifically within the UK Biobank, which is likely to substantially reduce bias as long 
as the outcome dataset is independent of the discovery dataset. Alternatively, subsamples A 

and B can be used to define unbiased SNP-exposure effect estimates to be used in a three-

sample MR analysis, where an outcome trait is obtained from an independent set of samples. 
Another possibility that might be promising, is to meta-analyse two scenarios from Table 1, 

namely 1A and 1B, which correspond to the scenarios where there is a full overlap between 

the exposure replication and outcome datasets, in two independent configurations, 

respectively. Our simulations suggest an increase in power for this case (Figure 3). 

 

Extant GWAS summary data likely harbour relatively large fractions of effect estimates that 

are substantially overestimated, though we predict that future GWAS will return a 

diminishing impact of winner’s curse in effect estimate bias as sample sizes continue to grow. 
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Our simulations show that in a polygenic model, as the number of detected variants in a 

GWAS increases, the fraction that are substantially overestimated reduces (Figure 5). In 
particular, we observe a the contribution of weak instruments to GWAS significant 

associations to approach zero in GWASs with sufficient statistical power to detect thousands 

of independent variants. Therefore, dividing future large biobanks into discovery and 
replication datasets may not be warranted if the impact of winner’s curse is low. However, a 

resurgence in the interests of using family data to avoid demographic and familial structural 

biases in GWAS does arrest the progress made in improving power with larger population-

based analyses. For these smaller studies, winner’s curse and weak instrument bias will 

remain of relevance for a longer period of time. While weak instrument bias might reduce as 

sample sizes increase, discovery of more instruments may introduce other biases relating to 

mechanisms such as horizontal pleiotropy or trait-driven selection bias. 

 

An alternative approach could be combining multiple SNPs into a single instrument and use 
this multi SNP instrument for the analysis. However, the IVW and PRS estimates are largely 

equal, suggesting they are likely to be similarly impacted by the winner’s curse. Performing a 

one-sample MR analysis using CUE and SNPs selected from an external sample could help
7
. 

In this case, discovery SNPs would be taken from an external GWAS study and used in an 

individual-level one-sample MR analysis in UK Biobank. However, this suggests that one 

needs to have an additional external GWAS source as well as access to the individual-level 
UKBB data. To note, the GWAS summary results we generated in this work, freely available 

in OpenGWAS, enables other to conduct MR analyses using our improved GWAS estimates 

with summary data alone.  

 

A number of limitations exist in the current study. We have not evaluated the extent of 

winner’s curse for the complete sample GWASs because of a lack of external data to re-

estimate discovery effect sizes, though our simulations indicate that the sample size will need 

to increase more before bias due to winner’s curse plateaus. Rather than performing GWAS 

of all 2514 traits on subsample A and subsample B, we only re-estimated the 40,612 

complete sample discovery associations in the A and B subsamples in order to reduce 

computational burden. The consequence of this is that we will not identify any particularly 

weak instruments that were chance significant in half the sample size and not in the full 

sample. The GWAS analyses were performed on disease traits which have elevated false 

discovery rates in BOLT-LMM when case numbers are low. While other methods have 
emerged that address this problem, we have instead aggressively filtered out any variants that 

have a minor allele count < 90, and have only analysed traits with at least 1000 cases 

(Supplementary Note 1). We conducted our weak instrument bias simulations to explore the 
extent to which winner’s curse affects the magnitude of bias. However, our simulations 

depicted simple traits with relatively small numbers of variants, and they do not reveal what 

the relative bias would be expected for large scale GWAS on polygenic traits as this would 
be computationally prohibitive. Instead, we conducted empirical analyses to compare the 

difference in effects and hypothesis testing results across different sampling strategies. In 

these analyses we do not have knowledge of the truth, and so have limited our conclusions to 

the context of magnitude of difference relative to the best available sample configuration. 

Finally, we observed that UMVCUE made minimal improvements in analysis over solely 

using the replication dataset to obtain unbiased instrument effect estimates. This is most 

likely due to the discovery/replication split being 50%, and the value of UMVCUE is likely 

to be greater when the replication sample is smaller
15,16

. 
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Overall, we have shown that weak instrument bias is substantially magnified by winner’s 

curse, but is unlikely to introduce major problems with hypothesis testing. We have made 
available GWAS summary data on 2514 traits with different sample configurations through 

OpenGWAS. We recommend using the full sample data to maximise power in main analyses 

and using the split sample data for sensitivity analyses, to evaluate whether the interpretation 
of the results might change when reducing bias from the winner’s curse. 

