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Abstract 
Some simple guidelines based on the accuracy in determining a satellite formation’s semi-major 
axis differences are useful in making preliminary assessments of the navigation accuracy needed to 
support such missions. These guidelines are valid for any elliptical orbit, regardless of eccentricity. 
Although maneuvers required for formation establishment, reconfiguration, and station-keeping re- 
quire accurate prediction of the state estimate to the maneuver time, and hence are directly affected 
by errors in all the orbital elements, experience has shown that determination of orbit plane ori- 
entation and orbit shape to acceptable levels is less challenging than the determination of orbital 
period or semi-imjor axis. Furthermore, any differences among the member’s semi-major axes 
are undesirable for a satellite formation, since it will lead to differential along-track drift due to 
period differences. Since inevitable ~ v i g a t ~ o n  errors prevent these differences from ever being 
zero, one may use the guidelines this paper presents to detemine how much driR will result fiom 
a given relative navigation accumy, or conversely what navigation accuracy is required to limit 
drift to a given rate. Since the guidelines do not account for non-two-body perturbations, they 
may be viewed as usefui preliminary design tools, rather than as the basis for mission navigation 
requirements, which should be based on detailed analysis of the mission configuration, includrng 
all relevant sources of uncertainty. 

Introduction 
One of the most significant differences between many formation flying satellite missions that are 
currently of interest, and the intentionally close approaches that past missions have performed - 
e.g. rendezvous, docking, and proximity operations of the Space Shuttle - is the need for long-term 
and efficient maintenance of relatively close formations. As of 2002, separations of a few hundred 
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kilometers have been achieved for long-duration formations, and in the next few years separations 
in the mnge of 100 m to 10 km are expected to be attempted. Ref 1 describes some relevant aspects 
of one such recent mission. 

Many perhubations affect the accuracy of maneuvers required to maintain these formations, 
but in principle the maneuver planning pmess can accommodate all known pertuct>ations. How- 
ever, the navigation errors at the time of the maneuver computation will form a lower bound on 
the ~ C C U C ~ C ~  of the maneuven, since even a perfectly executed maneuver will “lock in” the navi- 
gation errors. Indeed, Re€ 2 suggests that velocity uncertainty may be the limiting technology for 
formation flying. 

Although the errom in all the states will affect the maneuver, as Ref 3 discusses, semi-major 
axis e m r  is the most diflicult to estimate. An essential point of Ref 3 is that (for circular orbits) 
semi-major axis uncertainty depends on three quantities: the rsrdial position error, the along-track 
velocity emr, and the correlation between these errors, which arises due to the the conservation of 
energy. The most notable consequence of semi-major axis differences for a formation of satellites 
is relative drift in the direction of the orbital path, which Figure 2 illustrates. For the relatively 
high-thrust, short burning propulsion systems flown on current missions, the result of this drift 
will be more kquent stationkeeping maneuvers. For “continuous” low-thrust systems proposed 
for many upcoming missions, this drift will be a random error that must be counteracted, limited 
by the accuracy of the navigation feedback signaL Figure 1 illustrates the effect of the various 
contributors to along-track drift in a circular orbit, based on the relationships of Ref 3. To interpret 
Figure 1, consider a navigation system that can produce radial accuracy of 10 cm, and speed 
accuracy of 0.1 mm/sec. Figure 1 indicates that the corresponding along-track drift may be on the 
order of 1 &orbit, and could be as poor as about 3 &orbit, if the correlation between radius and 

Ref. 4 describes a necessary condition for obtaining a nodrift solution in eccentric orbits in a 
deterministic setting. Ref. 1 describes requirements on relative semi-major axis knowledge and 
control for relative drift of the GRACE mission due to differential drag. The contribution of 
the development below is to describe and quantlfl the relative drift issue in terms of the (non- 
deterministic) navigation errors for elliptical orbits, generalizing the results of Ref 3. The paper 
concludes with examples in low circular and high apogee elliptical Eaah orbit missions. 

speed, pru, is poor. 

