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Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-- The objective of this paper is to show simulation 

results obtained using the Distributed Kalman Filter Simulator 
(DKFSIM). Simulations were conducted at Wright Laboratory 
on a personal computer using the latest available version of 
this FORTRAN software package. The sensors modeled were 
a medium accuracy strapdown inertial navigation system 
(INS), a barometric pressure altimeter (BARO), the Global 
Positioning System (GPS), a Synthetic Aperture Radar zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( S A R ) ,  
and finally, a terrain aided navigation (TAN) system. The 
SAR system includes an electro-optical (EO) type imaging 
model and a Precision Velocity Update (PVU) model. The 
TAN system combines radar altimeter measurements with digi- 
tal terrain elevation data. The mission profile for each simula- 
tion included a low-level terrain following segment and a high 
dynamic combat maneuver segment typical for today's tactical 
fighter aircraft. The filter implementations used during this 
simulation sequence included (1) a single centralized Kalman 
filter (CKF) incorporating all of the sensor measurements, (2) a 
federated Kalman filter (FKF) with each sensor assigned to an 
independent local filter and the INS included as the system re- 
ference sensor, and (3) a cascaded Kalman filter (CASKF) 
where the GPS Kalman filter fed estimation information di- 
rectly to a centralized Kalman filter. Simulations were per- 
formed where no failures were introduced in order to establish 
a baseline for the failed sensor cases. The first failure mode 
modeled was a GPS satellite clock failure consisting of a fre- 
quency bias shift plus ramp. The second failure mode mod- 
eled was an INS accelerometer failure consisting of a bias shift 
plus ramp. The failure simulations offer a coarse parametric 
range of failure magnitudes. Finally, observation of filter per- 
formance under varied conditions revealed advantages and 
other characteristics for each filter architecture modeled. 

INTRODUCTION 

This paper presents the results from a series of simulations 
performed using the Distributed Kalman Filter Simulator 
(DKFSIM). DKFSIM was developed by Integrity Systems, 
Inc. [l], under U.S. Air Force funding to support the perfor- 
mance evaluations of several different filter architectures and 
"real world" sensor model conditions for advanced, multi- 
sensor navigation systems. Simulations were conducted at 
Wright Laboratory using a typical personal computer with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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modest hardware resources and a mathamatical package used 
for po:st-processing and plotting the output data files. 

The sensor truth models used with this version of DKFSIM 
included a medium accuracy strapdown INS, barometric pres- 
sure altimeter, GPS, SAR, and TAN systems. The GPS model 
has additional features such as aircraft body and terrain mask- 
ing, sa.tellitc: selection based on best available Geometric Dilu- 
tion of Precision (GDOP), and failure models to include gaps 
in the satellite coverage. The TAN system combines radar alti- 
meter measurements with digital terrain elevation data. 

Among the more attractive capabilities available within 
DKFSIM is the abili1.y to accurately arid efficiently model a 
suite of navigation sensors typical of advanced tactical aircraft. 
By setting switches and changing the values of the variablles in 
the input data files, it is possible to simulate several Kalman 
filter architectures with no changes in the executable. Truth 
model variations are also available from within the specific 
sensor inpui data files, to include failure modes for the GPS 
and INS accelerometer and gyro components. Further, the 
structure of the source code provides a fairly direct approach to 
implementing a variety of different adalptive filtering concepts 
while demonstrating the fault tolerance: capabilities of each 
filter design under test. 

The estimation performances of the three filter architectures 
were evaluated by observing plots of the errors in the filter 
state estimates and the corresponding cine-sigma values for the 
available filter states. The filter measurement residuals were 
evaluated to further characterize the system behavior and to aid 
in forming conclusioiis regarding possible failure detection 
techniques. 

TRUTH MODEL DESCRIPTIONS 

The truth models are composed of the most predominant 
error sources and represent the highest level of fidelity mod- 
eled within the simulation. The truth models use an error state 
formulation of the INS in Earth-Centered-Earth-Fixed (ECEF) 
coordiinates. However, all data is output in the appropriate co- 
ordinate frame, either local-level (wander azimuth) navigation 
(NAV) coordinates, east-north-up, or i n  the aircraft body 
frame, right wing-nose-up (XYZ). Because most sophisticated 
sensors have a built-in-test (BIT) capability for detecting gross 
errors and nonsense data, the hard-failure cases were not con- 
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sidered for this paper. However, for a more comprehensive 
perspective, these conditions should be investigated in order to 
define the upper boundaries between soft and hard failures. [2] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Inertial Navigation System 

The INS model assumes the strapdown INS of medium accu- 
racy are well modeled by less than 1 n d h r  circular error prob- 
able (CEP) in the horizontal position drift. Each INS has an 
orthogonal triad of ring laser gyros and accelerometers, 121 

For the medium-accuracy strapdown INS truth mode, there 
are a total of 42 time-correlated error sources, plus 3 accelero- 
meter and 3 gyro wide-band noise sources. The baro altimeter 
truth model has zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 time-correlated error sources, plus 1 wide- 
band noise source. Second order baro-damping of the INS is 
implemented to limit the INS vertical channel errors. Herein, 
the term "INS" refers to the baro-damped INS. [3] 

Barometric Pressure Altimeter 
A barometric pressure altimeter is normally used to damp 

and bound the unstable dynamic behavior of the INS vertical 
channel. Among the natural sources of inaccuracies in a typi- 
cal BAR0 are the current weather conditions, and dynamic 
conditions which may not be properly corrected. [2] 

Global Positioning System 
There are two subcomponents of interest when considering 

possible error sources: the GPS receiver and satellite models. 
The GPS receiver is assumed to be a two-frequency, five- 
channel, quartz clock P-code receiver. Selective availability is 
not considered here because the receiver is CRYPT0 author- 
ized. The simulator emulates code tracking loops which are 
carrier aided when possible. A single hemispheric antenna 
located on top of the aircraft is assumed. [2] 

The GPS truth model assumes four-satellite operation. There 
are 29 time-correlated GPS error sources, plus 8 wide-band 
noise sources. The GPS truth model includes one channel ran- 
dom wide-band phase noise and one channel random frequen- 
cy wide-band noise per satellite. [2] 

The carrier measurements are assumed uncorrelated over 
time or between satellites. The code measurements are corre- 
lated over time because the code tracking loop is carrier-aided. 
With no jamming modeled, the code tracking loop time con- 
stants are short enough that its outputs are essentially uncor- 
related. [2] 

ceiver. It is modeled with white noise in the clock phase and 
frequency, with an additional acceleration-sensitive error for 
the clock frequency appropriate to the three physical axes of 
the oscillator crystal. The acceleration-sensitive error is crucial 
for accurately modelling GPS failures in the presence of high 
acceleration. [2] 

The GPS receiver clock is a critical component of the GPS re- 

Synthetic Aperture Radar 
The SAR is considered an emissive imaging device. In the 

EO mode, when the cursor is placed on top of a radar image, a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
fix is taken and the range and range-rate to the selected land- 
mark can be obtained. Azimuth and elevation are also avail- 
able, but are of lower quality and are often derived from the 
rangehnge-rate coordinates. [2] 

