
Navigation Strategies for Exploring Indoor Environments

Héctor H. González-Baños
(1)

Jean-Claude Latombe
(2)

(1) Honda R&D, Americas; 800 California St. Suite 300; Mountain View, CA 94041

(2) Department of Computer Science; Stanford University; Stanford, CA 94305

e-mail:{hhg,latombe}@robotics.stanford.edu

Abstract

This paper investigates safe and efficient map-building strategies for a mobile robot with imperfect
control and sensing. In the implementation, a robot equipped with a range sensor builds a polygonal map
(layout) of a previously unknown indoor environment. The robot explores the environment and builds
the map concurrently by patching together the local models acquired by the sensor into a global map. A
well-studied and related problem is the Simultaneous Localization and Mapping (SLAM) problem, where
the goal is to integrate the information collected during navigation into the most accurate map possible.
However, SLAM does not address the sensor-placement portion of the map-building task. That is, given
the map built so far, where should the robot go next? This is the main question addressed in this paper.
Concretely, an algorithm is proposed to guide the robot through a series of “good” positions, where “good”
refers to the expected amount and quality of the information that will be revealed at each new location.
This is similar to the Next-Best View (NBV) problem studied in Computer Vision and Graphics. However,
in mobile robotics the problem is complicated by several issues, two of which are particularly crucial. One is
to achieve safe navigation despite an incomplete knowledge of the environment and sensor limitations (e.g.,
in range and incidence). The other is the need to ensure sufficient overlap between each new local model and
the current map, in order to allow registration of successive views under positioning uncertainties inherent
to mobile robots. To address both issues in a coherent framework, the paper introduces the concept of a safe
region, defined as the largest region that is guaranteed to be free of obstacles given the sensor readings made
so far. The construction of a safe region takes sensor limitations into account. The paper also describes an
NBV algorithm that uses the safe-region concept to select the next robot position at each step. The new
position is chosen within the safe region in order to maximize the expected gain of information under the
constraint that the local model at this new position must have a minimal overlap with the current global
map. In the future, NBV and SLAM algorithms should reinforce each other. While a SLAM algorithm
builds a map by making the best use of the available sensory data, an NBV algorithm like the one proposed
here guides the navigation of the robot through positions selected to provide the best sensory inputs.

1 Introduction

Automatic model building is a fundamental task in mobile robotics [3, 5, 6, 32]. The basic problem is
the following: After being deployed into an unknown environment, a robot, or a team of robots, must
perform sensing operations at multiple locations and integrate the acquired data into a representation of the
environment. However, in practice, this problem turns out to be a difficult one. First, one must choose an
adequate representation of the environment – e.g., topological maps [7], polygonal layouts [6], occupancy
grids [12], 3-D models [31], or feature-based maps [18]. Second, this representation must be extracted from
imperfect sensor readings [9, 21, 30]. Finally, to be truly automatic, the robot must decide on its own the
necessary motions to construct the model [14, 16].

Past research has mainly focused on extracting relevant features (e.g., edges, corners) from raw sensor
data, and on integrating these into a consistent model of the environment. The latter operation is related to
the simultaneous localization and mapping (SLAM) problem [10, 11, 17, 20, 24]. SLAM techniques seek to
integrate the information collected by the robot during navigation into the most accurate map possible [4].
However, SLAM does not address the sensor-placement problem within a map-building task. That is, given
the map known so far, where should the robot move next?

Computing a sequence of sensing positions based on data acquired at previous locations is referred to as
the next-best-view (NBV) problem. While a SLAM algorithm builds a map by making the best possible use
of the available sensory data, an NBV algorithm guides the navigation of the robot through positions chosen
to provide the best possible sensory inputs. The NBV problem has attracted considerable attention in the
past, both from the Computer Vision and Graphics communities [1, 8, 21, 27, 34]). But most proposed
techniques do not apply well to mobile robots. There are at least two reasons for this:

1. A robot must avoid colliding with uncharted obstacles. Existing NBV techniques do not address safe
navigation constraints because they were designed for systems that build a model of a relatively small
object using a sensor moving around the object. Collisions are not an issue for sensors that operate
outside the convex hull of the scene of interest. In contrast, in mobile robotics, the sensor navigates
within the scene’s convex hull. Hence, safe navigation must be taken into account when computing the
robot’s next-best-view.

2. Due to errors in odometry (e.g., wheel slippage), a mobile robot must be able to localize itself with
respect to the partially-built map. Robot localization involves aligning (or registering) new images with
the current map. A number of alignment techniques exist, which all require a minimum overlap between
each new image and portions of the environment seen by the robot at previous locations [24]. An NBV
technique for a mobile robot should take this requirement into account when computing the next view.
This issue is partially addressed in [26].

The next-best-view is a variant of the sensor placement problem. Previous work in this subject study
the placement of one or several sensors to best achieve a certain task [2], usually under the assumption that
the workspace is known. The NBV is related to this general problem, but the computation of a new sensor
position is done on-line as the map is constructed. The computation of sensing positions for exploration,
surveillance, inspection or tracking are in the end extensions to the art-gallery problem [15, 29, 33].