Development 
For every complete revolution in any two-body elliptical orbit, an error in knowledge of the orbit 
period, 6Tp, results in an along-track error growth, 6s, proportional to the speed (velocity magni- 

tude), v ,  
6s( fi + 2 ~ )  = -v( fi + 2r)6TP (1) 
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where fi is the initial true anomaly. It is not hard to show (viz. Ref. 3) that 

bT, = 37r@ 

where a is the semi-major axis and /I is the gravitational constant, GM, so that 

At periapse, _ -  
v(0) = v(0,27r,. . . 

where e is the eccentricity, and so the in-tmck growth per orbit at periapse is 

while at apoapse, 

l + e  bs(27r) = 6s(27~,47~, . . .) = -37rd -6~  1 - e  

v(.) = v(7r,37r,. . . )=E/= 

(3) 

(4) 

and hence the in-track growth per ohit at apoapse is 

Since according to Eq. (5) or (7) the along-track error growth per orbit is linear in the semi- 
major axis error, their error distributions share this hear  relationship. For example their standard 

7 

deviations are related by 

a&) = 3?T - \i: T ?a 
Ref. 3 gives the following relation, valid for circular orbits, among semi-major axis error, radius 
error, speed error, and the correlation between radius and speed errors, p,.,: 

where n is the mean motion. Note that the velocity terms in Eq. (9) are with respect to an inertial 
frame. Relative to a frame rotating at the (constant) orbital angular velocity, such as Hill’s frame, 

4 1 2  a, = 2 4u: + -p,.ya,.ay + -0. L n2 
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where i in Eq. (10) Efers to the along-track component of velocity relative to the rotating frame. 
The general form of the semi-major axis variance, also given in Ref. 3, is 

where the state is xT = [rT7 vT], r is the position, v is the velocity, P, is the state error covariance, 
x.,-ef is given, and 

Applying Eq. (1 1) at apoapse, and using Eq. (7), it is not hard to show that Fq. (9) may be gener- 

or similarly at periapse to 

To get an expression for the semi-major axis variance at any point in the ohit, the following 
relationships are useful: 

-esin f 
P 

where q = d m .  From the definition of Eq. (12), bu = A ( q e f ) b x ,  which may be written in 
terms of radial and along-track components, x and y, respectively, as 
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Using Eqs. (15) - (20) in Fq. (21), it is not hard to show that 

714 
[e sin ( f )bv ,  + (I + ecosf)6vy] + 

Taking the expectation of the square of Eq. (22), and assuming a zero mean, results in the following 
expression for the semi-major axis variance at any point in an elliptical orbit: 

2e(sin f + e sin f cos f ) 
(nq)2 

P w , w , ~ w ~ c T v ,  (23) + 
If the correlations between radius and radial velocity, PrvI9 and between d i a l  velocity and along- 
track velocity, pV2,,, can be assumed to be insigtllficant, then the following simpler expression 
results: 

2( 1 + e cos f )3  

n715 
+ Prv, pr uv, (24) 

Figure 3 illustrates Eq. (24) for a particular example. Note that different relationships among cy, 
a,,, and a;, than Figure 3 shows produce quite different results. 

In most satellite formations, it is desirable for the satellites to minimize their semi-major axis 
differences so as to minimize relative along-track drift. The general form of the variance of the 
relative semi-major axis between any two satellties i and j ,  also given in Ref. 3, is 

& = A ( % ) f i A ( ~ i ) ~  + A(xj)PjA(Xj)T - A(%)fijA(xj)T - A ( X ~ ) P $ A ( ~ ) ~  (25) 

where Pij = PqX,. To approximate and simplify Eq. (25), assume that the satellites in the forma- 
tion have approximately the same a and e, that their navigation errors have the same distributions, 
and that Pij = p i j f i .  Then, the version of Eqs. (13) - (14) a d  (23) - (24) corresponding to relative 

Therefore, as in Eq. (8), the standard deviation of the in-track drift per orbit between any two 
satellites in a formation, evaluated at each apoapse, is related to their relative semi-major axis 
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standard deviation by 

In a good orbital navigation filter, -1 < prv 5 -.9, due to the dynamical constraint imposed 
on the estimates by conservation of energy*. A consequence of the high correlation between radius 
and speed erron is that speed error may be viewed as .a dependent variable of radius error. L d  
gives the following approximation of the speed error required to “balance” a corresponding radius 
error: 

Eq. (28) gives the speed error that produces the same size error in semi-major axis as the given 
radius error. Table 1 gives some numerid examples of Eq. (28). If Eq. (28) holds, then in-k 
drift per orbit may be viewed as a -tion of the radius error only. 

