
Navigation in Three-Dimensional Cluttered Environments

for Mobile Manipulation

Armin Hornung Mike Phillips E. Gil Jones Maren Bennewitz Maxim Likhachev Sachin Chitta

Abstract— Collision-free navigation in cluttered environ-
ments is essential for any mobile manipulation system. Tra-
ditional navigation systems have relied on a 2D grid map pro-
jected from a 3D representation for efficiency. This approach,
however, prevents navigation close to objects in situations where
projected 3D configurations are in collision within the 2D grid
map even if actually no collision occurs in the 3D environment.
Accordingly, when using such a 2D representation for planning
paths of a mobile manipulation robot, the number of planning
problems which can be solved is limited and suboptimal robot
paths may result. We present a fast, integrated approach
to solve path planning in 3D using a combination of an
efficient octree-based representation of the 3D world and an
anytime search-based motion planner. Our approach utilizes
a combination of multi-layered 2D and 3D representations to
improve planning speed, allowing the generation of almost real-
time plans with bounded sub-optimality. We present extensive
experimental results with the two-armed mobile manipulation
robot PR2 carrying large objects in a highly cluttered environ-
ment. Using our approach, the robot is able to efficiently plan
and execute trajectories while transporting objects, thereby
often moving through demanding, narrow passageways.

I. INTRODUCTION

Home assistance is a major future area of interest for

personal robots. Navigation in the highly unstructured and

dynamic environments of a home is thereby the prerequisite

to fulfill any high-level tasks. Current state of the art navi-

gation approaches enable fast planning and robust execution

for a 3-DoF robot base in a 2D grid map indoors [1]. In

these approaches, sensor data is either two-dimensional or

projected down to 2D from 3D and a projected footprint

is typically used to plan for the robot on a 2D grid map.

However, these approaches are usually not able to generate

motions to goal locations in highly cluttered areas or to goal

locations where the 2D projection of the robot is in collision

in the 2D map – even if the 3D configuration of the robot

is actually collision-free in the 3D world. As an example,

Fig. 1 shows the PR2 attempting to pick up and move a

laundry basket off a table. It can only achieve this task by

moving its base underneath the table with its arms over the

table. Such a configuration is unachievable using traditional

navigation planning techniques. Additionally, no path for the

PR2 carrying the laundry basket might be found for narrow

passages when planning motions in a 2D map. This is due

A. Hornung and M. Bennewitz are with the Humanoid Robots Lab,
University of Freiburg, Germany. M. Phillips and M. Likhachev are with the
Robotics Institute, Carnegie Mellon University, Pittsburgh, USA. S. Chitta
and E.G. Jones are with Willow Garage Inc., Menlo Park, USA.

This work has partly been supported by the German Research Foundation
(DFG) under contract number SFB/TR-8, by the European Commission
under grant agreement numbers FP7-248258-First-MM, and by Willow
Garage Inc.

Fig. 1. Left: A mobile manipulation robot often has to approach obstacles
closely when traversing narrow passages or picking up large objects. Right:

To allow for efficient collision checks while considering the 3D structure
of the environment and the robot, we use a multi-layered representation for
the robot. Here, it consists of projected layers for the base (green), spine
(red), and arms (blue) in addition to a full 3D collision map.

to the enlarged footprint in the 2D map needed to account

for the basket and the extended arms.

Full 3D collision checking is a possible solution in such

situations. In typical indoor environments with a multi-DoF

robot, however, this is expensive and will lead to long

planning times. Collision checking could be sped up using a

coarser representation of the environment. However, the lack

of high-resolution information can prevent the robot from

reaching goals in clutter.

To overcome these limitations, we propose an integrated

navigation framework that utilizes a combination of full 3D

collision checking with a multi-layered 2D representation of

both the robot and the environment (Fig. 1). Our approach

starts with the robot incrementally building a 3D occupancy

map in an efficient octree-based representation. This 3D

map is then projected down into a multi-layered 2D rep-

resentation. Based on the current configuration of the robot

and any object it might be holding, corresponding projected

footprints for the different layers are automatically computed.

