
Proceedings of IDETC/CIE 2009
International Design Engineering Technical Conferences &

Computers and Information in Engineering Conference
August 30-September 2, 2009, San Diego, USA

DETC2009-86544

NAVIGATION OVER A LARGE ONTOLOGY FOR INDUSTRIAL WEB APPLICATIONS

Richard M Crowder∗, Max L Wilson, David Fowler, Nigel Shadbolt, Gary Wills and Sylvia Wong
School of Electronics and Computer Science

University of Southampton
Southampton, UK

Email: rmc@ecs.soton.ac.uk

ABSTRACT
Ontologies for industrial semantic web applications are of-

ten very large. This is especially true in scientific and engineer-
ing applications where there exists a large pool of technical ter-
minology necessary for operation within the domain. In this pa-
per we look at the problem of presenting this domain ontology to
users for navigation within web applications. The conventional
tree view can be considered to be cumbersome and awkward
to navigate for ontologies that have a very large breadth and/or
depth. We present three approaches to this ontology presentation
problem — content dependent filtering, autocompletion text box
and partial segments using drop-down lists. All the approaches
attempt to limit the ontology presented to users at one time. We
implemented two of the proposed methods of ontology presenta-
tion in our demonstrators and have received positive and valuable
feedback from engineers.

INTRODUCTION
One of the goals of the Semantic Web is to bring structure

and meaning to Web pages, beyond the human-centric content
that is prevalent on the Web today [1]. The Semantic Web is
aimed at computational agents, so that programs, and not just hu-
mans, can interpret the meaning of documents on the Web. This
allows the Web to be used for more than a human-browseable
repository of information. Documents in the Semantic Web are
expressed in RDF [2], which is a language for representing in-
formation about resources. An ontology, in RDFS [3] and/or

∗Address all correspondence to this author.

OWL [4], then provides interpretation of terms and concepts
found in RDF documents. The structure provided by an ontology
forms the backbone of knowledge interpretation for Web appli-
cations.

The ontology needed for industrial and scientific web appli-
cations are usually, and some might argue inevitably, large. This
is because of the size and complexity of the underlying domain
knowledge. For example the Gene Ontology [5] for bioinformat-
ics has over 25,000 terms. Of course, not all applications have
to use the full ontology of the targeted domain [6]. Several ap-
proaches have been introduced to automatically reduce the size
of ontologies for applications. The goal of ontology trimming
is to reduce hosting cost and increase tractability. For example,
Seidenberg and Rector analyzed links in ontology structures to
extract relevant segments [7], while Alani et. al. performed sim-
plification by analyzing queries used in targeted applications [8].

However, the size of the technical vocabulary captured in
an ontology is often difficult to reduce. One might even argue
that simplification is not viable as it might remove features that
may be required. For example, in the aero-engine component on-
tology we have previously used for our document repository in
Wong et al [9], there are 160 direct subclasses of Part. These
160 classes have a further 1096 direct subclasses. All these
subclasses represent parts of an aero-engine, and must be made
available to engineers using the web application. Furthermore,
engine components are not the only domain concepts we require
in our application.

In many Semantic Web applications, there is a need for users
to navigate over the underlying ontology. When querying doc-

1 Copyright c© 2009 by ASME

uments, an application might wish to guide users in entering
search terms from the ontology. When composing new docu-
ments, an application might capture ontological concepts entered
by users to a document, or it might allow users to tag the docu-
ment with ontology based keywords.

Perhaps the most widely acceptable approach to the ontol-
ogy navigation problem is to present the user with a tree repre-
sentation, similar to the one available in ontology editors, Fig-
ure 1. However, as the size of the ontology increases, it becomes
more and more difficult to navigate with a tree view.

Figure 1. Tree view of class hierarchy in the Protege ontology editor.