In this paper, we introduce the concept of a safe region, which is the largest region guaranteed to be safe
given the history of sensor readings. Using this notion, we propose an algorithm that iteratively builds a map
by executing union operations over successive safe regions, and use this same map for planning safe motions.
Safe regions are also used to anticipate the overlap between future images and the current, partially-built map
and to check that this overlap satisfies the requirement of the alignment algorithm. Finally, they enable our
NBV algorithm to estimate the gain of information for each new position candidate and select the position
that is the most likely to reveal large unexplored areas of the environment. Thus, the safe-region concept
provides a single coherent framework to incorporate safe-navigation and image-alignment considerations into
the computation of the next-best view.

This article is divided in two parts. Part I presents the notion of a safe region (Section 2), and the
complexity of computing this region from sensor data (Section 3). The general form of our NBV algorithm
is described in Section 4.

In Part II, we describe an experimental system (a Nomadic SuperScout robot equipped with a Sick laser
range finder) implementing our map-building algorithm. Operations not covered in Part I are presented in
Section 5. Details of the specific NBV procedure embedded in our system are described in Section 6. The
system architecture and experimental results are presented in Section 7.

Finally, in Section 8 we list some shortcomings of our work and important extensions to be investigated
in future research.

Part I: Concepts and Algorithms

We first introduce the concept of a safe region. Next, we establish a key result, Theorem 3.1, which states
that a local safe region is no more complex than the visibility region computed under a classic visibility
model (unrestricted “line-of-sight” model). The proof of this theorem provides a means to compute safe
regions. Safe regions are then used to iteratively construct a map. This approach leads to a general and
flexible NBV algorithm, which is the central component of the experimental system described in Part II.

Sensor

τ
θ

visible section of wall

Figure 1: Incidence constraint: the visible section of the wall must satisfy | θ |≤ τ .

2 Notion of a Safe Region

Let us assume that the robot is equipped with a polar range sensor measuring the distance from the sensor’s
center to objects lying in a horizontal plane located at height h above the floor within distance rmax (sensor’s
maximum range). In addition, range-finders cannot reliably detect surfaces oriented at grazing angles with
respect to the the line of sight — i.e., when the angle between the surface normal and the line-of-sight is
greater than some τ (Figure 1). Hence, we add an incidence constraint to our sensor model. Formally, this
model is the following:

Definition 2.1 (Visibility under Incidence and Range Constraints) Let the open subset W ⊂ ℜ2

denote the actual workspace layout. Let ∂W be the boundary of W. A point w ∈ ∂W is visible from a point
q ∈ W if the following conditions are true:

1. Line-of-sight constraint: The open line segment S(w, q) joining q and w does not intersect ∂W.

2. Range constraint: d(q,w) ≤ rmax, where d(q,w) is the Euclidean distance between q and w and
rmax > 0 is an input constant.

3. Incidence constraint: ∠(n,v) ≤ τ , where n is a vector perpendicular to ∂W at w, v is a vector oriented
from w to q, and τ ∈ [0, π/2] is an input constant.

With no loss of generality, we assume that the sensor is located at the origin of the coordinate system.
Because of the line-of-sight constraint, any ray departing from the origin will intersect the visible portion
of ∂W only once. Let this visible contour be described in polar coordinates by some function r(θ). This
function is piecewise continuous. It is discontinuous at those critical values of θ where either an occlusion
occurs or the range/incidence constraints cease to be satisfied. Let a and b be two successive critical values of
θ. In the interval θ ∈ (a, b), either r is continuous or it is undefined (i.e., ∂W is not visible). Thus, the visible
boundary is composed of pieces, and each piece i can be described by a continuous function r = ri(θ; ai, bi)
∀ θ ∈ (ai, bi). The sensor’s output is assumed to be as follows:

Definition 2.2 (Range Sensor Output) The output of the range sensor is an ordered list Π of polar
functions, where every {r(θ; a, b)} ∈ Π is a continuous function of θ over the range interval (a, b) and unde-
fined elsewhere. Each function in Π describes a section of ∂W visible from the origin under Definition 2.1.
Π contains at most one function defined for any θ ∈ (−π, π] (i.e., no two function domains overlap), and
the list is ordered counter-clockwise.

Given an observation Π made at location q, we define the local safe region sl(q) to be the largest region
guaranteed to be free of obstacles. While the effect of the range constraint on sl(q) is obvious, the effect
of the incidence constraint is more subtle. To illustrate, consider Figure 2(a). The sensor has detected the
obstacle contour shown in bold black segments. A naive approach may join the detected contour to the
perimeter limit of the sensor using line segments and declare this region free from obstacles (this region is

(a) (b) (c)

Figure 2: Effect of incidence on safe regions.

shown in light color (yellow) in (a) and its contour is drawn with black lines in (b)). However, because of
the incidence constraints, this region may not be safe as it is shown in (b), where the actual workspace is
displayed in light-gray. The contour of the true safe region that can be derived from the sensor readings
shown in (a) is drawn in black in (c), for an incidence constraint of τ = 70 deg.