The advantage of this method is that expensive, 3D collision

checks during planning can be avoided, when no collision is

found in any layer. We apply a global planner to generate

paths on a lattice graph based on the layered representation

in an anytime manner. A local planner then executes this

path and validates it during execution.

Our novel contributions are multi-fold. First, we present a

system that is capable of efficient realtime 3D planning and

navigation. Our approach is particularly suitable for mobile



manipulation tasks, e.g., tasks where a robot needs to carry

large objects in cluttered environments. Another important

contribution is the integration of an efficient 3D representa-

tion for large-scale indoor environments with fast realtime

motion planning, implemented and validated on a real robot

operating with noisy sensor data in a cluttered environment.

Our approach provides the first implementation of efficient

navigation planning for mobile manipulation systems of

different shapes in arbitrary configurations.

We validate our approach through real-world experiments

on the PR2 mobile manipulation robot. Using our approach,

the PR2 is able to carry large objects in a cluttered indoor en-

vironment. It is able to navigate collision-free and efficiently,

transporting objects to parts of the workspace unreachable

with traditional 2D navigation planning approaches. Our

framework builds upon and extends the capabilities of the

Search-based Planning Library (SBPL, [2]) and is available

as open source software1.

II. RELATED WORK

Navigation in cluttered environments is a well-studied

problem for mobile robots [1], [3], [4], [5]. Most approaches

to this problem, however, have focused on navigation for a

2D projected footprint of the robot moving in a projected 2D

representation of the world. Therefore, they are unsuited for

our motivating problem of mobile manipulation in a cluttered

environment since they will reject any configuration of the

robot where the 2D projected footprint of the robot is in

collision with the 2D environment representation.

Hornung and Bennewitz [6] recently proposed an approach

for efficient humanoid robot navigation by combining coarse

2D path planning in open spaces and detailed footstep

planning in the vicinity of obstacles. This technique allows

for finding solutions where planning based on a 2D grid fails.

Lazy collision checks and an enlarged robot model were

used for fast RRT-based motion planning in a simulated

kitchen environment by Vahrenkamp et al. [7]. The authors

concentrated on manipulation tasks in a small part of the

environment. They later extended the approach to coarse

motion planning for the base while further away with an

increased planner granularity closer to the goal [8]. How-

ever, their approach does not cover long navigation plans

through a cluttered environment. Also, randomized planning

approaches generally generate non-optimal solutions and rely

heavily on smoothing to shorten the final path.

Marder-Eppstein et al. [1] use a compact 3D representation

of the environment for a long running navigation demonstra-

tion. This representation allowed for quick updates for dy-

namic obstacles but still restricted the system to operate only

in a projected 2D environment representation. Cart pushing

with a mobile manipulation system was demonstrated by

Scholz et al. [9] but navigation was again limited to goals

where the 2D projection of the cart and the robot was not

in collision. This disallowed, for example, actions that could

move and store the cart under a table.

1As part of the Robot Operating System (ROS) at
http://www.ros.org/wiki/3d_navigation

For efficient collision checking in 3D, several hierarchical

approaches have been proposed in the past such as oriented

bounding box trees [10] or sphere tree hierarchies [11], [12].

They all rely on a spatial subdivision of the 3D space. In

contrast to these approaches, our collision checks are first

performed in a multi-layered 2D map and we employ full

3D collision checks only when required.

Lau et al. [13] recently introduced techniques for incre-

mental updates of collision maps in a non-circular robot’s

configuration space. After convolving a map with the dis-

cretized shape of the robot in a pre-computation step, colli-

sion checks correspond to a single lookup. While the map can

be efficiently updated for dynamic environments, any change

in the robot’s kinematic configuration (e.g. after picking up

objects) requires a full recomputation.

III. THE PR2 ROBOT PLATFORM

We implemented our system on the PR2, which is a mobile

manipulation system equipped with an omnidirectional base,

an articulated sensor head and two 7-DoF arms. The sensors

used throughout this work are the Hokuyo UTM-30LX 2D

laser range finder in the base for localization and the stereo

sensor in the head. The stereo cameras are augmented by

a texture projector to provide dense data [14]. Calibrated

joint encoders provide accurate proprioceptive data about

the robot’s kinematic configuration. The stereo sensor serves

as the main sensing input for detecting obstacles in the

environment for our approach.

