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Abstract

Some simple guidelines based on the accuracy in determining a satellite formation’s semi-major
axis differences are useful in making preliminary assessments of the navigation accuracy needed to
support such missions. These guidelines are valid for any elliptical orbit, regardless of eccentricity.
Although maneuvers required for formation establishment, reconfiguration, and station-keeping re-
quire accurate prediction of the state estimate to the maneuver time, and hence are directly affected
by errors in all the orbital elements, experience has shown that determination of orbit plane ori-
entation and orbit shape to acceptable levels is less challenging than the determination of orbital
period or semi-major axis. Furthermore, any differences among the member’s semi-major axes
are undesirable for a satellite formation, since it will lead to differential along-track drift due to
period differences. Since inevitable navigation errors prevent these differences from ever being
zero, one may use the guidelines this paper presents to determine how much drift will result from
a given relative navigation accuracy, or conversely what navigation accuracy is required to limit
drift to a given rate. Since the guidelines do not account for non-two-body perturbations, they
may be viewed as useful preliminary design tools, rather than as the basis for mission navigation
requirements, which should be based on detailed analysis of the mission configuration, including
all relevant sources of uncertainty.

Introduction

One of the most significant differences between many formation flying satellite missions that are
currently of interest, and the intentionally close approaches that past missions have performed —
¢.g. rendezvous, docking, and proximity operations of the Space Shuttle — is the need for long-term
and efficient maintenance of relatively close formations. As of 2002, separations of a few hundred
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kilometers have been achieved for long-duration formations, and in the next few years separations
in the range of 100 mto 10 km are expected to be attempted. Ref. 1 describes some relevant aspects
of one such recent mission.

Many perturbations affect the accuracy of maneuvers required to maintain these formations,
but in principle the maneuver planning process can accommodate all known perturbations. How- -
ever, the navigation errors at the time of the maneuver computation will form a lower bound on
the accuracy of the maneuvers, since even a perfectly executed maneuver will “lock in” the navi-
gation errors. Indeed, Ref. 2 suggests that velocity uncertainty may be the limiting technology for
formation flying.

Although the errors in all the states will affect the maneuver, as Ref. 3 discusses, semi-major
axis error is the most difficult to estimate. An essential point of Ref. 3 is that (for circular orbits)
semi-major axis uncertainty depends on three quantities: the radial position error, the along-track
velocity error, and the correlation between these errors, which arises due to the the conservation of
energy. The most notable consequence of semi-major axis differences for a formation of satellites
is relative drift in the direction of the orbital path, which Figure 2 illustrates. For the relatively
high-thrust, short burning propulsion systems flown on current missions, the result of this drift
will be more frequent stationkeeping maneuvers. For “continuous” low-thrust systems proposed
for many upcoming missions, this drift will be a random error that must be counteracted, limited
by the accuracy of the navigation feedback signal. Figure 1 illustrates the effect of the various
contributors to along-track drift in a circular orbit, based on the relationships of Ref. 3. To interpret
Figure 1, consider a navigation system that can produce radial accuracy of 10 cm, and speed
accuracy of 0.1 mmy/sec. Figure 1 indicates that the corresponding along-track drift may be on the
order of 1 m/orbit, and could be as poor as about 3 m/orbit, if the correlation between radius and
speed, p,, is poor.

Ref. 4 describes a necessary condition for obtaining a no-drift solution in eccentric orbits in a
deterministic setting. Ref. 1 describes requirements on relative semi-major axis knowledge and
control for relative drift of the GRACE mission due to differential drag. The contribution of
the development below is to describe and quantify the relative drift issue in terms of the (non-
deterministic) navigation errors for elliptical orbits, generalizing the results of Ref. 3. The paper
concludes with examples in low circular and high apogee elliptical Earth orbit missions.

Development

For every complete revolution in any two-body elliptical orbit, an error in knowledge of the orbit
period, 47, results in an along-track error growth, ds, proportional to the speed (velocity magni-
tude), v,

8s(fi + 2r) = —v(f; + 27)6T, 4))
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where f; is the initial true anomaly. It is not hard to show (viz. Ref. 3) that

5T, = 3r \/:géa @

where a is the semi-major axis and p is the gravitational constant, GM, so that

ds(fi + 2m) = —3mv(f; + 2n) ‘/géa 3)

o) =v(02m,..) = LA @

where e is the eccentricity, and so the in-track growth per orbit at periapse is

At periapse,

1+e
1—e¢

v(m)=v(m3r,...)= \/g\/i-_i—: (6)

and hence the in-track growth per orbit at apoapse is

0s(2m) = 6s(2m,4m,.. ) = -3

ba ®)

while at apoapse,

1-—¢

0s(3n) = 8s(3m,5m,...) = -3 7o

da ()

