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Metaproteomic research involves various computational challenges during the identification of
fragmentation spectra acquired from the proteome of a complex microbiome. These issues are
manifold and range from the construction of customized sequence databases, the optimal set-
ting of search parameters to limitations in the identification search algorithms themselves. In
order to assess the importance of these individual factors, we studied the effect of strategies to
combine different search algorithms, explored the influence of chosen database search settings,
and investigated the impact of the size of the protein sequence database used for identification.
Furthermore, we applied de novo sequencing as a complementary approach to classic database
searching. All evaluations were performed on a human intestinal metaproteome dataset. Pyro-
coccus furiosus proteome data were used to contrast database searching of metaproteomic data
to a classic proteomic experiment. Searching against subsets of metaproteome databases and
the use of multiple search engines increased the number of identifications. The integration
of P. furiosus sequences in a metaproteomic sequence database showcased the limitation of
the target-decoy-controlled false discovery rate approach in combination with large sequence
databases. The selection of varying search engine parameters and the application of de novo
sequencing represented useful methods to increase the reliability of the results. Based on our
findings, we provide recommendations for the data analysis that help researchers to establish
or improve analysis workflows in metaproteomics.

Keywords:

Bioinformatics / De novo sequencing / False discovery rate / Metaproteomics / Search
parameters

� Additional supporting information may be found in the online version of this article at
the publisher’s web-site

Correspondence: Professor Lennart Martens, Department of Med-
ical Protein Research and Biochemistry, VIB and Faculty of
Medicine and Health Sciences, Ghent University, A. Baert-
soenkaai 3, B-9000 Ghent, Belgium
E-mail: lennart.martens@ugent.be
Fax: +32-92649484

Abbreviations: FA, formic acid; HIMPdb, human intestinal
metaproteome database; HS, high scoring; LS, low scoring; MC,

missed cleavages; PSM, peptide-spectrum match; Pyrodb, Py-
rococcus furiosus database; PyroHIMPdb, concatenated pyro-
coccus furiosus and human intestinal metaproteome database;
RMIC, relative matched ion count
∗Both authors contributed equally and share the first authorship.
∗∗Additional corresponding author: Dr. Erdmann Rapp,
E-mail: rapp@mpi-magdeburg.mpg.de
Colour Online: See the article online to view Figs. 1, 2 and 3 in colour.

C© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com



3440 T. Muth et al. Proteomics 2015, 15, 3439–3453

1 Introduction

Over the past few years, progress in instrumentation as well
as methodological improvements have greatly facilitated the
automated analysis of high-throughput MS-based proteomic
data. In particular, this concerns the matching of mass spec-
tra to peptides from an in-silico digested protein sequence
database [1]. In addition, de novo sequencing approaches
have become an alternative option for assigning peptide se-
quences to their fragmentation mass spectra (MS/MS) [2].
Both methods result in peptide-spectrum matches (PSMs)
with algorithm-specific scores reflecting the identification
quality. These scores are subsequently processed by built-
in statistical routines of the data analysis software or by ex-
ternal validation algorithms to estimate the probability of
these PSMs to be correct [3]. The final outcome of a high-
throughput proteomics experiment therefore not only de-
pends on the quality of the sample processing and MS analy-
sis steps, but to a large extent also on the peptide and protein
identification algorithms used and the parameters employed
in the data analysis [4–6]. The first and most important re-
quirement is that the sequences of the analyzed peptides
have to be contained in the protein sequence database used,
or have to be suggested by de novo sequencing. Second, from
the wide range of available parameters that can be modified
to influence the search results, the user needs to select the
appropriate set [7]. Third, the results need to be validated
by reliable statistics using an acceptable false discovery rate
(FDR) threshold. In classic proteomic experiments, where
proteins from a specific tissue or organism are analyzed, these
issues are particularly pronounced when uncommon splice
variants and unexpected PTMs are present in the samples.
However, when analyses are performed on environmental
samples comprising proteins from many different organisms
the issues become much more severe [8].

The first challenge, the necessity to know the correct se-
quence space to perform a meaningful search, is particularly
troublesome in metaproteomics. Only a low proportion of
common organisms is fully sequenced. Therefore, currently
only in controlled environments, i.e. for model organisms or
in systems with low complexity, protein sequence databases
can be considered to be reasonably representative. In typi-
cal metaproteomic analyses, it is therefore highly likely that
entire genomes of several organisms are missing from the
protein sequence database, resulting in unidentified high-
quality spectra. While metagenomics offers the possibility to
approach the real protein content of samples by incorporat-
ing the genetic background of the ecosystem, this method
may not provide complete coverage of all potential protein
sequences as the quality of sequencing, assembly and anno-
tation still have an impact on the obtained metagenome [9].
De novo sequencing, where peptide sequence information
is inferred directly from the spectrum without the use of a
sequence database, has become another possibility to assign
peptide sequences to MS/MS spectra from metaproteomic
experiments. However, this particular approach has not been

widely used for metaproteomic data so far. Instead, steadily
increasing public repositories with metagenomic data of sev-
eral ecosystems are becoming available that can provide a
valuable search space for metaproteomic data [10]. Further-
more, such resources can be modified for specific samples
by adding genomes from individual organisms in order to
increase the coverage. Therefore, protein sequence databases
used in metaproteomics can quickly grow to millions of se-
quences. Because such enormous databases strongly chal-
lenge most peptide identification algorithms, specific strate-
gies have been developed to narrow this search space. A com-
mon approach presents the sectioning of the database in order
to reduce the number of protein sequences by only retain-
ing taxonomy-specific entries [11]. Another strategy employs
searching in two steps: first, the initial database is searched
without any FDR limitation, which is then followed by a sec-
ond search with a stringent FDR threshold against a refined
database created by extracting the protein identifications de-
rived from the first search [12]. This method has already been
applied recently both in metaproteomics [13] and proteoge-
nomics [14, 15]. In a related iterative approach, protein se-
quences from a first search are used to generate a second
database containing gene differences in order to substantiate
the previously identified proteins [16].