The PR2’s dense stereo pair has a narrow field of view

of 55◦. To make that practical for navigation, we imple-

mented an active sensing behavior where the robot’s sensor

head always points in the current driving direction (which

may be to the side or even backwards).

The sensing pipeline for our approach builds on existing

components developed for a tabletop manipulation applica-

tion [15]. The dense depth measurements of the PR2’s stereo

head are first run through a self filter. Based on the known

robot mesh model and proprioception, points on the robot’s

body or on objects that are being manipulated or carried

are removed. Accurate time synchronization between stereo

and proprioceptive data on the PR2 ensures an effective self

filtering. A shadow filter then removes all errors inherent

to stereo sensing: points that are occluded from one of the

stereo pair’s cameras and veiling points on sharp edges and

corners of the joints. Finally, a RANSAC-based ground-plane

detection labels the remaining points as either ground or not

ground for insertion into the octree-based 3D occupancy map

described in detail next.

IV. ENVIRONMENT REPRESENTATION

Mobile manipulation requires the ability to represent and

process a fairly large environment efficiently and accurately.

The representation must be compact and easy to incremen-

tally update to account for dynamic obstacles and changing

scenes.



(a) (b)

(c) (d)

Fig. 2. The projected 2D grid map and footprint (red polygon) for each
layer of the PR2 robot: base (a), spine (b), and arms (c). The full 3D
occupancy grid from the octree representation is shown in (d).

A. Octree-based 3D Occupancy Map

For collision checks between the robot and the environ-

ment, a full 3D representation is required. However, full 3D

occupancy grids pose challenges on computational memory

requirements if a high resolution is used for accurate results.

Thus, we use the octree-based volumetric representation

OctoMap [16] to efficiently build and store a probabilistic

3D occupancy grid at a resolution of 2.5 cm.

B. Continuous Map Updates

For incrementally mapping the environment, the robot

constantly inserts the most recent sensor information into

the 3D map. The point clouds output from the perception

pipeline are self-filtered as described in Sec. III, with points

belonging to the ground plane marked. The map update is

done using raycasting from the sensor origin. Knowledge

about the ground points is hereby needed in order to clear

the corresponding area and thus mark it as traversable.

We apply a probabilistic map update [16] to ensure the

proper handling of sensor noise and dynamic updates when

obstacles are appearing or disappearing (e.g., manipulated

objects, or people moving in the environment).

The robot starts by building an initial 3D map of the

environment that serves as a base representation which can

then be modified by the incremental updates based on the

robot’s sensor data as it is executing its task. The resultant

3D map is the input to the motion planning framework,

which further processes the map to create a multi-layered

representation of the environment for improved efficiency in

motion planning. We will now describe this process in further

detail.

C. Multi-Layered 2D Obstacle Maps

The geometric structure of a mobile manipulation robot

such as the PR2 can be exploited for efficient collision

checking by a spatial subdivision into multiple 3D volumes.

Such a subdivision is especially applicable when the robot

Fig. 3. Left: A snapshot of the PR2 with its arms over a table clearly
indicates that the robot is not in collision with the table. Right: However,
the footprint (red polygon) which is the convex hull of the 2D projection
of the robot’s configuration on the ground is in collision when using a
single-layered grid map only.

is navigating while carrying an object since its geometric

structure will stay mostly constant during such a task. As

illustrated in Fig. 1, the PR2 robot can be subdivided in such

a manner into three parts: base, spine with head, and arms

with possibly attached objects. Additionally, we also repre-

sent the environment in a compact manner using a multi-

layered 2D representation. Each layer of this representation

contains projected representations of the obstacles that can

collide with the body parts associated with that layer. Thus,

we represent the environment for the PR2 in three layers,

each associated with one of the body parts mentioned above.

