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The current status of lignocellulosic biomass as an invaluable resource in industry,

agriculture, and health has spurred increased interest in understanding the transcriptional
regulation of secondary cell wall (SCW) biosynthesis. The last decade of research

has revealed an extensive network of NAC, MYB and other families of transcription

factors regulating Arabidopsis SCW biosynthesis, and numerous studies have explored
SCW-related transcription factors in other dicots and monocots. Whilst the general

structure of the Arabidopsis network has been a topic of several reviews, they have not

comprehensively represented the detailed protein–DNA and protein–protein interactions
described in the literature, and an understanding of network dynamics and functionality

has not yet been achieved for SCW formation. Furthermore the methodologies employed
in studies of SCW transcriptional regulation have not received much attention, especially

in the case of non-model organisms. In this review, we have reconstructed the most

exhaustive literature-based network representations to date of SCW transcriptional
regulation in Arabidopsis. We include a manipulable Cytoscape representation of the

Arabidopsis SCW transcriptional network to aid in future studies, along with a list

of supporting literature for each documented interaction. Amongst other topics, we
discuss the various components of the network, its evolutionary conservation in plants,

putative modules and dynamic mechanisms that may influence network function, and
the approaches that have been employed in network inference. Future research should

aim to better understand network function and its response to dynamic perturbations,

whilst the development and application of genome-wide approaches such as ChIP-seq
and systems genetics are in progress for the study of SCW transcriptional regulation in

non-model organisms.
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INTRODUCTION

The bulk of plant biomass is comprised of secondary cell walls
(SCWs), consisting of a cross-linked matrix of cellulose, hemicel-
lulose and lignin biopolymers. The latter form the basic scaffold
of fibers and vessels found in angiosperm xylem. In addition to
providing mechanical support, SCWs facilitate critical biological
processes, such as water and nutrient transport, anther dehis-
cence, silique shattering, plant organ movement and response to
pathogens (Caño-Delgado et al., 2003; Mitsuda et al., 2005; Fratzl
et al., 2008; Mitsuda and Ohme-Takagi, 2008). Candidate genes
involved in the biosynthesis of SCWs have been studied in both
woody and herbaceous model species (e.g., Brown et al., 2005;
Mellerowicz and Sundberg, 2008). These structural genes are
under strict transcriptional control during xylogenesis (Hertzberg
et al., 2001; Schrader et al., 2004), highlighting the central role
of transcription factors in this regard (Du and Groover, 2010).
Understanding the regulation of SCW deposition is important
because of (1) the widespread use of lignocellulosic biomass in
pulp, paper and cellulose-derived products, (2) the potential of
second-generation biofuel feedstocks such as short-rotation hard-
woods (e.g., Populus, Eucalyptus) (Rockwood et al., 2008; Carroll

and Somerville, 2009; Hinchee et al., 2010), and (3) the role of
cell wall material in nutrition and health (Fincher, 2009; Doblin
et al., 2010; McCann and Rose, 2010). However, the challenges
to studying transcriptional regulation in non-model organisms
impede the improvement of lignocellulosic biomass for fiber, raw
cellulose and biofuels.

Considerable progress has been made in understanding
how TFs regulate SCW structural genes. To this end, vari-
ous model organisms (Arabidopsis, Oryza, Populus) (e.g., Kubo
et al., 2005; Grant et al., 2010; Zhong et al., 2011a) as well as
Zinnia and Arabidopsis (trans)differentiation systems (Fukuda
and Komamine, 1980; Oda et al., 2005) have been instrumen-
tal. In the last decade, studies in Arabidopsis in particular have
revealed the existence of an extensive transcriptional network
regulating SCW deposition in vessels, fibers, anther endothe-
cium and structures (replum, endocarp, valve margin) within
the silique (reviewed in Yamaguchi and Demura, 2010; Zhong
et al., 2010a). Whilst a considerable diversity of TF families par-
ticipate in SCW transcriptional regulation, the most prominent
families of TFs involved in this network appear to be the NAC
(NAM/ATAF/CUC) and R2R3-type MYB (MYELOBLASTOSIS)
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family proteins, both characterized by conserved N-terminal
DNA-binding domains and diverse C-termini that participate in
transcriptional regulation (Ooka et al., 2003; Dubos et al., 2010).

General structures of SCW transcriptional networks have
been illustrated in a number of reviews, based on knowledge of
Arabidopsis (Umezawa, 2009; Zhong and Ye, 2009; Caño-Delgado
et al., 2010; Yamaguchi and Demura, 2010; Zhang et al., 2010;
Zhong et al., 2010a; Wang and Dixon, 2011; Zhao and Dixon,
2011; Pimrote et al., 2012; Schuetz et al., 2013), and monocots
(Handakumbura and Hazen, 2012). A few primary research arti-
cles also depict schematic representations of the Arabidopsis SCW
network, incorporating data from Populus and limited knowledge
of Eucalyptus and Pinus SCW transcriptional networks (Zhong
et al., 2008a, 2011b; McCarthy et al., 2009). However, aside from
Umezawa (2009) who focused on the cinnamate/monolignol
pathway, these representations have not fully captured individual
protein–DNA and protein–protein interactions reported in the
literature. In addition, the regulatory dynamics of SCW transcrip-
tional regulation are poorly understood compared to network
structure (i.e., connectivity). Furthermore, the methodologies
used to generate evidence lines for SCW network reconstruction
have not been extensively reviewed. Here we comprehensively
integrate and illustrate the complexity of known protein–DNA
and protein–protein interactions in the Arabidopsis SCW tran-
scriptional network. We discuss the roles of putative regulatory
modules in the network, highlighting known and hypotheti-
cal balancing mechanisms that may influence network behav-
ior. Finally, we provide a critical review of the methodologies
currently used to infer SCW transcriptional networks and rec-
ommend approaches for increasing reliability in inferring SCW
transcriptional network structure.

VASCULAR PATTERNING AND DIFFERENTIATION

The deposition of SCWs and the initiation of programmed cell
death (Bollhöner et al., 2012) together represent the culmina-
tion of developmental signals that cue vascular tissue specification
and cell fate determination (Figure 1). This specification begins
with establishing a population of meristematic cells known as
the procambium via the combinatorial effect of hormones such
as auxin, cytokinins and brassinosteroids (BRs). The procam-
bium in turn gives rise to the primary vascular tissues (xylem,
phloem) in the shoot vascular bundles and root vasculature
(Turner et al., 2007; Caño-Delgado et al., 2010). In root and shoot
tips, a pre-procambial state is established via PIN1-mediated
polar auxin transport along files of parenchyma cells, effec-
tively channeling auxin to what will become the procambium
(Dettmer et al., 2009). In leaf veins, a preprocambial state is asso-
ciated with expression of ATHB8, which is directly activated by
the auxin response factor MP/ARF5 (reviewed in Zhang et al.,
2010). In addition to procambium specification, auxin promotes
cell division in the procambium in combination with cytokinins
(reviewed in Caño-Delgado et al., 2010). The vascular cambium,
from which all secondary xylem and phloem tissues arise during
secondary growth, develops from the procambium and interfas-
cicular parenchyma (Plomion et al., 2001; Baucher et al., 2007).
As per the convention of Dettmer et al. (2009), we generally refer
to procambiums and (secondary) vascular cambiums as vascular

FIGURE 1 | The generalized Arabidopsis SCW transcriptional

regulatory network in the light of vascular differentiation. Vascular

meristems, representing procambiums or secondary cambiums, produce

mother cells that differentiate into phloem and immature xylem tissue (gray

boxes) under the influence of transcriptional, hormonal, peptide, and

miRNA regulators. Terminal differentiation of immature xylem cells into

vessel elements and fibers is regulated by a tiered transcriptional network

regulating genes associated with secondary cell wall cellulose,

hemicellulose, programmed cell death (PCD), signaling, lignin, and genes

with unknown functions. Positive regulation is indicated by black arrows;

negative regulation is represented by red edges. Block colors represent

different biological function categories. TFs currently known to regulate

only one functional category are color-matched accordingly; orange blocks

denote regulation of a combination of functional categories. The same color

scheme is used in Additional file 1.

meristems, which are thought to be regulated in a similar, but not
identical, fashion to shoot and root apical meristems (Sanchez
et al., 2012; Milhinhos and Miguel, 2013) (Figure 1).

The establishment of xylem and phloem cell fate is influenced
by hormones, TFs, miRNAs, mobile peptides and proteoglycans
acting on nascent mother cells produced in the vascular meris-
tems (Figure 1) (see Carlsbecker and Helariutta, 2005; Du and
Groover, 2010; Zhang et al., 2010; Schuetz et al., 2013 for review).
Auxin concentrations lower than those encountered at the vas-
cular meristem promote xylem differentiation in the presence
of cytokinin (Sorce et al., 2013). In the root, xylem differen-
tiation is in contrast thought to be promoted by high auxin
concentrations, brought about by cytokinin-mediated activation
of a phosphorylation cascade in the procambium that results
in polar auxin transport toward the protoxylem (reviewed in

Frontiers in Plant Science | Plant Cell Biology August 2013 | Volume 4 | Article 325 | 2

http://www.frontiersin.org/Plant_Cell_Biology
http://www.frontiersin.org/Plant_Cell_Biology
http://www.frontiersin.org/Plant_Cell_Biology/archive


Hussey et al. Secondary cell wall transcriptional regulation

Aichinger et al., 2012). Five members of class III homeodomain
leucine zipper (HD-ZIP III) TFs, including ATHB8, IFL1/REV,
PHB, and PHV, are induced by auxin and generally promote
xylem differentiation (Zhong et al., 1997; Baima et al., 2001;
Ohashi-Ito and Fukuda, 2003; Ilegems et al., 2010; Schuetz et al.,
2013). However, some HD-ZIP III genes, such as ATHB8 and
ATHB15, appear to be antagonistic to REV in meristem forma-
tion, embryo patterning and interfascicular fiber development
(Prigge et al., 2005). For example, ATHB15 seems to negatively
affect xylem development, while miR166-mediated cleavage of
ATHB15 transcript (see below) promotes xylem differentiation
(Kim et al., 2005). Xylogen, a secreted proteoglycan, has also
been implicated in xylem specification (Motose et al., 2004), while
gibberellic acid (GA) promotes fiber elongation and general xylo-
genesis (Eriksson et al., 2000; Israelsson et al., 2003; Mauriat
and Moritz, 2009). Brassinosteroids (BRs) have been associated
with xylem differentiation in Arabidopsis, and in trans differen-
tiating Zinnia cell cultures BRs are required for the expression
of a homolog of ATHB8 (reviewed in Jung and Park, 2007).
Ethylene is essential for in vitro tracheary element (TE) differen-
tiation in cultured Zinnia cells (Pesquet and Tuominen, 2011).
In planta, ethylene is thought to diffuse from its site of syn-
thesis in maturing TEs through to the cambium (Pesquet and
Tuominen, 2011), where it promotes cell division (Love et al.,
2009).