The second challenge involves the selection of optimal
search parameters and is further complicated by the first
challenge. The effect on the search results by varying the
maximum number of missed cleavages (MC) or the cho-
sen enzyme for digestion (such as trypsin, chymotrypsin,
or semi-tryptic cleavage) has hardly been studied for large
protein sequence databases encountered in metaproteomics.
Another key issue in search parameter selection is the choice
of considered PTMs, which is already a challenging task in
less complex systems [7]. In metaproteomics, it is even more
difficult due to limited a priori information and intricate pre-
dictions about expected modifications in the studied system
[17]. A clear view on the impact of these parameters on the
search outcome has so far been difficult to obtain, since differ-
ent studies tend to use individual parameter settings, which
strongly impairs a comparison of the results.

The third challenge, filtering results at a reliable and
acceptable FDR level, also provides specific challenges for
metaproteomics research. First of all, despite tremendous
progress in proteome bioinformatics over the past decade,
currently available search algorithms have been mainly devel-
oped and tested for single organism data. The performance
characteristics of these algorithms on metaproteomic data
therefore are largely unknown. And while it is known that
different database search engines can provide complemen-
tary results [18–20] and that the use of multiple algorithms
may therefore be particularly appropriate in the analysis of
complex systems, most studies employ a single search en-
gine only. Second, although FDR estimation in metapro-
teomics typically relies on the target-decoy approach used
in traditional proteomics [21], various studies indicate that
this method is not perfectly suited for all cases [5, 22, 23].
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Figure 1. Experimental setup. MS/MS spectra of the human intestinal metaproteome dataset were inferred to peptide sequences by
database searching (1a), with various different search settings, as well as de novo sequencing (2). Database search of Pyrococcus furiosus
spectra was performed equivalently to the metagenome data searches (1b). Both HIMPdb and P. furiosus search identifications are validated
by their scores and q-values via the target-decoy approach (1c).

Consequently, if the FDR estimation is actually influenced
by certain unwanted factors, a false impression of error con-
trol may be created when results are presented for a definite
FDR threshold, usually set at 1% [24, 25] or 5% [26, 27].

In order to obtain a better insight into these three chal-
lenges, we analyzed ten metaproteomic samples deriving
from human fecal material and evaluated the effect on the
identification rate by using two search engines against a tar-
geted protein database. In addition, de novo sequencing was
applied to complement the database searches. Variation in
search parameters (enzyme, number of MC) and the behav-
ior of the FDR with respect to the database size was tested via
benchmark experiments on three out of the ten samples and
additional Pyrococcus furiosus data [28].

2 Materials and methods

2.1 Study setup

As detailed below, two datasets were used for database search-
ing, one comprising ten human fecal metaproteomes and
one of P. furiosus proteins (Fig. 1). The search algorithms
X!Tandem and OMSSA were applied and different settings
of the search parameters (i.e. allowed MC and enzyme selec-
tion) were used for database searching. In addition, searches
against protein sequence databases of varying size were per-
formed. The PSM scores were obtained from the individual
search algorithms and FDR estimations based on q-values
[29] were used for search results combination. De novo se-
quencing was applied for the human metaproteomic dataset.
Relative matched ion counts were used as rescoring method
to compare the performance of database searching and de
novo sequencing.

2.2 Metaproteomic dataset

2.2.1 Study cohort and sample preparation

As test metaproteomic dataset we used ten metaproteomes
of adults (P1, P3, P8, P11, P17, P23, P27, P28, P31, P34) who
took part in a larger study as detailed in [30]. This study was
approved on July 12, 2011 by the Medical Ethics Committee
of the Atrium Medical Center (Heerlen, the Netherlands, reg-
istration number NL30502.096.09), and conducted according
to the revised version of the Declaration of Helsinki (Octo-
ber 2008, Seoul). Informed consent in writing was obtained
from each subject individually. The biological findings on the
metaproteomes will be published separately. Aliquots from
the same fecal samples were used, which were analyzed with a
phylogenetic microarray [30]. The metaproteomes were pre-
pared as follows: proteins from frozen fecal material were
extracted and fractioned as described in a previous study [27].
In brief, cells were lysed by bead beating in PBS. For bead
beating, a FastPrep 24 (MP Biomedicals) with cooling de-
vice was used, which required 5-min cooling steps on ice in
between the five cycles of bead beating. From the resulting su-
pernatants, beads were removed by low-speed centrifugation
and cell debris by low-speed centrifugation. Proteins were
separated on a 4–12% NUPAGE Bis-Tris gel (Invitrogen) and
the 37 and 75 kDa bands of a prestained protein marker (Pre-
cision PlusTM Dual Color, BioRad) was used for cutting a gel
region. The 37–75 kDa region was subjected to in-gel protein
digestion using trypsin [31]. After digestion, peptides were
purified with C18 microspin columns (Harvard Apparatus,
USA) according to manufacturer’s instructions and redis-
solved in 30 �L of 0.1% trifluoroacetic acid and 1% ACN in
HPLC-grade water.

C© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com
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2.2.2 Liquid chromatography coupled to tandem

mass spectrometry (LC-MS/MS)

Reverse-phase liquid chromatography coupled to tandem
mass spectrometry (LC-MS/MS) analysis was carried out on
a nanoHPLC system EASY-nLC II (Thermo Fisher Scien-
tific, Germany) connected to an Orbitrap Elite hybrid mass
spectrometer (Thermo Fisher Scientific, Germany) with na-
noelectrospray ion source (Thermo Fisher Scientific). The
tryptic peptide sample mixture was automatically loaded from
autosampler into a C18-packed precolumn (EASY-ColumnTM

2 cm × 100 �m, 5 �m, 120 Å, Thermo Scientific) at a flow rate
of 1 �L/min in 10 �L volume of buffer A (1% ACN and 0.1%
formic acid in HPLC-grade water). Peptides were transferred
onward to C18-packed analytical column (EASY-ColumnTM

10 cm × 75 �m, 3 �m, 120 Å, Thermo Scientific) and sep-
arated starting at 5% Buffer B (98% ACN and 0.1% formic
acid in HPLC-grade water) for 5 min followed by a 120-min
linear gradient from 5 to 35% of buffer B at the flow rate of
300 nL/min. Gradient was followed by 5-min gradient from
35 to 80% of B, 1-min gradient from 80 to 100% of B and
9-min column wash with 100% B at the constant flow rate of
300 nL/min.

