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Abstract: In this work, we propose a hybrid control scheme to address the navigation problem for
a team of disk-shaped robotic platforms operating within an obstacle-cluttered planar workspace.
Given an initial and a desired configuration of the system, we devise a hierarchical cell decomposition
methodology which is able to determine which regions of the configuration space need to be further
subdivided at each iteration, thus avoiding redundant cell expansions. Furthermore, given a sequence
of free configuration space cells with an arbitrary connectedness and shape, we employ harmonic
transformations and harmonic potential fields to accomplish safe transitions between adjacent cells,
thus ensuring almost-global convergence to the desired configuration. Finally, we present the
comparative simulation results that demonstrate the efficacy of the proposed control scheme and its
superiority in terms of complexity while yielding a satisfactory performance without incorporating
optimization in the selection of the paths.

Keywords: multi-robot navigation; motion planning; cell decomposition

1. Introduction

The autonomous operation of robotic platforms inside cluttered environments consti-
tutes an actively studied research topic, with autonomous navigation undeniably being
a fundamental aspect of it. Additionally, as the tasks that robots are entrusted with grow
in complexity, the employment of multi-robot systems, which generally exhibit a higher
robustness and versatility than their single-robot alternatives, progressively increases. Thus,
the multi-robot navigation problems to be addressed become more challenging day by day,
raising the need for more efficient path and motion planning schemes.

Several methodologies can be found in the literature for coordinating the motion of
two or more robots such that a desired configuration is reached under standard collision
avoidance specifications. Combinatorial and algebraic approaches, such as the ones pre-
sented in [1,2], were among the earliest to be considered. However, despite their elegance,
their complexity renders them impractical for addressing cases with non-trivial sizes of
robotic teams. On the other side, probabilistic sampling methods, such as Rapidly Exploring
Random Trees [3] and Probabilistic Roadmaps [4], constitute a popular solution employed
in the recent literature due to their simplicity and their ability to efficiently handle large
configuration spaces while being subjected to a variety of constraints. Nevertheless, these
methodologies are generally having a hard time addressing problems with constricted
configuration spaces (e.g., workspaces densely occupied by obstacles or narrow corridors).
To alleviate these issues, various attempts were made. In [5], a novel sensory steering
algorithm was designed which used the local Voronoi decomposition of the workspace to
significantly improve the path-planning performance of sampling-based algorithms near
difficult regions, such as narrow passages. In [6,7], the authors proposed a scheme that
samples entire manifolds instead of isolated configurations, which are, in turn, used for
approximating the configuration space’s connectivity graph, thus allowing the planner to
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perform significantly better even in tight workspaces. Alternatively, when a common graph
representation of the workspace is shared among the agents, efficient methodologies for
coordinating their transitions were proposed in [8–12]. On the other hand, a methodology
was presented in [13,14], which addresses cases where the motion of each robot is restricted
to a distinct graph by building a composite roadmap (i.e., the Cartesian product of the
individual graphs). Furthermore, more efficient extensions of this approach, which work
on implicitly defined composite roadmaps and, potentially, lower-dimensional configura-
tion spaces, can be found in [15–18]. The approximate cell decomposition [19] and Slice
Projection [20–22] constitute alternative methodologies which were successfully employed
for tackling robot navigation problems with complex configuration spaces [23–25] and
generally exhibit fast exploration capabilities when coupled with hierarchical adaptive
subdivision schemes guided by suitable heuristics. For more details on the related literature,
the reader may refer to the following recent comprehensive review paper [26].

In this work, we address the navigation problem for a team of disk-shaped robots
that operate within an arbitrary, obstacle-cluttered, planar and connected workspace (see
Figure 1). Given an initial and desired configuration for the robotic team, we design a
high-level hierarchical cell decomposition planner which is tasked with the exploration
of the system’s configuration space to discover a sequence of cells that the robots can
safely traverse toward the desired configurations. One of the strong points of the proposed
algorithm is the use of a suitable labeling mechanism for selecting the regions of the
configuration space to be subdivided at each iteration. Particularly, by computing an over-
and an under-approximation of each robot’s footprint, our algorithm can determine which
cells may contain feasible configurations of the system while automatically discarding the
cells that are determined to contain none. Finally, having obtained a sequence of traversable
cells, we equip each robot with decentralized low-level control laws based on harmonic
maps and adaptive harmonic potential fields, originally introduced in [27], which guarantee
the safe and almost-global convergence to the goal. It should be noted that the high-level
planner produces a series of cells through which the multi-robot system has to go in order
to attain the final desired configuration. The aforementioned low-level controller, which
was extracted by our previous work [27], simply guarantees a safe transition between
successive cells. Thus, any other motion planning algorithm would also suffice.