If there are no relative measurements, but instead each satellite’s absolute state is estimated 
separately, e.g. from GPS pseudoranges, pij may be quite small. If the filter processes relative 
measurements such as cross-link ranges and/or GPS meausurement differences, piJ M 0.9 may be 
a reasonable assumption Based on the assumptions that pij = 0.9, that the approximate vel= 
ity constraint of Eq. (28) is valid, and that the radius and speed are wellcorrelated (pm = -.9), 
Figure 4(a) gives some examples of relatim drift due to semi-major axis error for various eccen- 
tricities, for Earth-orbiting formations. The left subplot illuslmtes drift mtes at apogee, and the 
right subplot drift rates at perigee. From the figure, it is clear that as eccentricity increases, the 
formation will drift apart more slowly at apogee, and more quickly at perigee, for a given radius or 
semi-major axis error. 

Figure 4@) shows similar results, instead assuming no correlation between the two satellites’ 
state estimates. Figure 4(c) shows some additional results, in which a ‘‘fbdge factor“ of 50% is 
applied to Eq. (28), and zero correlations assumed This is intended to capture the type of “poor” 
velocity estimation that Ref. 3 describes may occur with some GPS-based orbit determination 
systems. 

Finally, it may be of interest to determine the time to drift a given distance due to a semi- 
major axis error. Since time-to-drift depends inversely on the drift rate, a nonlinear mapping of the 
statistical moments of the drift rate per orbit is required to find the Statistics of the time to drift a 
given distance. Let D be the deadband size, i.e. the size of the “control box” in which the satellite 
must remain, and T be the time to reach the deadband Assume that the relative navigation errors 
are zero-mean and Gaussian, then due to their linear relationship, the relative drift rate also has a 

*Ref. 3 shows that one should not always assume that GPS-based orbital navigation systems properly account for 
this constraint. 
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Gaussian probability density, 

Since 
D 

T =g(As) = - As 
is a nonlinear function, its probability density may be found in terms of Eq. 29 via6 

where the xi are the values of z where y = g(z). Using Eqs. (29) and (30) in Eq. (31) results in 

where the k t  that the deadband is reached with a positive or negative drift rate has been used. 
Figures 5(a) and 5(b) show the probability density and the probability of not reaching the 

deadband in time r for various values of D/cr*,. 
Figure 5@) can be used for finding the minimum acceptable value of the deadband For ex- 

ample, if one wants there to be a 75% probability that the deadband will not be reached in four 
orbits, then D / F ~  > 5, keeping in mind that this analysis does not include perturbations such as 
differential drag or thrust errors. 

Examples 
Suppose there is some interest in flying a higheccentricity, e = 0.8, formation flying mission, in 
which the satellites are supposed to be 10 km apart at apogee. If the separation varies by more 
than 10% at apogee, or if there is some danger of a collision, the satellites must perform shofi- 
duration, relatively high-thust stationkeeping maneuvers, In order to maximize the science return 
and mission duration, such maneuvers should not occur more oRen than every four weeks. The 
orbit period is approximately one day, so the relative drift at apogee must be less than one kilometer 
per 28 orbits, or about 36 meters per orbit. Consulting Eq. (27), the relative semi-major axis error 
should therefore have a “one sigma” value of 36/w = 11 meters. If the relative navigation system 
is highly correlated, i.e. prv = -.9 and pij = 0, Figure 4(a) indicates that a “one s i p ”  radius 
error of about 55 meters at apogee should be suflicient to meet the 10% requirement in a “one 
sigma” sense. If the MVigatiOn system is not well-correlated, i.e. prv = pij = 0, and the relative 
velocity errors dominate as with many of the GPS systems described in Ref. 3, then Figure 4(c) 
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indimtes that a “one sigma” radius error of about 2 meten would be necessary to meet the 10% 
requirement. 

Note however that at perigee, the 11 meter relative semi-major axis error would produce a 
drift of about 310 metes per orbit, which may be found using Q. (5). From Figure 4(a), this 
drift corresponds to a radius error of 0.6 m for a wellcorrelated system For a poorly correlated 
system like Figure 4(c) illustrates, the corresponding radius error that would be required at perigee 
is about 0.15 m. For most elliptical orbit formations, the separation will increase at perigee, so 
a few kilometer change in relative position may amount to much less than 10%. However, there 
do exist elliptical orbit formations for which separation at perigee decreases relative to apogee, in 
which case a collision avoidance maneuver might be required much more often than desired unless 
the navigation error could be M h e r  reduced. 