Each incremental 3D map update also updates these down-

projected 2D maps. The 2D projections are updated for a

given map cell (x, y) in layer lj by traversing all discrete

levels zi in a range corresponding to the layer’s minimum

and and maximum height. For instance, for the layer used

for the robot’s arms, the height range is determined by

the highest and lowest points on the arms and potentially

attached objects. If for all zi in lj , (x, y, zi) is free in the 3D

map, (x, y) is marked as free. As soon as one (x, y, zi) is

occupied, (x, y) is considered to be occupied. Otherwise,

(x, y) is marked as unknown space. Occupied cells in a

2D map layer hence stand for possible obstacles in 3D.

Accordingly, a free cell guarantees that there is no collision

in the 3D space corresponding to that layer.

In addition to the projected 2D map, we also have a

down-projected footprint of the robot corresponding to the

layer. Every time a plan is requested, we first update the 2D

footprint for each layer by down-projecting the convex hull

of the meshes for the body parts belonging to this layer (see

Fig. 2).

The PR2 robot can be decomposed into the following

layers (see Fig. 1): The box-like base, the spine from base

through the head, and the arms with attached objects to

be carried or manipulated. While the base and spine layers

remain fixed for this robot, the arm layer may change its

height and footprint as the arms move. Figure 2 shows an

example of the three layers as projected grid maps with

footprints. This representation was generated from a real

scenario with the PR2 robot as shown in Fig. 2(d). It is

clear that the arm layer has very few obstacles compared to

the spine layer since the arms are at a greater height than

most of the obstacles in the environment (e.g., the chairs and



the table). Using multiple 2D layers in this manner allows

motion planners to avoid expensive 3D collision checking.

An example is illustrated in Fig. 3 where the robot has its

arms over a table and the base under a table. When using

one single 2D map with a 2D projected footprint, the down-

projected table will collide with the down-projected arms and

base. A full 3D collision check would be needed to confirm

whether a collision is actually occurring. With our approach,

however, the table is only projected on the spine layer (which

it doesn’t collide with) and the arm and base footprints are

not compared against it. Since none of the footprints are in

collision, an expensive full 3D check is not needed.

Hence, using multiple layers allows us to declare the

robot configuration collision-free more often without using

expensive 3D collision checking. But we may also be able

to determine that the robot is definitely in a 3D collision

without having to do an explicit 3D collision check. This is

explained in the following.

Some layers have the property that for each (x, y) cell in

the corresponding footprint and each zi in the layer, (x, y, zi)
is part of the robot. This applies, e.g., to the box-like base of

the PR2 and the tall spine. In these cases, if a 2D projection

of an obstacle is inside the robot’s footprint at the appropriate

layer, the robot is definitely in collision with the object in

3D, regardless of the z coordinate and a 3D check is not

needed.

However, for certain layers such as the arm layer, this

property cannot be used because they are not box-like

and often change their shape. In some cases, we can still

eliminate 3D checks by introducing the concept of a tall

obstacle. A map cell (x, y) is marked as a tall obstacle if all

(x, y, zi) cells within the layer are occupied. Now, when the

2D footprint for that layer is in collision with this cell, the

3D configuration will always be in collision and a full 3D

collision check is not needed.

Note that we apply our multi-layered 2D obstacle map

for ruling out full 3D collision checks, not to replace them

completely. In order to preserve the full flexibility of an arbi-

trary robot configuration, it may be still necessary to test its

kinematic configuration for 3D collisions. Full 3D collision

checking, when necessary, is performed using a collision

model representation in the ODE simulation package [17].

V. PLANNING & NAVIGATION FRAMEWORK

The 3D map and the multi-layered 2D obstacle maps serve

as input to our planning and navigation framework. We apply

a global planner to construct a plan in the position and

planar orientation space (x, y, θ) to reach the goal. This plan

is then executed by a local planner. To localize the robot

during navigation, we currently rely on 2D Monte Carlo

localization based on laser data. This localization uses a

static map, which contains walls and other static parts of

the environment, combined with odometry information from

the wheels and an IMU located on the robot.