Since according to Eq. (5) or (7) the along-track error growth per orbit is linear in the semi-
major axis error, their error distributions share this linear relationship. For example their standard
deviations are related by

1—e
T+e’® ®

Ref. 3 gives the following relation, valid for circular orbits, among semi-major axis error, radius
error, speed error, and the correlation between radius and speed errors, p,.,:

os(m) = 3w

2 1

where n is the mean motion. Note that the velocity terms in Eq. (9) are with respect to an inertial
frame. Relative to a frame rotating at the (constant) orbital angular velocity, such as Hill’s frame,

4 1
Oy = 2\/403 + EprgO'.,O'g + ;ﬁ(fz 10)
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where g in Eq. (10) refers to the along-track component of velocity relative to the rotating frame.
The general form of the semi-major axis variance, also given in Ref. 3, is

03 = A(Xres) PeA(Xrer)" (1)

where the state is xT = [rT, vT], r is the position, v is the velocity, Py is the state error covariance,
Xrey is given, and

T T
Ax) =922 | Y
(x) =20 [r""ﬂ]

(12)

Xyef
Applying Eq. (11) at apoapse, and using Eq. (7), it is not hard to show that Eq. (9) may be gener-
alized to

21 2
Oq o, 2 [1—e 1 [1—-e\ ,
4 =7+ = g PruOr -t 13
4 f==3m,... (1+C)4+n (1+e)5pv¢7 a”+n2 (1+6 Tv ( )
or similarly at periapse to
o2

a

4

012‘ 2 1+e 1 1+e 2
F=02m, . - (1 — 6)4 + Hw (1 __ e)sprvar(f'u + 52' (1 — 6) a, (14)

To get an expression for the semi-major axis variance at any point in the orbit, the following

relationships are useful:
U = \/ge sin f (15)

v, = %i-’ (16)
B
= .“nﬁ (18)
5o A0 w
=) e

where 7 = V1 — e2. From the definition of Eq. (12), da = A(X,.s)dx, which may be written in
terms of radial and along-track components, = and y, respectively, as

2q? L
da = " [vxévz + v, 0v, + ;357'] (21)
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Using Egs. (15) — (20) in Eq. (21), it is not hard to show that
da =2 {ﬁ% [esin (f)dv, + (1 + ecos f)ov,] +(—1—t€;0—sﬁfdr} (22)

Taking the expectation of the square of Eq. (22), and assuming a zero mean, results in the following
expression for the semi-major axis variance at any point in an elliptical orbit:

%'4; = i;osfyff? + (n}7)2 [(esin £Y02, + (1 + ecos £o3,)
n 2(1_“:;%’&)2[(6 SR £)fry, Or0s, + (1 + €COS f)pry, 0r 0, |
+ ZC(Sin f —z-ni;]zn f = f) pﬂ:‘uyo‘!}: O'vy (23)

If the correlations between radius and radial velocity, g, , and between radial velocity and along-
track velocity, p,,,,, can be assumed to be insignificant, then the following simpler expression
results:

ﬁ _ (1+ecosf)*
4 n” T (nn)?

[(e sin f)’02 + (1 + ecos f)%ﬁy}

2l +ec 3
+ (1+ecosf)

— Oro,Or 0y, (24)

Figure 3 illustrates Eq. (24) for a particular example. Note that different relationships among o,
0y,, and o, than Figure 3 shows produce quite different results.

In most satellite formations, it is desirable for the satellites to minimize their semi-major axis
differences so as to minimize relative along-track drift. The general form of the variance of the
relative semi-major axis between any two satellties ¢ and j, also given in Ref. 3, is

| Tae = AX)PAR)T + A(x;) P A(x;)T — A(x:) Py A(x;)T — A(x;) P A(x:)T (25)

where F;; = Px.x;. To approximate and simplify Eq. (25), assume that the satellites in the forma-
tion have approximately the same a and e, that their navigation errors have the same distributions,
and that P;; = p;; P;. Then, the version of Egs. (13) — (14) and (23) — (24) corresponding to relative
Semi-major axis errors is

Taa = /2 — 20104 (26)

Therefore, as in Eq. (8), the standard deviation of the in-track drift per orbit between any two
satellites in a formation, evaluated at each apoapse, is related to their relative semi-major axis
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standard deviation by

l1-e
oas(3m) = —3my T 04 : @7

In a good orbital navigation filter, —1 < p,, < —.9, due to the dynamical constraint imposed
on the estimates by conservation of energy*. A consequence of the high correlation between radius
and speed errors is that speed error may be viewed as a dependent variable of radius error. Lear®
gives the following approximation of the speed error required to “balance” a corresponding radius

CITOT:
or

n

TN VI—eZl+ie? + Let + ioef

Eq. (28) gives the speed error that produces the same size error in semi-major axis as the given

radius error. Table 1 gives some numerical examples of Eq. (28). If Eq. (28) holds, then in-track
drift per orbit may be viewed as a function of the radius error only.