The SAR focuses on a recognizable landmark for a few sec- 
onds as the aircraft moves relative to the landmark. The radar 
retums are processed by using very precise inertial data to tie 
the data together. This operation requires high-rate uninter- 
rupted inertial data, preferably from an inertial measurement 
unit located near the SAR antenna. The raw SAR image is cre- 
ated in rangehange-rate coordinates and then transformed to 
latitude and longitude, or azimuth and elevation coordinates, 
using the inertial solution. [2] 

For the SAR EO model, each measurement is subject to a 
bias and random error. The landmark coordinates are also sub- 
ject to a data base location error which is common to the EO 
sensors. A couple of typical EO sensors would be a forward- 
looking infrared (FLIR), and a laser ranger. [2] 

The SAR can also be used in a Precision Velocity Update 
(PVU) mode. Effectively, this behaves much like a very pre- 
cise Doppler radar, measuring the aircraft velocity relative to 
the ground in the aircraft body frame. In this mode, the SAR 
focuses on the ground to obtain a range-rate from the image. 
Resolution is not critical in this application, because the image 
is not being used for identification purposes. The output of the 
SAR PVU system is three velocity components in the body 
frame. Each velocity component is subject to bias misalign- 
ment and random noise sources. [2] 

Terrain Aided Navigation System 
The typical TAN system compares the measured ground 

height profile against a stored digital terrain data base kept on 
board the aircraft for real-time processing. Varying terrain 
gradients are required to gain observability. A perfectly linear 
terrain, such as a body of water or a gently sloping flat plain, is 
featureless from the point of view of the TAN and contains no 
observable latitude or longitude information. Conversely, the 
terrain must be locally linear for the Kalman filter to function 
properly. [2] 

There are a total of 9 time-correlated error sources and 26 
wide-band noise sources for the TAN sensor truth models, 
(radar altimeter, true terrain, and terrain map). The TAN truth 
model includes random measurement noise on the ground 
clearance measurement. [4] 

FILTER ARCHITECTURES 

Three filter implementations were simulated for this paper. 
A centralized Kalman filter (CKF), a federated Kalman filter 
(FKF), and a cascaded Kalman filter (CASKF) configuration. 
The latter employs a GPS receiver integrated with the refer- 
ence INS with a local Kalman filter, feeding a cascaded cen- 
tralized filter. All three filters used the error state formulation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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with the INS as the reference system, wherein the filters each 
estimate the error or drift of the inertial as well as other non- 
inertial sensor errors. 

Each filter has the exact same model fidelity. The filter 
models provided for the different filter designs are reduced- 
order implementations of the truth models for each system. 
The filter models use an internal error state formulation of the 
INS in ECEF coordinates, with the state estimation output pro- 
vided in local level and other frames. 

'The filter model for the INS includes 13 total filter states (the 
3 position, 3 velocity, 3 attitude, baro alt, and 3 accelerometer 
bias states). The GPS filter model includes 2 states (1 clock 
phase bias and 1 clock frequency bias). The SAR EO filter 
model consists of 4 measurement bias states (range, range-rate, 
azimuth, and elevation). The SAR PVU filter model includes 
3 velocity error states (essentially, Y component scale factor 
error, plus X and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ misalignment errors). The TAN filter 
model includes one measurement radar altitude bias error. [4] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

r--1 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P 

M F  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Centralized Kalman Filter 
A single CKF using all of the external sensor measurements 

was simulated. The Kalman filter equations implemented for 
this filter design were the standard extended Kalman filter 
discrete-time measurement update and propagation equations. 
These are well established and well documented. [5] 

The CKF filter error model states included the basic 9 INS 
states, (position, velocity, and attitude). Additionally, the 
BAR0 measurement bias, 3 INS accelerometer drift biases, 
and the GPS, SAR, and TAN filter states described above were 
included. All sensor measurements are provided to the filter 
with no pre-processing. DKFSIM requires the centralized fil- 
ter to be tightly coupled to the GPS measurement process. [ I ]  
Namely, the raw GPS measurement data is fed directly to the 
filter. This is not a common configuration when existing air- 
craft integrated filter designs are considered. However, con- 
sideration has been given to employing a GPS receiver with an 
embedded INS as a replacement for the standard aircraft mis- 
sion computer hardware. This would require measurement in- 
puts from the other external sensors directly to the receiver, but 
the final result might be similar to the CKF design used herein. 

Federated Kalman Filter 

theoretical and practical difficulties of standard Kalman fil- 
tering. This is done by means of a simple, yet effective, 
information-sharing methodology. The advantages of infor- 
mation sharing implemented within the federated filter are 
increased data throughput by parallel operation of the local 
filters (Figure l), enhanced system fault-tolerance by main- 
taining multiple component solutions, and improved accuracy 
and stability of cascaded filter operations. [4] 

The basic concept of the information-sharing approach im- 
plemented by the federated filter is to divide the total system 
information among several component local filters. Next, per- 

The federated filtering method described herein avoids the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 1. Federated Filter Application to a Multi-Sensor 
Navigation System 

form the local time propagation and measurement processing, 
and then recombine the updated local information into a new 
total sum. [21 

Consider the partitioned filter architecture in Figure 1. Sup- 
pose th'e equivalent ce.ntralized filter solution can be represent- 
ed by the covariance matrix P, and the state vector $, ; the lo- 
cal filter solution by P, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi,; and the master filter solution by 
P, and i,. Let the local filter index be designated by i=I ... zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN .  
If the local filter (LF) and master filter (MF) solutions are sta- 
tistically independent, they can be optimally combined by the 
following additive information algorithm, where the inverse 
covariance matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP' is defined as the information matrix 141: 

Pi'= P,.' + PI-] + ... + P" (1) 

Pi]$ = + Pl-1$] + ... + (2) 

The lkey to the federated filtering method is to construct the 
individual LF and MF solutions so they can be recombined at 
any time by the above algorithm. This construction avoids the 
need to maintain LFLF and LF/MF cross-covariances. Start- 
ing witlh the full centralized filter solution, we can then divide 
that solutioin so the LFs plus the MF each receive fractions p, 
of the t'otal information, where k is the total number of LFs 
plus the ME;: [4] 

P i ] =  P,-j + P1-l t ... + PN1 (3 a) 

= Pi1pM + P,"P1 + ... + Pi'P, (3b) 

or more specifically, 

P;'= p,"p, 

XK = XF 



According to the conservation of information principle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[6 ] ,  in 
order to maintain constant total information across the sum in 
Eq. (3), the share-fraction values must sum to unity. Based on 
this development, the LF and MF solutions can be recombined 
to yield the correct total solution, without overcounting the 
common information. [4] 

via independent, parallel operations of the LFs and MF, as 
long as the common process noise information is divided in 
the same fashion as the fused solutions. The process noise 
covariance matrices are also governed by the information- 
sharing principle [4]: 