3 Computational Complexity of a Safe Region

We calculate sl by computing a description of its boundary. Let ∂sl be the boundary of the region sl. ∂sl is
composed of solid and free curves. A solid curve is a visible section of ∂W, and is represented by an entry
in the list Π.

Given two solid curves represented by {r1(θ; a1, b1), r2(θ; a2, b2)} ⊆ Π, r2 is said to succeed r1 if no other
element in Π is defined in the interval [b1, a2]. A curve f(θ; b1, a2) joining a pair (r1, r2) of successive solid
curves is called a free curve if: (1) any ray erected from the origin is guaranteed to intersect the curve f
before any undetected obstacle in the polar region b1 < θ < a2; and (2) the area enclosed by f in this polar
region is as large as possible.

In order to compute the local safe region at q, we need to compute the free curves that join each pair
of successive solid curves in Π(q). First, we make the assumption that ∂W is continuously differentiable.
Later, we relax this assumption to include the case when ∂W is piecewise differentiable.

3.1 Continuously Differentiable ∂W

Under the assumption that ∂W is continuously differentiable, the complexity of f is O(1). In fact, a free
curve f can be described using no more than 3 function primitives:

Theorem 3.1 (Free Curves) Let r2(θ; a2, b2) succeed r1(θ; a1, b1) in the output list Π of a sensor operating
under Definition 2.2 and located at the origin. If ∂W is continuously differentiable, then the free curve
f(θ; b1, a2) connecting r1 to r2 consists of at most three pieces. Each piece is either a line segment, a circular
arc, or a section of a logarithmic spiral of the form r = ro exp(±λθ) (where ro is a constant and λ = tan τ).

The proof of Theorem 3.1 is given in the appendix, and we only present some aspects of it here. It
is based on a continuity argument. Although its shape may be arbitrary, W represents a physical space
containing physical objects. Its boundary ∂W is a set of Jordan curves (i.e., closed loops in the plane which
do not intersect themselves), and each Jordan curve is a continuous curve. If additionally we enforce that
the curve is differentiable, then we can show that the unobserved section of ∂W lying between a pair of
successive solid curves cannot be arbitrarily close to the sensor. To illustrate this point, we sketch here one
case of the proof.

1s−

r 2
1rp

2

p
1

s+
1

l1

l2

τ

τ

Figure 3: An example of a free curve construction.

Let r1(θ; a1, b1) and r2(θ; a2, b2) be two successive solid curves, and suppose that the incidence constraint
was exceeded at θ = b1 (Figure 3). Hence, the normal to ∂W after r1 is oriented at an angle larger than τ
with respect to the sensor. What can we say about the unobserved section of ∂W lying between r1 and r2?

Define the points p1 = (ρ1, b1) and p2 = (ρ2, a2), where ρ1 = r1(b1) and ρ2 = r2(a2). Suppose that the
boundary of W continues after p1 with its surface normal constantly oriented at exactly an angle τ with
respect to the sensor’s line-of-sight. This curve in polar coordinates has the form r = ro exp [±λ(θ − θo)],
where ro = ρ1 and θo = b1. This last equation defines two spirals: a spiral s+

1 growing counter-clockwise
from p1 = (ρ1, b1), and a spiral s−1 shrinking counter-clockwise from p1. So far, we may conclude that ∂W
must continue from p1 in the counter-clockwise direction either “above” s+

1 or “below” s−1 ; otherwise, the
incidence constraint would not have been violated.

But ∂W cannot continue below s−1 for the case in Figure 3. Indeed, if ∂W continues below s−1 , then ∂W
must bend inwards (i.e., ∂W bends toward the sensor immediately after r1). We know that ∂W does not
cross the origin, otherwise nothing will be visible under Definition 2.1 and Π would be empty. Thus, ∂W
must bend outwards and do so before cutting the ray l2 passing through the origin and p2, since otherwise
r2 would be occluded. Since ∂W is differentiable, there must be a point p where the normal to ∂W points
towards the origin. Therefore, the vicinity of p is a visible portion of ∂W, which violates our assumption
that r2 succeeds r1. So, ∂W must continue above s+

1 .

A similar reasoning allows us to account for every possible combination of events, depending on whether
the sensor’s line-of-sight is occluded, the range constraint is exceeded, or the incidence constraint is exceeded.
All cases are described in detail in the appendix.

The region sl(q) is topologically equivalent to a classic visibility region. Indeed, when the sensor re-
strictions in Definition 2.1 are relaxed, the safe region becomes the visibility region. Several properties and
algorithms that apply to visibility regions also apply to safe regions. For example, the segment connecting q
with p is entirely contained in sl(q) for any p ∈ sl(q). Hence, sl(q) is a star-shaped region — a region that are
entirely observable from at least a single interior. Likewise, a local safe region is a simply connected region
— all the paths joining a pair of points p1 and p2 inside sl(q) are homotopic to one another.