Methods 

Weak instrument, winner’s curse and sample overlap simulations 

Simulations were conducted to evaluate the extent to which instrument strength attenuated 

the bias in MR due to sample overlap. Simulation parameters were identical to those in 

Burgess et al (2016)
8
 except we also included larger SNP effect sizes that will produce F 

statistics that are more in line with those seen in GWAS. Simulations were conducted in two 

ways: 

1. 20 instruments with the same simulated effect size were all used to obtain the IVW estimate 

(all) 

2. Only those instruments among the 20 simulated that had p < 5x10
-8

 were used to obtain 

IVW estimate (sig), to mimic the standard procedure used in GWAS 

The simulations were conducted with different confounder effects and with causal effects of 

x on y 0.2. The simulations included r
2

gx ∈ {0.04,0.08,...,0.24} meaning that some 
simulations had all weak instruments weak and the others all strong. We simulated x as � � ���� � ���� � �� 

Where G is the matrix of genotypes, standardised to column means of zero and variance 1, ��� is a vector effects whereby each element j is  

���,� � �	��� /20 

The confounder �  ��0,1� has effect b�� � ��√0.4, 0,√0.4� and 

e�  N�0, ��1 � r	�� � b���  !. We constructed y to be a function of causal influences from x 

and u as " � ���
 � ���
 � �
 

where ��
 � �0, √0.2�, b�
 � ��√0.4, 0, √0.4�, and �
  ��0, ��1 � ��
� � ����  !. 

We varied the proportion of samples overlapping to estimate the ���#  and ��
#  associations 

ranging from 0 to 100% overlap, and used the association estimates to obtain estimates of ��
#  

using the inverse variance weighted (IVW) meta-analysis of Wald ratios when multiple 

instruments were significant at p < 5x10
-8

 (or all were being used regardless of significance), 
or the Wald ratio if only a single instrument was significant. Each scenario was repeated 

10000 times. The simulations used the simulateGP R package 

https://github.com/explodecomputer/simulateGP/.  

Sampling strategy simulations 

We next conducted similar simulations but included the availability of an independent 

replication dataset for the SNP-exposure estimates. The parameters were identical to those 

used in the previous simulations except we only used a value of 	��� � 0.8. We simulated 

3000 individuals in the discovery sample for the SNP-exposure estimates, 3000 independent 
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samples in the replication sample for the SNP-exposure estimates, and 3000 individuals for 

the SNP-outcome associations. The SNP outcome samples were either drawn from an 
independent sample, the same sample as the exposure discovery, the same sample as the 

exposure replication, or an equal mixture of the exposure discovery and replication samples. 

The SNP-exposure estimates were taken either from the discovery sample, the replication 
sample, or by combining them using the uniformly minimum variance conditionally unbiased 

estimator (UMVCUE)
16

. 

Complete genome-wide associate studies 

Genotype data from UK Biobank
19

 were quality controlled according to the protocol outlined 

in
20

. Briefly, this involved removing individuals who did not genetically cluster in the 

European subsample using an in house k-means clustering algorithm and removing genetic 

variants that had low minor allele frequencies and imputation quality scores. The final dataset 

contained 463,005 individuals (this number excludes standard exclusions such as sex 
mismatch, sex chromosome aneuploidy, outliers in heterozygosity and missingness rates – 

1812 individuals but at the same time includes related individuals) and 12,370,749 SNPs. 

We initially identified approximately 20000 binary, continuous or ordinal traits using the 
PHEASANT parsing pipeline. We then filtered this set to remove any disease traits that had 

fewer than 1000 cases amongst the retained individuals, resulting in 2514 traits. 