On the opposite side of the cambium, phloem dif-
ferentiation occurs under the influence of APL, a MYB-
related TF (Bonke et al., 2003; Ilegems et al., 2010), whilst
KAN1/KAN2/KAN3/KAN4 TFs indirectly promote phloem dif-
ferentiation by repressing (pro)cambium maintenance and
restricting class III HD-ZIP TF expression through repression of
polar auxin transport (Emery et al., 2003; Izhaki and Bowman,
2007; Schuetz et al., 2013). Phloem-expressed miR165/166, which
are upregulated by SHR and SCR in roots, post-transcriptionally
inhibit HD-ZIP III genes (Tang et al., 2003; Mallory et al., 2004;
McHale and Koning, 2004; Zhong and Ye, 2004, 2007; Williams
et al., 2005; Carlsbecker et al., 2010). Ectopic xylem formation is
inhibited by a dodecapeptide ligand TDIF/CLE41/CLE44, which
is produced in the phloem and diffuses to the xylem side of the
vascular meristem (Ito et al., 2006). The peptide also co-ordinates
the orientation of cell divisions in the cambium via the percep-
tion of a peptide concentration gradient by the LRR receptor-
like kinase PXY in procambial cell membranes and induction
of WOX4 (Etchells and Turner, 2010; Hirakawa et al., 2010).
Xylem differentiation may be further suppressed in the phloem
in part by XIP1, which is related to PXY (Bryan et al., 2011)
(Figure 1).

Once xylem mother cell fate has been established and cell elon-
gation has ceased in immature xylem, SCW deposition occurs.
This is activated by the TFs VND6 and VND7 in the case of xylem
vessels, and SND1 and NST1 in fibers. These “master regulators”
initiate a SCW transcriptional network, successively activating at
least two tiers of intermediate TFs which, in addition to the mas-
ter regulators, activate the structural genes for SCW biosynthesis
(Figure 1, gray blocks). In the remainder of this review we focus
on the SCW transcriptional network and the tools available to
study its structure and function.

THE SCW TRANSCRIPTIONAL NETWORK: STRUCTURE,

EVOLUTION, AND DYNAMICS

A simplified representation of the SCW regulatory network
is shown in Figure 1, which depicts the putative positions of
associated TFs and their direct or indirect targets. We have
also reconstructed a SCW-regulating protein–DNA and protein–
protein interaction network from the Arabidopsis literature using
BioTapestry (Longabaugh et al., 2005), showing cell type contexts
where known (Figure 2). Aside from the indicated exceptions,
we represent only direct protein–DNA interactions, as eluci-
dated using yeast one-hybrid, electrophoretic mobility shift assay,
chromatin immunoprecipitation, or post-translationally induced
protoplast transactivation (see section Methodologies for the
Study of SCW Transcriptional Regulation). Such interactions are
referred to as direct regulation in this review. Finally, we pro-
vide as a supplementary file (Additional file 1) a more detailed
network capturing the vast majority of demonstrated direct
and indirect protein–DNA interactions and all known protein–
protein interactions. This resource can be interactively visualized
and manipulated with the freeware program Cytoscape (Shannon
et al., 2003), and is accompanied by a list of the literature sup-
porting each of the 435 captured interactions (Data sheet 1). To
the best of our knowledge, this is the most exhaustive network
representation compiled to date. The Cytoscape representation
has several uses. First, it assists the generation of hypotheses
related to biological function of poorly characterized proteins
based on their interactions with known proteins. Second, addi-
tional attributes such as expression data may be integrated into
the network to better understand network function and behavior.
This is further enhanced by the fact that the network layout can
easily be converted into built-in or customized views, and new
interactions added as they are reported in the literature. In future,
researchers may be able to use the network to provide priori struc-
tural information for the building of probabilistic causal networks
that integrate diverse types of data, as performed in yeast by Zhu
et al. (2012). Third, the network serves as a reliable basis for
template-based construction of SCW transcriptional networks in
sequenced non-model organisms (Babu et al., 2009).

At least three main tiers of TFs can be identified in the net-
work that ultimately regulate a suite of structural genes involved
in cellulose, hemicellulose and lignin biosynthesis, signal trans-
duction, the cytoskeleton, programmed cell death and proteins
with unknown functions (Figures 1, 2). We designated TF tiers
from the bottom upwards, relative to a reliable reference point,
i.e., the structural genes. A similar convention has been adopted
before (Jothi et al., 2009). First-tier TFs are only known to
directly regulate structural genes, second-tier TFs directly regu-
late first-tier TFs in additional to structural genes, and so forth.
We stress that this assignment is not rigid and that TFs may
be re-assigned, where possible, to a different tier as additional
data arises. Furthermore, extensive feedback may occur between
tiers.

SCW transcriptional networks in different cell types that syn-
thesize SCWs are initiated by distinct, functionally redundant
pairs of NAC proteins, which have been broadly referred to as sec-
ondary wall NACs (SWNs) (Zhong et al., 2010c) (Figure 2; third
tier). Specifically, SCW deposition in xylary and interfascicular
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FIGURE 2 | Schematic representation of the protein–DNA interaction

network underlying SCW biosynthesis in xylem fibers and vessels and

anther endothecium in Arabidopsis. Interactions occurring specifically in

primary cell wall tissues are also indicated. Direct protein–DNA interactions

involving activation or repression are represented using solid edges, while

known regulatory relationships in which the mechanism is unclear are

represented with dashed edges. Repressors are denoted with red edges.

Protein–protein interactions are represented as ♦; question marks represent

unidentified upstream TFs; overlapping edges (MYB46, MYB83) represent

redundancy. Target genes are arranged semi-hierarchically according to

known functions. The complete list of supporting literature used to construct

the network can be found in Data sheet 1

fibers (Mitsuda et al., 2007; Zhong et al., 2007b, 2008a) as well as
silique valve endocarps and valve margins (Mitsuda and Ohme-
Takagi, 2008) is redundantly regulated by NAC SECONDARY
WALL THICKENING PROMOTING FACTOR1 (NST1) and
SECONDARY WALL ASSOCIATED NAC DOMAIN PROTEIN1
(SND1). SND1 has also been referred to as NST3 and ANAC012
(Ko et al., 2007; Mitsuda et al., 2007; Mitsuda and Ohme-Takagi,
2008); to avoid confusion, we refer to this protein as SND1. In
meta- and protoxylem vessels, a SCW deposition is regulated by
VASCULAR RELATED NAC DOMAIN6 (VND6) and VND7,
respectively (Kubo et al., 2005; Yamaguchi et al., 2008, 2010a;
Zhong et al., 2008a). NST1 and NST2 are SCW master regula-
tors in the endothecium of anthers (Mitsuda et al., 2005). To date,
comparatively little data are available for the regulatory functions
of NST2. MYB26 activates NST1 and NST2 in the endothe-
cium through an as yet unknown mechanism (Yang et al., 2007),
suggesting the existence of a fourth tier (Figure 2).

While the SCW master regulators in fibers, vessels, siliques
and anther endothecia differ from one another, current data
suggest that they regulate a common core transcriptional net-
work (Figure 2). VND6/VND7 and NST2 regulatory functions
largely overlap with those of SND1/NST1, but a number of tar-
gets are unique to VND6, VND7, or SND1 (Figure 2). Notably,
vessel differentiation is distinguished from fiber development by
strong VND6/VND7-mediated activation of genes involved in
programmed cell death (PCD); in contrast, PCD gene activa-
tion by SND1/NST1 is weak (Ohashi-Ito et al., 2010; Zhong

et al., 2010c) (Figure 2). A second notable difference is the fact
that VND6/VND7 participate in a positive feedback loop with
ASYMMETRIC LEAVES2/LATERAL ORGAN BOUNDARIES
DOMAIN TFs ASL19 and ASL20 (Soyano et al., 2008), and VND7
additionally interacts with the transcriptional repressor protein
VNI2 (Yamaguchi et al., 2010b) (see section Network Dynamics)
which has not been identified in other cell types. VND7 also inter-
acts with VND1, VND2, and VND3 (Additional file 1) which do
not have clearly defined functions, whereas VND6 interacts pri-
marily with itself and probably binds as a homodimer in vivo

(Yamaguchi et al., 2008).
Third-tier SWNs directly regulate common second-tier MYB

domain TFs MYB46, MYB83, and MYB103, NAC domain
TFs XND1 and SND3, and ASYMMETRIC LEAVES2/LATERAL
ORGAN BOUNDARIES DOMAIN TF ASL11 (Zhong et al.,
2010c; Yamaguchi et al., 2011) (Figure 2). MYB46 and MYB83,
which are functionally redundant, appear to form a common
regulatory hub in the second-tier that directly regulate first-tier
TFs MYB6, MYB43, MYB52, MYB54, MYB58, and MYB63, the
functionally redundant trio MYB4/MYB7/MYB32 (see section
Network Dynamics), a C3H-type zinc finger gene C3H14 and
homeobox TF KNAT7 (Ko et al., 2009; McCarthy et al., 2009;
Nakano et al., 2010; Zhong and Ye, 2012) (Figure 2). KNAT7 is
directly activated by all the SWNs (Zhong et al., 2008a). In turn,
KNAT7 represses cellulose, hemicelluloses and lignin biosyn-
thetic genes directly or indirectly (Li et al., 2012a) (Figure 1).
KNAT7-mediated repression is dependent on protein–protein
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interactions with MYB75, a weak transcriptional activator which
has no known targets or direct regulators (Bhargava et al., 2010,
2013) (Figure 2). MYB20, associated with the regulation of lignin
biosynthetic genes, is likely a first-tier candidate since it is an
indirect SND1 target but downregulated in the myb103 mutant
(Zhong et al., 2008a; Öhman et al., 2012) (Figure 1). A num-
ber of novel bZIP, homeodomain, BEL1-like and zinc finger
TFs that have not been linked to SCW regulation were also
listed as MYB46/MYB83 direct targets (Zhong and Ye, 2012)
(Additional file 1, Data sheet 1). Dominant repression of MYB52
and MYB54 result in reduced fiber SCW deposition (Zhong et al.,
2008a). Enhanced drought tolerance in MYB52 overexpression
lines (Park et al., 2011) suggests a pleiotropic role for this gene
in both fiber development and abiotic stress response.