A. Global Planning

1) Search-based Planning on Lattice Graphs: The global

planner operates on a lattice graph [18], [19] corresponding

0.2m

Fig. 4. Omni-directional motion primitives for the PR2.

to the 2D space with orientations (x, y, θ). Each state is

connected to neighbors resulting from applying a set of mo-

tions primitives. Motion primitives are short, kinematically

feasible motion sequences and the path found by the planner

is a concatenation of these motions. The advantage of this

state space representation is that the resulting plans tend to

be smooth paths that can handle non-holonomic constraints

and non-circular robot footprints. Fig. 4 shows the set of

motion primitives we use for the PR2, including sideways

and backwards motions in addition to driving forward and

turning.

For efficient 2D collision checking, we compute a se-

quence of footprint collision cells for each motion primi-

tive by rolling out the projected robot footprint along the

primitive’s path. This step took approximately 3 seconds in

our trials and is only necessary if the robot configuration

changes. For known configurations, it can be precomputed.

On the lattice graph, we then employ the Anytime Re-

pairing A* (ARA*) search [20]. ARA* runs a series of

weighted A* searches that inflate the heuristic component

by ε ≥ 1 while efficiently reusing previous information. The

search starts out with a large ε, causing it to find a non-

optimal initial solution quickly. Then, as time allows, the

search reruns with incrementally lower values for ε while

reusing much of the information from previous iterations.

Given enough time, ARA* finally searches with ε = 1,

producing an optimal path. If the planner runs out of time

before, the cost of the best solution found is guaranteed to

be no worse than ε times the optimal solution cost. This

allows ARA* to find some solution faster than regular A*,

and approach optimality as time allows.

ARA* checks the states generated at every step in the

planning process for collisions using the multi-layered 2D

map representation presented above. A 3D collision check

is performed only when a possible collision is indicated

in 2D. During the ARA* search, the costs for applying a

motion primitive correspond to the length of the trajectory

and additionally depend on the proximity to obstacles.

The heuristic for the planner uses a 2D Dijkstra search

from the goal state. This heuristic only searches over the 2D

grid map of the base layer with obstacles inflated by the base

inner circle. Since we only search the base layer where 2D

collisions imply 3D collisions, the heuristic stays admissible

and consistent.

B. Plan Execution

During execution, the concatenated discrete motion primi-

tives from the global planner have to be converted into motor

commands for the robot’s base. Additionally, the validity



0 100 200 300
0

20

40

60

80

100

Time [s]

P
ro

b
le

m
s

so
lv

ed
[%

]
First solution (ε = 10)

Multi-layer 3D

Single-layer 3D

Single-layer 2D

0 100 200 300
0

20

40

60

80

100

Time [s]

Optimal solution (ε = 1)

Fig. 5. Success rate for 60 planning problems in cluttered space. The
percentage of solved problems after a certain time is shown for the first
solution (left) and for the final, optimal solution (right).

chairs

Fig. 6. The planning environment with six robot configurations chosen as
start and goal poses. A narrow passage is formed by a table and two chairs,
which were removed to create a second, easier scenario.

of the plan has to be checked while it is being executed

because obstacle positions might change. To do so, the local

planner computes the omnidirectional velocities required to

reach the next (x, y, θ) pose along the path and performs a

single trajectory rollout which is checked for collisions in

the updated obstacle map. As in the global planner, collision

checks are first performed in 2D, and only in 3D when

required.

In case collisions are predicted, the local planner first tries

to scale down the velocity command to reach the target pose

as close as possible. For example, when docking with a table,

a full discrete forward motion might collide with the table

while a shorter, slow approaching motion reaches the table

more closely.

In case the environment has changed or the robot has

drifted from its path, the robot stops and the global planner

is invoked again to find a new path around the obstacle.

VI. EXPERIMENTS

We carried out extensive experiments to evaluate our

approach and demonstrate its usability for realtime mobile

manipulation tasks.

A. Offline Motion Planning Tests

The first set of experiments was designed to show the

superior performance of our approach compared to conven-

tional techniques. We generated multiple planning problems

in which the robot was posed in a configuration with ex-

tended arms for manipulation. This configuration requires

to use a large 2D projected footprint for traditional motion

planning.