Figure 1. Multiple robots (solid colored disks) navigating to their corresponding goal configurations
(dashed circles).
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The contribution of this work is the adaptive subdivision algorithm for obtaining
a sequence of traversable cells that connect the given initial and final configurations or
determining that no solution exists. Unlike standard grid/cell-based methods, the pro-
posed algorithm subdivides the cells adaptively, requiring no selection of some arbitrary
resolution by the user. Moreover, unlike probabilistic sampling methods, the proposed
method does not generate paths of configuration but rather sequences of safe sets, allowing
the user to make use of a larger set of controllers in addition to standard trajectory tracking
schemes. Additionally and contrary to the probabilistic sampling methods, which are
inherently incapable of determining the infeasibility of a given problem (such algorithms
require the user to specify an arbitrary upper bound of samples after which the algorithms
abort) as a direct consequence of their probabilistic completeness nature, our algorithm
partitions the configuration space into cells (dense subsets) of the configuration space and
is capable of determining when no admissible path exists in finite time (see [19]).

The outline of this article is as follows. At the end of this section, we define some
preliminary notions and the notation used throughout this work. In Section 2, we formulate
the problem addressed in this work. In Section 3, we elaborate on the proposed planner’s
design as well as the velocity control scheme employed for safely executing the computed
plan. Finally, the simulation results verifying the efficacy of the proposed control scheme
are presented in Section 4.

Notation: Throughout this work, we shall use IN , {1, 2, . . . , N} (resp., I?N , {0}∪IN)
to denote the set consisting of all natural numbers up to N, starting from 1 (resp., 0).
Additionally, given sets A and B, we use ∂A, int(A) and cl(A) to denote the boundary,
interior and closure of A, respectively, and A \ B to denote the complement of B with
respect to A.

2. Problem Formulation

We consider a team of NR robots operating within a compact planar workspace
W ⊆ R2 occupied by a set of No disjoint, fixed inner obstacles Oi, i ∈ INo . We assume that
each robot i has a disk-shaped bodyRi ⊂ R2 with radius ri > 0. Let Fw and Fi, i ∈ INR be
the coordinate frames arbitrarily embedded inW andRi, i ∈ INR , respectively. We shall
refer to the origin of each Fi, i ∈ INR as the reference point of the corresponding robot.
Moreover, without loss of generality, we assume that the reference point of each robot
coincides with the center of its body. Let pi ,

[
xi, yi

]T ∈ R2 denote the relative position
of i-th robot’s reference point with respect to the workspace’s coordinate frame Fw, and
letRi

(
p
)

denote its footprint, i.e., the space occupied by robot i when placed at position p.
Throughout this work, we shall use C ⊆ R2NR to denote the robotic system’s configuration

space and P ,
î

pT
1 , pT

2 , . . . , pT
NR

óT
∈ C to denote the stacked vector of robot positions. For

the sake of brevity, we shall also use P[i] to denote the i-th component of P, i.e., P[i] = pi.
LetW o denote the complement ofW , i.e.,W o , R2 \W . We also define a configuration P
as feasible iff the following conditions hold:

Ri(P[i])∩Rj
(
P[j]

)
= ∅, ∀i 6= j ∈ INR

Ri(P[i])∩W o = ∅, ∀i ∈ INR

(1)

and we shall use C f ⊂ C to denote the set of all feasible configurations of the robotic system,
whereas its complement Co , C \ C f corresponds to the set all infeasible configurations.
Finally, we assume that the motion of each robot i obeys the single-integrator kinematic
model:

ṗi = ui, i ∈ INR (2)

where ui denotes the control input.
Problem: Let Pinit and Pdes be two given feasible configurations of the multi-robot system

that belong to the same segment of C f . Our goal is to design a control scheme that drives any robot i,
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initialized at pinit,i = Pinit[i], to the specified desired position pdes,i = Pdes[i], while avoiding
inter-robot and robot–workspace collisions, i.e., P(t) ∈ C f for all t ≥ 0.