After we have briefly described the target web application,
this paper presents three approaches we investigated for naviga-
tion over a large ontology in an industrial application. Firstly we
present a method to prune tree menus based on content stored in
the triplestore. Secondly, instead of presenting a class hierarchy
to users, we use text boxes with autocompletion. The autocom-
pletion is done using an ontology of the target domain. Finally
we presents an alternative way to display a class hierarchy using
interconnected drop-down lists. Due to the operational nature of
drop-down lists, only a partial hierarchy is presented to users at
one time. Feedback from user evaluations, if available, is pre-
sented in the section of the relevant methodology.

THE DESIGNER DESKTOP
It is well recognized in engineering design, that the use of

past experiences and previously acquired knowledge, either from
the designer’s own experiences or from resources within their
organization, forms an important part of the design process. It
has been estimated that 90% of industrial design activity is based
on variant design [10], while during a redesign activity up to 70%
of the information is taken from previous solutions [11].

In [12] we considered future systems to support the engi-
neering designer, where there tends to be a presumption that all
processes should be based on IT systems; in our discussions with
the designers this was strongly resisted. They are only willing
to move to automated systems if there was a clear advantage in
doing so. One of the key issues for them was for any system
to be accurate and reliable. If these are not achieved, the user
community will not trust the system, and hence not use it dur-
ing their daily activities. The introduction of such systems is a
major organizational issues. Currently the interactions in the de-
sign process are mainly human, and the use of technology would
require a change in the normal ways of working. Our work can
be seen as an extension on digital libraries. Digital libraries con-
centrates on the problem of searching for documents distributed
over multiple repositories. For example, Priebe and Pernul [13]
developed a portal over multiple document repositories by us-
ing an integrated metadata store. As a result, users can search on
both the content of the documents and their metadata. In contrast,
our approach is service based, and search functionality does not
form part of our proposed infrastructure. However, global docu-
ment searches can be provided to our knowledge repository via
web services that implement document indexes and metadata in-
dexes. In the scenario we only consider a subset of the available
documents. Petrelli et al [14] identified over a dozen different
textual documents across Rolls–Royce, any of which could be
used to populate a record. As the documents are generated at dif-
ferent stages of a problems solving activity, they need to be cross
referenced through the use of metadata.

In response to these challenges, we are developing a number
of Designer Desktop to harvest and feed back knowledge gained
from both previous design and service documents to help (a) en-
gineers design modifications to existing engines, and (b) design
engineers in designing the next variant engine, [9, 15].

Specifically, the Designer Desktop is a Semantic Web appli-
cation that serves the following two main purposes:

1. Retrieve relevant existing design and maintenance docu-
ments

2. Assist in the creation of new semantically enriched docu-
ments

For our Designer Desktop demonstrator, we want to present
the domain ontology to users so they can create queries us-
ing vocabulary from the ontology. In our discussions with the
user community it was possible to identify four parameters they

2 Copyright c© 2009 by ASME

would commonly use to search for data. They are component,
engine, feature and mechanism. Each of these parameters are
represented by a class hierarchy in the ontology. For example,
any subclass of Part is valid for the part parameter. Therefore,
our task is to reduce or present relevant segments of the ontol-
ogy to users, so they will not feel overwhelmed by the vastness
of the full ontology. Figure 2 shows two screenshots of the cur-
rent implementation of the system, these are primarily concerned
with the development of the record. To ensure good user inter-
action the screen is divided into two, with the entering of search
terms and the results being presented on the right, while data en-
try takes place on the left of the screen.

(a) The screen used when searching for a record.

(b) An expanded view of the boxes used to define the search terms.

Figure 2. The Designer Desktop developed during the project.

ONTOLOGY AND SYSTEM ARCHITECTURE
To enable machines to interpret meanings stored within the

documents, an ontology that captures all the terms and concepts
used was created. Moreover, since the document repository was
to be used by engineers from across the company responsible
for both design and service activities, the ontology captures con-
cepts from engineers working in both areas. The ontology was
created by analyzing existing documents and conducting knowl-
edge acquisition interviews with engineers [16]. The result of
these interviews enabled us to identify, by specialism, the main

concepts and the associated keyword for these concepts used by
the particular type of engineer when searching for information.