The first-tier TFs regulate various SCW biosynthetic genes
although some members of the second-tier (MYB46, MYB61, and
MYB83) and third tier (SND1, VND6, and VND7) also directly
activate structural genes. BP, ATHB18, a C2H2-type zinc fin-
ger protein At3g46080, MYB20, MYB69, MYB79, MYB85, and
the functionally redundant pair MYB58/MYB63 are known only
to directly or indirectly regulate lignin biosynthetic genes (Mele
et al., 2003; Zhou et al., 2009; Mitsuda et al., 2010), whereas BES1
is the only TF currently shown to bind to cellulose synthase (CesA)
genes in both primary and SCWs (Xie et al., 2011) (Figures 1, 2).
BP is a KNOX gene family member that maintains shoot api-
cal meristems (Sanchez et al., 2012) and strongly represses lig-
nification in inflorescence stems (Mele et al., 2003). MYB85
appears to specifically regulate the lignin pathway (Zhong et al.,
2008a) and appears to be regulated by MYB46/MYB83 (Figure 1,
Additional file 1). All other TFs regulate structural genes involved
in the biosynthesis of more than one SCW biopolymer. SND2 has
an unclear position in the network: it is known to be indirectly
activated by SND1 (Zhong et al., 2008a), it is downregulated
in the myb103 mutant (Öhman et al., 2012), and appears to
regulate genes related to signaling, hemicellulose and lignin poly-
merization in addition to the secondary wall CesA genes (Hussey
et al., 2011; Öhman et al., 2012) (Figure 1, Additional file 1).
Therefore, we have tentatively placed it in tier 1.

MASTER REGULATORS

SND1, NST1, NST2, VND6, and VND7 are considered mas-
ter regulators of SCW formation because of their sufficiency
for ectopic SCW deposition in some non-sclerified cell types
when ectopically overexpressed (Mitsuda et al., 2005, 2007; Zhong
et al., 2006; Yamaguchi et al., 2010a). By this definition, MYB
family proteins MYB46, MYB83, and their direct target C3H14

(Kim et al., 2012a), are also master regulators, despite occur-
ring directly underneath SND1/NST1 and VND6/VND7 in the
network (Zhong et al., 2007a; Ko et al., 2009; McCarthy et al.,
2009). MYB83 is considered redundant with MYB46 since com-
promised functioning of both genes is required to visibly affect
the phenotype (McCarthy et al., 2009). Arguably, MYB58 is a
master regulator of the lignin pathway because overexpression
causes ectopic lignification (Zhong et al., 2008a). Conversely,
non-master regulators of SCW formation are recognized by subtle
cell-specific phenotypes when overexpressed: for example, SND2,
SND3, and MYB103 lie downstream of master regulator SND1

(Figure 1), and their constitutive expression yields differences in
SCW thickness only currently identified in fibers (Zhong et al.,
2008b; Hussey et al., 2011). The factors rendering these TFs
insufficient for ectopic SCW deposition are unclear, but a likely
explanation is that auxiliary co-regulators are required for tran-
scriptional activation or repression which are only expressed in
the cells where a phenotype is observed. Discovery of these tissue-
specific factors or protein complexes will advance the elucidation
of the SCW transcriptional network.

Notably, the phenotypic importance of these master regula-
tors does not correlate with their hierarchical position in the
network: for example, MYB46 and MYB83 are subordinate to
NST1 and SND1, but the double mutant of the subordinate
pair yields a more extreme phenotype than the snd1 nst1 double
mutant (Zhong et al., 2007b; McCarthy et al., 2009). The genome-
wide identification of direct gene targets of SND1 (Ko et al.,
2007; Zhong et al., 2010c), VND6/VND7 (Ohashi-Ito et al., 2010;
Zhong et al., 2010c; Yamaguchi et al., 2011) and MYB46/MYB83
(Zhong and Ye, 2012) have revealed key regulatory features of
these master regulators. First, they do not preferentially activate
TFs located in the first subordinate tier, such that the signal
is relayed to successive tiers and ultimately to the structural
genes at the bottom of the network. Rather, they directly regu-
late structural genes in addition to subordinate TFs (Figure 2).
This pattern is consistent with the tendency of top and middle-
tier TFs to act co-operatively in target gene regulation (Gerstein
et al., 2012). Second, functional redundancy between proteins
as assessed through mutant and complementation studies need
not imply that redundant homologs regulate the same gene tar-
gets: although this might be true of MYB46 and MYB83 (Zhong
and Ye, 2012), SND1 and VND6 share only ∼50% of their tar-
get genes (Ohashi-Ito et al., 2010). SND1 and VND6/VND7 are
quantitatively different in that PCD-related genes are upregulated
strongly by vessel-associated VND6/VND7 but weakly, if at all,
by fiber-associated SND1/NST1 (Ohashi-Ito et al., 2010; Zhong
et al., 2010c) (Figure 2).

Induction of SND1 in undifferentiated transgenic Arabidopsis

suspension culture cells is sufficient for smooth SCW deposition
reminiscent of fibers, whereas induction of VND6 is sufficient
for that resembling metaxylem vessels (Ohashi-Ito et al., 2010).
Similarly the complementation of SCW deposition of fibers in
the snd1 nst1 double mutant by VND7 driven by the SND1

promoter resulted in vessel-like patterning of the fiber SCWs
(Yamaguchi et al., 2011). This suggests that SND1/NST1 and
VND6/VND7 are sufficient for fiber- and vessel-specific differen-
tiation. However, ectopic overexpression of SND1 only induced
ectopic SCW deposition in particular cell types, with SCW pat-
terning including smooth, banded, reticulated or helical deposi-
tion depending on the cell type (Mitsuda et al., 2005; Zhong et al.,
2006). Poplar VND and NST homologs preferentially induce
ectopic SCW deposition in hypocotyls, rather than leaves or
roots, when constitutively expressed in Arabidopsis (Ohtani et al.,
2011). Additionally, whilst all SWNs can transactivate the pro-
moter of the PCD-related gene XCP1 in protoplasts, the gene is
not expressed in fibers under the control of SND1/NST1 (Zhong
et al., 2010c). Together, these data suggest that whilst fiber-
and vessel-associated SWNs preferentially confer SCW deposition
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patterns characteristic of these cell types, the action of other reg-
ulator mechanisms between cell types may modify their gene
targets.

EVOLUTIONARY CONSERVATION

The evolutionary history of SWN-mediated SCW regulation is
not yet resolved. Although the moss Physcomitrella and primitive
tracheophyte Selaginella possess multiple NAC proteins ances-
tral to the SWNs found in angiosperms, these proteins lack
the extended C-terminal motifs found in derived SWNs (Shen
et al., 2009; Zhao et al., 2010b; Zhu et al., 2012). Whilst their
functions are currently unknown, it is thought that these pro-
genitor SWN proteins were adapted for the regulation of SCW
deposition in advanced vascular plants (Zhong et al., 2010a),
mainly through the acquisition of C-terminal activation motifs,
such as the WQ-box which is essential for SND1 transcriptional
activation (Ko et al., 2007). There is strong evidence that these C-
terminal expansions preceded angiosperm radiation (Shen et al.,
2009).

The basis for the evolutionary conservation of functional
redundancy between SND1-NST1, NST1-NST2, and VND6-
VND7 pairs in different cell types in Arabidopsis and possibly
other angiosperms is also poorly understood. Although pos-
tulated to be a backup mechanism to ensure SCW deposition
ensues (Schuetz et al., 2013), a wealth of theoretical models have
been proposed to explain the persistence of functional redun-
dancy in higher organisms (Nowak et al., 1997; Krakauer and
Nowak, 1999; Zhang, 2003). Redundancy appears to be a general
characteristic of transcriptional regulators, as suggested by their
underrepresentation amongst genes with single-copy status iden-
tified across 20 Angiosperms (De Smet et al., 2013). Interestingly,
Medicago is the only angiosperm known to possess only one
SWN, MtNST1. The Mtnst1 mutant exhibits loss of fiber SCW
deposition, reduced anther dehiscence and even defective guard
cell functioning, but no apparent effect on vessels (Zhao et al.,
2010a). Thus, Medicago appears to have dispensed of the redun-
dant homologs and may serve as a suitable candidate for the study
of the evolutionary persistence of functional redundancy in other
groups.

Numerous examples of functional conservation between
Arabidopsis SCW-regulating TFs and their homologs in a variety
of plants suggest that the SCW transcriptional network is largely
conserved in angiosperms. Functional orthologs of Arabidopsis

SWNs and MYB46 have been experimentally verified in the
monocots Brachypodium distachyon, Zea mays, and Oryza sativa,
suggesting the establishment of the basic structure of the SCW
transcriptional network at least prior to monocot-dicot diver-
gence (Zhong et al., 2011a; Valdivia et al., 2013). Strong evidence
also corroborates an Arabidopsis–like transcriptional cascade in
woody angiosperm species. Whilst homologs of several TF can-
didates in Figure 1 have been linked to xylem development in
hybrid aspen (Bylesjö et al., 2009; Courtois-Moreau et al., 2009)
and Acacia (Suzuki et al., 2011), studies in Populus trichocarpa

principally have demonstrated functional conservation of many
SCW-regulating TF orthologs. A number of functionally redun-
dant co-orthologs of SND1 from P. trichocarpa, referred to as
wood-associated NAC domain TFs (PtrWNDs), are capable of

ectopic SCW formation in Arabidopsis and can complement the
snd1 nst1 double mutant (Zhong et al., 2010b). Populus orthologs
of TFs regulated by SND1 in Arabidopsis (Zhong et al., 2008a)
are likewise regulated by the Populus PtrWNDs (Zhong et al.,
2011b), and a functional ortholog of KNAT7 has been described
(Li et al., 2012a). Populus PtrMYB3 and PtrMYB20 demon-
strated similar master regulatory functions to their Arabidopsis

homologs MYB46/MYB83 (McCarthy et al., 2009, 2010) and
are sufficient for ectopic lignification in Arabidopsis (Zhong
et al., 2010b). Eucalyptus gunni also possesses an SND1 homolog,
EgWND1, that displays functional conservation with Populus and
Arabidopsis SWNs (Zhong et al., 2010a, 2011b). EgMYB2, a close
homolog of MYB46/MYB83 from E. gunnii, binds to promot-
ers of lignin biosynthetic genes EgCCR and EgCAD2 (Goicoechea
et al., 2005) and can complement the myb46 myb83 Arabidopsis

mutant, suggesting functional orthology with MYB46/MYB83
(Zhong et al., 2010a).