3. Control Design

To address the aforementioned problem, first, we employ a hierarchical cell decom-
position scheme for partitioning the configuration space of the multi-robot system C into
cells, as described in Section 3.1. Then, we design a high-level planner, in Section 3.2,
which recursively expands the aforementioned structure until a sequence of adjacent cells
connecting Pinit and Pdes is found. Finally, the low-level control scheme that ensures safe
transition between cells until the goal configuration is reached is presented in Section 3.3.

3.1. Configuration Space Decomposition

In this subsection, we present the hierarchical cell decomposition scheme that will
be employed in our approach. We begin with disregarding inter-robot collisions and
considering the configuration space of each individual robot. Particularly, the configuration
space of robot i, denoted herein by Ai(W), corresponds to the largest subset ofW where
the reference point of robot i can be placed such thatRi

(
pi
)
∩W o = ∅, for all pi ∈ Ai(W).

Moreover, given a subset Z ofW , we shall use Ai(Z) to denote the set of feasible positions
of robot i which belong to Z , i.e.,

Ai(Z) ,
{

p | p ∈ Z andRi
(

p
)
∩W o = ∅

}
, ∀i ∈ INR . (3)

In addition to Ai(·), which corresponds to the set of feasible positions of robot i, we also
consider two estimations of the area that is potentially occupied byRi when pi is restricted
in a subset Z ofW . Particularly, given a robot i ∈ INR and a set Z ⊆ Ai(W), letRi(Z) and
Ri(Z) be an over-approximation and under-approximation, respectively, of the footprint
ofRi when robot i is swept over Z such that:

Ri(Z) ⊇
⋃

p∈Z
Ri
(

p
)

Ri(Z) ⊆
⋂

p∈Z
Ri
(

p
) (4)

and
Ri(Z) ⊆ Ri

(
Z ′
)
, ∀Z ⊆ Z ′

Ri(Z) ⊇ Ri
(
Z ′
)
, ∀Z ⊆ Z ′.

(5)

An example of such approximations can be seen in Figure 2. (for disk-shaped robots, a
valid over-approximationRi(Z) can be computed by offsetting Z by ri, whereasRi(Z) can
be calculated by ∩p∈∂ZRi

(
p
)
).

Figure 2. Over-approximationRi(Z) (resp.,Ri(Z ′)) and under-approximationRi(Z) (resp.,Ri(Z ′))
of the footprint of robot i when swept over Z ⊂ R2 (resp., Z).

We now consider a set S ⊆ R2 that has the form [x1, x2]× [y1, y2]. We shall refer to
such a set as a simple slice of R2. Given a simple slice S and a robot i ∈ INR , we will use
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W i
S , Ai(W) ∩ S to denote the set of feasible positions of robot i (neglecting inter-robot

collisions) that are contained in S . A set S =
{
Si | i ∈ INS

}
of NS simple slices shall be

called a cover ofW iff
W =

⋃
j∈INS

Sj ∩W . (6)

We note that a cover S partitionsAi(W) into a set of regionsW i
S , S ∈ S each of which con-

sists of zero or more individually connected but pairwise disjoint subsets C i
S ,j, j ∈ INL(W i

S ),

which shall be referred to as workspace (or simple) cells. A cover “S =
{

(i,Si) | i ∈ INR
}

of the configuration space C is, respectively, defined by assigning a cover to each robot. Ac-
cordingly, a configuration space (or compound) slice Ŝ is defined as Ŝ =

{
(i,Si) | i ∈ INR

}
,

where Si, i ∈ INR is a set of simple slices. Likewise, a configuration space cover “S ={
(i,Si) | i ∈ INR

}
induces a partitioning of C into regions ŴŜ , W1

S1
×W2

S2
× . . . ×

WNR
SNR

, where Ŝ =
{

(i,Si) | i ∈ INR
}

is an element of “S. We note that each of these re-

gions may consist of zero or more individually connected but pairwise disjoint subsets
Ĉ
Ŝ ,i

, i ∈ INL

Ä
CŜ

ä, which shall be referred to herein as configuration space (or compound)

cells. Given the compound cell Ĉ
Ŝ ,i

, we will use Ĉ[j]
Ŝ ,i

to denote its j-th component, i.e.,

Ĉ[j]
Ŝ ,i

, C j
Sj ,i

, for all j ∈ INR . We remark that, unlike hierarchical decomposition schemes
commonly encountered in the literature, which use cells of simple geometries (e.g., hy-
percubes or hyperrectangles), the configuration space cells considered in this work have,
in general, arbitrary geometries because their components do not possess a pre-specified
shape (see Figure 3). Although this choice renders navigation within a cell Ĉ more compli-
cated, it generally results in coarser partitions because because each component Ĉ[i] of Ĉ
belongs in Ai(W) by construction; thus, the subdivision scheme has to accommodate only
for potential inter-robot collisions.