The discrete-time propagation process can also be performed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
M-' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ;' + ... + QN-' (6a) 

QK-' = Qi'P ,  (6b) 

For the measurement update process, each local filter incor- 
porates discrete measurements from its own unique sensor. 
Combining the results of the measurement update process 
yields the correct state estimate solution, essentially the same 
solution obtained by a centralized Kalman filter process. [4] 

lution is the same as that of a single, CKF, and therefore is 
globally optimal. Simply, each filter employs a single share 
fraction value p, for all of the full-system states and process 
noises, and the information fusion and reset operations are per- 
formed after every measurement cycle. Much less restrictive 
conditions can be accommodated, resulting in only a modest 
loss of optimality. Note that in such a case, the information- 
sharing fractions only apply to the common states among the 
LFs and MF, specifically the INS states. One is that each filter 
maintains only a subset of the full CKF state vector, as was the 
case for the FKF simulations described herein. [4] 

For this paper, the federated filter simulations were conduct- 
ed using the no-reset mode. Here, the local filters collectively 
maintain the system long-term memory, while the master filter 
provides short-term propagation of the fused solution after 
combining the local filter outputs. There is no information 
feedback from the MF to the LFs. Each LF retains its own, 
unique portion of the total system information. The no-reset 
mode permits the LFs to operate independently, as stand-alone 
filters, with estimation accuracies essentially at their normal 
levels. The LFs all send solutions to the MF for fusion at the 
same time. The MF propagates the fused solution to inter- 
mediate time points, but does not use it in the next fusion up- 
date. [4] Further, because the LFs run independently, the no- 
reset mode offers a more fault-tolerant system. None of the 
independent local filter solutions are receiving any informa- 
tion, good or bad, from any of the other filters. Thus, no cor- 
ruption of the local filter solution occurs if any other sensor 
fails, with the exception of the INS. 

The FKF was implemented with the MF having only the 13 
INS common states. Local filter 1 (LFl) had the TAN sensor 
assigned, and the filter model included the 13 common INS 

When certain implicit assumptions are satisfied, the FKF so- 

states, plus one TAN measurement radar altitude bias error 
state. Local filter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 (LF2) had the GPS sensor assigned, and 
the filter model included the 13 common INS states, plus the 
two GPS sensor specific states, clock phase bias and clock 
frequency bias. Local filter 3 (LF3) had the SAR sensor 
assigned, and the filter model included the 13 common INS 
states, plus four SAR EO measurement bias states, and three 
SAR PVU velocity error states. 

Cascaded Kulmun Filter 

mulation and the federated formulation revolves around the 
amount of information passing between the distributed pro- 
cessing nodes. Cascaded forms flow from one filter to an- 
other, adding sensor information or combining subfilter infor- 
mation at each step, achieving a final global estimate. In a 
cascaded design, each set of sensor outputs is completely re- 
duced by its associated filter into a new state estimate with co- 
variance. This constitutes the sum total of the information al- 
lowed to pass to any of the other filters. A rough criterion for 
good cascading is that the premeasurement residual variance is 
negligibly affected by the states omitted in the partitioning. 
This corresponds to a lack of correlation over time and meas- 
urement. Because residuals are useful for fault detection and 
isolation (FDI), a large portion of the fault detection and isola- 
tion capabilities of the cascaded system are limited to the par- 
ticular filter in which the faulty sensor data is processed. 
Nonetheless, cascaded filters are natural in retrofit operations 
where a preexisting filter must accommodate a new sensor. [2] 

Stability for cascaded filter systems presents a significant 
problem. The processing of locally filtered sensor data by a 
subsequent centralized, or master, filter violates a fundamental 
theoretical requirement of Kalman filtering. The measurement 
errors must be "white". To properly incorporate such prefil- 
tered measurements in the master filter, a model of the prefil- 
tering process is required. [2] 

filters, one GPS sensor specific local filter providing the 13 
common INS states and corresponding covariance values to 
the centralized master filter. The loosely coupled architecture 
is characterized by relatively simple incorporation of the GPS 
local filter solution. The CASKF incorporates the LF state 
estimates as a measurement, and uses the LFs  covariance as 
the measurement error covariance. Minimal message-handling 
and control logic is required. Double-counting old GPS data 
forces the master filter to become too optimistic regarding its 
own accuracy. The CASKF incorporates the GPS output as a 
normal vector measurement, including the GPS output covar- 
iance as the associated measurement noise covariance. [4] 

The advantage of the loosely coupled cascaded filter is its 
simplicity. The cascaded Kalman filter uses essentially two 
standard Kalman filters. Some additional measurement pro- 
cessing software is required unless the measurement set is 
cross-correlated, and then the measurements should be decor- 

The differentiation between the cascaded Kalman filter for- 

The cascaded configuration depicts a loosely coupled pair of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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related. [4] By setting the update cycle time step within the 
CASKF to a value exceeding that of the GPS estimation time- 
correlation constant, the CASKF will essentially receive 
"white" measurement information from the GPS filter. 

urement bias states, 3 SAR PVU velocity error states, and 1 
TAN measurement radar altitude bias error state, plus the 13 
common INS states. The GPS receiver model was imple- 
mented as it was in the FKF design, having 13 common INS, 
plus the two GPS sensor specific states, clock phase bias and 
clock frequency bias. 

The CASKF was implemented with the four SAR EO meas- 

SENSOR MEASUREMENT RESIDUALS 

The potential Failure Detection, Isolation, and Reconfigura- 
tion (FDIR) capabilities of the filters under test represent tbe 
area where the greatest opportunities exist regarding adapt- 
ability and fault tolerance. One possible fault detection 
scheme would be to monitor the measurement residuals of a 
specified filter architecture. The residual sequence of interest, 
commonly referred to as innovations, is theoretically a white 
Gaussian sequence of zero-mean with covariance being a func- 
tion of the observation matrix H(t,), the error state covariance 
P(t, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA), and the measurement noise covariance R(t,): 

E{ r(t)rT(t)} = H(t)P(ti)HT(t) + R(t) 

During operation of the filter, the actual residual sequence can 
be monitored and compared to this description. If the descirip- 
tion appears to be violated consistently, then one can deduce 
that something has occurred to invalidate the model within the 
filter. Otherwise, if the violation occurs in only one compo- 
nent of a vector residual process, then it can be assumed that 
the measuring device generating that particular residual corn- 
ponent is the source of the difficulty. [4] Thus, monitoring 
the residuals has the potential to provide accurate fault detec- 
tion information. The federated filter provides the capability 
to monitor the master filter fusion residuals for failure indica- 
tions, as well as the local filter measurement residuals. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAl- 

though the above equation describes a vector measurement up- 
date process, the actual implementation in the DKFSIM source 
code was accomplished as a scalar update, one at a time at a 
given time tag. 