The resulting ontology contains concepts ranging from en-
gine deterioration mechanisms, engine models and parts, to air-
port locations, [17]. Figure 3 shows a UML class diagram for
the concepts associated with maintenance events in the applica-
tion ontology.

Figure 3. RDF graph for describing maintenance events. This is a sim-
plified view and does not show all properties and classes defined in the
ontology.

In the diagram, the square boxes are concepts, or classes,
in the ontology. Underneath the name of the class is a list of at-
tributes for the class. In the ontology, a UML attribute is modeled
as an OWL property which has the specified class as its domain.
The lines connecting two classes in the diagram are associations.
Associations represent relationships between classes. The arrow
on the line shows the direction of the association. A UML asso-
ciation is modeled with an OWL property which has the linked
classes as its domain and range. In addition, the Part class con-
tains a taxonomy of aero-engine parts, and the Engine class
includes a list of existing engine types.

In the development of this application existing web stan-
dards are used wherever possible, to maximize tool reuse, com-
patibility and portability. Documents in the system are stored
in the form of RDF triples. Both the RDF triples and associ-
ated OWL ontologies are stored in a Sesame 1.x triplestore 1.

1http://www.openrdf.org3 Copyright c© 2009 by ASME

User's
Web Browser

Apache Tomcat

Sesame 1.x
RDF StoreWeb

Services

Web Server

"Desktop"

Figure 4. A conceptual view of the Designer Desktop work flow com-
ponents.

Sesame provides a Java API for graph based access to its repos-
itories. Functionalities such as document creation, deletion, re-
trieval and query are provided with Java-based Web Services that
operate directly on the Sesame triplestore via the Java API. The
Web Service interfaces are defined in WSDL [18], which is the
standard language for defining Web Service interfaces. Specifi-
cally, we used the open source Apache Axis Java 2 for the Web
Services communication stack. Since Web Services interoperate
using a text-based XML protocol, consumers of these services
can be written in any programming language and deployed on
any OS platform. During the development of the various versions
of our Designer Desktop, the server-side user interface code has
been implemented variably on C# .NET and Java Servlet/JSP. Fi-
nally, users access the application via a web browser. The client-
side user interface code is a mixture of Javascript and HTML.
Figure 4 shows the work flow components of the developed De-
signer Desktop.

CONTENT DEPENDENT PRUING FOR TREE VIEW
A tree menu presents a hierarchical view of information. An

example tree menu is shown in Figure 1. With a large ontology,
a tree view of the ontology is often difficult to navigate. In [8],
Alani et al. performed ontology winnowing by analyzing queries
made by applications. Taking this approach a step further, we can
prune an ontology for presentation by anticipating queries that
will be performed by users. We achieve this by removing ontol-
ogy concepts that will not be returned in any search results. For
each of the chosen parameters, we ran queries to find all classes
that are explicitly or implicitly referred to in the data stored in the
triplestore. The tree view was then pruned by removing classes
that are not used by actual data stored in the repository. Note that
classes removed from the user’s tree view still exist in the appli-
cation ontology. If new data become available on the removed
classes, the simplified tree view will need to be reconstructed.

There are three main problems with this approach. First,
the pruning has to be pre-processed and cannot be done in real
time. Therefore, if data become available for a class that has
no data previously, the user will not be able to recall this new
data via the tree menu. Second, if the underlying triples cover

2http://ws.apache.org/axis/java/index.html

a large percentage of the classes in the ontology, there will not
be much pruning, and the resulting simplified tree will remain
large and unmanageable. Third, and most importantly, engineers
who participated in our evaluation found it confusing to see only
a partial listing of components. They questioned the validity of
the ontology, and whether we actually used the ontology built for
the project.