3.2 Piecewise Differentiable ∂W

We now consider the case when ∂W is not differentiable at a finite number of locations. These locations are
the corners of the boundary.

Let n
+ and n

− be the normals to ∂W immediately after and before a corner. We expand our notion of
visibility to include corners by saying that a corner is visible if it is within range and if the average of n

+

and n
− satisfies the incidence constraint in Definition 2.1. Although strictly speaking the normal to ∂W at

a corner is undefined, we assume that an idealized range sensor will see a corner if the average of n
+ and

n
− satisfies the incidence constraint.

Under the above assumption, the analysis of the previous subsection remains valid, except that certain
entries in Π could be single points (i.e., corners). It is easy to verify that any wedge-shaped corner within
range is visible if τ ≥ 45 deg. Thus, sl(q) can always be constructed for reasonable incidence restrictions.

In practice, a range sensor does not have infinite resolution. Instead of returning a list of curves, it
usually produces a list of points, and an additional processing step fits curves through these points. Hence, a
corner could go undetected even if the conditions in Definition 2.1 are satisfied. In our experimental system,
we further assume that the inner angle of the corner is large enough to guarantee that at least one of the
two incident edges will be (fully or partially) detected by the sensor. This assumption is similar in nature
to other assumptions that are implicit in Definition 2.1 — e.g., that no surface is perfectly transparent or
completely reflective.

4 A Next-Best-View Algorithm

In a static environment, a safe region remains safe under the union operation. Hence, the layout model of
an environment can be built iteratively. A first partial layout — a local safe region — is constructed from
the data acquired by the range sensor at the robot’s initial position q0. At each iteration, the algorithm
updates the layout model by computing the union of the safe region built so far with the local safe region
generated at the new position qk. The new safe region is then used to select the next sensing position qk+1.
To compute this position, our NBV procedure first generates a set of potential candidates. Next, it evaluates
each candidate according to the expected gain of information that will be sensed at this position, the needed
overlap between the two partial layout models (to ensure good alignment), and the motion cost required to
move to the new position. These steps are illustrated in Figure 4 and described below.

4.1 Incorporating Model Alignment and Merging Operations

Let Mg(qk−1) = 〈Πg(qk−1), Sg(qk−1)〉 be the partial global model built at qk−1. The term Sg(qk−1) designates
the union of all the local safe regions up to stage k − 1. The boundary of Sg(qk−1) is composed of free and
solid curves, the latter representing physical sections of ∂W. Πg(qk−1) stands for the list of solid curves in
the boundary of Sg(qk−1).

The robot now performs a new sensing operation at the location qk. From this local measurement Πl(qk),
we compute the local safe region sl(qk) as indicated by the proof of Theorem 3.1. Let ml(qk) = 〈Πl(qk), sl(qk)〉
be the local model at qk.1

Let align be the algorithm used to compute the transform T aligning ml(qk) with Mg(qk−1) by matching
the line segments of Πl(qk) and Πg(qk−1). The details of this algorithm are not important here and we assume
that align is given. However, we do not assume that the algorithm is perfect: align computes a correct T
only when there is enough overlap between ml(qk) and Mg(qk−1). The specific amount of required overlap
depends on align and it is an input to the NBV algorithm.

Once T has been calculated, the new global safe region Sg(qk) is computed as the union of T (Sg(qk−1))
and sl(qk). The new model Mg(qk) = 〈Πg(qk), Sg(qk)〉 is represented in a coordinate frame centered at the
robot’s current position qk.

4.2 Candidate Generation

The future position qk+1 should potentially see large unexplored areas through the free curves bounding Sg(qk)
(by definition, unexplored areas cannot be observed through solid curves). However, we are constrained in
our choices for qk+1. The robot has to be entirely contained inside Sg(qk) at the next location qk+1, which
must also be reachable from qk by a collision-free path. Furthermore, the function align must successfully
find a transform T at the next position qk+1. To achieve all these conditions, we proceed as follows:

1Πl denotes the same list as Π. The subindex l is now used to differentiate this list from Πg (the list of solid curves bounding
the global model).

(a) (b)

(c) (d)

Figure 4: Steps in a NBV computation: (a) safe region after 5 sensing operations; (b) the region within the
visibility range of the free curves is sampled: (c) the potential visibility gain of a candidate q is the area A(q)
outside the explored region that is visible through the free curves bounding Sg(qk); (d) the best candidate
is selected to optimize a criterion.

Step 1. Pick a set of possible NBV candidates Nsam ⊂ Sg(qk) at random within the visibility range of
the free curves bounding Sg(qk) (Figure 4(b)).

Step 2. For each q ∈ Nsam, compute the length ζ(q) of the solid curves in Πg(qk) that are visible from
q under Definition 2.1 (see [25] for a survey of methods). If ζ(q) is smaller than the threshold imposed by
align, then remove q from Nsam.