Per LC-MS/MS run, 4 �L of sample were injected and
analyzed. Full MS scan was acquired in positive ion mode
with a resolution of 60 000 at normal mass range in the
orbitrap analyzer. The method was set to fragment the 20
most intense precursor ions with CID (energy 35).

Data were acquired using profile mode for survey scan
(MS) carried out in the high-resolution orbitrap mass an-
alyzer and centroid mode for fragment ion scan (MS/MS)
carried out in the linear iontrap mass analyzer. Peak pick-
ing was calculated by Thermo Proteome Discoverer 1.4.1.14
and output to MASCOT Generic Format (MGF), converted
with default settings on the Spectrum Selector node for
the conversion workflow (Mass range settings: precursor
mass range: 350–5000 Da). The MGF files are available at
ftp://MSV000079035@massive.ucsd.edu.

2.3 P. furiosus dataset

For the benchmark experiments, we took 14 467 MS/MS
spectra obtained from P. furiosus proteins as described in
detail in [28], as representative proteomics sample. Pyrococcus
furiosus presents a hyperthermophilic archaeon known for its
unique biochemistry [32, 33].

2.4 Database searching

For protein database searching, we used X!Tandem (version
2013.02.01) [34] and OMSSA (version 2.1.8) [35] as search
engines with the following parameters: trypsin was used
as default enzyme and up to two MC were allowed. Car-
bamidomethylation of cysteine was chosen as fixed, and oxi-

Table 1. Name and size of the used protein sequence databases

Protein sequence database name Sizea)

HIMPdb 6 153 068
Qin2010dbb) 3 267 604
Bact594dbb) 1 850 744
Pyrodb 9514
PyroHIMPdb 6 162 582
HIMPdb two-step 90 040 (average)

a) Number of protein sequence entries in the FASTA database.
b) Sectioned database of HIMPdb.

dation of methionine as variable modification. The fragment
ion tolerance was set to 0.4 Da and the precursor tolerance
to 0.03 Da. For some explicitly mentioned experiments, we
modified the default parameters MC and enzyme. Depend-
ing on the experiment, one out of a total of six different
protein sequence databases was used (Table 1). The main
protein sequence database used was the Human Intestinal
Metaproteome database (HIMPdb, 6 153 068 protein se-
quences), which was constructed from different sources such
as metagenomes, bacterial genomes, the human genome,
as well as plant genomes and therefore represents a wide
range of expected proteins in fecal samples (Supporting
Information Table 1). To study the effect of the database
size, two subsets of HIMPdb were taken: a collection of
594 bacterial genomes expected to occur in the human gut
(Bact594db, Supporting Information Table 2) and intestinal
metagenomes of 124 individuals (Qin2010db) [36]. For P. fu-
riosus searches both Pyrodb, a collection of 2139 P. furiosus,
7325 Saccharomyces cerevisiae and 50 Homo sapiens protein
sequences (Uniprot/Swissprot), was used as well as a combi-
nation of HIMPdb and Pryodb (called PyroHIMPdb).

For target-decoy-based FDR estimations for each of the pro-
tein databases, a decoy database was generated by reversing
the target protein sequences. The target and decoy searches
were performed separately.

2.5 Quality control of database search results and

combination of search results

Based upon target-decoy searching, we used qVality [29] for
q-value (minimum FDR) estimation to guarantee consistency
across heterogeneous search engines with different scoring
techniques. Results were always filtered with 5% FDR, how-
ever, in specific cases, as described in the results section with
1 and 10% FDR.

Original search scores were used for quality control of the
search results. For X!Tandem, we used the hyperscore as
the most objective scoring metric while it relies only on the
assigned fragment ions [37]. For OMSSA, the score was trans-
formed by taking minus ten times the ten-base logarithm of
the OMSSA e-value [38]. This provided us with a comparable
scale for the score of both search engines.

C© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com
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X!Tandem and OMSSA search results were combined by
taking the individual spectrum identifications filtered by their
q-values. For peptide identification, the union set of both
search algorithms was retained.

2.6 Reporting of search results

The report of the results was limited to the number of iden-
tified spectra and distinct peptides, as the total number of
proteins cannot be accurately calculated in a metaproteomics
experiment. In particular, one peptide often maps to multi-
ple proteins of different organisms resulting in the compli-
cated and essentially unsolvable protein inference problem
[8, 39, 40].

2.7 Two-step searching

For samples P1, P23, and P34, the unfiltered protein identi-
fications from the HIMPdb search were collected. The corre-
sponding protein sequences were extracted from the original
HIMPdb to create a refined protein sequence database, which
was used for a second search [12]. In the following, this ap-
proach is called two-step searching.

2.8 De novo sequencing

For de novo sequencing, we used the software DeNovoGUI
(version 1.2.0) [41] that provides a graphical user interface
and parallelization of the PepNovo+ algorithm [42] using
the same tolerances and PTM parameters as described be-
fore. The default fragmentation model (CID_IT_TRYP) was
used in PepNovo+, accounting for CID fragmentation and
tryptic cleavage. The maximum number of peptide solutions
was set to 20. The PepNovo+ algorithm was used in mul-
tithreaded mode by using four compute cores. Additionally,
the de novo peptide suggestions were filtered by a PepNovo+
score threshold above 100 for high-quality identifications and
between 50 and 100 for low-quality identifications.

2.9 Rescoring

To evaluate the quality of the identified spectrum, the relative
matched ion count (RMIC) score was calculated by the inten-
sities of the matched fragment ions (a/b/c, x/y/z, y-NH3, y-
H20,b-NH3, b-H20, precursor MH, MH-NH3, and MH-H2O)
of the peptide divided by the total ion current of the related
spectrum; an RMIC of 0.5 thus means that 50% of the spectral
peak intensity can be explained by fragment ion peaks (within
a window of 0.5 Da for each peak). The RMIC score served
as a basic and rapid quality measurement independent of the
applied peptide identification strategy, as it relies only on the
given spectrum and peptide information. Consequently, the

rescoring of peptide identifications was consistent for both
de novo sequencing and database search results.