We evaluated the following three different approaches:

1) Single-layer 2D: A traditional navigation approach

using only one 2D projected footprint of the robot and

a 2D projected environment map.

2) Single-layer 3D: A navigation approach where 3D col-

lision checks are always performed when the (single)

2D footprint is in collision with the 2D projected map.

3) Multi-layer 3D: Our approach using a multi-layered

2D occupancy grid and performing 3D collision checks

only when absolutely necessary.

We performed experiments in two different scenarios.

The first scenario is shown in Fig. 6. It includes a narrow

passageway between two chairs and a table that the robot

could only negotiate by moving sideways with its base under

the table. For the second scenario the chairs were removed to

make the planning problem easier. Note that the environment

is a real cluttered office space and all the sensor data used

for generating the environment representation came from a

real PR2 robot.

Six different states (Fig. 6) were chosen manually and

planning was carried out between each combination of start

and goal from these states. This results in a total of 60

different planning problems across both scenarios. Planning

was started with ε = 10 and allowed to continue until either

ε = 1 or 5 minutes had passed. The success rate for each

planning approach is shown in Fig. 5. Note that only two of

the configurations in Fig. 6 have 2D footprints that are not in

collision, enabling the traditional Single-layer 2D approach

to succeed in only four cases.

Our approach (Multi-layer 3D) always succeeded in gen-

erating a motion plan, even in the most cluttered scenarios.

It was able to perform far better than the Single-layer 3D

approach and found far more solutions both in a short real-

time window and in the long run (see Fig 5). For our

approach, a first solution was always found within at most

7.3 s. Table I compares our approach and Single-layer 3D

in the 32 planning attempts where both succeeded. Data

from Single-layer 2D is omitted since it is only able to plan

between two configurations. The results make it clear that

using a multi-layered representation seriously improves the

performance of the motion planner allowing it to find an

initial solution very quickly. The refinement of the solution

to a fully optimal solution (ε = 1.0) takes much more time

but in practice the sub-optimal solutions already lead to an

efficient navigation behavior of the robot. Table II shows data

aggregated from the much harder 28 planning attempts for

which only our approach (Multi-layer 3D) succeeded.

In Table I and II, the number of 2D and 3D collision

checks refers to the number of motion primitives that had to

be checked. A motion primitive may have several interme-

diate positions in addition to the start and end state. Each

of our primitives may require up to 10 collision checks for

individual robot positions. The actual number of collision



TABLE I

MEAN AND STANDARD DEVIATION FOR THE 32 PLANNING ATTEMPTS

ON WHICH BOTH 3D APPROACHES SUCCEEDED.

Single-layer 3D Multi-layer 3D

Time to first solution [s] 130.81 0.03
Standard deviation 143.67 0.06

Expands to first solution 13 910.91 1 400.75
Standard deviation 16 572.31 1 618.08

ε after 5 s 1.5 1.00
2D collision checks (primitives) 153 375.06 15 408.25
3D collision checks (primitives) 22 017.09 0.00

TABLE II

MEAN AND STANDARD DEVIATION FOR OUR APPROACH IN THE 28

PLANNING ATTEMPTS ON WHICH ONLY MULTI-LAYER 3D SUCCEEDED.

Time to first solution [s] 1.52
Standard deviation 2.13

Expands to first solution 69 915.39
Standard deviation 107 906.74

ε after 5 s 6.28
2D collision checks (primitives) 769 069.32
3D collision checks (primitives) 2.89

checks for each motion primitive may be less since we abort

as soon as one intermediate position is in collision.

The number of motion primitives that checked for 3D

collisions with our approach is very small because having

multiple layers allows the inflation (which penalizes the cost

function for the robot as it gets closer to obstacles) to be

more informative in keeping the search away from obstacles

and 3D collision checks. Additionally, as can be seen from

Fig. 2, there are very few obstacles in the arm layer of the

robot that are not classified as tall obstacles. However, as the

planner approaches ε = 1.0, even our approach eventually

has to do more 3D collision checks. This is why, on average,

we only reach ε = 6.28 in 5 s in some of the harder cases

and in many of the cases 10 or 100 thousands of collision

checks are required before we reach the optimal solution.