In order to verify the capability of capturing the measure- 
ment residuals (Table 1) for future use in fault detection tests, 
the local filter measurement residual output data files were 
investigated. Within each local filter, the residuals are sub- 
jected to a "reasonableness" test prior to being processed by 
the filter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[5 ] .  If the filter rejection threshold is surpassed, the 
measurement should be rejected, or filter corruption could oc- 
cur if the measurement is used to update the estimates. Also, 
by checking the residuals and comparing them to the flight 
profile, some additional insight may be gained when viewing 
the behavior of the errors in the state estimates. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Table 1 Measurement Residual Listinx b y  Sensor 

GP!S - 4 :Satellite Operation 
Saitellites I ,  2, 3, 4 
Pseudorange Measurement 
Pseudorange-rate Measurement 

SAIl EO 
Range Measurement 
Range-Kate Measurement 
Azimuth Measurement 
Elevation Measurement 

X I:Pitch Axis) Velocity Component Measurement 
Y i:Roll Axis) Velocity Component Measurement 
Z (Yaw Axis) Velocity Component Measurment 

Radar A.llimeter Ground clearance 

SAIl PVU 

TAN 

16 Total Sensor Measurement Residuals 

The tolerance values for sensor measurement residual rejec- 
tion was set to 7 times the one-sigma values for the GPS, and 
100 sigma for the TAN, SAR EO and SAR PVU. These val- 
ues were se( artificially high for test purposes. This forces the 
filters to accept the measurements until the residual magnii- 
tudes become very large. 

SIhlULATION STIJDIES 

Our efforts focused primarily on conducting performance 
analyses for each filter, averaging over five random Monte 
Carlo runs for a variety of different flight conditions and oper- 
ating conditions. In .the "real world" environment, any one of 
these filters would be driven by sampled data measurements 
from a.ctua.1 sensors. It is thus necessary to have an accurate 
statistical portrayal of estimation errors committed by eaclh fil- 
ter in the "real world" environment. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA performance analysis 
fulfills; this objective by replacing the "real world" with a rea- 
sonably complete andl accurate mathematical model. Having 
access to the: true values from the truth model allows some- 
thing which is typically denied us. We can generate the "true" 
error c.ommitted by the Kalman filter irr attempting to estimate 
the quantities of interest. [5] 

The objective of a performance anaiy sis is to statistically 
characterize. the error process. Because of using stochastic 
processes as the basic: modeling entity, we are more interested 
in the statistical, or ensemble average, behavior of the error 
process than a single sample output. One means of gathering 
this statistical information is by conducting a Monte Carlo 
study, where many samples of the error process are generated 
and the sample statistics are computed directly. If enough 
samples are generated, this should approximate the process 
statistics very well. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4] 

For ithis paper, the error state space K:alman filter was used. 
Thus, the means of all processes are often assumed to be zero 
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for all time. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA statistical description of this error process can 
be achieved by computing sample statistics, and averaging 
over the number of runs conducted. Usually, as a minimum, 
twenty is a reasonable number of simulations. A five run 
analysis is much smaller than desired, however, an ensemble 
average of just five runs still reduces the randomness of a 
single run by about 15-20 percent. A more useful statistic 
might be the root-mean-square (rms), which presents the non- 
zero mean and the standard deviation. Conducting twenty, or 
more, runs and performing an ensemble average should verify 
the means of the random processes will converge to zero. An 
exception to this supposition would be that nonrandom bias 
errors exist which have not been modeled and have proven to 
be significant. If searching for bias errors, or verifying mod- 
els, with enough simulations conducted, averaging the runs 
will reduce the randomness of the processes to a level which 
could aid in detecting a nonzero bias condition. [SI 

When performing the filter tuning, it is useful to compare the 
actual rms errors committed by the filter to the filter's own rep- 
resentation of its errors. For zero-mean processes the one- 
sigma values of the processes should converge to the rms val- 
ues of the processes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[SI 

Although a covariance performance analysis is computation- 
ally more efficient for generating accurate statistics than a 
Monte Carlo study (depending on the number of runs), there is 
an advantage to employing the Monte Carlo approach. Sign 
errors in the filter algorithm that may not be readily apparent in 
a covariance analysis due to squaring effects become evident 
in the Monte Carlo study. Also, effects of nonlinearities, such 
as device saturation or neglected terms when obtaining linear 
perturbation equations cannot be evaluated by a covariance ap- 
proach. This must be done by performing a Monte Carlo 
study. [51 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Mission Profile zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A typical tactical fighter flight profile, derived from the stan- 
dard Strapdown Performance Study (SPS) mission profile, was 
used for this analysis. A Monte Carlo analysis was conducted 
for each filter, for the unfailed sensor case, for each failure 
scenario, and was accomplished over the duration of the mis- 
sion from 0 to 7200 seconds. This mission profile includes an 
ingress to and including a low level terrain following and ter- 
rain avoidance segment (descent and run-in to target at Mach 
0.90 and 500 ft, including a 92 second period of 4g jinks with 
heading changes of not more than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+/ -60 degrees), a target 
bombing run (execute a 4g pull-up to 4,426 ft maximum), 
climb-out and level-off for exiting the target range, and finally, 
an air combat segment (lasting 90 seconds, 3 climbing tums at 
5g and 10 degreestsecond). 

The entire SPS mission profile was used for all simulations 
to provide more of a challenge to the integrated navigation sys- 
tems. Filter stabilities are often stressed most dramatically, 
and are either proven or failed during the high-dynamic flight 
conditions. 

Description of Performance Simulations 
Eight simulation scenarios were accomplished for each of 

the three filter designs. These were conducted over the full 
length of the SPS trajectory using the INS, GPS, SAR, and 
TAN as the sensor suite. First of all, the filters were simulated 
with no failure conditions imposed on any of the sensors. Due 
to the large number of test cases for this paper, the sample 
mean of the filter state estimation errors and corresponding fil- 
ter sigmas, and measurement residuals and corresponding re- 
sidual sigmas, was conducted over 5 Monte Carlo runs for 
each test case. All plots included in this paper represent the 5 
run ensemble average of each simulation scenario performed. 
The truth models were initialized before the zero time-tag to 
allow settling of the truth models prior to data storage. The 
five random number sequences were exactly the same for each 
simulation. All filter designs were selectable by setting 
switches and variables found within the input data files. 

The federated filter was implemented using LFl ,  LF2, LF3, 
and the MF, all working cooperatively. The GPS measure- 
ments, assigned to LF2 had an execution time step for the GPS 
measurements of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 seconds. The TAN measurements, as- 
signed to LF1, began at the 200 second point in the mission 
and then continued for the rest of the run at a rate of one meas- 
urement every 10 seconds. A more typical rate would be about 
2-4 Hz, however, one measurement every 10 seconds essential- 
ly reduced the simulation time. The radar minimum height for 
a low-altitude warning indication was set to SO ft. The maxi- 
mum operating height for the radar was set to 50,000 ft. The 
SAR model was developed to effectively provide EO and PVU 
measurement data to LF3 during the mission. 

The execution time step for the INS was set to 2 seconds. 
Some of the selectable parameters within the INS input data 
file are the Baro damping gain for position and velocity, cor- 
relation times for the gyro and accelerometer biases, and the 
sigmas for various error sources, all of which govern the accu- 
racy of the IFS. Because the INS is baro-damped, the Baro 
time step was also set to 2 seconds. 