AUTOCOMPLETION TEXT BOX
A text box is created in HTML using the input element

with the attribute type=text. It is a one-line text input area
which allows users to enter free form text inside a web browser.
An autocomplete text box attempts to anticipate users’ intention
and complete their input using vocabulary from a predefined dic-
tionary of words. A semantic autocomplete text box is made by
using an ontology as its dictionary. Whenever user enters text in
the text box, a triplestore is queried to find ontological concepts
that best match the input. Figure 5 summaries the interaction
process for autocomplete text boxes.

Part

Web Service Sesame 1.x
RDF Store

Part

queries

sends keyword
returns list
of suggestions

Figure 5. Interaction diagram for autocomplete text box.

We implemented a prototype of the semantic autocomplete
text box. Figure 6 shows a screenshot of this prototype.

The text box is implemented on the client-side using the
script.aculo.us (3 AJAX library. Inputs from users are matched
using the SeRQL query in Figure 1.

Listing 1. SeRQL query to support a generic autocomplete search box.
SELECT a , b
FROM {a} r d f s : s u b C l a s s O f {} ;

s e r q l : d i r e c t S u b C l a s s O f {b}
WHERE a LIKE ”∗ keyword ∗” IGNORE CASE LIMIT 25

This query searches the triplestore for any class that contains the
user input as a substring. The Web Service returns the matched class
and its direct parent to the client. The parent is returned to the user to
provide some context to the selections chosen by the query. Since we

3http://script.aculo.us

4 Copyright c© 2009 by ASME

Figure 6. A screenshot of an autocomplete text back backed by an ontology.

have only implemented a prototype of the autocomplete text box, the
list of suggestions is simply the raw URI, with no post-processing done
for user display. However, post-processing can be done easily as shown
in the context aware drop-down lists example. As seen in Figure 6, we
display the list of suggestions as a simple unordered list ul. The list is
in the form of 2-tuples. The first element is the suggested URI, and the
second element (in italics and green) is the parent of the first. When the
user clicks on a selection, only the first element of the tuple is copied
onto the text box. In other words, the parent is shown purely for context
and will not form part of the autocomplete entry.

By changing the query, we can limit the match to only subclasses
of specified concepts. This allows us to create text boxes for each of
the chosen parameter, instead of a generic search box. As an example,
for a text box that expects engine parts, the query should be adapted
by replacing the variable b in Listing 1 to the URI representing engine
parts. This query is shown in Listing 2.

Listing 2. SeRQL query for autocompletion in a search box for engine
parts.
SELECT a
FROM {a} r d f s : s u b C l a s s O f { components : P a r t }
WHERE a LIKE ”∗ keyword ∗” IGNORE CASE LIMIT 25

Since autocompletion is done using semantic queries over triples
stored in an RDF store, a semantic text box can provide suggestions for
any triple relationships. In other words, it is not limited to parent and
subclass relationship used in our example. Another common relation-
ship found in many industrial ontology is the partOf (or hasPart)
predicate [19]. In aero-engines, a part can be made up by many subparts.
These subparts are not subclasses. Simply by replacing the predicate
subClassOf with partOf in the query in Listing 2, we can supply
a text box for entering parts that belongs to a specific module. Indeed,
this containment concept is found very commonly in applications out-
side of the industrial domain. For example, in geographical applications,
the partOf relationship is used to represent information such as ”the
city Southampton is located inside the county Hampshire”. It should be

noted that there are several variants of the partOf relation [20]. The
component ontology deals with the component/integral object variant of
partOf

We have yet to use any autocompletion text boxes in our Designer
Desktop demonstrators. This is because we would like to retain some
degree of control on the search terms users enter to the system. Despite
bringing up a list of suggestions, users are free to ignore the suggestions
and enter any text they like. For our application, we would like users
to only enter vocabulary from the ontology. This is because the queries
we used to search for documents only locate exact matches (asserted
or inferred). Therefore, search terms outside the ontology will never
retrieve any documents from the repository. This, we believe, defeats
the purpose of an application designed to demonstrate semantic web
technology.