B. Docking Maneuvers With Real Robot

A second set of experiments involved repeated docking

and undocking with a table using the real PR2 robot in

a similar cluttered office environment. This is the kind of

action that a robot will have to execute when it needs to

pickup or place objects on the middle of the table. Note that

configurations that require the robot to reach the middle of

the table are unachievable using traditional 2D navigation

approaches. We evaluated this set of experiments solely

for our approach to motion planning with a multi-layered

representation.

A typical docking maneuver to pick up a large object from

a table can be seen in Fig. 7. In our experiments, all goal

configurations were reached collision-free while the robot

docked and undocked a table 12 times.

C. Navigation While Carrying Large Objects

Finally, we evaluate our approach on a set of experiments

for a difficult scenario involving autonomous navigation

within an extremely cluttered environment while carrying a

goal

Fig. 7. Docking with a table to pick up a large object. Left: Goal
configuration (shaded green) and resulting plans (blue). Right: Execution
of the plan by the PR2.

laundry basket with both arms. In this scenario, the robot

often had to pass through narrow areas, forcing it to move

sideways close to obstacles. The location of the laundry

basket was provided a priori to the robot. The robot first

planned a path to a goal in front of the basket. It then

lifted up the basket with a pre-defined motion of the arms.

A bounding cylinder was used to filter out the basket from

the robot’s sensor data. The final navigation goal for the

robot was then near another table where it would have to put

the basket down again. We conducted multiple trials using

several combinations from a set of six goal and start states.

The robot successfully executed each task.

Fig. 8 shows a series of snapshots while executing this

task, whereas the complete planned path is shown in Fig. 9.

The precomputation time for the footprints was 3.46 s in this

scenario and the complete planning time 3.16 s. We planned

to the first solution in this case (ε = 10). To pick up the

laundry basket, the robot initially had to move its base under

the table. Afterwards, the narrow passage with chairs forced

it to move sideways under the table with the basket over the

table. Finally, the PR2 approached the second table to put

the basket down. Note that large parts of the workspace in

this scenario are unreachable by the robot using traditional

2D navigation planning approaches.

VII. CONCLUSIONS AND FUTURE WORK

We presented a novel approach for efficient navigation

with a mobile manipulation robot in three-dimensional, clut-

tered environments such as offices or homes. Our integrated

approach combines an efficient octree-based 3D represen-

tation and an anytime search-based motion planner. For

efficient collision checking during planning, our approach

utilizes a multi-layered 2D environment representation, al-

lowing the generation of almost real time bounded sub-

optimal plans.

We demonstrated the performance of our framework on

the PR2 mobile manipulation robot in exhaustive real-world

experiments. The robot was able to navigate efficiently and



1. 2.

3. 4.

5. 6.

Fig. 8. Sequence of snapshots showing the PR2 robot navigating au-
tonomously with a laundry basket in a cluttered environment. A video of
this sequence is available online.

collision-free, carrying a laundry basket with both arms

from one table through a heavily cluttered room to another

table. The robot also successfully performed docking and

undocking maneuvers with extended arms at a table, thus

maximizing its workspace for manipulation by moving the

base under the table. Our approach found an initial solution

on average within 2 seconds while the highest planning

time for an initial solution was about 7 seconds. This

underlines the efficiency and practicability of our approach

for navigation in mobile manipulation scenarios.

A natural extension for future work will be to move larger

objects such as chairs or carts with articulated primitives [9]

in a cluttered environment, e.g. to store them away under a

table.

REFERENCES

[1] E. Marder-Eppstein, E. Berger, T. Foote, B. P. Gerkey, and K. Kono-
lige, “The office marathon: Robust navigation in an indoor office en-
vironment,” in Proc. of the IEEE Int. Conf. on Robotics & Automation

(ICRA), 2010.