3 Results

To explore different spectrum identification strategies in
metaproteomic data analysis, we carried out both protein
database searching as well as de novo sequencing (Fig. 1).
We focused on database searching as it represents the most
frequent approach in metaproteomics. We therefore analyzed
different setups to untangle the influence of three major com-
ponents: the search algorithm, the search database, and the
search parameters. Pyrococcus furiosus data [28] were used as
a benchmark to contrast the impact of the evaluated parame-
ters in a metaproteomic to a classical proteomic experiment.
In order to evaluate the impact on the quantity and quality of
peptide identification results when searching MS/MS spec-
tra against a large database, we chose the technique of inte-
grating P. furiosus sequences into a metaproteomic sequence
database.

3.1 Database searching

3.1.1 Combination of two search algorithms for

peptide identification in human intestinal

metaproteomic data

To investigate whether metaproteomic data analysis may
benefit from combining multiple search engines, we used
two popular and noncommercial database search algorithms
(X!Tandem and OMSSA) to perform peptide to spectrum
matching of MS/MS data from ten human fecal samples
(comprising 317 375 MS/MS spectra in total) against a cus-
tomized protein sequence database (HIMPdb). On average,
30% of the spectra and 7322 peptides per sample were identi-
fied when combining the results from both search algorithms
at 5% FDR (Table 2).

X!Tandem provided significantly more identified spectra
than OMSSA at 5% FDR and a substantial amount was mu-
tually exclusive: 25% were identified only by X!Tandem and
11% only by OMSSA. On average, the contribution of exclu-
sive peptides was 23% (X!Tandem) and 16% (OMSSA), re-
spectively. As expected, the application of a more stringent 1%
FDR criterion resulted in a decrease of the average spectrum
identification rate (21%, Supporting Information Table 3).
Consequently, the average number of peptides dropped to
5476 per sample (Supporting Information Table 4).

3.1.2 Effect of database size on quality and quantity

of search hits

The nature of metaproteomic samples, i.e. the likely pres-
ence of hundreds of different organisms, requires the protein

C© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com
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Table 2. Number of measured spectra, identification rate, and number of peptides obtained from the combination of the search algorithms
X!Tandem and OMSSA for ten different samples (FDR < 5%)

Sample Total ID rate (%) Peptides Excl. Spectrum ID (%) Excl. Peptide ID (%)

X!Tandem OMSSA X!Tandem OMSSA

P1 35 179 31.7 8473 21.5 11.4 19.8 16.4
P3 26 560 26.0 5624 24.0 11.2 22.9 15.3
P8 31 891 31.6 7640 19.1 11.2 17.5 17.1
P11 31 744 26.1 6295 30.4 12.0 26.2 16.5
P17 32 203 31.7 8082 19.5 11.5 18.9 16.3
P23 34 050 33.2 8255 35.8 8.6 30.4 13.7
P27 27 339 24.8 5266 24.8 11.2 22.6 14.9
P28 32 037 30.9 7273 25.9 10.4 23.5 14.9
P31 35 848 34.6 9084 30.1 9.9 25.9 15.4
P34 30 524 31.1 7231 20.1 12.1 19.0 17.1
Average 31 737 30.2 7322 25.3 10.8 22.7 15.8

The exclusive contributions by each of the algorithms are given both for spectrum and peptide identifications.

sequence database to be different to the ones used in a clas-
sic proteomics experiment. Therefore, a whole collection of
translated genomes and metagenomes is typically collated in
order to represent as many potential target proteins in the
samples as possible. While a few specific search strategies
for metaproteomic data have been proposed based on cus-
tomization of the search database or iterative adaptation of
the search space [11, 12, 16], a systematic study of the effects
of the search database on the results has not yet been carried
out.

In the following, we address the effect of the database size
on the search result of three samples in the metaproteomic
dataset (P1, P23, P34) by using the targeted HIMPdb, contain-
ing potential protein sequences for the studied samples, and
subsets of this database, Bact594db and Qin2010db (Table 1).
We took those particular sectioned databases as the highest
number of peptides could be obtained from them specifically
(Supporting Information Table 5).

For all three samples, HIMPdb two-step searching yielded
by far the highest number of PSMs and peptides (Fig. 2A,
Supporting Information Table 6). HIMPdb and Qin2010db
provided a similar amount, whereas Bact594db resulted in the
fewest PSMs and peptides. Both for the Bact594db and the
Qin2010db searches, the number of database-specific PSMs
and peptides was higher than the amount of correspond-
ing identifications from the HIMPdb searches (Fig. 2B and
C, Supporting Information Tables 7 and 8). This effect was
relatively stronger for the Bact594db (30% of HIMPdb size)
search than for the Qin2010db (53% of HIMPdb size) search.
The increase in PSMs and peptides was larger at 1% FDR than
at 5% FDR, and for PSMs slightly weaker than for peptides.

These results demonstrate that a high amount of PSMs
and peptides were exclusively found when searching against
subsets of HIMPdb.

Next, we investigated two-step searching in more detail:
the first step involved searching HIMPdb without applying
any filtering. This resulted in an average of 90 040 protein

sequences, representing 1.5% of HIMPdb (HIMPdb two-
step; see Table 1). At 1 and 5% FDR, the applied method
more than doubled the amount of PSMs and peptides in
comparison to HIMPdb searching (Fig. 2A). The number of
identified peptides was higher than the amount of the iden-
tified spectra at 5% FDR. This can be explained by the fact
that in several cases multiple peptides were suggested for one
spectrum by the database search algorithms.

For sample P1, we also performed a rescoring of HIM-
Pdb and HIMPdb two-step searching results by taking the
matched fragment ions of the original MS/MS spectra into
account: The RMIC distribution was shifted to the left for the
HIMPdb two-step searching results, indicating lower scores
derived from both search engines (Supporting Information
Fig. 1). The absolute number of PSMs was higher for HIM-
Pdb two-step searching. OMSSA provided a shifted RMIC to
the right in comparison to X!Tandem for both HIMPdb and
HIMPdb two-step searching.