Step 3. Invoke a path planner (many techniques are applicable here) to compute a collision-free path of
the dimensioned robot between qk and each remaining candidate q. If no path exists, remove q from Nsam.

After executing these three steps, we are left with a feasible set Nsam of NBV candidates.

4.3 Evaluation of Candidates

The score of every candidate q ∈ Nsam is defined by the following function:

g(q) = A(q) exp(−λL(q)), (1)

where λ is a positive constant, L(q) is the length of the collision-free path computed by the planner, and
A(q) is a measure of the unexplored region of the environment that is potentially visible from q (A(q) is
defined below). qk+1 is selected as the sample q ∈ Nsam that maximizes g(q).

The constant λ is used to weight the cost of a motion against the expected gain of information. A
small λ means that motion is “cheap” and gives priority to the gain of information. Instead, when λ → ∞,
motion becomes so expensive that only locations near qk are selected, even if they only produce a marginal
information gain. Hence, a small λ leads the robot to first perform a quick exploration of the environment
before filling in the details. Instead, a large λ leads the robot to consistently fill in the details while progressing
through the environment.

Computation of A(q) We measure the potential visibility gain A(q) of each candidate q as the area of the
maximal region outside the current safe region that would be visible through the free curves bounding Sg(qk),
assuming that the contour ∂W is composed only of the solid curves in Πg(qk) (Figure 4(c)). So, we compute
the region visible from q assuming that the free curves are transparent, and intersect this region with the
complement of Sg(qk). For polygonal models, A(q) can be computed by the same ray-sweep algorithm used
to compute classic visibility regions [25], with the following modifications:

1. The sweeping ray may cross an arbitrary number of free curves before hitting a solid one. Therefore,
the running-time of the ray-sweep algorithm becomes O(n log(n) + n kf), where kf is the number of free
curves bounding Sg(qk).

2. The resultant visibility region must be cropped to satisfy the range restrictions of the sensor. This
operation can be done in time O(n kf).

4.4 Termination Condition

If the boundary of Sg(qk) contains no free curve, then the 2-D layout is complete. Otherwise, Sg(qk) is
passed to the next iteration of the mapping process. In practice, however, we use a weaker test: we stop the
mapping process when the length of each remaining free curve is smaller than a specified threshold. This
test is better suited to handle complex environments containing many small geometric features.

4.5 Iterative Next-Best-View Algorithm

The general NBV algorithm is given below. Implementation details, along with example runs (both in
simulation and with a real robot) are described in Part II.

Algorithm next-best-view

Input: 1.- Current partial model Mg(qk−1) and new sensing position qk

2.- Local sensor measurement Πl(qk)
3.- Image alignment function T = align(ml(qk), Mg(qk−1))
4.- Path-planning function path-planner(Sg(qk), qk, q)
5.- Visibility constraints {rmax, τ}
6.- Number of samples m and weighting constant λ > 0

Output: Next position qk+1

1. Compute the local safe region sl(qk).
2. Compute T = align(ml(qk), Mg(qk−1)) and Sg(qk) = sl(qk)

⋃
T (Sg(qk−1)). Set Mg(qk) to 〈Πg(qk), Sg(qk)〉.

3. Repeat until Nsam contains m candidates:

(a) Randomly sample a position q in Sg(qk) within a distance rmax of the free curves bounding Sg(qk).

(b) Compute the length ζ(q) of the solid curves in Sg(qk) that are visible from q. If this number is
less than the threshold required by align, discard q and return to Step 3.

(c) Invoke path-planner(Sg(qk), qk, q). If no collision-free path exists, then discard q and return to
Step 3; else let L(q) be the length of the computed path.

(d) Compute the visibility gain A(q) and add q to Nsam.

4. Select qk+1 to be the candidate in Nsam that maximizes g(q) = A(q) exp(−λL(q)).

(a) (b)

Figure 5: Range sensing: (a) scene; (b) points measured by range sensor.

Part II: Experimental System

In this second part we describe the implementation of an experimental map-building robotic system. This
leads us to describe a number of operations and implementation details that were not covered in Part I.

5 Construction of 2-D Layouts

Our robot is equipped with a polar range sensor from Sick Optic-Electronic. This sensor measures the
distance between the sensor’s center-point and the objects in the environment along several rays regularly
spaced in a horizontal plane at a height h above the floor. The sensor driver converts these measurements
into a list of points representing a cross-section of the environment with respect to the coordinate system
attached to the sensor. Figure 5(b) shows such points for a 180-deg field of view, with 0.5-deg spacing between
every two consecutive rays. We model the sensor using Definition 2.1. We add an angular parameter α to
represent the sensor’s limited field-of-view.

Our goal is to construct a polygonal layout of the environment from the sets of points captured by
the range sensor at different locations. Polygonal models have several interesting characteristics. They can
represent complex environments at any degree of precision. (Similarly, in computer graphics, curved surfaces
are well represented by triangulated meshes.) Polygonal models also make it possible to efficiently compute
geometric properties, such as areas and visibility regions. However, we should remark that representing a
workspace as a polygonal region is not the same as saying that the workspace is polygonal.

