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We develop distributed algorithms for adaptive sensor networks that respond to directing a target
through a region of space. We model this problem as an online distributed motion planning problem.
Each sensor node senses values in its perception space and has the ability to trigger exceptions
events we call “danger” and model as “obstacles”. The danger/obstacle landscape changes over time.
We present algorithms for computing distributed maps in perception space and for using these maps
to compute adaptive paths for a mobile node that can interact with the sensor network. We give
the analysis to the protocol and report on hardware experiments using a physical sensor network
consisting of Mote sensors. We also show how to reduce searching space and communication cost
using Voronoi diagram.
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1. INTRODUCTION

We wish to create more versatile information systems by using adaptive
distributed sensor networks: hundreds of small sensors, equipped with limited
memory and multiple sensing capabilities which autonomously organize and
reorganize themselves as ad hoc networks in response to task requirements and
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to triggers from the environment. Distributed adaptive sensor networks are re-
active computing systems, well suited for tasks in extreme environments, espe-
cially when the environmental model and the task specifications are uncertain
and the system has to adapt to them. A collection of active sensor networks can
follow the movement of a source to be tracked, for example, a moving vehicle. It
can guide the movement of an object on the ground, for example, a surveillance
robot. Or it can focus attention over a specific area, for example, a fire in order
to localize its source and track its spread.

A sensor network consists of a collection of sensors distributed over some
area that form an ad hoc network. Each sensor is equipped with some limited
memory and processing capabilities, multiple sensing modalities, and commu-
nication capabilities. Previous work in sensor networks has concentrated on
routing protocols for sensor networks. Often the network topology is unknown
and the network has to discover the best route for a packet. Optimization crite-
ria include shortest path to destination, minimum power utilization, maximum
minimum residual power in the network, and so forth.

In this article, we focus on a reactive task in sensor networks: guiding the
movement of a user equipped with a node that can talk to the field of sensors
across the field. We also discuss how sensor networks can serve as adaptive
distributed repositories of information. We model the user guidance problem
as a robot motion planning problem and use the inherent feature of the sensor
network to compute the robot navigation path in a distributed way. Our article
contributes (1) a mobile application for sensor network; (2) an implementation
and evaluation on a physical sensor network; (3) a distance computation method
that does not use node positions; (4) performance analysis and hardware exper-
imentation; (5) variation of the navigation protocols that reduces the searching
space using Voronoi diagrams.

More specifically, we build on important previous work by Meguerdichian
et al. [2001]; Intanagonwiwat et al. [2000]; Ye et al. [2002]; and Ganesan et al.
[2002] and examine reactive sensors that can adapt to their environment by
capturing a danger level map and distributing this map across the network. We
consider special events called “danger” to be values detected by the sensors (e.g.
temperature, biochemical agents, etc.) that are above a threshold. We consider
the areas of sensor network that have triggered special events to be “obstacles”.
We compute the artificial potential field that corresponds to the current state in
the perception space of the sensor network relative to these obstacles. We then
develop a distributed protocol that combines this artificial potential field with
information about the direction and goal of the moving object and guarantees
the best-safest path to the goal. By safest path we mean the path, with the
largest clearance of the danger zones. Finally, we discuss an implementation of
our protocols on a real sensor network consisting of 50 Mote sensors [Hill et al.
2000] and present our experimental data.

2. RELATED WORK

We are inspired by previous work in sensor networks [Estrin et al. 2000]
and robotics [Latombe 1992]. Our experimental work is done with the Mote
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hardware [Hill et al. 2000]. Related papers, Batalin and Sukhatme [2003, 2004]
address the problem of coverage and exploration of an unknown dynamic envi-
ronment using a mobile robot and beacons. The beacons form a communication
network that is used as a support infrastructure to aid the exploration of the
mobile robot.

Our sensor network algorithms rely on scalable high-performance routing
protocols such as Intanagonwiwat et al.’s [2002] direct diffusion. In this work,
data generated by sensor nodes is named by attribute-value pairs. A node re-
quests data by sending interests for named data; the interests will be prop-
agated within the network to find the source of the related data. The direct
diffusion method is used to reinforce the best path from the source to the sink.
We propose to actively disseminate the information in the network and consider
the sensor network as an information base.

Ye et al. [2002] proposed (TTDD), a Two-Tier Data Dissemination approach
that provides scalable and efficient data delivery to multiple mobile sinks. The
data source proactively builds a grid structure and the sink requests the data
from the nodes on the grid. This approach can be applied to the general problem
of sensor network data dissemination. In our article, we consider a specific
application, navigation problem.

Meguerdichian et al. [2001] and Veltri et al. [2003] considered the minimal
and maximal exposure path problem in a network. We consider a seemingly
similar problem. We are concerned about the dangerous areas rather than the
coverage of an individual sensor. Instead of calculating the information about
the worst case exposure-based coverage caused by the deployment of a sensor
network, we use the sensor network to compute a path that can navigate a user
to the goal by avoiding the dangerous area. Furthermore, we use distributed
algorithms to disseminate the data in the sensor network.

There have been many studies conducted on mote sensor networks. An
empirical study on networks composed of over 150 Motes was conducted in
Ganesan et al. [2002]. The paper presents the data collected in different layers
and reveals that even a simple protocol can exhibit large complexity in the Mote
network. Some of the observations from our experiments show the same behav-
iors in many scenarios. Other studies on the performance of the sensor network
communication can be found in Zhao and Govindan [2003] and Woo et al. [2003].
Wan et al. [2002, 2003] proposed Pump Slowly, Fetch Quickly (PSFQ), a reliable
transport protocol in wireless sensor networks. The key concept of this protocol
was to distribute data from a source by pumping the data forward at a slow
speed, then allowing the nodes that suffer data loss to fetch the missing data
aggressively from their neighbors. Experimental verification of this algorithm
was carried out on a mote network. This article addresses some problems that
we encountered in our system implementation.

Zhao et al. [2002] proposed algorithms which can be used in tracking appli-
cations. An information utility measure is used to select which sensors to query
and to dynamically guide data routing. The method maximizes the information
gain and minimizes the latency and the bandwidth consumption. Huang et al.
[2003] proposed spatiotemporal multicast for tracking applications in which a
message can be delivered to a mobile zone for information collection or sensor
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wake-up. Yan et al. [2003] proposed sensing schedule protocols for field cover-
age in surveillance application for sensor networks. Fang et al. [2004] designed
algorithms for locating and bypassing routing holes in sensor networks.

We use the number of hops to evaluate the distance between sensors without
relying on location information. However, one of our extensions does depend
on previous work on localization such as Moore et al. [2004]; Capkun et al.
[2002]; Savvides et al. [2001]; Niculescu and Badrinath [2003]; Sundaram and
Ramanathan [2002]; Cheng et al. [2004].

Capkun et al. [2002] proposed a distributed, GPS-free positioning algorithm
which uses the distances between the nodes to build a relative coordinate sys-
tem in which the node positions are computed. Savvides et al. [2001] proposed
an AHLoS system which used iterative multilateration. The approach relies
on a small set of nodes initially configured as beacons to estimate node loca-
tions. Niculescu and Badrinath [2003] proposed to using the capability of an
angle of arrival (the direction from which a signal is received) to determine
the orientation and position of any node in an ad hoc network with the aid of
some landmark nodes. Sundaram and Ramanathan [2002] proposed using the
neighborhood relationships gathered by each user through message exchanges
over a wireless ad hoc network to estimate the locations of hosts. It improved
the accuracy of location estimation by incorporating nonneighbor constraints.
Cheng et al. [2004] used the time difference of arrival of RF signals to esti-
mate the sensor location. Their paper gave a very good statistical analysis of
the performance of the proposed scheme. Moore et al. [2004] proposed a fully
distributed localization method guaranteed to compute correct locations that
supports mobility.

The application developed in this article uses techniques from robotics where
a key problem is how to plan the motion of moving robots. A good overview of
motion planning in robotics is given by Latombe [1992]. Lengyel et al. [1990]
proposed a robot motion planner that rasterizes configuration space obstacles
into a series of bitmap slices and then uses dynamic programming to compute
the distance from each point to the goal and the paths in this space. This method
guarantees that the robot finds the best path to the goal. Koditschek [1989]
discusses the use of an artificial potential field for robot motion planning. A
robot moving in accordance with the potential will never hit obstacles, but it
may get stuck in local minima. We combine these two methods to find the best
path to the goal which is safe and short and then modify them to exploit the
distributed nature of sensor networks.