If there are no relative measurements, but instead each satellite’s absolute state is estimated
separately, e.g. from GPS pseudoranges, p;; may be quite small. If the filter processes relative
measurements such as cross-link ranges and/or GPS meausurement differences, p;; ~ 0.9 may be
a reasonable assumption. Based on the assumptions that p;; = 0.9, that the approximate veloc-
ity constraint of Eq. (28) is valid, and that the radius and speed are well-correlated (p,, = —.9),
Figure 4(a) gives some examples of relative drift due to semi-major axis error for various eccen-
tricities, for Earth-orbiting formations. The left subplot illustrates drift rates at apogee, and the
right subplot drift rates at perigee. From the figure, it is clear that as eccentricity increases, the
formation will drift apart more slowly at apogee, and more quickly at perigee, for a given radius or
Semi-major axis error.

Figure 4(b) shows similar results, instead assuming no correlation between the two satellites’
state estimates. Figure 4(c) shows some additional results, in which a “fudge factor” of 50% is
applied to Eq. (28), and zero correlations assumed. This is intended to capture the type of “poor”
velocity estimation that Ref. 3 describes may occur with some GPS-based orbit determination
systems.

Finally, it may be of interest to determine the time to drift a given distance due to a semi-
major axis error. Since time-to-drift depends inversely on the drift rate, a nonlinear mapping of the
statistical moments of the drift rate per orbit is required to find the statistics of the time to drift.a
given distance. Let D be the deadband size, i.e. the size of the “control box” in which the satellite
must remain, and 7 be the time to reach the deadband. Assume that the relative navigation errors
are zero-mean and Gaussian, then due to their linear relationship, the relative drift rate also has a

28

*Ref. 3 shows that one should not always assume that GPS-based orbital navigation systems properly account for
this constraint.
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Gaussian probability density,

1 As?
f(AS) = ‘/mexp (_-2_0—'2) (29)
Since D
T =g(As) = As 30)

is a nonlinear function, its probability density may be found in terms of Eq. 29 via®

fu(y) Z l‘;z((.::

@31)

z;=g~1(¥)

where the z; are the values of z where y = g(x). Using Egs. (29) and (30) in Eq. (31) results in

2 D D?
=2 e (<52 ) (2

where the fact that the deadband is reached with a positive or negative drift rate has been used.

Figures 5(a) and 5(b) show the probability density and the probability of not reaching the
deadband in time 7 for various values of D/ca,.

Figure 5(b) can be used for finding the minimum acceptable value of the deadband. For ex-
ample, if one wants there to be a 75% probability that the deadband will not be reached in four
orbits, then D/oa, > 5, keeping in mind that this analysis does not include perturbations such as
differential drag or thrust errors.

Examples

. Suppose there is some interest in flying a high-eccentricity, e = 0.8, formation flying mission, in
which the satellites are supposed to be 10 km apart at apogee. If the separation varies by more
than 10% at apogee, or if there is some danger of a collision, the satellites must perform short-
duration, relatively high-thrust stationkeeping maneuvers. In order to maximize the science returm
and mission duration, such maneuvers should not occur more often than every four weeks. The
orbit period is approximately one day, so the relative drift at apogee must be less than one kilometer
per 28 orbits, or about 36 meters per orbit. Consulting Eq. (27), the relative semi-major axis error
should therefore have a “one sigma” value of 36/ = 11 meters. If the relative navigation system
is highly correlated, i.e. p,, = —.9 and p;; = 0, Figure 4(a) indicates that a “one sigma” radius
error of about 55 meters at apogee should be sufficient to meet the 10% requirement in a “one
sigma” sense. If the navigation system is not well-correlated, i.e. p,, = p;; = 0, and the relative
velocity errors dominate as with many of the GPS systems described in Ref. 3, then Figure 4(c)

CARPENTER 70F18




indicates that a “one sigma” radius error of about 2 meters would be necessary to meet the 10%
requirement.