The high degree of conservation in SCW-associated TF func-
tion between Arabidopsis and woody plants suggests that studies
in the former are of direct relevance to SCW formation in other
herbaceous and woody plants. In support of this, a genome-wide
survey of cis-regulatory sequence combinations in promoters of
Arabidopsis and Populus found that over 18,000 combinations are
shared between these organisms and that most of these combina-
tions are functional (Ding et al., 2011). However, it is not yet clear
whether network topology is equally conserved, and it is possible
that cis-element evolution, which is both necessary and suffi-
cient for network rewiring (Carroll, 2008), has occurred between
species. In rice, for example, there appears to be functional diver-
gence between an AP2/ERF TF known as SHINE (OsSHN),
which has a SCW-regulatory function, and its closest Arabidopsis

and barley homologs which regulate wax and lipid biosynthesis
(Aharoni et al., 2004; Broun et al., 2004; Kannangara et al., 2007;
Taketa et al., 2008). OsSHN is tightly co-expressed with homologs
of SCW-associated TFs and biosynthetic genes. Interestingly,
Arabidopsis AtSHN1 was shown to directly repress rice homologs
of MYB58/MYB63, NST1/NST2/SND1, and VND4/VND5/VND6

when overexpressed in rice (Ambavaram et al., 2011). Rice, but
not Arabidopsis plants, overexpressing AtSHN1 showed increased
sclerenchyma SCW thickness, decreased lignin and increased cel-
lulose content (Kannangara et al., 2007; Ambavaram et al., 2011).
The likely explanation for this phenotype is that, whilst the
homologs of master regulators and lignin-associated TFs such as
MYB85 and MYB58/MYB63 are repressed by AtSHN1, other TFs
(including homologs of MYB20/MYB43) are upregulated which
may specifically regulate cellulose deposition (Ambavaram et al.,
2011). Together, this data suggests that the differing SHN targets
in rice (monocots) and Arabidopsis (dicots) have evolved through
changes in cis-element composition in their promoters, rather
than the SHN DNA-binding domain, since AtSHN1 can switch
from wax to SCW pathway regulation depending on the genetic
background.

DNA-PROTEIN INTERACTIONS

TFs promote or inhibit transcription of target genes by bind-
ing to cis-elements in their promoters. General canonical binding
sites for MYB and NAC domain TFs have been identified, and

Frontiers in Plant Science | Plant Cell Biology August 2013 | Volume 4 | Article 325 | 6

http://www.frontiersin.org/Plant_Cell_Biology
http://www.frontiersin.org/Plant_Cell_Biology
http://www.frontiersin.org/Plant_Cell_Biology/archive


Hussey et al. Secondary cell wall transcriptional regulation

a number of cis-regulatory elements recognized by TFs involved
in SCW regulation specifically have been described (Table 1).
The secondary wall NAC binding element (SNBE) was discov-
ered in the promoters of SND1 direct targets, existing as sev-
eral related variants in target gene promoters (Zhong et al.,
2010c). It consists of 19 nucleotides and is semi-palindromic,
as demonstrated by reverse complementation (Table 1). NST1,
NST2, VND6, and VND7 all recognize the SNBE consensus
sequence, but the differential ability of SWNs and their orthologs
to activate naturally occurring variants of this element suggests
that particular SWNs will preferentially activate SNBE elements
of different promoters (Zhong et al., 2010c, 2011a). The SNBE
sequence is essential for SWN-mediated promoter activation,
and cis-element copy number is correlated with the strength of
promoter transactivation (Zhong et al., 2010c). Recently, SWN
homologs in the monocot Brachypodium were also shown to
recognise the SNBE (Valdivia et al., 2013). Wang et al. (2011)
have identified a significantly more specific SNBE-like element

bound by SND1, TACNTTNNNNATGA, which does not appear
to be semi-palindromic (Table 1). Both the SNBE and SNBE-
like elements appear superficially similar to the general NAC
recognition sequence (NACRS), but neither contains the pre-
viously reported “canonical” CACG motif (Tran et al., 2004)
(Table 1). It has recently been revealed that NACs possess some
degree of flexibility when binding as dimers, allowing for one
monomer to bind to a strong canonical DNA element and the
other monomer to a low-affinity element a variable number of
bases away (Welner et al., 2012). This may explain why SNBE is
not a perfect palindrome.

TE-specific expression may be mediated by the 11 base
pair tracheary element-regulating cis-element (TERE) (Pyo
et al., 2007). The element was identified in the promot-
ers of 60 Arabidopsis genes upregulated during in vitro TE
transdifferentiation (Kubo et al., 2005; Pyo et al., 2007). These
included SCW-associated CesA4 and CesA7 promoters which
were not identified as direct SND1 targets by Zhong et al. (2010c).

Table 1 | Cis-regulatory elements that have been linked to SCW biosynthesis or which serve as general binding motifs for TF families involved

in SCW transcriptional regulation.

Element Functional

classification

Bound TF References

Minimal NAC recognition sequence (NACRS; Tran et al., 2004)

TCNNNNNNNACACGCATGT (core sequence in bold)

Abiotic stress

response

ANAC19/55/72

ENAC1

Tran et al., 2004

Sun et al., 2011

Secondary wall NAC binding element (SNBE)

(T/A)NN(C/T)(T/C/G)TNNNNNNNA(A/ C)(G/ )N(A/C/T)(A/T)

=(T/A)NN(C )(T/ /G)TNNNNNNNA(A/G/C)(G/A)N( N )(A/T)*

Secondary cell wall

biosynthesis

SND1, NST1, NST2,

VND6, VND7

BdSWN5

Zhong et al., 2010c

Valdivia et al., 2013

TACNTTNNNNATGA Secondary cell wall

biosynthesis

SND1 Wang et al., 2011

Tracheary element-regulating cis-element (TERE) (Pyo et al., 2007)

CTTGAAAGCAA

Secondary cell wall

biosynthesis

Possibly VND6/VND7 Ohashi-Ito et al., 2010

AC elements (Lois et al., 1989; Sablowski et al., 1994; Hatton et al.,

1995)

AC-I (SMRE8): ACCTACC

AC-II (SMRE4): ACCAACC

AC-III (SMRE7): ACCTAAC

Secondary cell wall

biosynthesis/lignin

biosynthesis

MYB58, MYB63,

EgMYB2. PtMYB4,

PttMYB021,

PvMYB4

Patzlaff et al., 2003; Zhou

et al., 2009; Rahantamalala

et al., 2010; Winzell et al.,

2010; Shen et al., 2011; Zhong

and Ye, 2012

SMRE consensus

ACC(A/T)A(A/C)(T/C)

Secondary cell wall

biosynthesis/lignin

biosynthesis

MYB46/MYB83 Zhong and Ye, 2012

M46RE

(A/G)(G/T)T(T/A)GGT(A/G)

=(T/C)ACC(A/T)A(A/C)(T/C)*

Secondary cell wall

biosynthesis/lignin

biosynthesis

MYB46 Kim et al., 2012a

Element R

GTTAGGT

=ACCTAAC*

Disease resistance MYB46 Ramírez et al., 2011

MYB binding site IIG (MBSIIG)

G(G/T)T(A/T)GGT(A/G)

=(T/C)ACC(A/T)A(A/C)C*

General MYB

binding?

MYB15, MYB84

EgMYB2 Romero et al., 1998;

Goicoechea et al., 2005;

Rahantamalala et al., 2010

BSb

CTGGTT

Cambium-specific

expression

Unknown Rahantamalala et al., 2010

*Reverse complemented forms of the sequence. AC-related elements are underlined to highlight similarities between them.
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It was suggested from protoplast transactivation experiments that
VND6 and VND7 recognize the TERE elements of several SCW-
associated genes (Ohashi-Ito et al., 2010; Yamaguchi et al., 2011).
However, Zhong et al. (2010c) showed using electrophoretic
mobility shift competition assays (EMSA) that VND6, VND7,
and SND1 do not bind directly to the TERE element, and that
most genes regulated by VND6 and VND7 do not contain recog-
nizable TEREs (Ohashi-Ito et al., 2010; Yamaguchi et al., 2011).
From XCP1 promoter deletion experiments, Yamaguchi et al.
(2011) postulated that the TERE is essential for basal transcrip-
tion of VND7 targets, whilst their data supported the involve-
ment of an additional element in enhancing VND7-mediated
transactivation.

AC-rich elements are associated with various lignin biosyn-
thetic genes (Raes et al., 2003) and are thought to be generally
bound by MYB proteins (Zhao and Dixon, 2011). SCW-
regulating MYB proteins from various taxa have been shown
to bind AC elements (Table 1). The AC-like cis-element rec-
ognized by second-tier master regulators MYB46/MYB83 was
independently identified by Zhong and Ye (2012; SMRE) and
Kim et al. (2012a; MYB46RE), and the reported sequences are
essentially identical following reverse complementation (Table 1,
italicized). However, three of eight functional variants of SMRE
correspond to AC-I, AC-II, and AC-III (Table 1) (Zhong and
Ye, 2012) and MBSIIG, apparently a general MYB binding site
recognized by Arabidopsis MYB proteins that are relatively dis-
tantly related from each other (Romero et al., 1998), is iden-
tical to SMRE/MYB46RE (Table 1). In fact, diverse Arabidopsis

R2R3-MYB proteins bind to similar, if not identical, sequences
due to highly shared recognition specificities (Romero et al.,
1998; Prouse and Campbell, 2012). Despite this, MYB46RE
is highly enriched amongst MYB46-regulated gene promot-
ers compared to the genome frequency (Kim et al., 2012a),
suggesting that MYB46RE/SMRE/MBSIIG may be specifically
associated with MYB TFs involved in lignin and/or cell wall
regulation. Specificity may be conferred by the requirement
of multiple instances of the motif at a promoter, as is the
case for EgMYB2 binding to the EgCAD promoter, or addi-
tional elements such as the linked BSb element that confers
cambium-specific expression (Table 1) (Rahantamalala et al.,
2010). Spatial expression specificity is discussed further in sec-
tion Spatial Specificity of Fiber and Vessel Development. Notably
F5H, which is required for the biosynthesis of S monolignols
in Angiosperms, does not contain AC elements in the pro-
moter region (Raes et al., 2003). Zhao et al. (2010b) found
that Arabidopsis SND1 could directly activate the Medicago F5H

promoter. However, Öhman et al. (2012) were not able to
demonstrate transactivation of the Arabidopsis F5H promoter
by SND1.