3. A DISTRIBUTED ALGORITHM FOR GUIDING A USER

Sensors detect information about the area they cover. They can store this in-
formation locally or forward it to a base station for further analysis and use.
Sensors can also use communication to integrate their sensed values with the
rest of the sensor landscape. In this section, we explore using sensor networks as
distributed information repositories. We describe a method to distribute the in-
formation about the environment redundantly across the entire network. Users
of the network (people, robots, unmanned planes, etc.) can use this information
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as they traverse the network. We illustrate this property of a reactive sensor
network in the context of a guiding task where a moving object is guided across
the network along a safe path, away from the type of danger that can be detected
by the sensors.

The guiding application can be formulated as a robotics motion planning
problem in the presence of obstacles. The dangerous areas of the sensor network
are represented as obstacles. Danger may include excessive heat (volcanoes,
fire, etc), people, and so on. We assume that each sensor can sense the presence
or absence of such types of danger, for example, with temperature sensors and
biochemical sensors. A danger configuration protocol runs across all the nodes
of the network and creates the danger map. We do not envision that the network
will create an accurate geometric map, distributed across all the nodes. Instead,
we wish for the nodes in the network to provide some information about how far
from danger each node is. If the sensors are uniformly distributed, the smallest

number of communication hops to a sensor that triggers “yes” to danger is a
measure of the distance to danger. The goal is to find a path for the moving
object that avoids the dangerous areas. We envision having the user ask the
network regularly where to go next. The nodes within broadcasting range from
the user supply the next best step.

There are numerous solutions to motion planning in the presence of obstacles
and uncertainty. For a good survey of the techniques, see Latombe [1992]. We
seek a solution that lends itself naturally to the discrete nature of sensor net-
works. Lengyel et al. [1990] describe an optimal solution for motion planning
when the map of the world is given. The first step of the solution is to rasterize
the configuration space obstacles into a series of bitmap slices. Dynamic pro-
gramming is then used to calculate the optimal path in this space. Although
this method can not be applied directly, it can be adapted for sensor networks.
Though the map is not immediately available, the motion planning algorithm
fits a sensor network well in two ways. First, the sensors can be regarded as the
bitmap pixels. Second, the dynamic programming component of the algorithm
can be implemented by using the sensor communications.

In order to supply obstacle information to the planning algorithm, we use
artificial potential fields. In an artificial potential field, objects move under the
actuation of artificial forces. Usually, the goal generates an attractive potential
which pulls the object to the goal. The obstacles generate a repulsive potential
which push the object away from the goal. The (negated) gradient of the total
potential is the artificial force acting on the object. The direction of this force is
the current best direction of motion [Latombe 1992].

The obstacles (recall they correspond to the dangerous areas) will have re-
pulsing values and the goal will have an attracting value according to some
metric (see Figure 1 left). Algorithm 1 shows the potential field protocol. The po-
tential field is computed in the following way. Each node whose sensor triggers
danger1 diffuses the information about its knowledge of danger to its neighbors

1The possibility to identify obstacles is dependent on the sensing quality of the sensors. Our assump-
tion is that the sensors have this capability and this is not the concern of our algorithm, although
it is a very important factor in applying our algorithm in real applications. In our experiments, a
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Fig. 1. The left figure shows a typical setup for the navigation guiding task. The solid black circles
correspond to sensors whose sensed value is danger. The white circles correspond to sensors that
do not sense danger. The dashed line shows the guiding path across the area covered by the sensor
network. Note that the path travels from sensor to sensor and preserves a maximal distance from
the danger areas while progressing to the exit area. The right picture shows some Mote sensors
used for our experiments. The three sensors placed in the upright position denote two obstacles
(i.e., danger areas) and one goal.

Algorithm 1. The potential field computation protocol.
1: for all sensors si in the network do
2: poti = 0, hops j = ∞ for any danger j
3: if sensed-value = danger then
4: hopsi = 0
5: Broadcast message (i, hops = 0)
6: if receive( j , hops) then
7: if hops j > hops + 1 then
8: hops j = hops + 1
9: Broadcast message ( j , hops j )

10: for all received j do

11: Compute the potential pot j of j using pot j = 1

hops j
2

12: Compute the potential at si using all pot j , poti = poti + pot j

in a message that includes its source node id, the potential value, and the num-
ber of hops from the source of the message to the current node. When a node
receives multiple messages from the same source node, it keeps only the mes-
sage with the smallest number of hops. (The message with the least hops is
kept because that message is likely to travel along the shortest path.) The cur-
rent node computes the new potential value from this source node. The node
then broadcasts a message with its potential value and number of hops to its
neighbors.

After this configuration procedure, nodes may have several potentials from
multiple sources. To compute the current danger level information, each node
adds all the potentials.

Note that the potential field protocol provides a distributed repository of in-
formation about the area covered by the sensor network. It can be run in an
initialization phase, continuously, or intermittently. The sensor network can
self-organize adaptively to the current landscape. It updates its distributed in-
formation content by running the potential field computation protocol regularly.

light sensor becomes an obstacle when it detects a high light intensity. For Mica Motes, we found
that the light sensors work well.
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Algorithm 2. The safest path to goal computation protocol.
1: Let G be a goal sensor
2: G broadcasts msg = (Gid, myid(G), hops = 0, potential = 0)
3: for all sensors si do
4: Initially hopsg = ∞ and Pg = ∞
5: if receive((g , k, hops, potential) then
6: Compute the potential integration from

the goal to here:
7: if Pg > potential + poti then
8: Pg = potential + poti

9: hopsg = hops + 1
10: priorg = k
11: Broadcast (Gid, myid(si), hopsg , Pg )

Algorithm 3. The navigation guiding protocol.
1: if si is a user sensor then
2: while Not at the goal G do
3: Broadcast inquiry message (Gid)
4: for all received messages m =

(Gid, myid(sk), hops, potential, prior) do
5: Choose the message m with minimal potential then minimal hops
6: Let myid(sk) be the id for the sender of this message
7: Move toward myid(sk) and prior
8: if si is an information sensor then
9: if receive (Gid) inquiry message then

10: Reply with
(Gid, myid(si), hopsg , Pg , priorg )

In this way, the network can adapt to sensor failure, to the addition of new
nodes in the network, and to dynamic danger sources that can move across the
network.

The potential field information stored at each node can be used to guide an
object equipped with a node that can talk to the network in an online fashion.
Thus, the user can be viewed as a mobile node in a sensor network. The safest
path to the goal can be computed using Algorithm 2. The goal node initiates a
dynamic programming computation of this path using broadcasting. The goal
node broadcasts a message with the danger degree of the path which is zero
for the goal. When a sensor node receives a message, it adds its own potential
value to the potential value provided in the message and broadcasts a message
updated with this new potential to its neighbors. If the node receives multiple
messages, it selects the message with the smallest potential (corresponding to
the least danger) and remembers the sender of the message.

A user of the sensor network can rely on the information computed using
Algorithms 1 and 2 to get continuous feedback from the network on how to
traverse the area. Algorithm 3 shows the navigation guiding protocol. The user
asks the network for where to go next. The neighboring nodes reply with their
current values. The user’s sensor chooses the best possibility from the returned
values. Note that this algorithm requires the integrated potential computed by
Algorithms 1 and 2 in order to avoid getting stuck in local minima.
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3.1 Analysis

3.1.1 Correctness. Our protocols can correctly determine the safest path to
the goal without getting stuck in the local minima which are often a limitation
of the artificial potential fields methods.

THEOREM 3.1. Algorithm 3 will always give the user sensor a path to the

goal.

PROOF. In Algorithm 2, the prior link of a node points to a node that has
potential value less than that of the current node. So for each node other than
the goal, there must be a neighboring node that has a smaller potential value.
This proves that there is no local minima in the network.

The user’s sensor can always find a node among its neighbors that leads to a
smaller potential value. If the process continues, the node will end up with the
goal that has the smallest potential value 0. Therefore, Algorithm 3 can always
give the user sensor a path to the goal.

3.1.2 The Hop Distance Model. One critical assumption behind Algorithm 1
is that we can represent distance in terms of numbers of hops. In general, how
realistic is this model? To answer this question, we consider how the density
of the sensor distribution affects the distance evaluation in our algorithms. We
now address this question for the case where each node has a constant trans-
mission range, which is an assumption consistent with our testbed hardware.

We would like to know the minimal number of hops a message has to travel
from one sensor to another that is distance l away. This is hard to characterize
since in our algorithms each sensor uses flooding to broadcast packets to all of its
neighbors, and each sensor within the transmission range of the broadcasting
sensor can forward the packets. An approximation can be obtained by allowing
only the sensors at the boundary of the transmission range to forward packets.
Of all those sensors, we choose the sensor that can make the most progress in
the direction of the destination sensor. The number of hops computed this way
is an approximation of the minimal number of hops.