GWAS was performed for each trait separately using the BOLT-LMM (version 2.3.2) 
software. We included 143,006 model SNPs to capture the polygenic background effect and 

performed strict LD clumping (window size = 10Mb and LD r2 = 0.001) on the resultant 

GWAS summary statistics to obtain a set of independent instruments for subsequent MR 

analysis. Sex and genotyping array were included as covariates. The GWAS analyses were 

performed on disease traits which have elevated false discovery rates in BOLT-LMM when 

case numbers are low. While other methods have emerged that address this problem, we have 

instead aggressively filtered out any variants that have a minor allele count < 90.  

Sample split simulations 

We conducted simulations using a three-sample MR scenario in which there is a SNP-

exposure discovery dataset, SNP-exposure replication dataset, and SNP-outcome dataset, 

each with non-overlapping samples. For computational efficiency we simulated summary 

statistics directly for % � �5000, 10000� causal variants. The SNP-exposure effects were 

sampled as 

β��,�  � )0, *2+��1 � +� ,� σ�
�. 

where σ�
� � /�/%, assuming that the variance of the exposure is 1 and S is the selection 

coefficient. To obtain the underlying 0�
,� effects we multiplied the SNP-exposure effects by 

the causal effect β�
 � 0.2 for all simulations. The expected standard errors for each effect 

were calculated as 

1��β��,� � �2 � 1��34	�"� � 2+��1 � +� β��,�
�  

�2 � 2��2 � 1� *2+��1 � +� ,  

again setting var(y) = 1 for all simulations, and where +� is the allele frequency of SNP j 

sampled from a uniform distribution. We then sampled effect estimates for each of the three 
samples using 

β.,�
#  � *β.,� , 1��β.,� , 

We split a total sample size of 450000 into discovery and replication datasets (ranging from 
10% discovery to 90% discovery), and used the same sample size for the outcome dataset as 

the replication dataset (though with independent draws implying no sample overlap). We 
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fixed S to be 0 in these simulations. Discovery SNP-exposure associations were defined as 

those with p < 5x10
-8

 and replicated by looking up the association in the replication SNP-
exposure dataset. MR analysis was conducted using only instruments that were significant in 

the discovery but using the replication effect estimates. Causal effect estimates were obtained 

using the Wald ratio method if only one significant SNP was available, or the IVW method if 
more than one was available.  

Discovery/replication genetic analyses 

To generate a resource for MR analyses that minimises the impact of winner’s curse and 

sample overlap, we set out to generate a set of GWAS summary statistics for each trait from 

two independent samples. The entire UK Biobank dataset that was used to generate the full 

GWASs was randomly split into subsample A and subsample B of equal sizes (the same 

samples for each trait). We then took the set of 22,181 independent full GWAS discovery 

SNPs and generated summary data for these SNPs only using BOLT-LMM, and using the 
same parameters and background SNPs as in the full GWAS analysis. We considered SNPs 

to be instruments for a trait in subsample A (B) if they had previously been identified as an 

independent hit in the full GWAS for that trait, and if they had a p-value < 5x10
-8

 in the new 
subsample A (B) analysis. This means that we only discover SNPs in the subsample that 

would have been discovered in a full GWAS, but miss SNPs that might have been discovered 

in the subsample that were absent in the full sample. This latter set of SNPs is likely to be 
extremely small, and represent very weak instruments with large winner’s curse. 

Winner’s curse simulations 

We conducted simulations to estimate the fraction of discovery instruments that are likely to 

be overestimated or weak across a range of scenarios. The simulations were conducted in the 

same manner as the sample split simulations, but generating only β�5  discovery summary 

statistics and comparing them against the true β� effects. Having simulated M causal variants, 

and selecting only those that were significant at p < 5x10
-8

, we then evaluated if the absolute 

2.5% lower confidence value was larger than the true effect size (denoting a substantially 

overestimated effect), or if the expected effect F value under no ascertainment would have 
been below 10 (denoting an ascertained weak instrument). We evaluated the following 

scenarios: 

- Sample size � � �10000, 20000, … , 500000
 

- Number of causal variants � � �500, 1000, 5000, 10000, 50000, 100000
 

- �� � �0.1,0.5,0.9
 

- � � ��1,0,1
 

And repeated each scenario 10 times.  