3.1.3 Effect of search parameters on quality and

quantity of search hits

To investigate the influence of the search engine parameters
on the number of identifications, additional experiments on
the samples P1, P23, and P34, the same as used for testing
the effect of the database size, were performed.

First, we modified the maximum limit of allowed MC, in
a range from zero to a maximum value of three. Depending
on FDR or sample number, the highest number of PSMs
and peptides could be found for zero or one MC (Supporting
Information Tables 9–14). Studying this in more detail for
sample P1 showed that at 1% FDR a total of 18% hits for
zero allowed MC was not found with the 1–3 MC settings,
however, at 10% FDR, this value decreased to 0.3% (data not
shown).
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Figure 2. Comparison of results from searching the human intestinal metaproteome sample P1 against a collection of databases. (A)
Number of PSMs and peptides for HIMPdb, Bact594db, Qin2010db, and HIMPdb two-step searching method from sample P1. (B) Bact594-
specific identifications from HIMPdb and Bact594db database searches. (C) Qin2010-specific identifications from HIMPdb and Qin2010db
database searches.

Second, we analyzed the impact of the different cleavage
enzyme used. This is appropriate since the analyzed pro-
teins are derived from the human intestinal tract—a protease
rich environment—that can easily lead to the presence of
various non-tryptic protein fragments. Therefore, we repeated
the searches for the samples P1, P23, and P34 using a

semi-tryptic cleavage (allowing one terminus to be non-
tryptic, whereas the other terminus remains tryptic), and
two other common intestinal proteases: chymotrypsin (pan-
creatic enzyme) and pepsin A (gastric enzyme) for cleav-
age. At 5% FDR, the tryptic searches resulted in more
PSMs and peptides than the semi-tryptic searches (Table 3).

Table 3. Number of PSMs and peptides and percentage of exclusive identifications for tryptic and semi-tryptic search settings for samples
P1, P23, and P34 (FDR < 5%)

Sample Tryptic cleavage Semi-tryptic cleavage

PSMs Peptides PSMs Peptides

All Excl. (%) All Excl. (%) All Excl. (%) All Excl. (%)

P1 11 133 8.1 8473 12.5 10 354 1.1 7959 6.9
P23 11 288 6.1 8255 10.5 10 777 1.7 7976 7.4
P34 9491 8.6 7231 13.1 8743 0.8 6678 5.9
Average 10 637 7.6 7986 12.0 9958 1.2 7538 6.7
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Table 4. Number of PSMs and peptides from Pyrococcus furiosus searches against three different databases and percentage of P. furiosus
specific hits (Pyro) at 1 and 5% FDR

Database 1% FDR 5% FDR

PSMs Peptides PSMs Peptides

ID Pyro (%) ID Pyro (%) ID Pyro (%) ID Pyro (%)

Pyrodb 10 428 100.0 6032 100.0 11 517 100.0 6884 100.0
PyroHIMPdb 5330 99.4 2951 98.5 7035 97.0 4074 92.8
PyroHIMPdb two-step 9462 91.5 6081 80.2 10 442 90.4 9064 59.2

The semi-tryptic searches identified an exclusive percentage
of around 1% PSMs and 7% peptides on average compared
to the tryptic searches. In contrast, at 1% FDR, the total
number of PSMs and peptides was higher for the semi-
tryptic searches (Supporting Information Table 15). However,
the running times for the semi-tryptic searches with both
X!Tandem and OMSSA increased fivefold on average (data
not shown). Choosing chymotrypsin or pepsin A as cleavage
enzyme resulted only in about 100 PSMs and peptides (data
not shown).

3.1.4 Classic proteomic control—P. furiosus

benchmark experiment

Next, we performed a benchmark experiment with 14 467
MS/MS spectra from the proteome of P. furiosus [28], which
were searched against a targeted Pyrodb database containing
9514 P. furiosus and untargeted control proteins and an untar-
geted merged database of the aforementioned HIMPdb and
P. furiosus database (PyroHIMPdb). A two-step search was
performed against this database as well (PyroHIMPdb two-
step). Similar to the metaproteomic data, the effect of search
algorithm database size, and search parameters were studied
(Fig. 1).

At 5% FDR, 11 517 PSMs and 6884 peptides were identified
when searching against Pyrodb (Table 4). However, search-
ing the same spectra against PyroHIMPdb resulted in a drop
in the number of PSMs and peptides (Fig. 3A). Combining
OMSSA and X!Tandem increased the number of PSMs to a
higher extent for PyroHIMPdb than for Pyrodb. While target
and decoy distributions in Pyrodb searches could be clearly
differentiated for both search engines, the searches against
the PyroHIMPdb showed a broader overlap of target and de-
coy hit distributions for both X!Tandem (Fig. 3B) and OMSSA
(Fig. 3C). For a fair benchmark comparison, we applied two-
step searching also against PyroHIMPdb that contains few
P. furiosus sequences among many unrelated sequences (the
proteins found in human intestinal microbiota).

For both search engines, the distributions of decoy PSMs
from Pyrodb and PyroHIMPdb two-step searching were in
a comparable score range (Fig. 3B and C). However, the de-
coy PSM distribution resulting from PyroHIMPdb searching
was broader and also shifted to the right, which explains
an increased score threshold for FDR estimations. These

distributions explain the steep gain in PSMs and peptides
with PyroHIMPdb two-step searching compared to HIMPdb
both at 1 and 5% FDR but also the relative decrease of P. fu-
riosus specific peptides, which was at 5% FDR only 59.2% of
the overall identified peptides (Table 4). In addition, two-step
searching could not recover as many PSMs as the Pyrodb
search.

As a direct comparison for metaproteomic data, we further
evaluated the search parameter selection on the P. furiosus
dataset. At all FDR levels, the number of PSMs and peptides
increased with the number of allowed MC until a value of two
MC and dropped slightly for a value of three MC (Supporting
Information Tables 16 and 17).