Figure 3. Example of a hierarchical configuration space decomposition for a system of two identical
robots. The green area corresponds to the configuration space Ai(W) of each robot. For the sake of
simplicity, we assumeH1 = H2. The workspace slice S1 corresponding to robot 1 consists of a single
simple cell (CS1 ) whereas slice S2 corresponding to robot 2 consists of two cells (CS2,1, CS2,2). The
compound cell (CS1 , CS2,1) is labeled as mixed becauseR1 andR2 may intersect when p1 ∈ CS1 and
p2 ∈ CS2,2 becauseR1(CS1 )∩R2(CS2,1) 6= ∅, whereas (CS1 , CS2,2) is marked as admissible.

Regarding now the transition between configuration space cells, we introduce some
required notions of connectedness. We begin with considering two distinct simple slices Si
and Sj which shall be called adjacent iff their intersection Si ∩ Sj is not empty. Moreover,
let CSm ,i and CSn ,j be two distinct workspace cells. We define these simple cells as adjacent
iff CSm ,i ∩ CSn ,j 6= ∅. Apparently, CSm ,i and CSn ,j being adjacent implies that Sm and Sn are
also adjacent. The aforementioned definitions can be naturally extended to compound
slices and cells, as well. Particularly, two compound slices Ŝm =

{
(i,Sm,i) | i ∈ INR

}
and Ŝn =

{
(i,Sn,i) | i ∈ INR

}
are adjacent iff Sm,i, Sn,i are adjacent, for all i ∈ INR ,

whereas two compound cells Ĉi and Ĉj are adjacent iff Ĉ[k]
i and Ĉ[k]

j are adjacent, for all
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k ∈ INR . A path Π of configuration space cells is defined as any finite string of sequentially
adjacent compound cells. Obviously, a path Π consisting of cells that lie entirely in C f and
contain both Pinit and Pdes is a valid solution to our path finding sub-problem. In order
to discover such a path, we build a hierarchical decomposition H =

{
(i,H) | i ∈ INR

}
of

the configuration space C by assigning to each robot i a hierarchical partitioning of the
workspaceW , represented as a connected, directed treeH , (NH, EH) such that:

• Each node S ∈ NH is a simple slice.
• Every child Sj of a given node Si (i.e.,

Ä
Si,Sj

ä
∈ EH) is a strict subset of Si.

• The set of leaf nodes must form a cover ofW .

Finally, an algorithm was devised for appropriately expanding H until a solution is
found, as described in the following subsection.

3.2. High-Level Planner

In this subsection, we present a high-level planner for finding a sequence Π of adjacent
cells in C f connecting the initial Pinit and goal Pdes configurations. One of the main advan-
tages of the proposed algorithm is the use of a suitable labeling scheme, which allows it to
recursively subdivide, at each iteration, configuration space cells that lie on the boundary
between C f and Co while ignoring cells that lie completely inside C f or Co. To do so, this
labeling scheme exploits the over- and under-approximations Ri and Ri of each robot’s
footprint, defined in Section 3.1, to determine whether a robot may collide with another
one while each robot navigates independently within its respective workspace cell. More
specifically, given a compound cell Ĉ , the employed cell labeling scheme works as follows:

• If the intersection of all Ri
Ä
Ĉ[i]
ä

, i ∈ INR is empty, then, by virtue of (4), no robot

may come across another while P ∈ Ĉ ; thus, Ĉ is entirely contained in C f . Such a
compound cell is marked as admissible.

• If the intersection of allRi
Ä
Ĉ[i]
ä

, i ∈ INR is non-empty, then, by virtue of (4), for every

P ∈ Ĉ there exists at least one pair of intersecting robots; thus, Ĉ is entirely contained
in Co. Such a compound cell is marked as inadmissible.

• If Ĉ is neither admissible nor inadmissible, it is marked as mixed.