Next, suppose a low-Earth orbiting (550 km altitude), leader-follower mission is proposed in 
which the separation distance is 60 m, and this must be maintained within f 2 0  m The mission 
will use a highly accurate differential Global Positioning System relative navigator, which can 
determine relative position to within 6 cm, and relative velocity to within 2 mrn/sec, “one sigma,” 
per axis. From Figure 1, one can see that the corresponding drift uncertainty is about 3 m, that the 
velocity noise is the limiting error, and that the positiodvelocity noise combination is such that the 
value of the correlation coefficient has a reduced effect, since the dominating velocity noise places 
the positiodvelucity noise combination above and to the left of the main diagonal of the figure, 
which is where the curves split based on correlation coefficient (this is consistent with the findings 
of Ref. 2). It therefore seems appropriate to use the poorly correlated example of Figure 4(c) to 
assess the drift rate per orbit, ftom which one can determine the drift to be about 5 m per orbit. 
For a 20 m deadband, one should therefore interpolate between the D / c r ~ ~  = 3 and D / c r ~ \ ~  = 5 
curves of Figure 5(b), from which it is possible to determine that there is about an 80% probability 
that the deadband will not be reached in less than about 5 orbits, or equivalently that there is a 20% 
probability that every 5 orbits, the deadband will be reached. 

Finally, Figure 6 demonstrates the effect that relative navigation error has on a formation. The 
figure shows the along-track relative motion time history for one week (105 orbits) for a leader- 
follower formation with a desired separation of 100 m with the 0.3 d s  relative velocity and 6 cm 
relative position relative navigation errors described above. The relative state control strategy is 
a minimum fuel in-tmck impulsive strategy in which each maneuver consists of three impulses 
separated by 0.5 orbits. A maneuver is initiated when 75% (15 m) of the deadband of 20 m is 
rea~hed.~ To initiate relative motion there is differential drag, but after the first maneuver the 
differential drag is set to zero and the only error is the relative navigation error. As Figure 6 shows, 
when there is a high drift rate due to the semi-major axis error the dadband is exceeded. 

CARPENTER 8 OF 18 



Conclusion 
This paper bas presented some guidelines on relative navigation that may be w e l l  for conceptual 
analysis of formation flying missions. These guidelines generalize previously reported formulae 
to the case of elliptical orbits. Since the guidelines do not account for non-tw&dy perturba- 
tions, they may be viewed as useful prelirmnary design tools, rather than as the basis for mission 
navigation requirements, which should be based on detailed analysis of the mission codgumtion, 
including all relevant sources of mceainty. 
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List of Table Captions 
Table 1: Speed uncertainty "balancing" radius uncertainty for a range of eccentricities, according 
to Eq. (28). 
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9 . W 5  0.0017 0.030 0.53 9.4 
0.00074 0.013 0.23 4.2 74 
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List of Figure Captions 

Figure 1: Along-track drift doe to semi-major axis error for a typical low earth orbit3 
Each family of contours is based on a constant semi-major axis error, resulting from various 
combinations of radial position error, along-track velocity error, and the correlation between 
these 

Figure 2: Along-track drift due to semi-major axis differences between two spacecraft in a 
highly elliptical orbit 

Figure 3: Semi-major axis uncertainty as a fnndon of true anomaly for a particular high 
Earth orbit example. 

Figure 4: Relative drift per orbit due to semi-major axis error for various eccentricities 
a): Pij 0.9. 
b): pij = 0. 

c): “Poor” velocity accuracy and zero correlations. 

Figure 5: Drift probabilities. 

band size to drift rate 

of deadband size to drift rate 

a): Probability density function for time to reach deadband, for various ratios of dead- 

b): Probability of not reaching the deadband in given number of orbits, for various ratios 

Figure 6 Along-track control error time history for LEO leader-follower formation with 
semi-major axis errors. 
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os (In-track Driftlorbit Uncertainty) [meters] for orbit period = 90 min 
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Relative motion due to 6a=1 I m for e=0.8 over 15 orbits 
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