Takagi and Kleinrock [1984] proposed the most forward routing and analyzed
its average progress in the direction of the destination. We can use a similar
analysis to approximate the distance of a single hop.

Suppose the distance between the current message holder and the destina-
tion is l , and the distance between the next message holder and the destination
is l ′.

Consider Figure 2. S is the current node holding the message, and D is the
destination of the message. The density of the network is λ, and the sensors are
distributed according to Poisson distribution. Suppose the next node along the
path to D is A. Let ∠BSD = θ . The area of the circular segment to the right
of BC is S1 = θ · R2 − R2 · sin θ · cos θ . In order for A to hold the message, two
conditions must be satisfied: (1) There is no node to the right of A in that circle;
(2) There must be at least one node in that square area. We now evaluate the
probabilities of these two events.
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Fig. 2. This figure shows our approach to evaluating the expectation of l ′, the distance between the
next message holder and the destination. S is the message source, and D is the message destination.
S tries to find a node that can make the biggest progress in the direction to the destination. Suppose
A is the next node.

The probability that there is no node in that area is

P1 = e−λS1 = e−λ(θ ·R2−R2·sin θ ·cos θ ).

The square area around A is SA = R · sin θ · dy · dθ , and the probability that
there is no node in that area is e−λR·sin θ ·dy·dθ . It follows that the probability that
there is at least one node in area around A is

P2 = 1 − e−λR·sin θ ·dy·dθ = λR · sin θ · dy · dθ.

So the probability that the next node holding the message is in the square area
around A is the product of P1 and P2. Thus, the probability that A holds the
message is

Pl ′ = P1 · P2 = e−λ(θ ·R2−R2·sin θ ·cos θ ) · λ · R · sin θ · dy · dθ.

The distance between A (the next node) and the destination is

l ′ =
√

(l − R cos θ )2 + y2.

Thus the expectation of l ′ is the integration upon all θ and y in the right and
left half circles. The integration on the right half circle is:

∫

l ′ · Pl ′ =
∫ π

0

∫ R sin θ

−R sin θ

√

(l − R cos θ )2 + y2

·e−λ(θ ·R2−R2·sin θ ·cos θ ) · λ · R · sin θ · dy · dθ.

For a sufficiently dense network, the probability of finding a node in the
right half circle is large, but in a sparse network, it may not be true. We only
consider sufficiently dense networks here. In order to integrate all the points
on the left circle, we simply choose l + 2 ∗ R as the distance from the next node
to the destination if the next node cannot be found in the right half circle. The
expectation of l ′, E(l ′) is the sum of the integrations in the left and right half
circles.

Figure 3 shows the results of plotting the expectation for l ′ for different dis-
tances l . Note that all the curves with the same transmission range cluster
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Fig. 3. Average progress by using most progress method (average progress is defined as R ′ =
l − E(l ′)). The X axis is the density of the network, that is, how many nodes in a unit area
on average. We plot the curves with different source to destination distances and transmission
ranges.

together closely. In addition, because the formula we plot is a continuous func-
tion, all the values for l in between the boundaries we plot will be in the same
range. Thus we conclude that the average progress is approximately the same
for different distances l , with a fixed transmission range R. It follows that the
average hop for a message to transmit from one node to another is just l divided
by the average progress. Then the minimal ideal hop should be l/R, but the
expected minimal hop in our real sensor network is l/R ′. That is, the distance
we evaluate is always R/R ′ times of the real distance.

Ganesan et al. [2002] reported the length of a hop may not be fixed as we
observed in our experiments. Through experiments, we can get the expecta-
tion and the deviation of the length of a hop (call them E and d ). According
to the central limit theorem in probability theory, the length of n hops has the
expectation of nE and the deviation of

√
nd , that is, the deviation (or the dif-

ference) between the real distance and the computed distance is in the order
of

√
nd , which is small compared with the distance of the order of nE. This

provides evidence that our algorithms will be robust when run on physical
networks.

3.1.3 Performance Bound of the Computed Path. We expect our protocols
to compute the integrated potential value on the safest path, but they introduce
error by approximating the distance and the potential value. We now compare
the integrated potential value on the path found by our protocols and the op-
timal path to show how safe the found path would be. Here we assume the
danger is a single point that is detected by a single sensor which is called a
danger node.
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THEOREM 3.2. The computed potential integration on the computed path is

upper and lower bounded with respect to the actual potential integration on the

path.

PROOF. Suppose we find a path from A to B by running our algorithms.
The sum of the potential value on the sensor nodes by running our algo-
rithm is P1, and the nodes on the found path are A = s0, s1, s2, · · · , sk = B.
Let s0s1, s1s2, · · · , sk−1sk (or s0s1s2 · · · sk−1sk) be the path connecting all these
nodes consecutively by lines. Let the integration on this path be P2 (contin-
uous line integration, not only on the points). We would like to compare P1 and
P2; specifically, we would like to upper bound P2. Take a look at si−1si. Let the
potential value of si−1 be pi−1, si be pi. We assume we use the fixed transmission
model. |si−1si| ≤ R (R is the transmission range). For any danger source d j , sup-
pose the potential that si gets from obstacle d j is pij = 1

h2
ij

where hij = lij

R
, and

lij is the distance between si and d j . For any point t on segment si−1si, let ltj be
the distance between t and d j . Then ltj ≥ lij − R, so the potential value at t due

to d j is ptj = 1
h2

tj

≤ R2

(lij−R)2 = 1

(
lij
R

−1)2
= 1

(hij−1)2 . So we have
ptj

pij
≤ h2

ij

(hij−1)2 . Similarly,

we have
ptj

pi−1 j
≤ h2

i−1 j

(hi−1 j −1)2 .

By integrating on the entire path, we have the following. P2 =
∫ B

A

∑

j ptj =
∑k−1

i=0

∫ si+1

si

∑

j ptj ≤
∑k−1

i=0

∫ si+1

si

∑

j (
h2

ij

(hij−1)2 · pij) ≤
∑k−1

i=0 R · (
∑

j

h2
ij

(hij−1)2 · pij) (since

|si−1si| ≤ R)

If
h2

ij

(hij−1)2 ≤ q1 for all i, j , we have P2 ≤ R · q1 ·
∑k−1

i=0

∑

j pij = R · q1 · P1.

On the other hand, we have the following. First we have |si−1si+1| ≥ R, so
|si−1si|+ |sisi+1| ≥ R. Let’s find s′

i on sisi+1 such that |si−1si|+ |sis
′
i| = R/2, or find

s′
i on si−1si such that |s′

isi|+|sisi+1| = R/2. Without loss of generality, we assume

s′
i is on sisi+1. The distance from any point on si−1si or sis

′
i to si−1 is no greater

than R/2 (also less than R), so for any point t on these two segments, we have

ptj = 1
h2

tj

= R2

(ltj)2 ≥ R2

(li−1 j +R)2 = 1
(hi−1 j +1)2 . Similarly, the distance from any point on

s′
isi+1 to si is no greater than R, so for any point t on this segment, we have ptj =
1

h2
tj

= R2

(ltj)2 ≥ R2

(lij+R)2 = 1
(hij+1)2 . Let s0, s2, · · · , s2i be s′

0, s′
2, · · · , s′

2i
, and we then create

s′
1, s′

2, · · · , s′
2i+1 by the previous procedure. It follows that P2 =

∫ B

A

∑

j ptj =
∑k−1

i=0

∫ s′
i+1

s′
i

∑

j ptj ≥
∑k−2

i=0

∫ s′
i+1

s′
i

∑

j (
h2

ij

(hij+1)2 · pij) ≥
∑k−2

i=0
R
2

· (
∑

j

h2
ij

(hij+1)2 · pij).

If
h2

ij

(hij+1)2 ≥ q2 for all i, j , and
∑

j

h2
k−1 j

(hk−1 j +1)2 is very small compared to P1, we

have P2 ≥ R
2

· q2 ·
∑k−1

i=0

∑

j pij = R
2

· q2 · P1.

Combining the preceding analysis, we have R
2

· q2 · P1 ≤ P2 ≤ R · q1 · P1. This
tells us that the real potential integration on the computed path is relatively
close to the computed potential integration of the sensor nodes on that path.