In general, mixed cells encapsulate both feasible and infeasible configurations and
expanding them (recursively) should yield admissible and inadmissible subcells. On
the other hand, by virtue of (5), the subdivision of admissible (resp., inadmissible) cells
yields only admissible (resp., inadmissible) cells, without contributing any further in the
configuration space’s exploration.

The planner’s main search algorithm is described in Algorithm 1, which initially
constructs a coarse compound slice hierarchical partitioning made of each robot’s feasible
setAi(W), thus enclosing all C f (functions INITIALIZEHIERARCHY and INITIALIZECCELLS).
Then, the initially computed compound cells get expanded until admissible ones, containing
Pinit and Pdes, are found (function FINDENCLOSINGACCELL), whereas the inability to
find such compound cells indicates infeasibility of the given problem and the algorithm
terminates. Next, an initial path Π connecting Ĉinit or Ĉgoal made of compound cells
belonging to the exploration’s frontier set SĈ,F (i.e., the set of unexpanded admissible
and mixed cells) is built (function CONNECTSTRINGS). At each iteration, the first mixed
compound cell of Π (function GETFIRSTMIXEDCCELL) is removed from the frontier and
is expanded (function EXPANDCCELL) by subdividing the widest simple cell C whose
over-approximation Ri(C) intersects with another (functions GETCONFLICTINGSCELLS

and SELECTSCELLWITHWIDESTSSLICE) into smaller ones, as seen in Algorithm 2. Finally,
a new path is constructed using standard back-tracking techniques until either Π consists
only of admissible cells or no new path of mixed and admissible cells leading to Pdes can
be found.
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Algorithm 1 Planner’s Main Algorithm

function FINDAPATH( Pinit, Pdes )
H← INITIALIZEHIERARCHY
SĈ ← INITIALIZECCELLS(H)
SĈ,F ← SĈ
Ĉinit, H, SĈ , SĈ,F ← FINDENCLOSINGACCELL( Pinit, H, SĈ , SĈ,F)

Ĉgoal, H, SĈ , SĈ,F ← FINDENCLOSINGACCELL( Pdes, H, SĈ , SĈ,F)

if Ĉinit is null or Ĉgoal is null then
return null

end if
Π← CONNECTSTRINGS( [Ĉinit], [Ĉgoal], SĈ,F )
while not ((Π is null) or ISADMISSIBLEP(Π)) do

Π, H, SĈ , SĈ,F ← EXPANDPATH( Π, H, SĈ , SĈ,F )
end while
return Π

end function
function FINDENCLOSINGACCELL( P, H, SĈ , SĈ,F )
Given a point P in the configuration space of the robotic system, this function identifies
the cell in the hierarchy H that contains that point and, if SĈ is mixed, it iteratively
subdivides SĈ (modifying the hierarchy H in the process) until it obtains a subcell SĈ,F of
SĈ that contains P and is admissible.
Ĉ ← FINDCCELLCONTAININGPOS(P, SĈ,F)

while Ĉ is not admissible) do
i,S , C ← SELECTSCELLWITHWIDESTSSLICE(Ĉ)
SĈR

, H, SĈ , SĈ,F ←
EXPANDCCELL( Ĉ, i, S , C, H, SĈ , SĈ,F )

Ĉ ← FINDCCELLCONTAININGPOS(P, SĈ,F)
end while
return Ĉ, H, SĈ , SĈ,F

end function
function CONNECTSTRINGS( [Ĉinit], [Ĉgoal], SĈ,F )
This function corresponds to some standard graph search algorithm (e.g., depth-first,
breadth-first, A*) which, given: a) the initial [Ĉinit] and desired [Ĉgoal] compound cells (in
case two paths of cells are passed as arguments, the last cell of the first path and the first
cell of the second path are used as [Ĉinit] and [Ĉgoal], respectively), b) a set of compound
cells (nodes) SĈ,F and their adjacencies (edges), yields either a sequence of admissible

and mixed cells connecting [Ĉinit] and [Ĉgoal] if such a path exists or null otherwise.
end function

3.3. Velocity Control Law

Given now a path Π consisting of NΠ admissible configuration space cells, we present
a distributed control law for safely navigating from one cell to the next until the goal
configuration Pdes is reached. First, we consider two consecutive compound cells Ĉ` and
Ĉ`+1 in Π, for which we compute the goal set Gi,` , Ĉ[i]