An error state accuracy demonstration of the FKF in the no- 
reset and fusion-reset modes should characterize the system as 
functionaI, efficient, and operating correctly under normal and 
highly dynamic conditions. The filter's estimation accuracy is 
determined by differencing the master filter state estimate and 
the truth state, obtained from state estimate output data files 
and the real-world models output data files. The error state fil- 
ter formulation used in DKFSIM estimates the errors in the 
navigation and attitude information using the difference be- 
tween the INS and external sensor information. [SI 

FAILURE MODES 

Unfailed Sensor Truth Models 
Generation of the unfailed sensor truth model data sets was 

necessary to define the foundation for the failed conditions im- 
posed on the GPS and INS sensors. By viewing the unfailed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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case plots, reasonable failure magnitudes were established 
based on the spread of the data across the entire mission. 

necessary to have the truth model data in error form also. The 
true trajectory data file is available for comparison of whole- 
valued variables, such that the true sensor errors can be ob- 
tained and subsequently differenced with the filter estimates. 
This allows for a straight-forward differencing between the fil- 
ter estimates and the truth model error values. The end result 
is an indication of the filter's ability to estimate the desired 
states, namely the filter's estimation error of the sensor errors. 

The GPS pseudorange (PR) measurement error, for all four 
satellites, did not exceed 225 ft, and had a relative spread of 
the error of about 30 ft, Figure 2. The pseudorange-rate (PRR) 
measurement error plots exhibited a spread of about 0.25 fps, 
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 .  The total user clock frequency offset was usually 

Because the filters are implemented in error state form, it is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Total Pseudorange zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMsml error. GPS Receiver Channel #3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 2. GPS Receiver Channel #3, Pseudorange 
Measurement Error, (ft), No Failures. 
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less th'an 0.05 fps (in equivalent range-rate units) in magnitude 
for the entire mission, with the exceptisons ocurring during the 
dynamic maneuvers. 

The GPS satellite identification plots allowed an opportunity 
to introduce a failure based on satellite selection. The sat'ellite 
measuiremerit validity indexes indicated loss of visibility in 
severall places, but only for short periods of time and usually 
around the high dynamic portions of thie mission. 

The INS error plots and whole-value plots matched the 
flight profile of the SPS trajectory very well. The position drift 
components were well behaved, oscillatory, and never exceed- 
ed 5000 ft in magnitude. The vertical (channel is bar0 damped 
using a second order model. The vertical position and vellocity 
drifts were much less than the other two Nav frame compo- 
nents, North, and East. The INS specific force error compo- 
nents were till about Le-3 ft/sec2 (-31pg's), Figure 4. 

Y INS Specilic Force Error, Roll Axis, Body frame 
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Figure 4. INS, Y Component Specific: Force Error, No 
Failures, (fb'sec'), Body Frame. 

The SA12 EO exhibited nominal error magnitudes of ablout 
100 ft in range, and about 0.15 fps in range-rate. The SAR 
PVU velolzilty error ciomponents maintained relative orders of 
magnitude of about le-3 fps or less. 

The TAN system radar altitude bias error quickly converged 
from about 50 ft in eirror to a value around 10 to 15 ft. The fil- 
ter's nieasnrement validity index showed few radar measure- 
ments were rejected, as expected. Ultimately, the total raidar 
altimeter bias error plus measurement noise never exceeded 
100 ft. 

Some significant mission characteristics were evident in the 
plots. The areas of high dynamic mmi-uvers depicted occurred 
at abaat 2300,3400, and 6400 seconds. The most severe ma- 
neuvers occured at about the 3400 second time. 

Figure 3. GPS Receiver Channel #3, Pseudorange-Rate 
Measurement Error, (fps), No Failures. 

GPS 'iatellite Frequency Range-Rate Failure 
The GPS satellite frequency (range-rate) failure was imposed 

upon satellite identifi~cation number 2, GPS receiver channel 3. 
An initial offset bias was added, then an additional constant- 
slope ramping bias was added to simulate a potential soft fail- 



ure condition (Figures 5 and 6). Satellite ID #2 was selected 
because the receiver uses this satellite for its solution from 
2200 to 5200 seconds. This allowed for stabilization of the 
navigation filter for 2000 seconds before the failed satellite 
comes into view, SO minutes of failed conditions, and an op- 
portunity for the filter to restabilize upon changing to an un- 
failed satellite. The filter response to the change in satellites, 
going from using a bad to a good one, is a critical aspect in 
the accuracy of the navigation solution. When the failed sat- 
ellite departs at about 5200 seconds, the newly acquired satel- 
lite has no failures. Also, the high dynamics of the mission oc- 
cured at times where the filters might be the most vulnerable to 
divergence. 

The primary goal of implementing the failed conditions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwas 
to establish a coarse parametric description of the failed condi- 
tions. The most significant parameters being the lowest detect- 

Tolal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPseudorange Msmt error, GPS Receiver Channel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA#3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 5. GPS Receiver Channel #3, Pseudorange 
Measurement Error, (ft), Satellite ID #2 Failure. 
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Figure 6. GPS Receiver Channel #3, Pseudorange-Rate 
Measurement Error, (fps), Satellite ID #2 Failure. 

able failure magnitudes, and the largest failure magnitude just 
short of a hard failure indication. For this paper, the magni- 
tudes of the GPS satellite frequency (range-rate) failures vaned 
from about 0.05 fps to 0.10 fps for the initial PRR offset 
pseudorange-rate bias, and then from 10e-6 ft/sec2 to 1 .Oe-3 
ft/sec2 for the frequency drift rate. A total of 4 simulations per 
filter were conducted within this failure range. 

The most revealing plots allow the characteristics of both 
failed and unfailed magnitudes to be visible for the PR and 
PRR measurement errors. Here the previously unfailed magni- 
tudes are not overcome by the magnitude of the failure, some- 
what the nature of an insidious soft failure. 

The GPS receiver clock failure was another failure mode 
available for simulation within DKFSIM, but limitations pro- 
hibited covering all of the failure modes in this paper. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
INS Roll Axis Accelerometer Failure 

The INS roll axis accelerometer also had an initial offset bias 
imposed plus a constant-slope ramping bias intended to repre- 
sent an accelerometer soft failure. The failure was turned on at 
2000 seconds and continued throughout the remainder of the 
mission. Again, the objective was to show a parametric range 
of failed condition magnitudes from between an undetectable 
failure to the hard-over failed condition. The aircraft body 
frame designation is defined by X axis - right wing, Y axis - 
nose, and Z axis - up. 

tial offset bias used across all INS failures, and from 5.0e-7 
ft/sec3 to 2.5e-5 ft/sec3 for the constant-slope ramping bias. 
This corresponds to about a 6.2 pg offset, and a maximum bias 
drift rate of 0.78 pg/sec. This minimum bias drift rate equates 
to about 0.016 pg/sec second. The most visible contrast be- 
tween the failure magnitudes and the unfailed magnitudes was 
obtained using 2.0e-4 ft/sec2 initial offset bias, plus an 11.5e-6 
ft/sec3 ramping bias, Figure 7. 