Furthermore, user studies have shown that exploratory search of-
ten produces more expressive queries than keyword search [21]. (Ex-
ploratory search are where users compose search terms by browsing or
exploring the structure of the collection).

Partial Views with Drop-down Lists
A drop-down list is a user interface widget that allows users to

choose one value from a list. The values are not editable. In HTML, a
drop-down list is created using the select element, with values pro-
vided with the option element. We built a series of interconnected
drop-down lists whose contents are dynamically updated depending on
the selection of values. Figure 2(a) shows two interconnected drop-
down lists, A and B.

List A contains the values of the parent class, while list B is used
for children classes. The list of values presented in B depends on the
value selected in A. The values in B is updated dynamically whenever
users change their selection in A. More than two drop-down lists can be
connected in a series, representing a deeper class hierarchy.

Figure 7 explains the interaction process behind the interconnected
drop-down lists.

Whenever the user selects a value in list A, client-side Javascript

5 Copyright c© 2009 by ASME

A

Web Service
B

selects a value in

contacts

populates
Sesame 1.x
RDF Store

queries

Figure 7. Interaction diagram for interconnected drop-down lists.

code contacts a Web Service with the selected value’s ontology URI.
The Web Service provides the following operations to support the run-
ning of the drop–down lists:

Get a list of parts, features, etc, given the ontology distance from
the class’s ultimate parent
Get the parent of a given URI
Get the list of children of a given URI

The queries are written in SeRQL and make use of the
serql:directSubClassOf built-in predicate. (SeRQL is one of
the RDF query languages supported by Sesame). An example of which
is shown in Listing 3.

Listing 3. SeRQL query to get a list of all direct subclasses of a given
URI.
SELECT c h i l d r e n
FROM { c h i l d r e n } s e r q l : d i r e c t S u b C l a s s O f {<someUri>}

By analyzing the class hierarchy corresponding to the chosen pa-
rameters, we identify the levels in the ontology designers would most
likely operate within. As an example, we will use the part ontology
originally shown in Figure 1. The EngineComponent class has only
one direct subclass, Part. Part has 160 direct subclasses. Some of
these are leaf nodes, such as Actuator; others are branch nodes, such
as Adapter. Adapter has a further four children, each in turn are
parents to specific part numbers such as FK22585. This small segment
of the part hierarchy is demonstrated in the class diagram in Figure 8.

We found that all classes in level 5 represent specific part numbers
and are therefore not useful as keywords to a semantic query. This is
because engineers are more likely to search using the name of a part
instead of its part number. Therefore, we decided to use two intercon-
nected drop-down lists for presenting the component ontology, corre-
sponding to levels 3 and 4 of the ontology. This analysis is carried out
for all four chosen query parameters.

This navigational method of using drop-down lists to present a seg-
ment of the ontology depending on user interaction was implemented in
our latest Designer Desktop demonstrator. Figure 9 shows a screenshot
of it. The part Adapter is selected and its four direct subclasses are
shown in the sub-part drop-down list.

The ontology for the project was developed over a couple of years
and has been used in previous demonstrators. However, during the eval-
uation of this latest demonstrator, engineers spotted duplicate entries
in the ontology. The duplicates are instances where there are multiple
entries for the same concept, and are represented by strings that only

EngineComponent

Part

Actuator Adapter

Threaded

FK22585

Depth

1

2

3

4

5

Figure 8. A segment of the EngineComponent class hierarchy.

Figure 9. Interconnected drop-down lists in action in the Designer
Desktop.

varies in the number of underscores () and dashes (-) present. The lat-
est demonstrator is the first to make use of the context aware drop-down
lists we presented in this paper. We believe that the navigation tech-
nique introduced has made it easier for engineers to browse and explore
the ontology. Thus they are able to find errors and omissions that have
been left unspotted previously.