Theoretically, there is an optimal path that has the minimal potential in-
tegration and may not traverse any sensor node, but this path is not feasible
in our system since a user can only go from one sensor to another by listen-
ing to the reply from the next sensor in our navigation protocol. Therefore,
instead of defining an optimal path, we define an optimal sensor path as one
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that is composed of a series of sensor nodes that are connected consecutively by
straight line segments (the connected nodes are within the transmission range
of each other) which we expect to characterize the motion of a user. Assume the
optimal sensor path is a series of segments u0u1 · · · ul , where u0, u1, · · · , ul are
the sensor points and the potential integration along all these segments is P0.
We now compare the potential integration of this optimal sensor path (P0) with
that of our computed path (P2).

THEOREM 3.3. The potential integration on the computed path is upper

bounded with respect to the potential integration on the optimal sensor path.

PROOF. Starting from u0 = s0, we want to choose some nodes from
u0, u1, · · · , ul in that order. Suppose we have chosen s0 = u0, s1 = ul1

, · · · , s2i−3 =
ul2i−3

, s2i−2 = ul2i−2
. Let’s choose the next two points s2i−1 = u j , s2i = u j+1 with

the least j such that j > l2i−2 and |s2i−2u j+1| = |ul2i−2
u j+1| > R. The process

continues until there is no point left, and we let the last point be sk = ul . Let
the potential sum on all those points si (0 ≤ i ≤ k − 1) be P ′

0 (by adding up
the potential values on all the node points), and we will compare P0 and P ′

0.
For any 1 ≤ x ≤ k, we have |sx−1sx | ≤ R, and for any 0 ≤ y ≤ ⌊k/2⌋, we
have |s2 y−2s2 y−1| + |s2 y−1s2 y | > R. Consider segments s2 y−2ue · · · u f s2 y−1s2 y on
the optimal sensor path. If the sum of all the segments of s2 y−2ue · · · u f s2 y−1

is no less than R/2, we find s′
2 y−1 on the segments of s2 y−2ue · · · u f s2 y−1 such

that |s2 y−2ue · · · ups′
2 y−1| ≥ R/2, and all the points on segments s′

2 y−1ur · · · s2 y−1

are within R distance from s2 y−1, and |s′
2 y−1ur · · · s2 y−1| + |s2 y−1s2 y | ≥ R/2.

(The argument is as follows. Draw a circle with radius R centered at s2 y−1.
If the circle intersects segments s2 y−2ue · · · u f s2 y−1, let the last intersec-
tion point be ty . We have |s2 y−2ty | + |tys2 y−1| + |s2 y−1s2 y | ≥ |s2 y−2s2 y−1| +
|s2 y−1s2 y | ≥ R, and |tys2 y−1| = R. There must be a point s′

2 y−1 on segments

tyua · · · ubs2 y−1 such that |s2 y−2ue · · · ups′
2 y−1| ≥ R/2, |s′

2 y−1ur · · · s2 y−1s2 y | ≥
R/2, and all points on s2 y−2ue · · · ups′

2 y−1 is within R from s2 y−2, and all

points on s′
2 y−1ur · · · s2 y−1s2 y is within R from s2 y−1). If the sum of all the seg-

ments of s2 y−2ue · · · u f s2 y−1 is less than R/2, we find s′
2 y−1 on the segment of

s2 y−1s2 y such that |s2 y−2ue · · · u f s2 y−1s′
2 y−1| = R/2. In either case, any point

t on segments s2 y−2ue · · · s′
2 y−1 has potential value ptj ≥ 1

(h2 y−2 j +1)2 , and any

point t on segments s′
2 y−1 · · · s2 y has potential value ptj ≥ 1

(h2 y−1 j +1)2 . Both

|s2 y−2ue · · · s′
2 y−1| and |s′

2 y−1 · · · s2 y | are no less than R/2. P0 =
∑l−1

i=0

∫ ui+1

ui

∑

j

ptj ≥
∑⌊k/2⌋−1

i=0 (
∫ s′

2i−1

s2i−2

∑

j (
h2

2i−2 j

(h2i−2 j +1)2 · p2i−2 j )+
∫ s2i

s′
2i−1

∑

j (
h2

2i−1 j

(h2i−1 j +1)2 · p2i−1 j )) ≥
∑k−2

i=0
R
2

·

(
∑

j

h2
ij

(hij+1)2 · pij).

If
h2

ij

(hij+1)2 ≥ q0 for all i, j , and
∑

j

h2
k−1 j

(hk−1 j +1)2 is very small compared to P ′
0, we

have P0 ≥ R
2

· q0 ·
∑k−1

i=0

∑

j pij = R
2

· q0 · P ′
0. Since P ′

0 ≥ P1 ≥ P2

Rq1
, we have

P2 ≤ 2q1

q0
P0, that is, our computed path has bounded potential integration.

3.1.4 Propagation and Communication Capability. Two natural questions
arise about the protocols we described previously: (1) How much time does it
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take to propagate the obstacle and goal information? and (2) Is the network
capable of transmitting all the information? In this section, we answer the two
questions in the context of our current implementation in which we use one
packet for propagating the information of each obstacle or goal for every broad-
cast. To optimize the bandwidth usage by reducing the information transmis-
sion, we can combine the information about two or more obstacles and the goal
into a packet or use information encoding to reduce the information redundancy
among the neighboring nodes.

We assume that each node has fixed transmission range and its neighbors
(say k nodes) should be silent to avoid contention when that node broadcasts.
For the obstacle information propagation, assume the number of the concerned
obstacles is o; that is, on average, each node has to process the information of o

obstacles. Let the transmission rate for each node be b packets/s. Then the time
for the obstacle information propagating to a node is okl/b where l = min(L, l0),
L is the distance for the potential value to become 0, and l0 is the distance
between the node and the obstacle, both in number of hops. The formula is for
the case in which we add waiting time for each broadcast; that is, each node only
broadcasts once for each obstacle information propagation. In this case, each
node needs to wait for k/b time before broadcasting the best value. This waiting
time allows enough time for each of the node’s neighbors to broadcast the packet
if they hold the same value as the current node so that they do not collide. For
the case without explicit waiting time, the MAC protocol enforces this delay to
make sure all the packets go through smoothly. On the other hand, suppose we
do not have the waiting time scheme, each node may then broadcast multiple
times because the least number of hops is unlikely to be obtained by the first
received message so that the node needs to broadcast several packets before the
best value is propagated. In this case, we must multiply the propagation time
by another parameter m, which is the average messages broadcast for each
node. Similarly, we can evaluate the propagation time for the goal information.

The transmission rate of the Mote sensors we are using is approximately b =
40 packets/s, so for k = 8, the added waiting time to each node is 8/40 = 0.2s.
Regardless of how many obstacles there are in this system, if each node is in
the proximity of only one obstacle, it takes 0.2 ∗ 10 = 2 seconds to propagate
the information up to 10 hops away.

When the obstacles are static and we do not care about the time, the network
is capable of transmitting these bits. If there are time constraints (e.g., there
are moving obstacles and the location of an obstacle must be known to the
network within a distance resolution d ), the network may not be able to carry
all the information. Suppose the maximal speed of the obstacle is v. In the worst
case, an obstacle generates v/d packets per time unit, so each node needs to
process ov/d packets which should be less than b/k, that is, ov/d < b/k. If we
do not have the waiting time, we expect more packets will be generated and the
precision about the vehicle represented by the network will be low.

Suppose an obstacle is moving at a speed of 1m/s, the maximal transmission
rate for a node is 40 packets/s, the number of concerned obstacles is 1, and the
number of the concerned neighbors of a node is 8. The network can sustain
updates at a resolution of 0.2 meters. If we have the same network, but the
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moving object is a vehicle moving at a speed of 30 miles, the vehicle updates
can happen every 2.7 meters.

3.2 Discussion

3.2.1 Node Failure. In a real sensor network deployment, node failure may
not be an exception. Sensors may be destroyed by wind, rain, snow, tempera-
ture, or treading of vehicles. They may also malfunction due to component fail-
ure or battery depletion. Moreover, the terrain on which sensors are deployed
contributes to the communication failure. It is natural to ask how the node fail-
ure affects the path found or the correctness of the protocol. We consider the
problem in several periods of the protocol run.

If node failure occurs before the protocol initiation, it only affects the den-
sity of the sensor network. When only a very small number of nodes fail, the
randomness of the sensor distribution is not harmed so the protocol will not
be affected. However, failure of multiple nodes may lead to two cases: (1) some
part of the network has lower density because of the node failure; (2) holes
may appear in some part of the network because node failure may be epidemic.
These two cases are not inherent to the node failure problem but should be
addressed to complete the performance of the protocol under different network
topologies.