The magnitudes of the failures were 2.0e-4 ft/sec2 for the ini- 

Y INS Specific Force Error, Roll Axis, Body frame 
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Figure 7. INS, Y Component Specific Force Error, Roll 
Axis Accelerometer Failure, (ft/sec*), Body Frame. 
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RESULTS AND OBSERVAl'IONS 

The following discussions address the most significant 
points observed from the simulations conducted. Selection of 
the plots for inclusion in this paper is based on the recogniz- 
able contribution from each. The focus is set upon the failure 
modes because the filters' responses to the failure modes are 
the most informative. The different filter configurations were 
chosen to show the capabilities of DKFSIM, and from there, 
one can observe the potential advantages of one filter over 
another. 

The behavior of the filter states and filter measurement re- 
siduals for all of the filter designs describes each filter's indi.- 
vidual performance. With no failures, the GPS measurement 
residuals were all well behaved and remained almost entirely 
within the one-sigma bounds for the entire mission. 

As was the case for all filter designs, the one-sigma values 
for the pseudorange residuals had a fairly constant value of 
about 25 ft, for all 4 satellites. The magnitudes of the residuals 
typically remained below 20 ft. The one-sigma values for the 
pseudorange-rate residuals had a nominal value of about 0.1 
fps, and magnitudes were well within that range for most of 
the mission. 

residuals were on the order of le-3 radians. The range meas- 
urement stayed mostly inside the 100 ft one-sigma bounds. 
The range-rate residuals had nominal values of about 0.1 fps. 
The magnitudes of the SAR PVU velocity measurement resid- 
uals typically remained at or below 0.5 fps. The TAN radar al- 
timeter measurement residuals were well within the one-sigma 
bounds of about 65 ft. 

For all of the unfailed cases, the magnitudes and one-sigma 
values of the available sensor measurements residuals were 
fairly typical of an efficient estimator. There were no unusual 
trends noted for the unfailed case. 

The one-sigma values for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASAR EO azimuth and elevation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Centralized Kalman Filter 
The first soft failure mode implemented was a satellite 

frequency (range-rate) initial offset bias of 0.05 fps, plus an 
additional ramp of le-5 ft/sec2 (-0.31pg's), affecting the PRR 
measurements. As expected, the PR measurement error plots 
exhibited the integral relationship between the PR and the PRR 
measurements. 

When this GPS satellite failure was imposed at 2200 sec- 
onds, the horizontal position errors quickly increased above 
the one-sigma values, but never exceeded 100 ft for east or 
north axes. However, the vertical position peaked at about I125 
ft. The NAV frame velocity components all shifted but never 
approached the 3-sigma values for the errors. Because the 
magnitude of the induced failure offset biases never reached 
significant proportions, this failure can easily be estimated out 
by the filter. 

Most notably, when the failed satellite passed and a healthy 
satellite was acquired, the GPS measurement residuals became 
relatively large. The cumulative effect from the soft failure: af- 
fected tlhe filter performance by as much as 50 ft as indicated 
by the residuaJ magnitudes. This failure indicates that a maig- 
nitude of this size would likely go undet'ected by the filter. 

The hardest satellite :frequency (range-rate) failure imple- 
mented., involved the same initial offset bias, but instead used 
a much highe:r rate of change for the ramping bias. A slope of 
1.0e-3 fps per second displayed the most drastic reactions. 
The filter horizontal position estimate diverged by as much as 
5800 ft. This phenonnenon occured upon acquisition of the: 
healthy satellite. This level of accumulated error easily ex- 
ceeded the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA:7 sigma tolerance threshold set for filter measure- 
ment rejections. Therefore, the healthier set of GPS satelliles 
were inicorrectly considered unusable by the filter. The SAR 
and TAN measurements also falsely indicated failed sensor 
performance and appeared to show a trend of oscillatory di- 
vergenc:e. The filter position states all e rhibited huge magni- 
tudes several hundred !sigma above the filter's expectations. 
The filtlcr's on,e-sigma .values were not adjusted to attempt to 
track the divergence. However, it does appear that the filter 
was capable of recovering after several t housand seconds. 

vealing plot of the nolrth INS position estimation error in the 
CKF, Figure 13. The satellite came,within range at 2200 sec- 
onds and departed at a'bout 5200 seconds. The huge position 
error shows the filter's inability to detect or estimate this level 
of bias out of the navigation solution. 

An important occurrence under these conditions was the re- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Centralized Kalman Finer, Receiving All Sensor Measurements oc---.-x.. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.. . .. ... . . .1 .. , , , . , , __. , . , . . . . , . .: .:'.:::::. . . .. 

Figure 8. Centralized Kalman Filter, North INS Position 
Estimation Error, (ft), Largest GPS Failure. 

The second largest (GPS failure implemented involved a 
ramping bias slope of 1.Oe-4 fps per second. In this case, the 
unfailed conditions are still distinguishable among the larger 
more dlominant error magnitudes. Under these conditions, the 



PRR measurements from the satellite on receiver channel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA#3 
did not exhibit any indication of a possible failure. It was the 
satellite #3 PR residual that had the most severe reaction, 
Figure 9. It occurred upon acquisition of the new satellite at 
5200 seconds. The only other measurement residual to suffer 
any difficulties was the SAR EO range-rate. From Figure 9, 
one can easily see the filter tracking the error. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 9. Centralized Kalman Filter, GPS Receiver Channel 
#3, Pseudorange Measurement Residual, (ft), Second Largest 
GPS Failure. 

The INS accelerometer failure imposed was the same kind of 
bias set, an initial offset plus a constant-slope ramping bias ad- 
ded to that. The smallest bias offset values were 2.0e-4 ft/sec2 
(-6.2pg's) for the initial offset, and a slope of 5.0e-7 ft/sec2 
(-0.015yg's) per second. This was simply indicative of an 
accelerometer which might drift faster than usual. The CKF 
detected no failures at this magnitude. 
The largest INS accelerometer failure magnitude was set at 

the same initial offset bias, plus an additional 2.5e-5 ft/sec3 
(-0.78pgkec). When the aircraft performs the final high dy- 
namic maneuver at about 6400 seconds, essentially all of the 
filter estimates react violently. Because the aircraft is flying 
straight and level, the filter is misinterpreting the specific force 
error as platform attitude drift, and is adjusting the platform 
tilts to compensate. The two error components are indistin- 
guishable until the observability is improved by performing a 
maneuver. This is true only for the strapdown INS. A gim- 
balled INS cannot distinguish the two components at all, be- 
cause it maintains a fixed inertial orientation. 

The filter's peak horizontal position errors range to about 500 
ft, where the actual position drift exceeded 5000 ft. The fil- 
ter's velocity errors appear to be minimal until the last dynamic 
maneuver. The two areas, other than position, that cannot be 
estimated well by the filter under these conditions consist of 
the attitude drift in the north and east directions, and the X and 

Y components of the specific force drift. These errors grow 
significantly, and because the filter is unaware of the failure, 
the filter's one-sigma values do not grow with them. While it 
may not have diverged as a result of this failure, a similar fail- 
ure having a larger magnitude could cause the filter to diverge. 