Mendelian randomization (MR) 

For each trait that had an instrument in either the full sample, the A subsample or the B 

subsample, we performed MR analysis of that as the exposure against all other 2514 traits. In 
some cases traits had instruments in the full sample analysis but not in either of the 

subsamples, meaning no comparison could be made. When instruments were available we 

conducted MR analyses in the sample configurations described in Table 1. Where a SNP-
exposure replication dataset was used, the instrument discovery dataset was used to select 

instruments and the SNP-exposure replication dataset was used to estimate the effect sizes, 

otherwise the discovery effect sizes were used for the SNP-exposure estimate. Two-sample 

MR was performed in R version 4.0.2 using the R package “TwoSampleMR” version 0.5.5 

and the function “mr()”. The methods used for this analysis included Wald ratio when only 
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one instrument was available, and primarily the Inverse variance weighted method when 

multiple instruments were available. Additional analyses were conducted with the weighted 
median and weighted mode estimators for cases when three or more instruments were 

available. The parameters used for the MR methods remained default. 
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Tables 

 
SAMPLE 

CONFIGURATION 

INSTRUMENT 

DISCOVERY 

SNP-

EXPOSURE 

REPLICATION 

SNP-

OUTCOME 

EFFECT 

ESTIMATE 

NOTES 

0 Full GWAS dataset None Full GWAS 

dataset 

Winner’s curse, 

complete sample 

overlap 

1A Subsample A Subsample B Subsample B No winner’s curse, 

outcome sample 

overlaps only with 

replication 

2A Subsample A None Subsample B Winner’s curse, no 

sample overlap 

3A Subsample A Subsample B Subsample A No winner’s curse, 

outcome sample 

overlaps with 

discovery 

4A Subsample A None Subsample A Winner’s curse, 

complete sample 

overlap 

1B Subsample B Subsample A Subsample A No winner’s curse, 

outcome sample 

overlaps only with 

replication 

2B Subsample B None Subsample B Winner’s curse, no 

sample overlap 

3B Subsample B Subsample A Subsample B No winner’s curse, 

outcome sample 

overlaps with 

discovery 

4B Subsample B None Subsample B Winner’s curse, 

complete sample 

overlap 

 
Table 1: Sample configurations used for empirical MR analyses using GWAS summary datasets from the UK Biobank. 
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SAMPLE 

CONFIGURATION 

INSTRUMENT 

DISCOVERY 

SNP-EXPOSURE 

REPLICATION 

SNP-OUTCOME 

EFFECT 

ESTIMATE 

NOTES 
MR for duration of walks on age at death 

beta se p-value nsnp 

0 

Full GWAS 

dataset None 

Full GWAS 

dataset 

Winner’s curse, 

complete sample 

overlap 1.1 0.33 0.00085 13 

1A Subsample A Subsample B Subsample B 

No winner’s curse, 

outcome sample 

overlaps only with 

replication 5.3 1.50 0.00046 2 

2A Subsample A None Subsample B 

Winner’s curse, no 

sample overlap 2.4 0.69 0.00044 2 

3A Subsample A Subsample B Subsample A 

No winner’s curse, 

outcome sample 

overlaps with 

discovery 2.2 1.51 0.14506 2 

4A Subsample A None Subsample A 

Winner’s curse, 

complete sample 

overlap 1.0 0.69 0.14555 2 

 
Table 2: Summary of MR analysis for age at death on duration of walks for various sample configurations. 
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Figures 

 

 

Figure 1: Weak instrument bias, winner’s curse and sample overlap. Solid horizontal line indicates the true simulated 

causal effect of 0.2 of x on y in arbitrary units. The x-axis for both graphs represents the proportion of the sample 

overlap between the samples used to estimate the SNP-exposure effect and the SNP-outcome effect. The y-axis 

represents the mean effect estimate across the simulations for that scenario. A. Simulations depicting weak instrument 

bias for different effects of confounders on y (b_uy; columns of plots, effects in arbitrary units) and mean instrument 

strength (F value; coloured lines), in which all simulated instruments were used regardless of SNP-exposure significance 

level. B. As in A, but looking only at the case of the largest confounding effect and the weakest two instruments. Colours 

here represent whether all instruments were used (as in A), or only significant associations (p-value of 5x10
-8

) were 

used, which introduces winner’s curse. Note that difference in scale of the figures in A and B. We observe that the most 

extreme bias from panel A is substantially magnified by winner’s curse in panel B. 
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Figure 2: Performance across different sample configurations. We extended the simulations in Figure 1 to allow the use 

of a replication dataset to re-estimate the SNP-exposure effects, thus avoiding winner’s curse. Panel A represents the 

scenario where all instruments were used regardless of significance level. Panel B is identical to panel A except the 

simulations only used instruments that were significantly associated with the exposure, thus introducing winner’s curse. 