When the density of the network is low, the number of hops between two
points becomes larger. Since we use the number of hops between two points to
approximate the distance between them, the uneven distribution of the sensors
in the network may generate error, for example, for the same distance, the
number of hops in one area may be different from that in another. This gives
the protocol biased distance estimation. However, the theoretical performance
bound (Theorem 3.3) still holds if we assume the transmission range is a circle
with a constant radius because our theoretical analysis does not depend on any
assumptions about the node density. A biased distance estimation affects the
performance dramatically when a point is close to the danger area because a
slight variation of the distance estimation will change the performance greatly.
When a point is relatively distant from the danger, the estimated distance
variation due to the uneven density is negligible because the potential value is
not sensitive relative to the long distance.

When holes are present in the network (e.g., sensors are destroyed by exter-
nal factors), the number of hops does not capture the distance since the hops are
counted by going around a hole which shows a longer distance than the actual
distance. Our protocols cannot deal with this case correctly since we assume
the nodes are randomly distributed.

When nodes fail in the middle of the distance estimation protocol and path
computation protocol, the protocols still run well since they do not depend on
specific nodes. As long as the network is connected, the protocols can compute
the safe path, and so the performance will be degraded.

After the path has been computed, a user can query the potential integra-
tion from its neighbors to know where to go. Therefore, the protocol can tolerate
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node failure as long as a node within the user’s neighborhood has a smaller po-
tential integration. The one-hop neighboring node that has a smaller potential
integration may fail, but the user can always find a node with smaller potential
integration among its multiple-hop neighbors.

3.2.2 Assumptions of the Protocols. We assume that a user can always
go anywhere in the sensor field without being blocked. It is possible that some
barricade in the field, e.g., a wall, may block a user but not communication. Our
protocol works in this case provided the obstacle can be detected by sensors and
can be regarded as a dangerous spot.

Our protocols work under the assumption that the sensors can discover the
events of interest. It is possible that the sensors may be destroyed and this
requires the network to detect the void area. The nodes on the edge of the void
area can play the role of nodes detecting danger in our protocols and run our
protocols to compute the safest path around the hole.

3.2.3 Does Navigation Protocol Always Find a Path?. The protocol always
finds a path if the network is connected. In the ideal case, the protocols can
compute: (1) the distance between any point and the danger, and (2) the exact
potential integration of a path. Since the sensor network is discrete, our pro-
tocols compute approximations for the distance and potential integration. As
long as the network is connected, the protocols will, however, compute on the
connected component and always find a path if the user and the goal are in
the same connected component. How well the computed path matches the ideal
path is related to the density of the network, the connection graph (e.g., two
nearby nodes may have a communication path that is long by taking a detour,
will substantially affect the performance since this communication pattern does
not capture the physical spatial distance), and the transmission range.

3.2.4 How Do Long Links Affect Computation?. The transmission range of
a node may not be a perfect circle. Instead, it may be irregular shape, which
may introduce long links. We have analyzed this situation in the hop/distance
model part. The random analysis assumes that the effect of the long link will
decrease with increasing number of hops.

A long link creates the illusion that two far away nodes are close to each
other. The long link enforces the protocols to sum up only two potential values
on its two ends to approximate the potential integration over this link, which
in the normal case, should be the sum of multiple potential values of nodes on
that link (that is, if transmission links are short, more nodes are required to
hop from one end to another). This affects the distance estimation and safe path
computation.

Our implementation uses a neighbor profile technique to eliminate infre-
quent and asymmetric links, which has the effect of eliminating long links.

3.2.5 How Does Density Affect Performance?. We discussed the relation-
ship between the density and the quality of the computed path in Section 3.1.2,
Theorem 3.2 and 3.3. The higher the node density is, the better we can estimate
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the real distance and the potential integration of a path, then the better path
we can get. This is also true for path computation.

4. EXPERIMENTS

4.1 Experiment Setup

We have implemented the algorithms described in Section 3 using the Mote
MOT300 sensors [Hill et al. 2000]. The goal is represented with one Mote. The
obstacles are represented by one Mote each. The user traversing the sensor
network is also represented by one Mote. In our experiments, we asked both the
goal nodes and the obstacle nodes to generate the potential field and propagate
it to the entire network periodically. This demonstrates experimentally the
adaptation of our protocols to changes in the goal nodes and obstacle nodes.

A first experiment was designed to show empirically that the protocols are
correct. In this first experiment, we used a grid of 12 first generation Motes. The
Motes were placed approximately in line. Several nodes were placed around
the obstacles in order to test if the safest computed path is a detour around
the obstacle. All neighbors were within communication range. The application
was run by iterating a request for the next step by the user, a response by
the network, and a move to the direction of the network response. To imple-
ment this last part, we assumed that the nodes know their location and could
transmit it to the moving object/user. This can be done by augmenting Motes
with a GPS location, or a localization algorithm such as Corke et al. [2003].
Since we have not done this augmentation of the hardware yet, we simulated
location knowledge by placing the Motes in a grid pattern and supplying coor-
dinates. The potential field and goal path protocols were run by the network
continuously.

When an obstacle or goal broadcasts, the receiving network node checks its
list of known goals and replaces the old data with the new broadcast if the new
broadcast has a lower hop count. If the obstacle or goal is unknown, then an
entry is created, and the oldest entry is erased to save space.

When a node receives a broadcast, it degrades the value of the broadcast
based either on a linear function on the number of hops (for goals) or by the
number of hops squared (for obstacles). If the new value is not below a cutoff
threshold, the packet is transmitted to the node’s neighbors.

When a user requests potential estimates, all nodes that can hear it respond.
The user chooses the node with the lowest value (that is lower than the value
of the current node). The user moves toward this node.

In the second experiment, we used a testbed of 50 Motes MOT300. We ar-
ranged the nodes in the given topology and gave each node position information
(which could be obtained as previously described.) We ran a suite of different
network topologies and measured the network stabilization time when obsta-
cles and goals are injected online in the network. Table I summarizes our data.

The layouts include grids with various numbers of Motes, randomly dis-
persed Motes, and circles. In each network, we inserted obstacle sensors
(assumed to have detected danger) and goal sensors. The focus of these
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Table I. Data that Summarizes Timing Measurements for Several Experiments with a Sensor
Network Consisting of Mote Sensors. (All network topologies are summarized as geometric icons
and all measurements are in seconds. For each experiment, the goal is at the black disk and the

danger is at the shaded disk.)

Exp. danger Shortest goal safest Exp. danger Shortest goal safest
Config. prop. distance prop. path Config. prop distance prop. path

0.23 1.13 0.17 9.23 1.23 22.33 2.27 19.27

1.20 20.23 2.13 3.13 4.20 9.10 1.37 22.63

0.20 2.17 0.13 4.23 5.20 20.30 1.17 9.40

1.16 3.13 2.13 10.03 1.30 16.23 1.10 2.17

0.17 6.17 0.04 19.37 0.20 7.17 1.13 3.1

0.10 3.10 0.10 1.07 9.37 17.37 0.33 8.43

0.23 1.33 0.13 1.07 1.10 1.10 3.13 5.10

7.27 10.13 0.04 33.80 4.20 4.20 0.30 12.80

1.43 2.10 0.17 2.17 7.27 12.23 0.20 8.40

1.10 27.17 4.27 9.10 1.10 27.17 4.27 9.10

4.20 4.20 0.30 12.80 7.27 10.13 0.04 33.80

0.20 7.17 1.13 3.13 0.17 6.17 0.04 19.37

experiments has been to determine how quickly the network responds to the
environmental change, specifically new danger sources and goal changes.

We ran all the experiments on a large table in our lab, as shown in
Figure 1(right). For each experiment, we set the transmission range to be very
small (9′′). In all these experiments, we focused on measuring the performance
of the network as a whole and did not use a base station. Thus, we did not
collect data in a central place. To collect timing data, we used two procedures:
videotaping and data logging.

We used the videotaping procedure to capture the global behavior of the
sensor field. The Mote LEDs were programmed to capture the state of the
Mote. We recorded the experiment with a Sony video camera at a rate of 30
frames per second. We then analyzed the resulting video to capture the timing
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Fig. 4. Measured communication graph of the experimental 7 × 7 grid network. The left is the
one in our second experiment. Notice the absence of many point to point links we expected to be
available (from example from (1, 1) to (2, 1)) and the presence of long links we did not expect to
have, for example from (1, 7) to (7, 6). The right one is the measured communication graph in
performance improvement.

measurements which gave us a resolution of 1/30th of a second. We looked at
the video sequence frame by frame and kept track of when and which LED
triggered. Since the overall timings for the navigation algorithms are on the
order of seconds, we believe our methodology is accurate enough.