SCW-related canonical cis-elements have been identified
in vitro through EMSA and in vivo through transactivation
of naked DNA in GUS reporter constructs. However, accurate
characterization of cis-elements, which should preferably resem-
ble a probability distribution, will require genome-wide knowl-
edge of occupied sites in planta. Available binding sites in a
given cell type are heavily influenced by chromatin structure
and composition, and TF specificity may be dependent on

post-translational modifications and protein–protein interac-
tions. Using ChIP-seq and its high-resolution derivative, ChIP-
exo (Rhee and Pugh, 2011) (see section Methodologies for the
Study of SCW Transcriptional Regulation), it will be possible
to obtain statistical support for these motifs and assess single
nucleotide dependencies, as has been done for MADS box TFs
(Kaufmann et al., 2009, 2010).

NETWORK DYNAMICS

Transcriptional networks are ultimately composed of small recur-
rent circuits known as network motifs, which are discrete patterns
of interactions that occur more frequently than expected from
randomized networks (Milo et al., 2002; Walhout, 2006; MacNeil
and Walhout, 2011). In contrast to sensory networks, transcrip-
tional networks regulating developmental processes tend to act
slowly and can irreversibly trigger a transient developmental
instruction. Negative and positive feedback loops and long cas-
cades of transcriptional regulation are a prominent feature of
developmental networks (see Alon, 2007 for review). Here, we
explore network motifs and possible functions of putative mod-
ules in the SCW transcription network. Since network modules
have no consensus definition (Dong and Horvath, 2007), we
define them in this section as a group of connected nodes that
collectively determines a pattern of target gene regulation distinct
from the regulatory effect of each individual node on the target
gene(s). These modules should be understood as teams of tran-
scriptional regulators that co-operate to achieve an appropriate
transcriptional response of a target gene(s) following a perturba-
tion in the expression of an individual regulator in the module
from steady-state levels.

A negative feedback loop involving SND1, MYB46/MYB83
and a trio of repressors may prevent uncontrolled target gene
activation during fiber SCW deposition. SND1 activates MYB32
directly, as well as indirectly through a coherent feed-forward
loop involving SND1 targets MYB46/MYB83 which in turn acti-
vate MYB32 (Figure 3A). MYB4 and MYB7 are also targets of
MYB46/MYB83 and have a conserved repression protein motif
in common with MYB32 (Preston et al., 2004; Ko et al., 2009).
Overexpression of a maize homolog of MYB4 in Arabidopsis

results in downregulation of the lignin pathway and a patchy
SCW deposition phenotype in interfascicular fibers (Sonbol et al.,

FIGURE 3 | Putative modules and motifs underlying SCW

transcriptional regulation. (A) Negative feedback loop regulating SND1.

(B) Negative regulation of structural genes by KNAT7. (C) Positive feedback

loop regulating VND6/VND7. Dashed edges indicate unknown molecular

mechanisms of protein–DNA interactions. Arrows indicate positive

regulation, blunt ends indicate negative interactions. Dumbbells represent

protein–protein interactions. Refer to (see section Network Dynamics) for

detailed discussion.
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2009), supporting a repressive role for these proteins. SND1
and its poplar co-orthologs can self-activate their own promot-
ers (Wang et al., 2011; Zhong et al., 2011b; Li et al., 2012b),
an arrangement that is generally associated with a slow tran-
scriptional response (Mejia-Guerra et al., 2012). MYB4, MYB7,
and MYB32 in turn repress SND1 through an as yet unresolved
mechanism (Figure 3A) (Wang et al., 2011). In addition, there is
evidence from promoter transactivation experiments that MYB4,
MYB7, and MYB32 repress their own promoters (Ko et al., 2009).
Such negative autoregulation tends to accelerate transcriptional
responses (Rosenfeld et al., 2002; Chalancon et al., 2012) and
reduce transcriptional noise (Kærn et al., 2005; Alon, 2007). It
could be postulated therefore that a combination of slow target
gene activation by master regulator SND1, combined with a rapid
MYB4/7/32-mediated negative feedback loop keeps SND1 acti-
vation in check, resulting in gradual target gene activation. This
hypothesis is consistent with the prolonged lifespan and SCW
deposition of fibers relative to vessels (Gorshkova et al., 2012).

In addition to negative feedback loops, a number of repres-
sors of SCW deposition may help to prevent runaway structural
gene activation or “fine-tune” their regulation. XYLEM NAC

DOMAIN 1 (XND1) is an SND1-activated NAC domain TF that
may negatively regulate tracheary element growth (Zhao et al.,
2008; Zhong et al., 2010c). No XND1 direct targets are currently
known (Figure 2). Overexpression in Arabidopsis causes stunt-
ing, discontinuous or complete loss of xylem vessels, as well as
a failure of xylem to undergo SCW deposition or PCD (Zhao
et al., 2008). KNAT7, a class II KNOX gene that is also a direct
target of SND1 (Zhong et al., 2008a), represses SCW deposition
in xylary and interfascicular fibers through repression of cellu-
lose, hemicellulose and lignin biosynthetic genes (Li et al., 2011,
2012a) (Figure 2). Surprisingly, KNAT7 yields an irx phenotype
in vessels of the null mutant (Brown et al., 2005; Li et al., 2012a),
suggesting that KNAT7 may act as an activator in vessels (Schuetz
et al., 2013). SND1 and KNAT7 form a type 1 incoherent feed-
forward loop, such that SND1 activates structural genes as well
as KNAT7, after which KNAT7 represses the structural genes once
its protein has been synthesized (Figure 3B). This motif generates
a pulse of target activation such that it reaches steady-state tran-
script levels faster than a simple regulation model, peaks and then
declines to the stable target transcript abundance as the inter-
mediate repressor becomes engaged (Alon, 2007). The response
time of target gene activation is likely to be further accelerated by
other TFs such as MYB46/MYB83 which also activate the struc-
tural genes. Thus, the putative module in Figure 3B is hypoth-
esized to cause a rapid burst of structural gene transcript levels
followed by a return to a steady state. KNAT7 additionally par-
ticipates in protein–protein interactions with MYB75, a repressor
of the lignin pathway that pleiotropically regulates anthocyanin
biosynthesis (Bhargava et al., 2010, 2013), in addition to OFP1,
OFP4, and MYB5 interaction (Wang et al., 2007a; Li et al., 2011;
Bhargava et al., 2013). An interesting mechanism has been pro-
posed whereby the differing fiber and vessel phenotypes observed
in the knat7 mutant depend on the composition and abundance
of KNAT7-interacting proteins in different cell types (Li et al.,
2012a). Bhargava et al. (2013) propose that KNAT7 forms a com-
plex with OFP proteins and MYB75 to repress lignin biosynthetic

genes in stems, whereas it forms a complex with TT8, MYB5, and
MYB75 which represses SCW biosynthetic genes in the seed coat.

In contrast to the negative regulatory loop regulating SND1
in fibers (Figure 3A), VND6/VND7 master regulators of ves-
sel SCW deposition are involved in a positive feedback loop
with ASL/LBD family proteins (Iwakawa et al., 2002; Shuai
et al., 2002). VND6/VND7 promote ASL19/ASL20 upregulation
through an unknown mechanism, and ASL19/ASL20 in turn
promote VND6/VND7 upregulation such that they show sim-
ilar expression patterns (Soyano et al., 2008) (Figure 3C). In
addition, ASL19 is downregulated by VNI2, a repressor that inter-
acts with VND7 proteins to repress its function indirectly by
competing with its heterodimerizing partners and possibly neu-
tralizing VND7-mediated transcriptional activation (Yamaguchi
et al., 2010b). Since VNI2 is sensitive to the ubiquitin proteo-
some pathway (Yamaguchi et al., 2010b), it has been postulated
that the ASL19/ASL20/VND6/VND7 positive feedback loop pro-
motes rapid and irreversible differentiation of vessel elements
once VNI2 is proteolytically degraded (Ohashi-Ito and Fukuda,
2010).

A similar yet distinct mechanism to the VNI2-VND6/VND7
interaction has been documented in Populus. Recently, Li et al.
(2012b) discovered a naturally occurring splice variant of a poplar
SND1 co-ortholog PtrSND1-A2. The intron-retaining transcript
variant, PtrSND1-A2IR, encodes a truncated protein lacking
transactivation ability and a critical DNA-binding subdomain,
but it retains its ability to form homo- and heterodimers. The
dominant negative regulator represses PtrSND1-A1, PtrSND1-B1,
and PtrSND1-B2 by interfering with their self-activation abilities
through the formation of non-functional heterodimers (Li et al.,
2012b). The regulatory significance of this arrangement is not yet
clear.

Network connectivity can only partially explain the behavior
of a transcriptional network. Whilst regulatory hubs and modules
may be identified from physical interaction networks, protein–
DNA interactions alone may not accurately predict the outcome
of target gene transcriptional regulation, which is complex and
highly combinatorial (Spitz and Furlong, 2012). Kinetic data are
required to mathematically model the dynamic behavior of a
network (Bolouri and Davidson, 2002). New advances in net-
work modeling allow for networks to be tested, quantified, and
corrected (Sayyed-Ahmad et al., 2007). Time-course expression
data in particular can capture dynamic properties of transcrip-
tional networks that steady-state transcript measurements cannot
(Nelson et al., 2004; Opper and Sanguinetti, 2010), and even
time-course ChIP-seq data has been introduced into network
models (Tang et al., 2012). Arabidopsis and Zinnia transdiffer-
entiation systems are potentially useful models for generating
time-course transcript data relating to SCW regulation, but exist-
ing time-course data (e.g., Kubo et al., 2005; Yamaguchi et al.,
2011) lacks the temporal resolution to test and model the dynamic
behavior of the SCW transcriptional network.