The true causal effect of X on Y is 0.2 (arbitrary units). Columns of plots relate to three different magnitudes of 

confounding, with effects in arbitrary units on X and Y. The y-axis represents the mean effect estimate across the 

simulations for each scenario. Sets of bars across the x-axis represent the degree of sample overlap between the SNP-

outcome dataset and the SNP-exposure dataset. Colours of bars represent the source of the samples used for the 

estimate of the SNP-exposure association. The sample configuration schematic shows the sample origin of the SNP-

exposure and SNP-outcome effect estimates for each bar. Here, D = discovery dataset (for identifying SNPs as 

instruments); R = replication dataset (for estimating SNP-exposure effects); UMVCUE = Estimates obtained by combining 

the discovery and replication exposure estimates using the Uniformly Minimum Variance Conditionally Unbiased 

Estimator; and out_s = outcome dataset (for estimating SNP-outcome effects).  
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Figure 3: Impact of sample configurations on hypothesis testing. Using the same simulation data for significant SNPs 

from Figure 2B, the false discovery rate for null associations (x-axis) is plotted against the power of non-null associations 

(y-axis). Point shapes depict the source of the SNP-exposure effect estimates, and point colours represent the source of 

the SNP-outcome effect estimates. The outcome dataset names correspond to the ones schematically illustrated in 

Figure 2B. The two sample scenario in which outcome samples overlap with the replication (yellow squares) 

approximates the ideal three sample scenario (orange squares). Performing this two sample scenario in both directions 

(e.g. alternating datasets A and B for the exposure and outcome), and meta-analysing the results (yellow triangles) 

results in substantially improved power without increasing false discovery rates. 
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Figure 4: Sample split simulations. The relationship between SNP-exposure discovery and replication sample sizes on the 

performance of MR analysis. The x-axis represents the fraction of the sample used for instrument discovery. The y-axis 

in panel A represents the Z-score for non-null simulations (i.e. the power); in panel B the MR effect estimate, where the 

true causal effect is 0.2; and in panel C the number of discovery instruments. The number of simulated causal variants is 

depicted by point and line colours, the heritability of the trait depicted by point and line shapes. 
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Figure 5: The extent of winner’s curse in complex trait GWAS. Panel A shows the fraction of discovered effect sizes that 

are substantially overestimated on the y-axis (the 2.5% lower bound of the absolute effect estimate is larger than the 

true effect size), against sample size (x-axis). Rows of plots correspond to trait heritability (h2), columns of plots 

correspond to a coefficient representing natural selection (S), and colours represent the polygenicity. As selection gets 

more positive, heritability gets lower, and sample size gets smaller, the fraction of discovery effect estimates that are 

overestimated grows larger. Given sufficient power the fraction of discovery SNPs that are substantially overestimated 

becomes very small. Panel B takes the simulated datasets used to generate panel A and superimposes the results from 

GWAS discovery and replication analysis of 2514 traits (black points), showing that they generally follow a pattern of 

polygenicity involving 10000 causal variants or fewer.  
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Figure 6: Empirical MR analyses compared across different sample configurations. A-C show the effect estimates of the 

“no winner’s curse, no sample overlap” scenario (configuration 1 from Table 1) on the x-axis against the configurations 

2, 3, and 4 on the y-axis, respectively. Similarly, panels D-E represent the correspondence of Z-scores of configuration 1 

on the x-axis against configurations 2, 3, and 4, respectively. Scenario 1 – replication used as an exposure, no overlap 

between discovery and outcome. Scenario 2 – discovery used as an exposure, no overlap between discovery and 

outcome. Scenario 3 – replication used as an exposure, full overlap between discovery and outcome. Scenario 4 – 

discovery used as an exposure, full overlap between discovery and outcome. 
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