We also used the logging procedure to collect data about the message flow
in the system. In the logging procedure, information about incoming and out-
going messages as well as internal events of interest were logged to the 4Mbit
flash chip on the Mote sensors with a resolution of 1/128 of a second. After each
experiment, the data was read out over the radio link and then postprocessed
using custom C programs. There are some limitations to this approach since
data can be lost if a write to the flash chip is already pending. This was mini-
mized by adding buffers so that at least one message or event of each type could
be queued for writing if a write was already pending.

Figure 4 shows the connectivity between Motes. A line between two Motes
indicates that they communicated directly at least once in the experiment. We
can see how irregular the connection graph is. Note the Motes in the right
corner which are completely disconnected.

In the third experiment, we implemented the performance improvement
methods in Section 4.2 to eliminate the asymmetric and transient links and
to reduce the network congestion. The experiment set-up is the same as the
second experiment and Figure 4 (right) shows the communication graph.

4.2 Implementation Issues

Our navigation algorithms have an implicit assumption that the communi-
cation paths in the network are bidirectional. Since the safest path is com-
puted backward from the goal, messages have to be able to flow in the opposite
direction to lead the user to the goal. Our experience (see Section 4.6) has
taught us that not all links in sensor networks are bidirectional. For example,
Figure 5 (left) shows the distribution of symmetric and asymmetric links in
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Fig. 5. The left figure shows the distribution of symmetric and asymmetric links during one ex-
periment. The x-axis shows the node id and the y-axis the number of links. For each node, we have
three bars: the first shows the number of symmetric links, the second is the number of unidirec-
tional outgoing links, and the third the number of unidirectional incoming links. The experiment
was conducted on a 7 × 7 grid network running our navigation protocol for approximately one
minute. The right figure shows the potential integrations in 54 experiments with eight different
network topologies. The solid, dashed, and dotted lines are the potential integrations on optimal
path, average over all computed paths, and the worst computed, respectively.

an experiment with a 7 × 7 grid of Mote sensors. This is consistent with data
from Ganesan et al. [2002]. We propose the following method for identifying
the bidirectional links in the network. The computation can be thought of as
an additional protocol run by each node.

Each node does neighbor profiling to find all of its stable one-hop neighbors
bidirectionally; that is, these neighbors should be reachable to and from the
node with high probability. In this way, we may ward off the unidirectional link
nodes that may lead to long distance hops. Each node only uses the received
packets from its stable neighbors after profiling. In our current implementa-
tion, we perform the neighbor profiling on the fly. Every time a node receives a
packet it increases the frequency of the sender of the packet which measures
the stability of that link. A link is used only if its frequency is higher than some
threshold value which is one fifth of the maximal frequency of all the links in
our implementation. A parameter we chose for our experiments is 1/5.

A side effect of neighbor profiling is the removal of many of the transient links
that are active for a very short time. By exchanging the information about the
frequency of two neighbors, the system ends up using the most stable bidi-
rectional links. Our hop distance can also be close to average instead of to
abnormal.

Algorithms 1 and 2 require each sensor to send a broadcast upon receiving
a message with fewer hops to danger or a smaller potential integration to the
goal. Many broadcasts may not be necessary since only the message with the
least hops to the danger node location or the minimal potential integration to
the goal is useful. To reduce the message broadcasts, we let each sensor wait for
some time before broadcasting. The waiting time for sensor si is proportional to
one unit in Algorithm 1 and to the value poti in Algorithm 2. The main idea is
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to let the message traveling time be proportional to the hops from the danger or
the potential integration along the path traveled. Then the messages that carry
the nonoptimal value will be suppressed, and only the messages that carry the
optimal value will get broadcast. We can prove that the number of message
broadcasts for each sensor is 1 in each algorithm using this technique [Aslam
et al. 2003]. In our current implementation, we let each sensor wait for one unit
time plus a small random number to reduce the message broadcasts and traffic
congestion due to the simultaneous transmissions.

In order to desynchronize the nodes so that they would not simultaneously
broadcast the same packet, we also add random variable waiting time.

Packet loss is common in our Mote network because of the network congestion
or the inability of the Mote to handle the incoming packets. Thus it is important
that we design protocols that repeat the packet transmission.

Most of the information stored at a node can be inferred by reading the pro-
tocols. To adapt the network topology (goal and obstacles) change, each sensor
periodically flushes its route cache (route to obstacles and goal) with all the
other information unchanged. Currently we have not included the capability to
tune the cache expiration timer. Instead, we fix the expiration time to flush the
caches.

4.3 Correctness Validation

This first experiment proved that a user with a sensor node actually went
around the obstacles and got to the goal via the correct path. We observed that
the network adapted to the introduction of new obstacle nodes quickly and
robustly.

Figure 6 shows the comparison between the measured real distance and
the hops counted using our algorithm. The data was collected in our 7 × 7 grid
network. We can see the measured real distance is approximately linear in
the number of hops. Figure 5 (right) shows the potential integrations (line
integration instead of the sum of the point potentials) in 54 experiments with
eight different network topologies. For each network topology, we computed the
optimal path by using dynamic programming and recorded the computed paths
in several experiments. The solid line is the potential integration on the optimal
path. The dashed line is the average potential integration over the computed
paths. The dotted line is the worst potential integration among all the com-
puted paths in experiments. Note that the potential integration bears no linear
relationship to the distance. Compared with a dangerous path, which has a
potential integration of 3–5, the computed path is quite close to the safest path.

4.4 Measuring Adaptation

When a new obstacle is inserted in the network, the obstacle starts broadcasting
its danger information which affects the information held by each node. At this
point, Algorithms 1 and 2 cause the local information to change. We call the
total time for the network to identify the new distances from danger and to the
goal for each node the time for the network to stabilize. In other words, the time
for the network to stabilize is the information propagation time in the network
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Fig. 6. This figure shows the comparison between the measured real distance and the hops counted
using our algorithm.

which depends on the maximal hops from the goals or the obstacles to any node
in the network. When an obstacle is added to the system online, it takes an
identical amount of time to diffuse the information to the whole network.

We analyzed four metrics for each experiment: the time for the danger in-
formation to propagate from the danger/obstacle sensor to the whole network,
the time for all the nodes in the network to obtain their shortest distance to the
dangerous areas, the time for the goal information to propagate to the whole
network, and the time for all the nodes in the network to obtain their safest
path to the goal. Table I shows the time distribution of the four metrics.

We also did experiments to measure the response time of the sensor network
after changing the topology of the network. Starting from the initial topology
(No. 0), we changed the locations of the obstacles and recorded the response
time in each experiment. Table II shows the data of 15 consecutive experi-
ments. The response time is defined as the period from the time when the
topology change occurs to the time when the user finds the path to the goal.
The route cache on each mote is refreshed every 10 seconds. The route informa-
tion incurred by the topology change is updated only after flushing the cache.
Without taking into account the information propagation time, the average re-
sponse time is 5 seconds. The information propagation adds extra time after
the cache is flushed.

Nodes were configured to log records of the packets sent and received, cor-
responding time, and related internal events. The network was a 7 × 7 grid
with 49 Motes evenly placed on the grid. The neighboring Motes were spaced
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Table II. Data of the Response Time for Several Experiments with a Sensor Network
Consisting of Mote Sensors. (All network topologies are summarized as geometric icons and
all measurements are in seconds. For each experiment, the goal is at the black disk and the
danger is at the shaded disk. The black line and arrow signify the safe path found in each

network topology.)

Exp. No. Exp. Config. Response Time Exp. No. Exp. Config. Response Time

0 0 8 4.43

1 3.63 9 5.33

2 6.83 10 4.43

3 3.60 11 9.63

4 4.93 12 6.27

5 2.13 13 4.50

5 1.73 14 4.87

7 2.23 15 6.70

Fig. 7. The obstacle and goal propagation time distribution. In our experiment, the nodes were
arranged in a 7 × 7 grid with obstacles placed at (1, 1) and (7, 7). The nodes on x-axis are sorted
according to the Manhattan distance to (1, 1), while the y-axis shows propagation time (in seconds).
The top two figures show the data collected before performance optimization, while the bottom two
figures refer to a network after performance optimization.

apart from each other at a distance slightly less than the transmission range
in the appropriate direction. The two obstacles were placed at (1, 1) and (7, 7);
the goal was put at position (1, 7). Starting from (1, 1), we numbered the Motes
along the lines parallel to the line (1, 7)–(7, 1) so that 1 and 49 were obstacles
and 22 was the goal. The number of each mote gives a sense of the distance to
the two obstacles. The obstacles and the goal periodically broadcast beacons.
Each mote rebroadcasts a packet only if the received packet has a value that is
as good, or better than, the current optimal value.