DISCUSSION AND CONCLUSION
In this paper, we looked at the problem of ontology simplification

for presentation in web applications. The ontology needed for web ap-
plications in technical domains are often very large. This is because
of the vastness and complexity of the technical vocabulary captured in
the ontology. In many Semantic Web applications, there is often a need
for users to navigate over the underlying ontology, for example, when
constructing queries or tagging documents.

We presented three methods for limiting the ontology presented to
users. The proposed methods simplify the ontology for the user by pre-
senting a fragment of the entire ontology. The ontology used in querying

6 Copyright c© 2009 by ASME

Table 1. Comparison of features for the different ontology presentation methods.

Exploratory Dynamic Partial view

Complete Tree View yes yes no

Content Dependent Tree View yes no yes

Autocomplete Text Box no yes yes

Drop-down Lists yes yes yes

the triplestore remains unchanged. The features of the three proposed
methods, along with the traditional tree view, are summarized in Ta-
ble 1.

Traditionally, class and property hierarchies in ontologies are dis-
played using tree views, (Complete Tree View in Table 1). The entire on-
tology is presented to the user for navigation. As the size of the ontology
grows, tree views become awkward and cumbersome to navigate. With
a content dependent tree view, ontology concepts that are not referred
to in the triplestore are removed from the user’s view. Furthermore, the
partial view presented can be confusing to domain experts. This is be-
cause they might be presented with an illogical segment of the domain
ontology that leaves out key concepts and features.

The remaining two proposed methods for ontology presentation are
dynamic. In other words, the ontology presented to the user are a direct,
real-time reflection of the actual ontology. With an autocomplete text
box, users are not presented with a structure to explore the ontology.
Instead, users search for information by performing keyword queries.
They are also free to enter any text, including ones outside of the un-
derlying ontology. With a series of interconnected drop-down lists, the
segment of the ontology presented depends on user interaction. Users
can explore the ontology by selecting concepts from any of the drop-
down lists. With both the autocomplete text box and the drop-down lists
implementation, no concepts are pruned from the ontology shown to
users. A disadvantage of using the full ontology is that if the underly-
ing data is sparse, users might find it frustrating after performing many
queries without finding results. In our user evaluation, engineers have
been able to find inconsistencies in the ontology using the drop-down
list approach that are previously unspotted. This demonstrates the ease
of exploring ontology structures using this method.

ACKNOWLEDGMENT
This project was/is co-funded by the Technology Strategy

Board’s Collaborative Research and Development program (www.
innovateuk.org) under grant number TP/2/IC/6/I/10292.
The authors would also like to thank the project partners for provid-
ing us with data and ontologies. Specifically, Prof. F Ciravegna and R
Bhagdev for the University of Sheffield for the generation of the triples
used in the demonstration system, and Colin Cadas and Dave Knott from
Rolls-Royce for the provision of the case study and technical support.

REFERENCES
[1] Berners-Lee, T., Hendler, J., and Lassila, O., 2001. “The semantic

web”. Scientific American, 284(5), May, pp. 34–43.

[2] Manola, F., and Miller, E., 2004. RDF Primer. W3C Recommen-
dation, http://www.w3.org/TR/rdf-primer.

[3] Brickley, D., and Guha, R., 2004. RDF vocabulary description
language 1.0 RDF schema. Technical Report W3C Recommenda-
tions.

[4] McGuinness, D., and v. Harmelen, F., 2004. OWL Web Ontol-
ogy Language overview. W3C Recommendation, http://www.
w3.org/TR/owl-features, February.

[5] Ashburner, M., Ball, C., Blake, J., and Botstein, D., 2000. “Gene
ontology: tool for the unification of biology”. Nature Genetics,
25, pp. 25–29.

[6] Noy, N., and Musen, M., 2004. “Specifying ontology views by
traversal”. In Third International Conference on the Semantic Web
(ISWC-2004).