The sequence of sensing positions are chosen by the next-best-view algorithm proposed in Section 4.
The following steps are executed at each sensing position q: polyline generation, safe region computation,
model alignment, model merging, and detection of small obstacles. These are described in detail below.

5.1 Polyline Generation

Let L be the list of points acquired by the sensor at q. L is transformed into a collection Πl of polygonal lines
called polylines. The polyline extraction algorithm operates in two steps: (1) group points of L into clusters;
(2) fit a polyline to each cluster. The goal of clustering is to group points that can be traced back to the
same object surface. A sensor with infinite resolution (as in Part I) would capture a curve r(θ) instead of
a sequence of points. This curve would be discontinuous at exactly the points where occlusions occur. For
our sensor, discontinuities are detected using thresholds selected according to the sensor’s accuracy.

The points in each cluster are fitted with a polyline so that every data point lies within a distance ǫ from
a line segment, while minimizing the number of vertices in the polyline. The computation takes advantage

Figure 6: Polyline fit for the data of Figure 5(b).

(a) (b)

Figure 7: A more complicated example of a polyline fit.

of the fact that the data delivered by our polar sensor satisfy an ordering constraint along the noise-free
θ-coordinate. By applying the mapping u = cos θ/ sin θ, v = 1/(r sin θ), the problem is transformed into a
linear fit of the form v = a + bu (which maps to bx + ay = 1 in Cartesian (x, y)-space). Several well-known
recursive algorithms exist to find polylines in (u, v)-space [28]. By converting ǫ to the position-dependent
error bound e = ǫv

√

(a2 + b2) in the (u, v)-space, each data point in the (x, y)-space is guaranteed to be
within ǫ from the computed polyline. The polyline fitting process also acts as a noise reduction filter.

Figure 6 shows three polylines generated from the data points of Figure 5(b). A more complicated
example, in a cluttered office environment, is shown in Figure 7. The area in light color in (b) is the robot’s
visibility region under the unrestricted line-of-sight model.

5.2 Safe Region Computation

Once a polyline set Πl(q) has been extracted from the sensory data, a safe region sl(q) is computed according
to the definition given in Section 2. This region is bounded by the polylines and the free curves joining the
polyline endpoints. The free curves are composed of linear segments, circular arcs and spiral sections. Their
construction is described in the proof of Theorem 3.1 given in the appendix. In our implementation, we
approximate arcs and spiral sections with polygonal lines to simplify subsequent computations. So, the
region sl(q) is computed as a polygon bounded by solid edges (derived from the polylines) and free edges
(derived from the approximated free curves).

Figure 8 shows two local safe regions computed for the scene of Figure 7 for different values of the maximal
range rmax and the incidence angle τ .

(a) (b)

Figure 8: Computed safe regions: (a) rmax = 275 cm and τ = 50 deg; (b) rmax = 550 cm and τ = 85 deg.

(a) (b)

Figure 9: (a) Unaligned polylines; (b) computed alignment.

5.3 Model Alignment

Recall that Mg(qk−1) = 〈Πg(qk−1), Sg(qk−1)〉 denotes the partial global model built at location qk−1. Let the
robot execute a new sensing operation at location qk, extracting the local model ml(qk) = 〈Πl(qk), sl(qk)〉. A
best match is then computed between the line segments in Πg(qk−1) and those in Πl(qk), yielding a Euclidean
transform aligning both sets of polylines. The matching algorithm implemented in our system is based on a
technique previously used to discover and align substructures shared by 3-D molecular structures [13]. The
algorithm selects pairs of line segments from Πl at random. For each pair (u1, u2), it finds a pair of segments
(v1, v2) in Πg with the same relative angle. The correspondence u1→v1, u2→v2 yields a transform T (x, y, θ)
obtained by solving least-square equations. The algorithm then identifies the segments of Πl and Πg which
match under this transform, and creates a new correspondence u1→v1, u2→v2, . . . , ur→vr, where the ui’s
and vi’s are not necessarily distinct. It recalculates the transform based on this new correspondence and
evaluates the quality of the fit. These steps are performed for each pair of line segments sampled from Πl,
and in the end the transform with the best quality is retained. If all segments in Πl are approximately
parallel, the algorithm uses endpoints and odometric sensing to approximate the missing parameter of the
transform. Alternative algorithms could be used here as well.

Figure 9 shows two sets of polylines before alignment (a) and after alignment (b).

(a) (b)

(c) (d)

Figure 10: Merging four local models acquired at the same robot position.