` ∩ Ĉ
[i]
`+1 of each robot i, which

contains feasible configurations in both Ĉ[i]
` and Ĉ[i]

`+1 and is non-empty by construction.
Respectively, the goal set corresponding to the last cell of Π consists of just the desired
configuration Pdes, i.e., ĈNΠ

= {Pdes} (see Figure 4). Furthermore, let F`,i , Ĉ[i]
` \ int

(
G`,i
)

and G ′`,i , G`,i ∩ F`,i, for all k ∈ INΠ . Notice that G ′`,i is generally made of one or more
pairwise disjoint subsets of arbitrary connectedness as well as that robot i should navigate
to any of these regions without escaping Ĉ[i]

` in order to successfully traverse to the next
specified workspace cell. When more than one of such disjoint goal subsets are reachable
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from the connected component of F`,i that contains pi, one of them is arbitrarily (though,
deterministically) selected and assigned as the goal set; a more sophisticated approach for
choosing goal regions could be employed, but it exceeds the scope of the current work.
Respectively, the transition from Ĉ` to Ĉ`+1 is considered complete after every robot i
reaches Ĉ[i]

`+1. We also remark that when Ĉ[i]
` ⊆ Ĉ

[i]
`+1, robot i simply needs to retain its

current position during step `.

Algorithm 2 Path Expansion at Mixed Compound Cell

function EXPANDPATH( Π, H, SĈ , SĈ,F )

Ĉ ← GETFIRSTMIXEDCCELL(Π)
Lpre, Lsuf ← SPLITSTRING(Π, Ĉ)
SC ← GETCONFLICTINGSCELLS(Ĉ)
i,S , C ← SELECTSCELLWITHWIDESTSSLICE(SC )
SĈR

, H, SĈ , SĈ,F ← EXPANDCCELL( Ĉ, i, S , C, H, SĈ , SĈ,F )
Π← CONNECTSTRINGS(Lpref,Lsuf, SĈ,F)
return Π, H, SĈ , SĈ,F

end function
function SPLITSTRING(Π, Ĉ)
Given a path Π and a specified cell Ĉ in Π, return two subsequences Lpre and Lsuf of Π
such that Π = (Lpre, Ĉ, Lsuf).
end function
function SELECTSCELLWITHWIDESTSSLICE(SC )
Given a set of simple cells SC , return the simple cell in SC , the bounding box of which
has the largest length or width.
end function

Figure 4. Two adjacent compound cells Ĉ1 = (C1
1 , C2

1 ) and Ĉ2 = (C1
2 , C2

2 ). In order for robot 1 (resp.,
robot 2) to successfully move from C1

1 to C1
2 (resp., from C2

1 to C2
2 ), it has to reach any point of G1,1

(resp., G2,1).

In order to fulfill the aforementioned specifications, we equip each robot i with a
controller ui based on suitable workspace transformations and adaptive artificial potential
fields, which were originally presented in [27] and possess guaranteed domain invariance
and almost-global convergence properties. More specifically, we build a diffeomorphic
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transformation q`i = T`
i (pi) that maps F`,i to the unit disk D, the outer boundary of F`,i

to the unit circle ∂D and collapses all inner boundaries to distinct points q`i,j, j ∈ IN`
i
,

where N`
i is the genus of F`,i. We now distinguish the following two cases of possible

goal sets: (a) G ′`,i being an inner boundary of F`,i, and (b) G ′`,i being part of the outer
boundary of F`,i. Depending on the case, T`

i must be appropriately adapted to simplify
the subsequent potential field’s design. Particularly, case (a) can be accommodated by
modifying T`

i such that G`,i collapses to an inner point q`des,i of D, whereas case (b) is
addressed by designing T`

i such that G ′`,i collapses to a single point q`des,i on ∂D. Next,
we define the harmonic potential field φ`

i used by robot i during step ` by placing point
harmonic sources upon the corresponding goal configuration q`des,i and the transformed
inner obstacles q`i,j, given by:

φ`
i = k`i,d ln

(
‖q`i − q`des,i‖

2

)
− ∑

j∈I
N`

i

k`i,j ln

(
‖q`i − q`i,j‖

2

)
(7)

where k`i,d > 0 and k`i,j ≥ 0 are adaptively varying parameters. Finally, the control law u`
i of

robot i during step ` is given by

u`
i = −Ks(q`i , k`v,i)

Ä
J`i (q`i )

ä−1
∇q`i

ψ`
i (q`i , k`v,i) (8)

where K is a positive control gain, J`i is the Jacobian matrix of T`
i , s is a factor ensuring

collision avoidance with the outer boundary and ψ`
i = 1 + tanh(wφ`

i )/2, with w a positive
constant.