The last INS accelerometer failure implemented was intend- 
ed to nearly divide the results obtained from the smallest and 
the largest magnitudes. The slope of the ramping bias was 
11 Se-6 ft/sec3 (-0.36pgkec). The position error did not ex- 
ceed 125 ft. However, even though the CKF has the benefit of 
the SAR and TAN, the same results prevailed indicating an un- 
detected failure. One can easily see the filter's inability to 
track the most insidious failure, that being an INS failure, 
Figure 10. Comparing this plot to the INS specific force error 
plot from the truth model, it is obvious the errors are totally 
unseen by the filter. 
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Figure 10. Centralized Kalman Filter Estimation Error, Y 
Component Specific Force Error, Roll Axis Accelerometer 
Failure, (ft/sec2), Body Frame. 

Federated Kalman Filter 
The FKF received the exact same failure mode and unfailed 

scenarios as the CKF. The random number seeds were identi- 
cal for all of the random processes and magnitudes were exact- 
ly the same. 

modest results, as was the case before with the CKF. Although 
there was a distinguishable difference in the accuracies of the 
filters, the east and north position errors were almost identical, 
while the vertical position estimation error indicates a differ- 
ence of only about an 8 to 10 ft maximum accuracy advantage 
of the CKF over the FKF. Also, it is evident that the naviga- 
tion solution contributed by GPS LF2 has the greatest accuracy 
of any of the local filters. The MF must automatically weight 
this solution more because of its significantly smaller covar- 
iance matrix. This is clearly reflected by the likeness of the 
master filter's estimation error plots to those of LF2. 

The minimum magnitude GPS satellite failure produced zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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The largest magnitude GPS satellite failure offers a much 
clearer perspective into filter behavior. The FKF was initially 
tracking the error, and reached a maximum horizontal position 
estimation error of about 1200 ft, where the actual INS hori- 
zontal position drift grew to about 5000 ft. The MFs fusion 
residual test detected the errors and rejected the GPS LF2 solu- 
tion. Figure 11 shows the recovery of the FKF's estimate of 
the north position error after detecting the failure in the GPS. 
The estimation error and one-sigma bounds are consequently a 
combination of the SAR and TAN local filter values at about 
3800 seconds. This is clearly indicative of the advantage of 
the FKF over the CKF with respect to fault tolerance. The 
CKF diverged to almost 3000 ft in north position estimation 
error for the same failure. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Federated Kalman Filter. Master Filter. No-Reset Mode zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 11. Federated Kalman Filter, Master Filter North INS 
Position Estimation Error, (ft), Largest GPS Failure. 

Both the CKF and FKF filters exhibited improved observ- 
ability in the north and east directions during the maneuver at 
3200 seconds, except, as a consequence of the maneuver, the 
vertical velocity components had significantly larger errors. 
The attitude estimation error was much better for the FKF. 
And, the INS specific force drift components were estimated 
better. Because the MF does not process the sensor specific 
error states for output, in order to compare the CKF and FIG 
user clock frequency bias estimation error, it be obtained from 
LF2. LF2 apparently performed much more efficiently when 
estimating the bias associated with the satellite failure. The 
highest point on the plot is about 1.4 fps ,m total estimation 
error, which is lower than the CKF's highest value of estima- 
tion error. However, after the faulty satellite is removed from 
the receiver's solution, note that the filter recovery is much, 
longer for LF2 than for the CKF. This can be expected be- 
cause the CKF had access to the SAR and TAN measurements. 

For the FKF, because the failure occurTed in the GPS alone, 
the SAR and TAN systems were unaffected and performed 

normally. The CKF, incorporating all measurements together, 
clearly 'experienced several false indications of failed sensors. 
Because the local filtiers are independent, and the failure is 
non-inertial, the failure in the GPS is not corrupting the local 
filter s:olutions for Ld ; l  and LF3. Howi:ver, from the master 
filter fusion residual data file, the fusicln residual rejection rate 
is sufficiently high far the GPS and SAR. This should aid in 
the isolation of the failed sensor. Somf: additional logic is re- 
quiredl to coincide with the FKF operation if the decision pro- 
cess for fault detection, isolation , and recovery (FDIR) is to be 
implemented. 

Characteristic of the failed conditions, the north INS position 
(Figure 12) ,and velocity (Figure 13) estimation errors suffer 

Federated Kalman Filter, Master Filter, No-Reset Mode 
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Figure 12. Federated Kalman Filter, Master Filter, North INS 
Positi~on Estimation Error, (ft), Accelerometer Failure. 

Federated Kalman Filter, Master Filter No-Reset Mode 

Figure 13. Federated Kalman Filter, Master Filter, North INS 
Velocity Estimation Error, (fps), Roll Axis Accelerometer 
Failuse. 



from the growing magnitudes of the imposed roll axis accel- 
erometer bias, and subsequently, the high dynamic maneuvers 
performed by the aircraft. The FKF's north position estimation 
error appears to remain acceptable, about 400 ft, and eventual- 
ly converges. 

Comparing the results from the accelerometer failures, the 
FKF exhibited very similar results to the performance achieved 
by the CKF. There were significant position errors with little 
or no indication from the measurement residuals that a failure 
had occurred. The TAN local filter exhibited very large esti- 
mation errors after the high dynamic maneuver was performed 
near the end of the mission. As was the case for the CKF, the 
accelerometer drift bias had accumulated to such an amount, 
that the filter could not keep pace. The estimation errors were 
quite reasonable until this maneuver. Similar to the CKF, in 
straight and level flight, the FKF cannot tell the difference be- 
tween the attitude and specific force biases, so it adjusts its es- 
timates for the tilts to compensate. When the maneuver is ac- 
complished,J the observability of the accelerometer bias failure 
goes up. Attitude and specific force estimation errors are af- 
fected most adversely from beyond this point because the filter 
could not distinguish between them. The position and velocity 
estimates lose their track either just before or just as the final 
maneuver is accomplished at 6400 seconds. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Cascaded zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKulman Filter 

The cascaded centralized Kalman filter (CASKF) does not 
have access to the raw GPS measurement data, nor does it at- 
tempt to model the GPS error states. Certainly, one should not 
expect similar results for this filter as those results obtained for 
the CKF and FKF. For the smallest magnitude GPS satellite 
failure, the position and velocity estimation errors appear very 
close to the other filters', but the CKF continues to exhibit a 
slight advantage in estimation accuracy. 