[2] M. Likhachev, http://www.ros.org/wiki/sbpl, 2010.

[3] S. Thrun, M. Bennewitz, W. Burgard, A. B. Cremers, F. Dellaert,
D. Fox, D. Hähnel, C. Rosenberg, N. Roy, J. Schulte, and D. Schulz,
“Minerva: A second-generation museum tour-guide robot,” in Proc. of

the IEEE Int. Conf. on Robotics & Automation (ICRA), 1999.

[4] I. R. Nourbakhsh, C. Kunz, and T. Willeke, “The mobot museum
robot installations: A five year experiment,” in Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS), 2003.

[5] R. Kümmerle, D. Hähnel, D. Dolgov, S. Thrun, and W. Burgard,
“Autonomous driving in a multi-level parking structure,” in Proc. of

the IEEE Int. Conf. on Robotics & Automation (ICRA), 2009.

[6] A. Hornung and M. Bennewitz, “Adaptive level-of-detail planning for
efficient humanoid navigation,” in Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), 2012.

start

goal

Fig. 9. Visualization of the 3D environment and path taken by the PR2
robot in moving a laundry basket through a cluttered indoor environment.
(Note: The basket itself is not visualized.)

[7] N. Vahrenkamp, T. Asfour, and R. Dillmann, “Efficient motion plan-
ning for humanoid robots using lazy collision checking and enlarged
robot models,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent

Robots and Systems (IROS), 2007.
[8] N. Vahrenkamp, C. Scheurer, T. Asfour, J. J. Kuffner, and R. Dillmann,

“Adaptive motion planning for humanoid robots,” in Proc. of the

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2008.
[9] J. Scholz, S. Chitta, B. Marthi, and M. Likhachev, “Cart pushing with

a mobile manipulation system: Towards navigation with moveable
objects,” in Proc. of the IEEE Int. Conf. on Robotics & Automation

(ICRA), Shanghai, China, 2011.
[10] S. Gottschalk, M. C. Lin, and D. Manocha, “OBBTree: A hierar-

chical structure for rapid interference detection,” in Proc. of ACM

SIGGRAPH, 1996.
[11] K. Steinbach, J. Kuffner, T. Asfour, and R. Dillmann, “Collision and

self-collision detection for humanoids based on sphere tree hierar-
chies.” in Proc. of the IEEE-RAS Int. Conf. on Humanoid Robots

(Humanoids), 2006.
[12] S. Quinlan, “Efficient distance computation between non-convex ob-

jects,” in Proc. of the IEEE Int. Conf. on Robotics & Automation

(ICRA), 1994.
[13] B. Lau, C. Sprunk, and W. Burgard, “Incremental updates of config-

uration space representations for non-circular mobile robots with 2d,
2.5d, or 3d obstacle models.” in Proc. of the European Conf. on Mobile

Robots (ECMR), 2011.
[14] K. Konolige, “Projected texture stereo,” in Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), 2010.
[15] M. Ciocarlie, K. Hsiao, E. G. Jones, S. Chitta, R. B. Rusu, and

I. A. Sucan, “Towards reliable grasping and manipulation in household
environments,” in ISER, New Delhi, India, December 2010.

[16] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: A probabilistic, flexible, and compact 3D map
representation for robotic systems,” in Proc. of the ICRA 2010 Work-

shop on Best Practice in 3D Perception and Modeling for Mobile

Manipulation, 2010, software available at http://octomap.sf.net/.
[17] “Open dynamics engine,” http://www.ode.org.
[18] M. Likhachev and D. Ferguson, “Planning long dynamically-feasible

maneuvers for autonomous vehicles,” in Int. Journal of Robotics

Research (IJRR), 2009.
[19] M. Pivtoraiko and A. Kelly, “Generating near minimal spanning

control sets for constrained motion planning in discrete state spaces,”
in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

(IROS), 2005.
[20] M. Likhachev, G. Gordon, and S. Thrun, “ARA*: Anytime A* search

with provable bounds on sub-optimality,” in Proc. of the Conf. on

Neural Information Processing Systems (NIPS), 2003.