SPATIAL SPECIFICITY OF FIBER AND VESSEL DEVELOPMENT

The preferential expression patterns of SND1/NST1 and
VND6/VND7 in the Arabidopsis inflorescence and hypocotyl
stems are remarkably fiber- and vessel-specific, respectively, and
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this expression pattern is consistent with the cell type showing
a phenotype in loss-of-function mutants (Kubo et al., 2005;
Mitsuda et al., 2007; Zhong et al., 2007b, 2008a; Yamaguchi et al.,
2008). It is poorly understood how this cell-specific expression
is achieved in xylem, but hypothetically cell type-specific signals
direct SND1/NST1 and VND6/VND7 expression (Lucas et al.,
2013). One tonoplast-localized, membrane-spanning transporter
protein was found to influence SND1/NST1 expression through
an unknown mechanism in Arabidopsis: the WALLS ARE THIN1

(WAT1) T-DNA mutant demonstrated a marked reduction in
SCW formation in interfascicular and xylary fibers as well as
a reduction in inflorescence stem growth, without otherwise
affecting fiber cell specification (Ranocha et al., 2010). However,
although WAT1 transcripts are most prevalent in hypocotyls and
inflorescence stems, the gene is almost ubiquitously expressed
(Ranocha et al., 2010). In addition to the generally minor effect
on overall growth in the wat1 mutant, these characteristics
of WAT1 are in conflict with the idea that signals regulating
the master regulators are themselves cell-type specific. In fact,
the observation that widely expressed transcription factors
may participate in cell type-specific regulatory roles (Neph
et al., 2012) questions this expectation. The elucidation of a
gene regulatory network of the Arabidopsis root stele showed
that most TFs have a significantly broader expression pattern
than their targets (Brady et al., 2011), suggesting that the
SWN regulators may also be more broadly expressed than
expected.

Examples of cell-to-cell signaling in the root may reveal
clues to the specification of xylem cell types in vascular meris-
tems. Protoxylem and metaxylem formation in the developing
Arabidopsis root can be attributed to a gradient of class III
HD-ZIP TFs such that high concentrations of these regulators
promote metaxylem vessel formation and lower concentrations
protoxylem vessel formation (reviewed in Caño-Delgado et al.,
2010; Hirakawa et al., 2011). Specifically, the SHORT ROOT
(SHR) TF is expressed in the developing stele, which moves
into the endodermis to activate SCARECROW (SHR), both of
which are involved in the endodermal expression of miRNA genes
MIR165A and MIR166B (Carlsbecker et al., 2010). Diffusion of
the resulting miRNAs from the endodermis toward the cen-
tre of the stele results in a decreasing concentration gradient
(reviewed in Aichinger et al., 2012). Since miR165/166 post-
transcriptionally inhibit HD-ZIP III TF PHB, an increasing gra-
dient of PHB expression is created toward the centre of the
stele, resulting in protoxylem formation at the stele periphery
(i.e., low PHB concentration) and metaxylem vessel formation
at the stele centre (i.e., high PHB expression) (Carlsbecker et al.,
2010; Miyashima et al., 2011). Presumably, low PHB expres-
sion promotes VND7 expression in protoxylem whilst high PHB

expression drives VND6 expression in metaxylem. However, this
is yet to be investigated.

Whilst a miRNA concentration gradient model explains the
formation of two distinct types of primary xylem cells in root,
it cannot explain the pattern of fiber cells intercalated with ves-
sel elements that is typically seen in secondary xylem. Such a
system could be better explained, for example, by lateral polar
auxin transport between adjacent cells, such that local foci of

auxin maxima promote vessel differentiation whilst lower auxin
concentrations promote fiber differentiation. Such a model is
supported by the fact that, in root, lateral polar auxin transport
determines the boundary between protoxylem and the procam-
bium (reviewed in Milhinhos and Miguel, 2013), in stems the
vessel density varies longitudinally as a function of the auxin
concentration (reviewed in Sorce et al., 2013), and that the
radial expression of auxin carrier genes in stems is non-uniform
(Schrader et al., 2003). However, as discussed by Lucas et al.
(2013), the localizations of auxin efflux proteins in stems and
their distributions in fibers and vessels are currently unknown.
It is most likely that a combination of hormones are involved:
for example, the simultaneous presence of auxin, brassinosteroids
and cytokinins was required for high expression of VND6 and
VND7 (Kubo et al., 2005).

Some spatial specificity in SCW deposition can be
explained by the presence of transcriptional repressors in
non-sclerenchymatous cells. For example, WRKY12 is expressed
in stem pith and cortex, where it inhibits SCW formation by
directly repressing SCW master regulators such as NST2 (Wang
et al., 2010) (Figure 2). The wrky12 mutant shows ectopic SCW
formation in the pith of both Arabidopsis and Medicago inflores-
cence stems, suggesting that repression, rather than activation, of
SCW master regulators in specific cell types contributes signifi-
cantly to their specific spatial expression. Interestingly, in Populus

many PtrWND genes have surprisingly widespread expression,
even in shoot apices and non-vascular parts of leaves (Han et al.,
2011; Ohtani et al., 2011). It can be postulated that a transcrip-
tional repressor or non-functional splice variant is expressed in
non-vascular tissues and cells that binds to PtrWND proteins
to prevent them from initiating ectopic SCW deposition, in a
similar way to PtrSND1-A2IR (see section Network Dynamics).
Combined with the example above of the WRKY12 repressor that
inhibits SCW initiation in some ground tissues in Arabidopsis,
these data may point to an unexpected mechanism in which
transcriptional activation of SCW deposition is a developmental
program that is repressed in certain non-sclerified tissues, rather
than simply induced in vascular tissues. Alternatively, co-factors
required by these master regulators are not present in these
non-vascular tissues, as evidenced by the failure of certain cells
to ectopically deposit SCWs when the master regulators are
overexpressed (see section Master Regulators).

The upstream regulators of SND1/NST1 and VND6/VND7
have not yet been reported, nor have the gene targets of xylem-
regulating HD ZIPIII TFs (Figure 1), which are good candidates
for SWN regulation. Knowledge of the SWN regulators will
greatly enhance our understanding of how cell type-specific SCW
transcriptional networks are initiated. The techniques used to
infer TF function, and the interpretation of specific assays, are
an important aspect of gene regulation studies. Moreover, recent
advances in our understanding of eukaryotic gene regulation
through projects such as the Encyclopedia of DNA Elements
(encodeproject.org), necessitates an increasingly single cell-level
understanding of transcriptional networks. We turn now to an
evaluation of the molecular tools that have been used to study
and infer SCW transcriptional networks, and which approaches
will best support such studies in the future.
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METHODOLOGIES FOR THE STUDY OF SCW

TRANSCRIPTIONAL REGULATION

A number of techniques have been employed to study SCW-
regulating TFs. We provide a summary of the advantages and
challenges of common approaches used in the literature for TF
functional annotation and SCW transcriptional network infer-
ence (Table 2). We have roughly arranged these techniques in

increasing resolution of the regulatory information obtained in
each; that is, increasing understanding of the in vivo direct gene
targets of a given TF and its bound cis-element. Here, we dis-
cuss in greater detail the widespread use of reverse genetics
and protoplast transfection approaches in model organisms in
SCW regulation studies, and review approaches better suited to
non-model organisms.

Table 2 | Summary of techniques used to study transcriptional regulatory networks.

Advantages Challenges

In vitro (trans)differentiation systems

(Fukuda and Komamine, 1980; Kubo

et al., 2005; Oda et al., 2005)

• Differentiation can be synchronized via hormonal induction

• A high proportion of cultured cells differentiate into TEs

• Time-course regulation of transcripts can be associated

with developmental changes

• Arabidopsis suspensions can be stably transformed

(Ohashi-Ito et al., 2010; Yamaguchi et al., 2010a)

• Provides temporal information to TE transcriptional

regulation

• Currently only developed in Zinnia and

Arabidopsis

• Developmental in planta signals from

neighboring cells are lost

Reconstruction from co-expression

data

• Co-regulated transcriptional modules can be identified

• Direct interactions can be inferred from data transmission

theory (Basso et al., 2005)

• Provides functional sets of genes for in silico cis-element

identification where genome is available

• Transcriptomes from large numbers of diverse

individuals, tissues and/or conditions required

• Guilt by association suffers from type 1 errors

Reverse genetics • Extensive catalog of mutant seedstocks available for

Arabidopsis

• Phenotypic relevance of candidate TFs can be assessed

• Phenotypic effects of both gain- and loss-of-function

mutants can be assessed

• Lethal knock-out and repression lines cannot

be analyzed

• Knock out lines not informative when TFs are

functionally redundant

• Over-expression can lead to unexpected

knock-on and dosage balance effects

• Generally suited to model organisms

Systems approaches Systems • Molecular interactions can be quantified and • Assumptions implicit to networks and

biology contextualized

• Regulatory hubs can be identified and their regulatory

effect assessed

• Novel candidates can be identified using multiple omics

data which may be missed using one-dimensional data

modeling limit the biological accuracy of

reconstructed networks

• Requires large numbers of good quality

high-throughput data

• Generally more suited to model organisms

Systems • The effect of allele substitution on regulatory networks • Constrained by the degree of expression

genetics can be quantified

• Allows for the molecular basis of genetic associations to

be understood

• Co-expression clusters and eQTL analysis may identify

potential master regulators

• Cis and trans mechanisms of transcript regulation can be

distinguished

polymorphism within the population under

study

• Large number of individuals required

• Condition-specific co-expression may escape

detection

• Molecular basis of co-expression is unknown

Protein-binding microarrays

(Mukherjee et al., 2004; Bulyk,

2007)

• Cis-element sequences can be identified precisely

• Oligonucleotide arrays are applicable across all taxa

• In vitro results reportedly reflect in vivo binding

• Purified GST-tagged protein may need to be

functionally validated (e.g., EMSA) prior to

assay

• Only dsDNA arrays can be used

Elecrophoretic mobility shift assay

(EMSA)

• Direct method to detect protein binding

• Can distinguish nucleotides essential for binding

• In vitro method

• Low-throughput

• Heterologously expressed protein may not be

soluble

(Continued)
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Table 2 | Continued

Advantages Challenges

Yeast 1-hybrid (Y1H) (Li and

Herskowitz, 1993; Wang and Reed,

1993)