Note however that at perigee, the 11 meter relative semi-major axis error would produce a
drift of about 310 meters per orbit, which may be found using Eq. (5). From Figure 4(a), this
drift corresponds to a radius error of 0.6 m for a well-correlated system. For a poorly correlated
system like Figure 4(c) illustrates, the corresponding radius error that would be required at perigee
is about 0.15 m. For most elliptical orbit formations, the separation will increase at perigee, so
a few kilometer change in relative position may amount to mmch less than 10%. However, there
do exist elliptical orbit formations for which separation at perigee decreases relative to apogee, in
which case a collision avoidance maneuver might be required much more often than desired unless
the navigation error could be further reduced.

Next, suppose a low-Earth orbiting (550 km altitude), leader-follower mission is proposed in
which the separation distance is 60 m, and this must be maintained within +:20 m. The mission
will use a highly accurate differential Global Positioning System relative navigator, which can
determine relative position to within 6 cm, and relative velocity to within 2 mm/sec, “one sigma,”
per axis. From Figure 1, one can see that the corresponding drift uncertainty is about 3 m, that the
velocity noise is the limiting error, and that the position/velocity noise combination is such that the
value of the correlation coefficient has a reduced effect, since the dominating velocity noise places
the position/velocity noise combination above and to the left of the main diagonal of the figure,
which is where the curves split based on cormelation coefficient (this is consistent with the findings
of Ref. 2). It therefore seems appropriate to use the poorly correlated example of Figure 4(c) to
assess the drift rate per orbit, from which one can determine the drift to be about 5 m per orbit.
For a 20 m deadband, one should therefore interpolate between the D/oa, = 3and D/oa, = 5
curves of Figure 5(b), from which it is possible to determine that there is about an 80% probability
that the deadband will not be reached in less than about 5 orbits, or equivalently that there is a 20%
probability that every 5 orbits, the deadband will be reached.

Finally, Figure 6 demonstrates the effect that relative navigation error has on a formation. The
figure shows the along-track relative motion time history for one week (105 orbits) for a leader-
follower formation with a desired separation of 100 m with the 0.3 mm/s relative velocity and 6 cm
relative position relative navigation errors described above. The relative state control strategy is
a minimum fuel in-track impulsive strategy in which each maneuver consists of three impulses
separated by 0.5 orbits. A maneuver is initiated when 75% (15 m) of the deadband of 20 m is
reached.” To initiate relative motion there is differential drag, but after the first maneuver the
differential drag is set to zero and the only error is the relative navigation error. As Figure 6 shows,
when there is a high drift rate due to the semi-major axis error the deadband is exceeded.
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Conclusion
This paper has presented some guidelines on relative navigation that may be useful for conceptual
analysis of formation flying missions. These guidelines generalize previously reported formulae
to the case of elliptical orbits. Since the guidelines do not account for non-two-body perturba-
tions, they may be viewed as useful preliminary design tools, rather than as the basis for mission
navigation requirements, which should be based on detailed analysis of the mission configuration,
including all relevant sources of uncertainty.
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List of Table Captions
Table 1: Speed uncertainty “balancing” radius uncertainty for a range of eccentricities, according
to Eq. (28).
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€ 0.01 0.18 3.1 56 1000
0 | 1.2e-05 0.00022 0.0039 0070 12
0.35 | 2.4e-05 0.00044 0.0077 014 25
0.7 | 94e-05 00017 0030 053 94
0.9 | 0.00074 0.013 0.23 42 74
TABLE 1:
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List of Figure Captions

Figure 1: Along-track drift due to semi-major axis error for a typical low earth orbit.}
Each family of contours is based on a constant semi-major axis error, resulting from various
combinations of radial position error, along-track velocity error, and the correlation between
these.

Figure2: Along-track drift due to semi-major axis differences between two spacecraft in a
highly elliptical orbit.

Figure 3: Semi-major axis uncertainty as a function of true anomaly for a particular high
Earth orbit example.

Figure 4: Relative drift per orbit due to semi-major axis error for various eccentricities
a). pi; = 0.9.
b)! pij = 0.
c): “Poor” velocity accuracy and zero correlations.

Figure 5: Drift probabilities.
a): Probability density function for time to reach deadband, for various ratios of dead-
band size to drift rate.

b): Probability of not reaching the deadband in given number of orbits, for various ratios
of deadband size to drift rate.

Figure 6: Along-track control error time history for LEO leader-follower formation with
semi-major axis errors.
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Relative motion due to 6a=11 m for e=0.8 over 15 orbits
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