5.4 Model Merging

The selected transform T is applied to Sg(qk−1) and the new global safe region Sg(qk) is computed as the
union of T (Sg(qk−1)) and sl(qk). The solid edges bounding Sg(qk) form the new polyline set Πg(qk). To avoid
edge fragmentation, consecutive solid (respectively free) edges in the boundary of Πg(qk) that are collinear
within the sensor’s resolution are fused into a single edge. The new model Mg(qk) = 〈Πg(qk), Sg(qk)〉 is
represented in the coordinate system attached to the robot at its current position qk. The 2-D layout is
considered complete if no remaining free edge in the boundary of Sg(qk) is longer than a given threshold.

Figure 10 displays four partial models. The robot is at some location where it rotates to face four
successive directions spaced by 90 deg. The local model in (a) was built at the first orientation. The model
in (b) was obtained by merging the model of (a) with the local model generated at the second orientation,
and so on. The model in (d) combines the data collected at the four orientations. Figure 10 illustrates
both the model merging operation and how this operation compensates for small variations in the robot’s
position as it rotates to a new orientation. Moreover, it shows the artifice employed in our system to emulate
omnidirectional sensing using a sensor with a 180-deg field of view.

5.5 Dealing with Small Obstacles and Transient Objects

A horizontal cross-section through an indoor environment often intersects small objects (e.g., chair legs).
Such objects are detected by a good range sensor and hence appear in the set of polylines Πl(q) (see Figure 7).
However, small errors in aligning polylines tend to eliminate such obstacles when the union of safe regions is
computed. Other model-merging techniques could be used, but modeling small obstacles by closed contours

Figure 11: Small obstacles extracted from Figure 3(b).

is difficult and not very useful. In many instances, a map is more useful if small obstacles have been omitted,
since the positions of such obstacles is likely to change over time. This leads us to proceed as follows. Small
obstacles result into narrow, inward-pointing spikes in the contour of sl(q). These spikes can be automatically
detected. The “apex” of each spike is a small isolated polyline, which is saved in a separate small-object
map. Hence, the final model consists of a main layout (polylines and safe region) and a secondary map
(small-object map). Figure 11 shows the small obstacles (apexes enclosed by square boxes) detected in the
scan from Figure 7. These include a metal camera tripod, a narrow wooden bar, and a swivel chair.

Merging partial models by taking the union of safe regions has the added advantage of eliminating
transient objects. Comparing edges in successive partial models allows detection of such objects, which can
be recorded in a separate structure (in a way similar to small objects). However, this capability is not
implemented in the system described here.

6 Implementation of next-best-view Algorithm

The next-best-view algorithm described in Section 4 is implemented here essentially unchanged. Steps 1
and 2 make use of techniques presented above (polyline extraction, safe region computation, and model
alignment and merging). Implementation details for Steps 3 and 4 are described below.

6.1 Candidate Generation

The set Nsam of next-best-view candidates is generated as follows, where σ and ρ are two positive constants:

1. For each free edge e in the boundary of Sg(qk), pick σ×length[e] points along e uniformly at random.
Group these points under the set B.

2. For each p ∈ B, compute the visibility region V(p) inside Sg(qk), upper-limited by rmax, and uniformly
select ρ×area[V(p)] random points inside V(p). Return the set Nsam of all these points.

6.2 Path Planning

We model our robot by a disc of radius R. Path planning between two points (the current position of the
robot and a candidate NBV position) is done as follows:

1. Shrink Sg(qk) by R. (This step is performed only after the robot has moved to a new sensing position
qk, not every time a candidate q is evaluated.)

Figure 12: The potential information gain of a candidate q is the area A(q) of the region outside the current
safe region Sg(qk) that may be visible through the free edges; this area is estimated by casting rays from q.

2. Compute the shortest path from qk to a q inside the shrunk region. This computation can be done using
the visibility graph method [19]. The procedure can be accelerated by precomputing the shortest-path
map from qk — SPM(qk). This map is a decomposition of the space into cells, such that the shortest
paths to qk from all points within a cell share the same sequence of obstacle vertices. (See [23] for a
survey of methods.)

6.3 Evaluation of Candidates

Every NBV candidate q is evaluated using the score function proposed in Section 4.3 — i.e., g(q) =
A(q) exp(−λL(q)). Here, L(q) is the length of the shortest path connecting qk−1 to q. The parameter
λ is set to 20 cm−1 in the implementation, a value that prevents the robot from oscillating back and forth
between regions with similar visibility potential. The area A(q) is computed using a discretized version of
the technique outlined in Section 4.3 (see Figure 6.2):

1. Cast a fixed number of equally spaced rays from q.

2. For each ray:

(a) Consider the segment between 0 and rmax from q. If this segment intersects a solid edge, eliminate
the portion beyond the first intersection.

(b) Compute the length ℓ of the portion of the remaining segment that falls outside Sg(qk).

3. Estimate A(q) as the sum of all the computed ℓ’s.

6.4 Example Runs

Figure 13 shows partial models generated at several iterations (0, 2, 6, and 19) during a run of the im-
plemented next-best-view algorithm on simulated data, and the path followed by the robot. The layout
model was completed in 19 iterations. Because path length is taken into account in the score function, the
robot fully explores the bottom-right corridor before moving to the left corridor. Figure 14 shows another
series of snapshots for the same environment, the same initial position, but with greater rmax and τ . The
motion strategy is simpler, requiring only 7 iterations.