CASKF appears to have very high confidence in its estimates, 
even though the errors peak at about 90 ft. The GPS receiver 
falsely influences the centralized filter to a higher confidence 
level than what is appropriate. The CASKF velocity estima- 
tion error plots exhibit approximately the same minimum 
boundary as the CKF and FKF, but inconsistencies in the 
measurement processes force a wider variation in the estimates 
than should be necessary. The SAR EO range-rate, along with 
all three position states, all three specific force states, experi- 
ence this condition. Only the TAN measurement residuals 
show any hint of an affect from the failed condition. 

the Y INS specific force estimation errors are on the same or- 
der as the previous filters, but the corresponding one-sigma 
bounds are one third that of the CKF. Again, the filter was 
inappropriately influenced by the GPS receiver solution. 

The largest magnitude GPS satellite failure is quite revealing 
in this case. The filter is able to detect the divergence because 
the artificially small one-sigma values allow a quicker rejec- 

For north and east position estimation error plots, the 

Although the plots are not presented here, the magnitudes of 

tion of the GPS receiver solution, Figures 14 and 15. This is 
not a result of good filter design. It is a result of the over- 
confidence generated by the filter-driven-filter, where the driv- 
ing filter is the GPS receiver with a very small covariance ma- 
trix. This reaction did not occur for the smaller magnitude 
failures. The plots were reduced in scale to capture the relative 
characteristics prior to the rejection. And, even though the 
SAR measurement residuals were well behaved until the ma- 
neuver at 3200 seconds, the filter's error became evident be- 
cause of the improved observability during that maneuver. It 
was at this point that the filter one-sigmas were opened up to 
allow reconvergence. And, while this may not be optimum 
performance, the CKF drifted off in position error, in all three 
directions, to over 2500 ft. The CASKF recovered at a maxi- 
mum of 600 ft, and the error was less than 100 ft for the re- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 14. Cascaded Centralized Kalman Filter, North INS 
Position Estimation Error, (ft), Largest GPS Failure. 
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Figure 15. Cascaded Centralized Kalman Filter, North INS 
Velocity Estimation Error, (fps), Largest GPS Failure. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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mainder of the mission. This corresponds to rejection of the 
GPS receiver solution, and the resulting dependence on the 
SAR and TAN solutions alone. The filter lolerance levels 
were not altered to favor the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACASKF, although by its design, 
they are artificially reduced. 

For clarification, the maximum error in Figure 14 falls to 
about the -600 ft point. The maximum error in Figure 15 goes 
up to about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-1-2.5 fps. 

For the second largest magnitude GPS satellite failure, the 
SAR and TAN simply did not have the accuracy to maintain 
track, and the CASKF's estimates were overcome by the fail- 
ure. As one might expect, the CASKF's position error grew to 
over 350 ft, but the filter never attempted to adjust the one- 
sigma values to compensate, probably because the error went 
undetected. 

When comparing the worst-case INS roll axis accelerometer 
failure estimation error plots, the CASKF tracks the additional 
bias drift fairly well, until the aircraft performs the maneuver 
at 3400 seconds. At this point, the drift ral e overcomes the fil- 
ter's ability to compensate. And when the aircraft performs the 
final maneuver at 6400 seconds, the estimation error explodes 
to over 2000 ft. Again, this occurs because the filter cannot 
distinguish the specific force errors and the platform tilt errors 
during straight and level flight. It therefone adjusts its esti- 
mates of the platform attitude to compensaie. 

For the medium-range magnitude accelerometer failure, the 
Y INS specific force drift estimation error clearly depicts the 
filter's inability to track the added bias drift, Figure 16. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 16. Cascaded Centralized Kalman Filter Estimation 
Error, Y INS Specific Force Error, (ft/secA2), Medium-Range 
Accelerometer Failure. 

CONCLUSIONS 

The filter performances were much as expected. The CKF 
had nominally better estimation accuracy ]than the other two 

designs;. The FKF in the no-reset mode., benefits from the 
isolated local filters by having the ability to detect and isolate 
non-inertial sensor faillures. The CASKF is over-confident in 
its position estimates,, even though the execution time step for 
the masti-r filter was large enough to offset the time-correlated 
GPS filter estimation outputs. The high dynamics within this 
trajectory enhance the test scenario by stressing the filters, 
even under nlormal unfailed conditions. On the one hand, there 
is better observability, but on the other, the unmodeled g- 
sensitive errors are revealed. When failures are implemenied, 
the strengths and we,aknesses of each fii ter under test can be 
observed. 

brought forth the filtixs' inability to estimate the specific force 
errors due to the INS' roll axis accelerometer failures simulated. 
This occurred for all tlhree filters. None could distinguish ,that 
failure from Ihe platform tilt errors during straight and level 
flight. The FKF estimation errors remained reasonable 
throughout all of the simulations conducted. 

The truth models used with DKFSIM have proven to be .me- 
dium to high fidelity representations of the sensor systems. 
The vast amount of information available from the simulation 
output data files allows for problem definition when desig:ning 
and testing potential filter candidates. The GPS truth model is 
impressive, offering an efficient and realistic truth model sim- 
ulation. Realistic conditions modeled permitted GPS outages, 
signal ,reacquisition delays, and GPS satellite frequency or re- 
ceiver clock failures, for the simulation,s. 

The filter nnodels are representative O F  current filter kmple- 
mentations, using the appropriate dynamic equations and the 
most rec:ent developments in filtering a1 gorithms and data 
manipulation. The a.vailability of the failure modes further 
enhances the capabilities of the simulat'x. Two failures were 
modeled and the expected results were achieved. As a dernon- 
stration of the simuhtor, this might sufifice, but for design pur- 
poses, the intent is to discover the results from new filter cle- 
signs. 'Therefore, based on the simulations, truth models output 
data, and the filter output data, DKFSIM should be considered 
an exc~Alent design tool. 

Upon observing the filters' behaviors, a broader study of the 
failure t,ypes and magnitudes might prove beneficial. How- 
ever, a s,pan 'offered by the simulations performed define a. rel- 
atively coarse parametric range and hopefully will bracket any 
failure simulations with magnitudes smaller than those pre- 
sented hierein. Anything more than the largest failure magni- 
tudes siinulated would likely show results indicating sensor 
"hard failures", for both the GPS and ITVS failures. 

The improved observability during the high dynamics 

Summary 
DKFWM is an excellent simulator for designing and testing 

candidate filter archit,ectures. Having several different variable 
Conditions, the filter architecture may be stressed to meet var- 
ious performance req'uirements. Ultimately, the results from 
these siimulations offer evidence of an effective simulator hav- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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ing realistic sensor truth models and the capability to simulate 
pertinent filter designs and failure modes. 

Finally, the FKF demonstrated its expected fault tolerance 
when the GPS satellite frequency failure was introduced. The 
CKF exhibited difficulty in detecting any failure. Without ad- 
ding some form of FDIR, the CKF is quite vulnerable. The 
CASKF demonstrated its recovery capabilities upon introduc- 
ing the largest GPS satellite frequency failure. However, this 
response was enabled by the intrinsic design deficiency of this 
architecture, having an artificially small covariance matrix. 
Consequently, it is evident that the federated Kalman filter is 
the filter of choice. There is a very small loss of estimation 
accuracy, compared to the advantages gained by the inherent 
fault tolerance of the FKF architecture. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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