In order to distinguish the information propagation of the obstacle and goal,
we first turned on the obstacles for approximately 30 seconds, and turned them
off, then turned on the goal mote for more than 30 seconds.

Figure 7 (top left) shows the obstacle information propagation time, that is,
the time when a mote receives a stable potential value. Some Motes get the
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Fig. 8. The histograms of the obstacle and goal propagation time corresponding to Figure 7. The
y-axis is the number of nodes that have the propagation time corresponding to the value on x-axis.
The left two figures show the data collected before performance optimization, while the right two
figures refer to a network after performance optimization.

Fig. 9. Transmission count distribution. The nodes on x-axis are sorted according to the Manhattan
distance to (1, 1), while the y-axis represents the number of packets (send/receive) for that node.
The left two figures show the data collected before performance optimization, while the right two
figures refer to a network after performance optimization.

stabilized potential value very quickly, but it takes a long time for a fraction of
Motes to finally get the potential. The same observation can be made in Figure 7
(bottom left), which shows the goal propagation time, defined as the time for
a mote to get a stabilized integration value to the goal. The left two figures in
Figure 8 show the histogram of the propagation time.

Figure 9 (left two figures) presents the number of transmitted packets and
received packets at each mote. The Motes closer to the obstacles transmit and
receive more data. In the middle of the x-axis, the heightened activity represents
Motes that are close to the goal. The left two figures in Figure 10 show the
histogram of the transmission counts.

Figure 11 (top figure) plots the send/receive activity of each node over time,
which gives more detail about the packets sent and received. The Motes close to
the obstacles or the goal receive and rebroadcast more packets than other Motes.
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Fig. 10. The histograms of the message transmission and reception counts corresponding to Fig-
ure 9. The y-axis is the number of nodes that transmit and receive the number of messages corre-
sponding to the value on x-axis. The left two figures show the data collected before performance
optimization, while the right two figures refer to a network after performance optimization.

In this figure, we observe some void areas where no mote sends or receives any
packet. This is because many Motes do not reliably rebroadcast packets to their
neighbors. We believe this is caused by two factors. One is that the rate of packet
reception at these key nodes is too high, and thus they are unable to process all
incoming messages. Another is that the packets these nodes forward to their
neighbors are corrupted because of network congestion. This also explains why
the obstacle and goal propagation times are uneven as much more traffic is
generated by two obstacles than by one goal.

4.5 Performance Optimization

We optimized the message broadcasts using the methods described in
Section 4.2 and performed several experiments with this implementation. The
goal was to eliminate the asymmetric and transient links and to reduce the
network congestion. The experiments were conducted on the same 7×7 grid as
the ones in Section 4.4. The following figures were plotted in the same fashion
as the related figures in the previous experiments. We observed the following
(as compared to the initial suite of experiments).

(1) The obstacles and goal propagation time (Figure 7, right two figures) and
their histogram figures (Figure 8, right two figures). The obstacle propaga-
tion was done very quickly and evenly for each node because the network
had less congestion. Our current waiting time scheme gave the priority to
the packets that traveled with less hops.

(2) Packet send/receive count (Figure 9, right two figures) and their histogram
figures (Figure 10, right two figures). Compared to our previous scheme, we
see a much more balanced packet transmission on all the nodes. Most of the
nodes showed the increase in the transmitted packet both for sending and
receiving which suggests that fewer packets were suppressed because of
the congestion, and all the nodes had quite a large probability to broadcast
their best computed value to the network.
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Fig. 11. Transmission/reception of packets by individual nodes over time. The bottom part signi-
fies the propagation of the information from the two obstacles (1 and 49) in the first period of the
experiment when only the obstacles were turned on. The top part is the goal information propaga-
tion in the second half of the experiment when only the goal was turned on. The top figure shows
the data collected before performance optimization, while the bottom figure refers to a network
after performance optimization.
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(3) The packet send/receive analysis (Figure 11, bottom). In this figure, we have
more packets for goal propagation because each node actively broadcasts
(broadcasts once for every second) to test the network congestion. We see
that although there is heavy network traffic, the sends and receives on
each node are balanced. For all the nodes, the transmitted packets are
balanced among all the nodes. We can reduce the transmitted packets in
goal propagation by changing the program.

4.6 Lessons Learned

Several interesting aspects of these experiments can be observed. The time for
network stabilization takes much longer than we expected. In our algorithms,
we made two typical assumptions: (1) a node broadcasts the message received
immediately, and (2) each node gets the packet traveling through the shortest
path. We observed that on the hardware testbed neither of these assumptions
held. The network stabilization takes a long time because of network congestion
and transitory link status. Often, nodes seemingly out of range hear each other
for brief moments of time.

Our observations have taught us some lessons about the assumptions used
by most distributed sensor network protocols examined theoretically or in
simulation.

(1) Data loss. Data loss is not rare in sensor networks. This is due to network
congestion, transmission interference, and garbled messages.

(2) Asymmetric connection. We observed that the transmission range in one
direction may be quite different from that in the opposite direction. Thus,
the assumption that, if a node receives a packet from another node, it can
send back a packet, is too idealistic. In routing algorithm design, the exis-
tence of a route that can carry a packet from the source to a node does not
guarantee a reverse route from that node to the source.

(3) Congestion. Network congestion is very likely when the message rate is
high. This is aggravated when the nodes in proximity to each other try to
send packets at the same time. For a sensor network, because of its small
memory and simplified protocol stack, congestion is a big problem.

(4) Other unpredictable network conditions. In our sensor networks, nodes that
should be several hops away from each other occasionally come in direct
communication range. We expect many transitory links (on and off) in an
unstable network due to the impact of the unpredictable conditions.

We conclude that the uncertainty introduced by data loss, asymmetry, con-
gestion, and transient links is fundamental in sensor networks. We need new
models, algorithms, and simulations that take this kind of uncertainty into
account. Guided by these lessons, we are currently conducting experiments to
better characterize the likelihood of these uncertainty conditions.

4.7 Conclusion

Our experiment results proved the correctness of the protocols, showed that the
protocols can adapt to the network topology change well, and demonstrated that
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a number of performance improvement methods can be used to reduced the ad-
verse communication quality (e.g., asymmetric links, network congestion, and
transient links). Our protocols are very robust and adapt to network topology
change, node failure or introduction, and irregular communication. Our data
shows that the navigation protocols adapt to new obstacles and goals and gener-
ate the next node in time on the order of seconds. We believe that this is adequate
for guiding mobile robotic nodes or people across a network field because the
space we expect these nodes to travel in a few seconds is small. Our experiments
also show that, in practice, a fairly complicated task (e.g., navigation using sen-
sor networks) can be accomplished by using simple sensor network operations.
The protocols work well without relying on localization, complex computations,
and coordinated communications. The protocols are scalable when measures to
regulate the communication are added. However, our protocols generate a lot
of network traffic to compute the best path. This is due to the flooding scheme
we proposed. However, we can improve upon the original scheme by developing
a scalable algorithm using a Voronoi diagram method to direct message flow as
proposed in Section 5. An alternative approach would be to enforce broadcast
by only one node in a small area of the network.

5. OPTIMIZING COMMUNICATION WITH VORONOI DIAGRAMS

The navigation protocols discussed previously compute the paths from all the
nodes in the network to a single goal by broadcasting to the entire network.
They are distributed algorithms with no centralized control. However, there
are some drawbacks: (1) every time the event sites change, the protocols must
recompute the entire map; (2) the searching space for the safest path to the
goal is the entire network. These issues lead to inefficient communication and
translate into energy consumption. In order to conserve the battery power, we
would like to reduce the number of broadcasts and the scope of the broadcasts.

In this section, we develop a different path computation algorithm that relies
on Voronoi diagrams [Guibas and Stolfi 1983]. The Voronoi diagram of a set of
points is a partition of space into cells. Each cell consists of the points that are
closer to one particular point from a given set than to any others. For example,
the Voronoi diagram of two points in the plane is their perpendicular bisector.
Voronoi diagrams have been used in robotics for path planning. The edges of
the Voronoi diagram define the channels that maximize the clearance to the
obstacles. We consider computing such Voronoi paths in the sensor network
which will keep the mobile user maximally distant from danger.