4. Simulation Results

In this section, we present the simulation results demonstrating the efficacy of the
proposed methodology. As the contribution of this work is a path-planning algorithm,
simulations were deemed sufficient to validate the efficacy of the proposed method. To
conduct these simulations, the algorithm described in this work was implemented in C++,
using Boost Geometry and CGAL for performing the geometric operations, such as the
configuration computation, subdivision of cells, etc. The implementation can be found
at the following url: https://github.com/maxchaos/mrnav, accessed on 20 December
2022. As described, the configuration space was partitioned into a tree of cells and a
standard graph search algorithm was employed for finding admissible paths of mixed
cells connecting the initial and goal configurations. After such a path was obtained, for
each compound cell in the sequence, we extracted the simple cells corresponding to each
robot, and for each robot, we employed the low-level control scheme to drive it to the
border of the next cell or its goal configuration in case the current cell was the last of the
path. Particularly, we consider five scenarios where a system consisting of 2, 4, 6, 8 and
10 robots, respectively, initialized within the workspace depicted in Figure 5 is requested
to reach a specified final configuration. The time required by the proposed planner, as
well as the total amount of compound cells generated during the solution of each case, are
shown in Table 1. We remark that the planner expanded the mixed compound cells by
subdividing the corresponding conflicting simple slice into four identical overlapping sub-
slices. The motion profiles executed by the robots in each corresponding case can be seen
in Figures 5–9. Additionally, Figures 10 and 11 depict the initial and goal configurations
as well as the computed enclosing cells, respectively, for the eight-robot scenario. As
one can verify from the figures, the robots navigate successfully to their individual goals.
A video of the aforementioned simulated scenarios can be found at the following url:
https://youtu.be/asWnKLNX2Eg, accessed on 20 December 2022.

https://github.com/maxchaos/mrnav
https://youtu.be/asWnKLNX2Eg
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Figure 5. Executed trajectories of the two-robot case. Squares indicate initial positions, whereas the
corresponding goal positions are depicted using crosses. Robot #1 (red); Robot #2 (green). The axes
units are in (dm).

Figure 6. Executed trajectories of the four-robot case. Squares indicate initial positions, whereas the
corresponding goal positions are depicted using crosses. Robot #1 (red); Robot #2 (green); Robot #3
(dark red); Robot #4 (orange). The axes units are in (dm).
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Figure 7. Executed trajectories of the six-robot case. Squares indicate initial positions, whereas the
corresponding goal positions are depicted using crosses. Robot #1 (red); Robot #2 (green); Robot #3
(dark red); Robot #4 (orange); Robot #5 (yellow); Robot #6 (dark green). The axes units are in (dm).

Figure 8. Executed trajectories of the eight-robot case. Squares indicate initial positions, whereas the
corresponding goal positions are depicted using crosses. Robot #1 (red); Robot #2 (green); Robot #3
(dark red); Robot #4 (orange); Robot #5 (yellow); Robot #6 (dark green); Robot #7 (blue); Robot #8
(cyan). The axes units are in (dm).
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Figure 9. Executed trajectories of the ten-robot case. Squares indicate initial positions, whereas the
corresponding goal positions are depicted using crosses. Robot #1 (red); Robot #2 (green); Robot #3
(dark red); Robot #4 (orange); Robot #5 (yellow); Robot #6 (dark green); Robot #7 (blue); Robot #8
(cyan); Robot #9 (purple); Robot #10 (grey). The axes units are in (dm).

Figure 10. The initial robot positions pinit,i, i ∈ I8 and calculated initial compound cell Ĉinit . Robot
#1 (red); Robot #2 (green); Robot #3 (dark red); Robot #4 (orange); Robot #5 (yellow); Robot #6 (dark
green); Robot #7 (blue); Robot #8 (cyan). The axes units are in (dm).
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Figure 11. The desired robot positions pdes,i, i ∈ I8 and calculated goal compound cell Ĉgoal. Robot
#1 (red); Robot #2 (green); Robot #3 (dark red); Robot #4 (orange); Robot #5 (yellow); Robot #6 (dark
green); Robot #7 (blue); Robot #8 (cyan). The axes units are in (dm).