We also searched the P. furiosus dataset with a semi-tryptic
enzyme selection. This search resulted in less PSMs and pep-
tides than the tryptic search (Supporting Information Tables
16 and 17).

3.2 De novo sequencing

De novo sequencing has the indisputable advantage of be-
ing independent of a protein sequence database. Since public
databases often fail to fully cover the expected proteome in
metaproteomic analyses, de novo sequencing can be useful
by inferring peptide sequences directly from MS/MS spectra.
Thus, we performed de novo sequencing on the ten metapro-
teomes using DeNovoGUI [41] based on the PepNovo+ algo-
rithm [42], and thereby obtained de novo peptide suggestions
for each spectrum. For de novo sequencing, we employed the
same parameters as for database searching to ensure an even
comparison of both methods. With a strict PepNovo+ thresh-
old score of 100 or more, on average 23% of the spectra were
identified with de novo sequencing (Table 5). Lowering the
score threshold to 50 increased the identification ratio to over
60% implying that this number contains a higher percentage
of unreliable identifications. The resulting de novo sequenc-
ing peptides (PepNovo+ score above threshold 100) were
matched against (i) peptides obtained by database searching
against HIMPdb at 5% FDR (X!Tandem and OMSSA), and
(ii) peptides derived from an in silico digested HIMPdb pro-
tein database. On average, 23% of all peptides from database
searching were also found via de novo sequencing. This ratio
increased to 25% when no score threshold was applied for
de novo sequencing. When the de novo sequencing peptides
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Figure 3. Comparison of results from searching the Pyrococcus furiosus sample against a collection of databases. (A) Number of PSMs
(X!Tandem and OMSSA algorithm) in Pyrodb and PyroHIMP database searches as a function of the respective q-value (minimum FDR).
Distribution of target and decoy PSMs identified by (B) X!Tandem and (C) OMSSA according to their score for the P. furiosus sample (upper
panel: Pyrodb, middle panel: PyroHIMPdb, lower panel: PyroHIMPdb two-step).
C© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com
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Table 5. de novo sequencing results for ten different samples (P1–P34)

Sample Spec.
IdsS>100

Spec. Ids S>50 Rec. Pept.
S>100 (%*)

Rec. Pept.
ALL (%*)

In silico
Pept.S>100

In silico
Pept. S>50

P1 8121 22 110 1822 1999 1723 5881
P3 6196 16 617 1628 1791 1345 4960
P8 7207 18 933 1758 1909 1567 5396
P11 6766 18 612 1510 1638 1406 5076
P17 7527 19 900 1775 1911 1691 5516
P23 7952 21 743 1814 1948 1666 5480
P27 6281 16 378 1437 1529 1330 4694
P28 7217 19 927 1591 1733 1491 5085
P31 8699 23 561 1893 2056 1807 5839
P34 6677 18 360 1665 1802 1539 4940
Average 7264 (23%) 19 614 (62%) 1689 (23%) 1831 (25%) 1557 5287

Spec. Ids: Number of identified spectra.
S > 100: PepNovo+ score above 100.
S > 50: PepNovo+ score above 50.
ALL: Without PepNovo+ score limitation.
Rec. Pept.: Number of recovered peptides, i.e. peptides identified both with de novo sequencing and HIMPdb search at 5% FDR.
In silico Pept.: In silico peptides of the HIMPdb matched against peptides identified with de novo sequencing.

with a PepNovo+ score above 100 were matched against an
in silico digested HIMPdb protein database, an average of
1557 peptides could be found. A less stringent PepNovo+
score threshold of above 50 resulted in a significantly higher
amount of 5287 de novo sequencing peptides matched suc-
cessfully against the in silico digested HIMPdb.

In order to investigate the reliability of the identifications
in more detail, we focused on the samples P1, P23, and P34
and compared the resulting peptides from de novo sequenc-
ing with the ones from database searching by their respec-
tive scores (Supporting Information Fig. 2). As the individual
scoring methods are hardly comparable, we classified the re-
sults into two elementary categories of low and high scoring
peptides. Therefore, we applied a threshold for de novo se-
quencing peptides scoring above 100 (PepNovo+ score), and
another one for database searching peptides scoring above
40 (Hyperscore for X!Tandem and -10*log10 (e-value) for
OMSSA). Peptides scoring above those defined thresholds
were called high scoring identifications, otherwise low scor-
ing (LS) identifications.

Most peptides overlapping between HIMPdb searching
and de novo sequencing were high scoring identifications
(Supporting Information Fig. 2). Conversely, the number of
LS identifications was increased when comparing the over-
lapping peptides from HIMPdb two-step database search-
ing and de novo sequencing. As already revealed in previous
experiments, OMSSA performed better by resulting in less
LS identifications than X!Tandem for both database search-
ing setups. The number of LS identifications was increased
for HIMPdb two-step searching in comparison to HIMPdb,
which could be confirmed by further rescoring on sample P1
(Supporting Information Fig. 3). Furthermore, more strin-
gent FDR thresholds resulted in higher PepNovo+ scores for
overlapping peptides from database searching and de novo
sequencing (Supporting Information Fig. 4). HIMPdb two-
step searching revealed even more overlap with de novo

sequencing results on the peptide level, again with an aug-
mented number of LS identifications.

4 Discussion

Modern mass spectrometric methods allow for the high-
throughput analysis of metaproteomic samples. While the
resulting spectrum data are processed by automated protein
and peptide identification algorithms, the use of algorithms
requires the selection of many parameters by the user. As the
effects of these settings on the number of identifications are
currently poorly understood in the context of metaproteomic
analyses, we evaluated the effects of several of these parame-
ters for a human intestinal metaproteome and a benchmark
experiment with P. furiosus data.