Voronoi diagrams can be built in the sensor field in a distributed way
(Algorithm 4). Every time an event site changes (appears, disappears, or
moves), the network can adapt to the change easily by updating the distance in-
formation from every sensor to the event. This distance can be computed as pre-
viously, by a broadcast initiated by the event sensor. Each node decides whether
it is on a Voronoi edge by comparing its two smallest distances to events. If the
two distances are approximately equal to each other, it is on a Voronoi diagram
edge defined by the two corresponding event sites. Because we consider approx-
imate distance equality, we have to ensure Voronoi edge connectivity. We can
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Algorithm 4. The Voronoi diagram computation protocol.
1: for all sensors si in the network do
2: if sensed-value = danger then
3: distancei = 0
4: Broadcast message (i, distance = 0)
5: if receive( j , distance) from node k then
6: distance j = min(distance j , distance + dist(i, k)) (dist(i, k) is the distance

between si and sk)
7: Broadcast message ( j , distance j )
8: for all received j do
9: Find the least two distances ( j1, distance j1

) and ( j2, distance j2
)

(distance j1
≤ distance j2

)
10: if |distance j1

− distance j2
| ≤ ǫ then

11: This node is a Voronoi node and close-dangeri = j1

Algorithm 5. The safest path from a Voronoi node to goal computation protocol.
1: Let G be a goal sensor
2: G broadcasts message = (Gid, myid(G), potential = 0)
3: for any sensor si do
4: if receive(g , k, pot) then
5: if I am not a Voronoi node and close-dangeri 
= close-dangerGid

then

6: do nothing
7: if I am a Voronoi node or close-dangeri = close-dangerGid

then

8: Compute the potential integration from the goal to here:
9: if Pg > pot + pot(i, k) then

10 pot(i, k) is the potential integration from si to sk

11: Pg = pot + pot(i, k)
12: priorg = k
13: Broadcast (Gid = g , myid(si), Pg )

tune the threshold for the difference of the two smallest distances to introduce
more nodes on the Voronoi edge. Another method is to use broadcast to connect
the disconnected nodes on the Voronoi edge. Each node that finds itself on a
Voronoi edge initiates a broadcast restricted within a limited number of hops
and finds the paths that connected to other nodes on Voronoi edges with minimal
number of hops. In the following, we look at all the nodes on the Voronoi edges
and on the paths connecting them without discrimination and call them Voronoi
nodes for ease of explanation. A sensor can determine if a neighbor is in the
same cell by comparing their closest event locations. The closest event of a
sensor is the site that has the smallest distance value. If two sensors have the
same closest sites, they are in the same cell. Otherwise, they are not.

Given a Voronoi diagram embedded as edges in a sensor network, Algorithm 5
and 6 compute the safe path to a goal. The computation is similar to our previ-
ous algorithms except that the broadcast is now constrained to the cells where
the goal and the user reside and to the nodes along Voronoi edges. The net-
work first computes the best path from any node on the Voronoi edges to the
goal (Algorithm 5). The nodes in the goal’s cell (including the nodes on the cell
boundary) are searched for the best path from the goal to any node on the cell’s
boundary. The protocol keeps running only on the nodes that are on the Voronoi
edges. Eventually all the nodes on the Voronoi edges get the safe path to the
goal.

ACM Transactions on Sensor Networks, Vol. 1, No. 1, August 2005.



Navigation Protocols in Sensor Networks • 31

Algorithm 6. The safest path from the user to goal computation protocol.
1: Let U be a user sensor
2: U broadcasts message = (Uid , pathquery)
3: for any sensor si then
4: if receive(Uid , path query) then
5: if close-dangeri 
= close-dangerUid

then
6: do nothing
7: if close-dangeri = close-dangerUid

and I am not a Voronoi edge node
then

8: broadcast (Uid , pathquery)
9: if close-dangeri = close-dangerUid

and I am a Voronoi edge node then
10: broadcast (g , i, potential )
11: if receive(g , k, pot) then
12: if close-dangeri 
= close-dangerUid

then
13: do nothing
14: if I am a Voronoi edge node then
15: do nothing
16: if close-dangeri = close-dangerUid

and I am not a Voronoi edge node
then

17: Compute the potential integration from the goal to here:
18: if Pg > pot + pot(i, k) then
19: Pg = pot + pot(i, k)
20: priorg = k
21: Broadcast (Gid = g , myid (si), Pg )

When the mobile node and the goal are in different cells, the mobile node
first broadcasts a path query message to all the nodes on Voronoi edges of
its cell boundary (Algorithm 6). Those nodes keep broadcasting the potential
integrations (from goal to the node in question) within the cell. Eventually the
user knows the best path to the goal by choosing the path with the smallest
potential integration. Therefore, the path from the mobile node to the goal is
composed as a path to a node on the Voronoi edge, a path following the Voronoi
edges to the goal cell, and a path within that goal cell.

The query protocol is the same as in the previous section. The mobile node
pings the nearby sensors for the next location. The correctness of this Voronoi
protocol relies on the fact that the mobile node will not get stuck in a local
minimum. This is true because (1) the Voronoi diagram edges are connected,
(2) all cells have some adjacent Voronoi edges, (3) the path computation is done
using dynamic programming on the connected component consisting of the goal
cell, Voronoi diagram edges, and the user cell.

The Voronoi protocol has two properties worth noting. Once computed, the
Voronoi infrastructure can be used repeatedly to identify paths to any goal
without additional network broadcast. Additionally, the searching space for
the path is restricted to Voronoi edges and the nodes in the start and goal cells.
When the sensor field detects a large number of events, the number of Voronoi
nodes increases and so does the search scope. When two event nodes are close
to each other, the Voronoi edge between them is not safe. These unsafe edges
will be searched but discarded in favor of safer edges by Algorithm 6.

To show the quality of the path computed using this method, we ran simula-
tion experiments. Figure 12 shows a typical result. Figure 13 shows simulation
data from a network with 2000 nodes, transmission range 5, and network field
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Fig. 12. The figure shows a typical network configuration and the computed Voronoi diagram and
the path from all the nodes to the goal. In the simulation, the network parameters are: number
of nodes 2000, transmission range 5, network field size 100 × 100. The big black points are four
dangerous sites and one goal node. The small black points are the nodes on the Voronoi diagram
edges. The tiny nodes are the normal nodes. The lines depict the paths to the goal.

size 100 × 100. We randomly generated 4 event sites and one goal node, and
computed the path from any node to the goal. We computed three paths for
each node: (1) the optimal path computed by knowing all the positions of the
nodes, (2) the path computed by Algorithms 1 and 2, and (3) the path computed
by a Voronoi algorithm. Let the potential integrations on the three paths be
Po, Pb, Pv. Figure 13 plots the CDF of the distribution of Pv−Po

Po
(the solid curve)

and Pb−Po

Po
(the dotted curve). We see that the paths computed using Algorithms 1

and 2 are close to optimal. The performance degradation of the Voronoi scheme
is at most 60%. Only 5% of the nodes have degradation of more than 30%, and
20% have more than 4%. 80% of the nodes have less than 4% degradation. We do
not intend to compare the exact communication cost here since it is dependent
on the communication pattern and packet scheduling scheme. We only look
at the search scope because it is a metric that shows how many nodes are in-
volved and sheds light on the communication cost. As to the danger information
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Fig. 13. The figure shows the CDF (cumulative distribution function) of the error distribution of
the potential integration of the path computed using algorithms in Section 3 (dotted curve) and the
path computed using Voronoi algorithm (solid curve). In the simulation, the network parameters
are: number of nodes 2000, transmission range 5, network field size 100 × 100.

propagation part, the communication cost of the Voronoi diagram-based scheme
is the same as the previous methods.

6. SUMMARY

We have described a novel application: using the sensor network to guide the
movement of a user (human or robot, equipped with a sensor that can talk to the
network) across the area of the network along a safest path. Safety is measured
as the distance to the sensors that detect danger. We described several protocols
for solving this problem. Our protocols implement a distributed repository of
information that can be stored and retrieved efficiently when needed. We have
used ideas from robotics to provide a correct solution to the navigation guiding
task. We have implemented these protocols on a network of 50 Mote sensors.
The key metric used in our experimental evaluations is the time it takes the
network to adapt to a new situation (detecting a moving vehicle, detecting a
new obstacle, adding a new sensor in the network, removing a sensor from the
network, etc.). Our experimental work has taught us a number of lessons about
some typical assumptions for designing protocols and has pointed out some
important new directions for research.

We also looked at the variations of our generic navigation protocols. We show
that a Voronoi diagram computed in a distributed and localized way can help
to reduce the searching space and thus the communication cost.

In the future, we hope to use spanners to approximate the network field and
further reduce the search space.
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