[7] Seidenberg, J., and Rector, A., 2006. “Web ontology segmenta-
tion: analysis, classification and use”. In WWW ’06: Proceedings
of the 15th international conference on World Wide Web, ACM,
pp. 13–22.

[8] Alani, H., Harris, S., and O’Neil, B., 2006. “Winnowing ontolo-
gies based on application use”. In 3rd European Semantic Web
Conference (ESWC).

[9] Wong, S., Crowder, R., Wills, G., and Shadbolt, N., 2006. “Knowl-
edge engineering - from front-line support to preliminary design.”.
In ACM Symposium on Document Engineering (DocEng).

[10] Gao, Y., Zeid, I., and Bardasz, T., 1998. “Characteristics of an ef-
fective design plan system to support reuse in case-based mechani-
cal design”. Knowledge-Based Systems Knowledge-Based Systems
Knowledge-Based Systems, 10(6), Apr., pp. 337–350.

[11] Khadilkar, D. V., and Stauffer, L. A., 1996. “An experimental
evaluation of design information reuse during conceptual design”.
Journal of Engineering Design, 7(4), pp. 331–339.

[12] Crowder, R., Bracewell, R., Hughes, G., Kerr, M., Knott, D.,
Moss, M., Clegg, C., Hall, W., Wallace, K., and Waterson, P.,
2003. “A future vision for the engineering design environment:
A future sociotechnical scenario”. In Proceedings of 14th Interna-
tional Conference on Engineering Design, A. Folkeson, K. Gralen,
M. Norell, and U. Sellgren, eds., pp. 249–250.

[13] Priebe, T., and Pernul, G., 2003. “Towards integrative enterprise
knowledge portals”. In CIKM ’03: Proceedings of the 12th inter-
national conference on Information and knowledge management,
ACM Press, pp. 216–223.

[14] Petrelli, D., Lanfranchi, V., Moore, P., Ciravegna, F., and Cadnas,
C., 2006. “Oh my, where is the end of the context?: dealing with
information in a highly complex environment”. In IIiX: Proceed-

7 Copyright c© 2009 by ASME

ings of the 1st international conference on Information interaction
in context, ACM, pp. 37–41.

[15] Wong, S., Crowder, R., Wills, G., and Shadbolt, N., 2007. “Lesson
learnt from a large-scale industrial semantic web application”. In
18th ACM Conference on Hypertext and Hypermedia.

[16] Wills, G., Fowler, D., Sleeman, D., Crowder, R., Kampa, S., Carr,
L., and Knott, D., 2004. “Issues in moving to a semantic web for
a large corporation”. In Proceedings of 5th International Confer-
ence on Practical Aspects of Knowledge Management (PAKM),
Vol. 3336 of Lecture Notes in Artificial Intelligence, Springer,
pp. 378–388.

[17] Fowler, D., Reul, Q., and Sleeman, D., 2008. “IPAS ontology
development”. In Proceedings of the 3rd International Work-
shop on Formal Ontolgies meets Industry Workshop (FOMI 2008),

pp. 417–444.
[18] Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S.,

2001. Web Services Description Language (WSDL) 1.1. W3C
Note, http://www.w3.org/TR/wsdl.

[19] Rector, A., Welty, C., Noy, N., and Wallace, E., 2005. Sim-
ple part-whole relations in OWL ontologies. Technical Re-
port – W3C editor’s draft. http://www.w3.org/2001/sw/
BestPractices/OEP/SimplePartWhole/.

[20] Winston, M., Chaffin, R., and Herrmann, D., 1987. “A taxonomy
of part–whole relations”. Cognitive Science, 11(44), pp. 417–444.

[21] Wilson, M., and schraefel, m., 2008. “A longitudinal study of
exploratory and keyword searchs”. In ACM/IEEE–CS Joint Con-
ference on Digital Libaries.

8 Copyright c© 2009 by ASME