4.1 The benefit of combining results from two

database search engines and obstacles found

when varying the major search parameters

The effect of combining the results of different search en-
gines has been described before in a metaproteomic study
without reporting the achieved gain [43]. Combining the re-
sults from the search algorithms X!Tandem and OMSSA lead
in our case to an average spectrum identification ratio of 30%.
This seems to be a rather high value for a metaproteomics
experiment. For instance, in a mouse metaproteome study
[44] only 5% of the MS/MS spectra were identified, and in an-
other human intestinal metaproteome study up to 17% [9]. As
the database search engines X!Tandem and OMSSA comple-
mented each other by 11 and 25% on the spectrum identifica-
tion level, applying both of these algorithms and combining
the results is justified. This is also in line with the findings in
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a recent study with human cell line data where various search
algorithms were tested individually and in combination: both
X!Tandem and OMSSA showed a high performance and pro-
vided a complementarity of around 12% [20]. Searching the
P. furiosus data against the PyroHIMPdb further illustrated
the benefit of using two search algorithms, as it resulted in
a significantly higher number of P. furiosus PSMs. While the
number of MC was initially set to two due to common stan-
dards for database searching [45,46], we then investigated the
effect of chosen MC value on the number of PSMs and pep-
tides with a subset of three samples. The number of PSMs
and peptides slightly decreased when increasing the MC pa-
rameter. However, in the P. furiosus benchmark experiment,
the number of identifications increased with an increasing
MC value. A possible biological explanation is that P. furiosus
represents a hyperthermophile, which may synthetize pro-
teins resistant to enzymatic degradation resulting in a high
number of peptides for an increased MC parameter.

According to the literature, up to four MC have been ac-
cepted in metaproteomic studies (for example [47]). We found
the number of PSMs and peptides increasing when choosing
a lower MC parameter. If the sample requires a higher MC
parameter, it is recommended to combine the results of at
least two database searches with different MC values.

Furthermore, we evaluated the choice of the cleavage en-
zyme by performing both tryptic and semi-tryptic searches.
Each of them resulted in unique PSMs and peptide identifica-
tions, while the highest number of identifications was found
with tryptic cleavage at 5% FDR. When analyzing fecal sam-
ples with emphasis on host proteins, a semi-tryptic cleavage
parameter led to a nearly equal amount of semi-tryptic and
tryptic peptides [48]. If computer resources allow semi-tryptic
searches, these could be used to supplement tryptic search
results. However, according to our data, semi-tryptic search
is not recommended to be used as the only enzyme option.
Chymotrypsin and pepsin A—a stomach enzyme and frag-
ments may not persist until the anus—as additional enzymes
did not result in a statistically relevant amount of PSMs and
peptides. This can be explained as tryptic peptides are highly
abundant in human gut samples.

On top of the issue with large protein sequence databases
in metaproteomics, it should be noted that performing
searches with non-default parameters leads to an increased
search space and less identifications: for example, an MC pa-
rameter of more than one resulted in less identified PSMs
and peptides compared to conventional MC settings.

4.2 Pitfalls with database searching—de novo

sequencing as alternative for metaproteomic

data analysis?

The effect of database size on the number of identifications in
metaproteomic data had been addressed before. For example,
searching against subsets of a large database increased the
number of PSMs and peptides when analyzing a mixture of

nine different microbial strains [11]. An increase of PSMs
and peptides was found when fecal material was studied with
the focus on human proteins [48]. Furthermore, it has been
noted that lowering the FDR threshold leads to more PSMs
and peptides, but the results have not been discussed in detail
[11].

Sectioning the HIMPdb to search against subsets had a
clear effect and increased the number of resulting PSMs
and peptides. Notably, lowering the FDR threshold in large
database searches (HIMPdb) recovered identifications which
were only found in subset database searches (Bact594db,
Qin2010db). This observation reveals the problem that a strin-
gent FDR threshold may exclude valuable identifications, but
lowering the FDR increases the number of false positives
in the results. In contrast to pure culture proteomics, it is
even more difficult to judge, which peptides might be really
present in a metaproteomic sample as it is hardly feasible to
exclude results based on biological knowledge.

The P. furiosus benchmark experiments could explain how
the decreased number of identifications in large database
searches is resulting from the target-decoy approach used for
FDR estimation: The target and decoy identification distri-
butions derived from large database searches (PyroHIMPdb)
overlap significantly. As the ratio of decoy to target identifi-
cations is increased tremendously when searching against
large databases, the target-decoy-based FDR estimation is
biased and valuable identifications may be missed out. On
the other hand, a too small database search may result in
an overestimation of identifications and should therefore be
avoided. However, the strategy of reasonably downsizing or
sectioning the database is useful as valuable identifications
may be excluded when using the target-decoy approach for
large databases.

The two-step searching has to be applied with a stringent
FDR filtering, as the number of false-positive identifications
tends to increase dramatically as shown in the P. furiosus
benchmark experiment. This finding presents the other side
of the coin: the ratio of decoy to target identifications is de-
creased and the FDR estimation could therefore be biased. A
similar phenomenon was observed when setting a stringent
parent ion tolerance for MASCOT database searches [49].
Moreover, various studies point out that the target-decoy ap-
proach, despite its popularity in proteomics, has to be treated
with utmost caution to avoid misguided FDR estimations
[50–52].

The above-mentioned obstacles concerning peptide iden-
tification via database searching and statistical validation on
metaproteomics data also suggest looking out for alterna-
tive approaches. de novo sequencing, in particular, addresses
two issues at the same time: it sidesteps the problem of un-
covered sequences and the issue with database size by not
relying on a protein sequence database at all. de novo se-
quencing showed an overlap of only 25% on the peptide
level with database searching and therefore hardly qualifies
as validation method. However, it can be used as a comple-
mentary method to database search engine algorithms, as a
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Table 6. Recommendations for data analysis of metaproteomic data

Parameter/analysis type Recommendation

Search algorithms Using and combining multiple search algorithms
Sequence database size As small and dedicated as possible
Enzyme cleavage Trypsin and semi-tryptic (with high running times)
Maximum missed cleavages Application between zero and two MC
Two-step searching To be used with caution and stringent FDR filtering
False discovery rate 5 or 1% (for two-step searching)
Database sectioning Alternative option with overhead of results combination

significant number of de novo sequencing peptides could be
matched back to the original protein sequences. The map-
ping of de novo sequencing peptides to database search re-
sults showed that a PepNovo+ score of 100 corresponds to
the results obtained by applying a 5% FDR threshold on pep-
tides from database searching. In addition, the number of
matched peptides increased only slightly when no PepNovo+
scoring was applied. On the other hand, mapping de novo
sequencing peptides with a PepNovo+ score > 50 against
an in silico digest of HIMPdb recovered a much higher
number of peptides in comparison to the mapping with a
PepNovo+ score > 100. As a consequence, the method of
matching de novo sequencing peptides against the in silico
digested database may provide valuable peptide identifica-
tions hidden in the database search results. In order to im-
prove the reliability of these peptide identifications, a rescor-
ing method, e.g. based on RMIC values, could be performed
afterward.