• One of few gene-centered approaches available

• High-throughput robotic screening possible

(Reece-Hoyes et al., 2011)

• Gateway-compatible short DNA fragments or long gene

promoters can be used as baits (Deplancke et al., 2004)

• Custom stringency control possible

• Prone to type 1 errors

• Yeast-expressed proteins may lack essential

post-translational modifications

• Not suitable for TFs that require co-regulators

to activate gene expression

• Cell-type context of interaction cannot be

inferred

Transient protoplast transactivation

systems

• High-throughput (when combined with whole

transcriptome analysis)

• Circumvents the need for stable transformation

• Little biological variation

• In vivo method

• Direct targets are inferred using post-translational

induction in the presence of a protein synthesis inhibitor

• Currently restricted to Arabidopsis mesophyll

and Populus secondary xylem protoplasts

(Wehner et al., 2011; Li et al., 2012b)

• Not suitable for TFs requiring tissue-specific

co-factors (e.g., Bhargava et al., 2010)

• Possibility of false positives (misregulated

genes)

• Cells are exposed to high levels of stress,

which may influence the assay

Chromatin immunoprecipitation

• ChIP-on-chip (Ren et al., 2000)

• ChIP-seq (Barski et al., 2007)

• ChIP-exo (Rhee and Pugh, 2011)

• Nano-ChIP-seq

(Adli and Bernstein, 2011)

• High-throughput analysis of TF binding sites

• In planta method

• Can profile TFs that do not bind directly to DNA

• Canonical binding sites can be identified (esp. using

ChIP-exo)

• Critically dependent on antibody specificity

and performance

• Limited ability to assay TFs exhibiting low or

cell-specific expression

• Extensive optimization may be required for

different tissues and organisms

(Haring et al., 2007)

• Difficult to assign genes to TF binding sites,

since not all binding sites are functional

Each technique is loosely arranged in order of increasing resolution of in planta protein–DNA associations.

Classical reverse genetics approaches employing overexpres-
sion and knock-out mutagenesis have been central to the func-
tional annotation of SCW TFs in Arabidopsis and Populus (e.g.,
Zhong et al., 2007b; McCarthy et al., 2009; Grant et al., 2010).
Direct or indirect targets of a TF subjected to knock-out or
overexpression may be inferred under the premise that the tran-
scriptional regulation of those targets is altered, leading to their
differential expression relative to the wild type. However, we
would like to highlight some problems associated with overex-
pression that have emerged in studies of SCW regulation, namely
the level and site of overexpression.

SND1, now accepted as a master transcriptional activator of
Arabidopsis SCW biosynthesis in fibers (Mitsuda et al., 2007;
Zhong et al., 2007b, 2008a), was reported to suppress fiber SCW
deposition when excessively overexpressed (Zhong et al., 2006).
SND2, an indirect target of SND1, exhibited increased fiber SCW
thickness when overexpressed and a mirrored reduction in SCW
deposition in dominant repression lines (Zhong et al., 2008a).
However, when our laboratory analyzed independent Arabidopsis

lines overexpressing SND2 (Hussey et al., 2011), we observed a
decrease in fiber SCW deposition which we attributed to SND2

transcript levels far-exceeding those reported in the previous
study. Such phenomena could be explained by transcriptional
squelching, defined as the repressive effect of a transcriptional
activator beyond a certain threshold of abundance, due to the
sequestration of interacting co-regulators or general transcription

factors (Cahill et al., 1994; Orphanides et al., 2006). Alternatively a
“dosage balance” mechanism (Birchler et al., 2005) holds that, for
multi-subunit TF complexes, a relative increase in the abundance
of one particular subunit does not lead to an increase in the yield
of the assembled complex, but rather a stoichiometric reduction
in the abundance of complete complexes and an increase in the
abundance of non-functional sub-complexes (Birchler and Veitia,
2007, 2010). Together, these inconsistencies in functional stud-
ies of cell wall-related TFs suggest that overexpression differences
may introduce indirect or even conflicting phenotypes.

Ectopic expression can also modify TF function. Regulating
primary cell wall (PCW) deposition in the Arabidopsis root cap,
three partially redundant TFs closely related to clade IIb NACs
NST1, SND1, VND6, and VND7 have been described, namely
SOMBRERO (SMB), BEARSKIN1 (BRN1), and BRN2 (Bennett
et al., 2010). When constitutively driven by the 35S CaMV pro-
moter, they are sufficient for ectopic deposition of lignified SCWs
in several tissues, a phenotype resembling that of NST1, VND6,
and VND7 overexpression (Bennett et al., 2010). Since SCWs
are not found in the root cap where the TFs normally func-
tion, ectopic expression resulted in a modification of the gene
targets that SMB and BRN1/2 naturally regulate, perhaps due to
differences in co-regulators or other regulatory factors between
tissues. This mechanism may also explain results reported by
Bomal et al. (2008), where ectopic overexpression of the xylem-
associated pine gene PtMYB8 in spruce caused misregulation of
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flavonoid-associated transcripts, which have preferential expres-
sion in tissues that correspond to regions of low expression of
native PtMYB8 in pine.

The examples cited above of confounding effects due to the
level and site of a candidate TF’s expression provide compelling
grounds to substantiate with additional evidence some of the con-
clusions arising from overexpression approaches. Such concerns
have been echoed in a review of gain-of-function mutagenesis
(Kondou et al., 2010). To avoid these problems, loss-of-function
mutagenesis and non-transgenic approaches such as ChIP-seq
may be more reliable. Although conventional mutagenesis is fre-
quently unsuitable for SCW-regulating TFs due to the high degree
of functional redundancy between homologs, the use of chimeric
repressor silencing technology (CRES-T; Hiratsu et al., 2003) has
circumvented this problem, at least for transcriptional activators.
In CRES-T, dominant loss-of-function transgenic plants overex-
press a candidate TF fused to a hexapeptide dominant repression
domain (Hiratsu et al., 2004; Mitsuda and Ohme-Takagi, 2008;
Zhong et al., 2008a). The hexapeptide repressor opposes the tran-
scriptional activation function at loci bound by the TF, in addition
to the complementation that functional homologs may exert at
those loci. Ectopic noise arising from overexpression may also be
reduced by the use of tissue-specific promoters or laser capture-
microdissection to capture only those cell types where the TF
candidate is naturally expressed. Similarly, inducible expression
may limit knock-on effects of long-term overexpression.

Promoter transactivation by an induced candidate TF in
Arabidopsis mesophyll protoplasts (Wehner et al., 2011) has
proved particularly useful in the identification of Arabidopsis gene
targets, and may be used to complement approaches such as
ChIP-seq which does not strictly indicate active target regula-
tion (Table 2). The assay typically involves co-transfection with
different plasmids, one harbouring a constitutively expressed can-
didate TF gene (the “effector”), a promoter::GUS reporter vector
and a luciferase expression vector to allow for normalization of
transfection efficiency. Inferring direct targets using this system is
complicated by the potential ability of a candidate TF to induce
transcription of an intermediate TF in the host cell that is respon-
sible for activating a target gene. This has been addressed by
translational fusion of the candidate TF to the regulatory region
of the human estrogen receptor (Zuo et al., 2000). The chimeric
protein is post-translationally induced by β-estradiol, allowing for
an inhibitor of protein synthesis to be added to the system prior
to induction to block the translation of intermediate TFs. The
activated chimeric TF is then able to regulate transcription of tar-
get genes using the existing transcriptional machinery of the cell,
and direct targets can be inferred with promoter::GUS RT-qPCR
analysis (Zhong et al., 2008a; Zhou et al., 2009) or microarray
analysis of the host cell transcriptome (Zhong et al., 2010c). For
this reason, only those protoplast transactivation experiments
that used post-translational induction were considered as evi-
dence for protein–DNA interactions represented in Figure 2, to
avoid the possibility that putative targets may have been indirectly
regulated.

Arabidopsis mesophyll protoplasts have also been used to assess
in vivo promoter transactivation by Populus and Eucalyptus TFs
using GUS reporters fused to candidate promoters from these

species (Zhong et al., 2011b). A genome-wide analysis of endoge-
nous promoter transactivation of TFs from non-model species
would require protoplasts derived from the same, or a related,
species. Although the promoter::GUS approach suffers from much
lower throughput, it mitigates the effects that the chromatin
structure of the host protoplast may exert on the regulation of
endogenous target genes. DNaseI hypersensitivity sites, an indica-
tor of open chromatin marking most active TF binding sites, vary
considerably across cell types (Thurman et al., 2012). Therefore,
protoplasts should ideally be sourced from the same tissue in
which a candidate TF is expressed. The recent report of isolation
and transfection of Populus secondary xylem protoplasts (Li et al.,
2012b) sets the stage for genome-wide analysis of poplar genes
transactivated by poplar TFs involved in wood development.

Several approaches exist for in vitro, in vivo, and in planta anal-
ysis of TFs from non-model organisms that are not yet easily
transformable (Table 2). Systems genetics allows for gene reg-
ulatory networks to be reconstructed by co-expression analysis
across large numbers of segregating progeny (Ayroles et al., 2009).
Microarray or RNA-seq expression data are obtained for tissues
of interest from a structured segregating population. The addi-
tion of genetic markers allows for the identification of expression
quantitative trait loci (eQTLs) (Jansen and Nap, 2001), which can
be differentiated into those acting in cis or trans. Trans-eQTLs
likely represent polymorphisms in transcriptional regulators, and
due to their ability to affect expression of many genes, trans-

eQTL “hotspots” may be mapped that contain significantly more
eQTLs than the genome average. The combination of eQTLs
and co-variation in transcript levels allows the prediction of
causal relationships (Zhu et al., 2007) and candidate regulators
(Drost et al., 2010) and is the basis on which regulatory net-
works can be constructed a posteriori, or hypothetical a priori

networks tested (Kliebenstein, 2009). One considerable limitation
of current systems genetics studies is the difficulty of studying
the segregation of transcript abundance in specific cell types of
organs. However, recent advances in obtaining high-throughput
cell type-specific transcriptome data may make this challenge
more feasible (Chitwood and Sinha, 2013).