To strengthen our theoretical findings, we also conducted a comparative simula-
tion study over the same scenarios employing a state-of-the-art high-level planner called
RRT* [4] that is based on a probabilistic sampling algorithm to extract feasible paths toward
the goal configuration. Because RRT* is probabilistic, we ran 50 trials on each scenario
and extracted the mean value of the execution time and total path as described in Table 2.
We have to stress that owing to the narrow passages of the workspace, as the number of
robots increased (particularly for the cases of 8 and 10 robots), the RRT* algorithm reached
the maximum terminating condition (an execution time more than 1000 s) very frequently
(many runs did not discover feasible paths) without providing feasible solutions. Notice
that our algorithm is superior in terms of the execution time and completeness without
however sacrificing the performance in terms of the total path length. It should be pointed
out that although our algorithm does not incorporate any optimization in either the path
calculation or the transition execution, the achieved performance is comparable to the RRT*
algorithm, which finds the shortest path among multiple feasible ones.

Table 1. Execution time, total length of the robots’ paths and number of generated compound cells
required by the high-level planner for solving each scenario.

Number of Robots 2 4 6 8 10

Time (sec) 0.088 0.240 0.845 1.36 31.1
Length (dm) 404.94 1076.23 1396.20 1739.53 2125.36
Compound Cells 51 348 823 1014 3363
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Table 2. Average and standard deviation for the execution time and total length of the robots’ paths
over the number of successful runs yielded by the RRT* planner [4] for solving each scenario over
50 runs.

Number of Robots 2 4 6 8 10

Time-avg (sec) 0.041 0.124 12.375 724.136 961.230
Time-std (sec) 0.001 0.045 0.454 30.032 41.211
Length-avg (dm) 380.15 1112.21 1256.82 1712.45 1995.63
Length-std (dm) 1.25 5.18 7.32 15.82 17.31
Successful runs 50 50 49 36 5

5. Conclusions

In this work, we presented a hybrid control scheme for addressing the navigation
problem of a team of robots operating within an obstacle-cluttered planar workspace. Par-
ticularly, a high-level planner was designed for computing a sequence of feasible cells by
adaptively subdividing the system’s configuration space using a hierarchical cell decom-
position scheme. In addition, a low-level control law based on harmonic potentials and
workspace transformations was employed to implement the given plan, safely navigating
each robot to its specified goal. The contribution lies on the adaptive subdivision algo-
rithm for obtaining a sequence of traversable cells connecting the given initial and final
configurations or determining that no solution exists. Unlike standard grid/cell-based
methods, the proposed algorithm adaptively subdivides the cells, requiring no selection of
some arbitrary resolution by the user. Moreover, unlike probabilistic sampling methods,
the proposed method does not generate paths of configuration but rather sequences of safe
sets, allowing the user to make use of a larger set of controllers in addition to standard
trajectory tracking schemes. In addition, unlike probabilistic sampling methods which are
inherently incapable of determining the infeasibility of a given problem (such algorithms
require the user to specify an arbitrary upper bound of samples after which the algorithms
abort) as a consequence of their probabilistic completeness nature and the fact that sample
points should lie within the configuration space, our algorithm partitions the configuration
space into the cells (dense subsets) of the configuration space and is capable of determining
when no admissible path exists in finite time. Finally, comparative simulation studies
were conducted for various scenarios with a state-of-the-art algorithm that validates the
proposed scheme’s efficacy and demonstrates its superiority in terms of complexity while
yielding a satisfactory performance in terms of path lengths.

Regarding the limitations of the proposed approach and future research directions
toward healing them, we aim to improve the proposed planner by accommodating for
redundant steps appearing in the computed path and adapt it for use in a more distributed
fashion, i.e., resolve the conflicts between antagonistically operating robots as they appear.
Additionally, introducing optimality in the selection of the sequence of cells as well as in
the execution of the transitions deserves further investigation to improve the efficiency of
the proposed method. In the same vein, increasing the dimensionality of the problem (con-
sidering 3D workspaces and potentially the orientation) would also favor its applicability.
Alternatively, a modern approach such as deep reinforcement learning [28] will be sought
to examine new ways of solving the multi-robot coordination problem.
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