Nowadays, with modern computer architectures, de novo
sequencing is a powerful and cost-effective method, and re-
searchers may further benefit from advances in MS technolo-
gies in line with algorithm development. At the moment,
de novo sequencing already qualifies as complementary ap-
proach to common database searching and supports the val-
idation of borderline peptide identifications from database
searching. Importantly, while metagenome sequences may
be difficult to obtain, this approach allows for the identi-
fication of peptides even if the protein sequence informa-
tion is incomplete or not available [9]. Consequently, certain
changes across systems could be determined by frequently
identified marker peptides. Furthermore, de novo sequenc-
ing may already perform even better than database search al-
gorithms in certain situations. For example, as homologous
proteins from different taxonomic origins are present in most
metaproteomics samples, database search algorithms tend to
favor certain protein identifications by assigning probabili-
ties, while de novo sequencing merely relies on the informa-
tion present in the spectrum. However, it should be noted that
the essential step of mapping peptides to protein sequences
is not performed by de novo sequencing but software exists
for mapping de novo peptide sequences to proteins [53, 54].
Nevertheless, the protein inference problem is highly chal-
lenging in metaproteomics experiments as peptides can be
linked to multiple proteins from different organisms [39].
Notably, spectral library searching represents an alternative

approach for peptide and protein identification [55, 56]. This
method relies on recorded high-quality mass spectra being
used as references for matching experimental spectra. Due to
the lack of reference libraries for our metaproteomic data, this
method could not be evaluated here. However, it is clear that
spectral library searching can be readily applied for metapro-
teomics as soon as such libraries become available.

Another crucial parameter in database searching repre-
sents PTMs and has not been addressed by our study. As
little is known about expected PTMs in microbial communi-
ties, it is nearly impossible to study them with generalized
proteomics methods. Therefore, a detailed study on PTMs
remains for further evaluation in the future.

We limited our results solely on presenting the number
of PSMs and peptides and did not further infer taxonomic or
functional information. The next step would be to explore how
much of this meta-information can be gained when searching
against database subsets and varying the evaluated parame-
ters. Also, the alternative option of de novo sequencing and
its results may be interesting for experiments in this context.

Our results have to be regarded with respect to the eval-
uated datasets which depended on type of sample, sample
preparation, LC-MS setup, used search engines, and other
data analysis parameters. The range of pipeline solutions for
human metaproteome research is reviewed elsewhere [10].

4.3 Conclusion

After a decade of explorative metaproteomic studies applying
various peptide identification strategies it is about time to
refine our methods (Table 6). In particular, besides the use
of different sample preparation strategies [10, 57], heteroge-
neous data analysis strongly impairs cross-study comparison.
We showed here that selection of search algorithm, protein
sequence database, and search parameters each affected the
quantity and quality of identified peptides pointing to the spe-
cific challenges of data analysis in metaproteomics research.
The benchmark experiment of concatenating P. furiosus se-
quences to unrelated protein sequences revealed a critical is-
sue with the commonly used target-decoy approach for FDR
estimation: valuable peptide and consequently, protein iden-
tifications may be missed when the protein search space is
artificially increased. On the other hand, a two-step search-
ing method decreased the database size and resulted in an
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increased identification rate with the risk of increasing the
number of false-positive identifications. In contrast, it is not
possible to exclude certain identifications in real metapro-
teomics experiments without a priori knowledge about the
sample composition. Therefore, the phenomenon of find-
ing a compromise between sensitivity and specificity is put
to the extreme in large metaproteomics databases. It could
well be the case that databases cover a larger fraction of the
studied proteomes than present identification ratios are im-
plying. Low identification ratios may therefore also be ex-
plained by limits in the sensitivity of the applied search
strategy and not only by missing target sequences in the
protein sequence database. As protein databases will grow
even more rapidly, search algorithms and statistical valida-
tion strategies may need a refinement. For example, the
target-decoy approach holds pitfalls and should be carefully
applied, particularly in metaproteomics and proteogenomics.
Some metaproteomics studies yet again neglect FDR esti-
mations by filtering on absolute search algorithm scores.
However, a robust validation is advisable due to the num-
ber of potential false-positive identifications [58]. In our ex-
periments, we searched separately against target and decoy
databases in order not to favor target identifications in a con-
catenated search which may introduce even more bias in FDR
estimation.

Our results highlight that searches against subsets of a
large database may be useful to increase the number of
identifications. Furthermore, our results indicate that using
multiple search engines increases significantly the amount
of identifications in metaproteomics workflows. Combining
the results of different cleavage enzymes may bring valu-
able peptide identifications to light and may serve as cross-
validation: the assumption would be that peptides identified
multiple times with different settings are not obtained purely
by chance. However, each additional search increases CPU
time and efforts in combining and interpreting the results.
In our opinion, the preferred strategy would be to perform a
cost–benefit analysis in order to achieve the highest sensitiv-
ity and specificity for the search results. Therefore, the most
appropriate database size and the optimal setup with respect
to time efficiency need to be estimated by pilot experiments
before the actual processing and analysis are carried out.

The presented issues in metaproteomic data analysis can-
not be ignored and need to be further addressed by analytical
scientists in close cooperation with bioinformaticians and
statisticians. Finally, the integration of orthogonal informa-
tion from other research fields such as metagenomics and 16S
rRNA sequencing is important to increase the confidence in
metaproteomic results.
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