Yeast one-hybrid (Y1H) has been widely used to identify
TFs that interact directly with SCW-related promoters (Lin
et al., 2010; Kim et al., 2012b). These assays can be per-
formed either through direct cloning of candidate TF coding
sequences and systematically testing interactions with different
potential target promoters (Mitsuda et al., 2010), or via screen-
ing of cDNA expression libraries which have the advantage
of discovering novel interacting proteins (Lopato et al., 2006).
Recent advancements in Y1H screening, including smart pool-
ing and robotics, have increased the generally low throughput
of this technique (reviewed in Reece-Hoyes and Walhout, 2012).
However, Y1H interactions occasionally fail independent vali-
dation assays. For example, although SPL8 was isolated from
20 of 72 yeast colonies showing a positive interaction with
the CCoAOMT1 promoter, it failed to activate the promoter in
particle-bombarded Arabidopsis leaves (Mitsuda et al., 2010). A
significant disadvantage of Y1H is that protein–DNA interactions
which require cofactors or bind as complexes will not be identified
(Table 2).
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A poorly researched area in SCW transcriptional regulation is
the symplastic movement of regulatory proteins between cells. It
is well known that some TFs may move from cell to cell through
plasmodesmata (Burch-Smith et al., 2011; Wu and Gallagher,
2012). Aside from the SHR example in section Spatial Specificity
of Fiber and Vessel Development (reviewed by Kurata et al.,
2005), in plants this has been found predominantly in meristems
and involves mainly the KNOX (e.g., KNOTTED1) and MADS-
box TF families (Zambryski and Crawford, 2000). However, at
least one MYB-like protein is known to be non-cell-autonomous
(Wada et al., 2002), and it is possible that some SCW-associated
TFs act non-cell autonomously. This necessarily implies that
the use of in situ hybridization, which has been widely used
to study SCW-associated TF transcript abundance (e.g., Zhong
et al., 2010b), may not accurately reflect a candidate TF’s bio-
logical function. For species that can be stably transformed, TF
movement can be tracked by fluorescent protein fusion exper-
iments. For example, Kim et al. (2003) expressed GFP∼KN1
fusion proteins (where ∼ denotes a linker sequence) in mes-
ophyll or epidermal cells using tissue-specific promoters, and
compared the movement of GFP∼KN1 between the mesophyll
and the epidermis with that of free GFP and GFP fused to a
viral movement protein. Microinjection of fluorescently labeled
recombinant TFs into the cytoplasm of cells of interest can also
be performed, but this approach is technically cumbersome and
limited to larger cells (Lucas et al., 1995; Wang et al., 2007b). For
non-model organisms, immunolocalization methods using an
antibody against a TF of interest can be used to detect its presence
in planta. Whilst low-abundance TFs may be difficult to detect
using immunohistochemical methods, both alkaline phosphatase
staining and immunogold labeling have been used to detect TF
proteins at cellular and subcellular levels (Rodriguez-Uribe and
O’Connell, 2006).

Chromatin immunoprecipitation combined with high-
throughput sequencing (ChIP-seq) offers many advantages that
are particularly suited to non-model organisms where genomic
information is available (Table 2). It has been shown that even
fragmented genome assemblies are acceptable for ChIP-seq read
mapping (Buisine and Sachs, 2009), evading the need for genome
assemblies on par with model plants. However, ChIP-seq in
plants currently suffers from a lack of protocols for isolation of
sufficient amounts of chromatin from individual tissues, and
each tissue and species may require customized modifications
to chromatin fixation, nuclei isolation and chromatin shearing
(Haring et al., 2007). To our knowledge no ChIP procedures
have yet been applied to developing xylem from woody stems,
but a report of successful mapping of the ARBORKNOX1 TF
in poplar vascular cambium using ChIP-seq (Andrew Groover,
personal communication) sets the stage for its implementation
in xylem. A range of improvements have been made to the basic
ChIP-seq principle (reviewed in Furey, 2012), amongst them the
ability to amplify sufficient amounts of ChIP DNA for Illumina
sequencing from limited cell numbers (Adli and Bernstein,
2011). The latter is a particularly exciting advancement as it
may allow for ChIP to be applied for the first time to plant
tissues where chromatin yield is poor or where a TF’s expression
is low.

While these and other technologies advance—especially those
involving second-generation sequencing—systems approaches to
study SCW transcriptional regulation are still lacking. Systems
biology attempts to integrate various high-throughput datasets
into a holistic biological model, or achieve meaningful dynamic
modeling of extensive biological data. Despite considerable
progress in plant systems biology (Yuan et al., 2008) and the
existence of several genome- and transcriptome-wide datasets
relating to Arabidopsis SCW biosynthesis, few attempts have yet
been made to integrate such data with other -omics platforms.
The integration of metabolomic data into transcriptional net-
works, for example, can link modifications of TFs and their
interactions to phenotypic outputs. Two model Arabidopsis stud-
ies, one using multiple knockout mutants of lignin biosynthetic
pathway enzymes (Vanholme et al., 2012) and another analyzing
five TF overexpression lines involved in glucosinolate biosynthe-
sis (Malitsky et al., 2008), have integrated transcriptomic and
metabolomic data to reveal novel aspects of metabolic pathway
flux and regulation. In future, however, such analyses will have
to be extended to cell-specific gene expression and interactions,
especially in the field of transcriptional regulation. Overlaying cell
type-specific expression profiles with Y1H and Y2H interaction
data has been successfully achieved in the Arabidopsis root using
enzymatic cell wall maceration and fluorescence-activated cell
sorting of target cell protoplasts expressing a GFP marker (Brady
et al., 2011). Another approach developed in Arabidopsis involves
the purification of tagged nuclei from specific cells for transcrip-
tome and ChIP-seq analysis (Deal and Henikoff, 2010). These and
other innovations will undoubtedly contribute to a systems-level
understanding of SCW regulation in the near future.

CONCLUSIONS

In this review we aimed to provide a comprehensive summary
of what is currently known about Arabidopsis SCW transcrip-
tional regulation, highlighting current gaps in our understanding
of the transcriptional network. We have also emphasized that an
understanding of protein–protein interactions, spatial specificity
and network dynamics (modules and hubs, regulatory motifs,
and temporal regulation) is severely underdeveloped compared to
what is known about the network’s connectivity. The immediate
goal of future research is to comprehensively identify the physi-
cal interactions (protein–DNA and protein–protein) involved in
SCW transcriptional regulation. This includes the identification
of not only interacting partners of known TFs, but also their cell-
type context that might influence the functions of TFs in different
ways. This goal will allow us to identify TFs and transcriptional
modules that regulate genes involved in the biosynthesis of spe-
cific SCW biopolymers. This, together with systems approaches,
will also reveal to what degree regulation of different genes and
metabolic pathways is independent. Currently, only the lignin
pathway seems to be specifically targeted by TFs such as MYB58,
MYB63, and MYB85, and it may not be possible to uncouple the
transcriptional regulation of cellulose and hemicellulose biopoly-
mers. However, two recent studies have used components of
the SCW transcriptional network to engineer plants with favor-
able biofuel properties by restoring vessel wall integrity in xylan
(Petersen et al., 2012) and lignin mutants (Yang et al., 2013) or
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reinforcing polysaccharide deposition in fiber SCWs (Yang et al.,
2013).

The ability to predict the regulatory outcome of perturba-
tions in transcriptional networks through network modeling is
invaluable to the field of biotechnology. A detailed knowledge of
the strength of interaction for each edge connecting two nodes
and a mathematical understanding of how the network responds
to perturbations in expression, as well as genetic and environ-
mental modulation, has not yet been attained. Systems biology
experiments in Arabidopsis, for which knock-out lines are read-
ily available to quantify network dynamics in response to genetic
perturbations, will contribute extensively in this regard. For non-
model organisms, Y1H and ChIP-seq are expected to be two
key techniques used to identify protein–DNA interactions in the
near future. However, systems genetics, which facilitates network
reconstruction, modeling and quantification from perturbations
caused by natural genetic variation, is gaining momentum in
agronomically important species (Ingvarsson and Street, 2010;
Mizrachi et al., 2012). Identification of trait QTLs and eQTLs
additionally allow for the assessment of phenotypic impact of
expression variation in TFs, the strength of association of TFs
with regulons of co-expressed genes, and the ability to apply
molecular breeding strategies to populations.

An understanding of the integration of intercellular signals,
miRNAs, chromatin changes and temporal dynamics in tran-
scription during xylem development remains a future challenge,
marred by a limited understanding of regulatory mechanisms. For
example, the occurrence of alternative splicing as a form of SND1
regulation in Populus (Li et al., 2012b) underscores an overlooked
regulatory mechanism in SCW deposition, and there exists the
possibility that certain RNA-binding proteins may participate in
alternative splicing during xylogenesis. There is currently no data
on cell type-specific chromatin modifications, DNA methylation
or chromatin states during various aspects of fiber and vessel
development that may influence availability of TF binding sites.
We have no knowledge of the degree to which the SCW-associated

TFs downstream of the HD-ZIP III TFs (Figure 1) are post-
transcriptionally regulated by miRNAs, or of the transcriptional
changes associated with the transitions between S1, S2, and S3
layer deposition in SCWs. Finally, the findings that fibers in
close proximity to vessels show a vessel-like lignin composition
(Gorzsás et al., 2011) and that lignification of tracheary elements
may occur post-mortem due to monolignol transport from live
cells (Pesquet et al., 2013) highlights the need to better under-
stand the role of cell non-autonomous regulation of xylogenesis.
Clearly there are plenty of opportunities for further study in this
exciting field.
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Data sheet 1 | Excel spreadsheet of supporting literature for each

protein-DNA and protein-protein interaction depicted in Additional file 1.

Additional file 1 | Cytoscape file (.cys) of direct and indirect protein–DNA

interactions and protein–protein interactions involved in Arabidopsis SCW

transcriptional regulation. Nodes indicate genes, edges indicate

interactions. Red edges, known direct protein–DNA interactions; dark blue

solid edges, known regulatory relationships of unknown nature; dark blue

dashed edges; known indirect regulatory relationships; light blue edges,

protein–protein interactions. Structural genes are indicated as square

nodes, transcriptional activators as circular nodes, transcriptional

repressors as diamond-shaped nodes, and transporter proteins (WAT1) as

triangles. Nodes are color-coded according to known biological processes:

blue, signaling; green, cellulose biosynthesis; yellow, hemicelluloses

biosynthesis; black, programmed cell death; purple, lignin biosynthesis;

white, unknown function. Transcriptional regulators colored in orange are

involved in the regulation of more than one type of SCW biopolymer.
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