(a) (b)

(c) (d)

Figure 13: Example 1 of model construction in simulation.

(a) (b)

(c) (d)

Figure 14: Example 2 of model construction in simulation.

Figure 15: Interaction among the modules of the next-best-view system.

7 Experimental System

Our experimental system consists of a Nomadic SuperScout wheeled platform. We equipped this robot with
a laser range sensor from Sick Optic-Electronic. The robot’s on-board processor (a Pentium 233 MMX)
acquires a 360-point 180-deg scan in 32 ms through a SeaLevel 500 Kbs PCI serial card. At each sensing
location, a 360-deg view is obtained by taking 4 scans (Figure 10).

The on-board processor is connected to the local-area network via 2 Mbs radio-Ethernet. The NBV
software and the navigation monitor run off-board in a Pentium II 450 MHz Dell computer. The software
was written in C++ and uses geometric functions from the LEDA-3.8 library [22].

7.1 System Architecture

The software consists of several modules executing specialized functions, communicating with each other
through TCP/IP socket connections under a client/server protocol. These modules are shown in Figure 15.

A Sick sensor server handles communications with the SeaLevel card. It allows clients to assume that
they are connecting to a device resembling an ideal sensor. The server offers the following capabilities:
(1) choice among 3 speed modes: 1, 5, and 30 scans/sec; (2) batch transmission of multiple scans on request;
(3) scan averaging using the sensor’s on-board electronics; (4) operation in continuous mode; and (5) real-
time polyline fitting with 2.5-cm error bound.

Since the polyline fitting technique is fast enough to be performed in real time under any speed mode, it
is embedded into the server’s code. This reduces the amount of data transmitted to the clients.

A navigation monitor allows a user to supervise the exploration process. The user may query the NBV
module for the next position and/or the most recent environment model, or select the next sensing position
manually. The user may also teleoperate the robot in continuous mode, receiving scan updates every 0.1
sec. The navigation module is also responsible for aligning new data with the previous model. The module
first pre-aligns new data using the robot’s odometry, and it afterwards invokes the model matching function.
The computed transform is sent to the NBV module with each new scan.

Finally, the NBV module computes the next position given the current model of the environment. The
model is updated every time a new scan is received.

(a) (b)

(d)

(c) (e)

Figure 16: Experiments using the experimental system.

7.2 Example of Layout Construction

Figure 16 shows successive partial layouts built by the experimental system in our laboratory. The robot is
initially placed in an office clustered with many small obstacles (chair and table legs, and cables). The sensor
parameters are rmax = 550 cm and τ = 85 deg. The polylines extracted at this initial location are shown
in (a), and the safe region is displayed in (b) along with the next sensing position computed by the NBV
module. The safe region is bounded by many free edges forming spikes, but the candidate evaluation function
automatically detects that little additional space can be seen through such free edges. Consequently, the
NBV module automatically selects the next sensing position near the exit door of the office. Figures (c)-(e)
show the safe region after the robot has reached sensing positions 2, 4 and 6, respectively. At stage 6, the
layout consists of the initial office, a second office (incompletely mapped), and two perpendicular corridors.

Another run is shown in Figure 17, where the robot mapped a larger section of our laboratory. The first
6 iterations are shown in (a). At this point the executed strategy resembles the one shown in Figure 16 due
to similar initial conditions. At the corridor intersection, however, the robot faces more choices than in the
previous example because an office door is open. Nevertheless, the NBV module opted to continue moving
along a corridor, all the way into the other hall (b). Glass is transparent to the sensor’s laser, so the robot
failed to detect the glass door indicated in (b). At this point, the operator overrode the decision of the NBV
module, which interpreted the lack of solid edge around the location of the glass door as the entry into a
large unexplored area. Finally, in (c), the robot moved down the second hall until it reached the lab’s lounge.
The NBV module decided then to send the robot to explore this newly detected open area.

Figure 18 shows all the observed polylines after the robot completed a circuit around the lab. The
polylines shown in light color (red) were captured at the last location, and the area inside the circle is the
range of the last scan. Note the final mismatch. This discrepancy appears because every alignment transform
is computed locally to align the current view Πl(qk) with the current history Πg(qk−1). Once a transform has
been computed, it is never revised. Thanks to the overlap constraint taken into account by the NBV module,
the final mismatch is quite small (about 30 cms, while the mapped area was approximatively 25 × 15 mts.
Reducing this mismatch further would require some form of global optimization over all the transforms
computed so far (or at least a subset of them). Such an operation, which is not implemented in our system,
can be found in recent SLAM systems [10, 11, 17]. In this sense, NBV and SLAM are complementary.

8 Conclusion

Our experiments, both in simulated and real environments, show that the NBV algorithm can considerably
reduce the number of motions and sensing operations required for map building. This claim is difficult
to quantify, as it would require more extensive comparisons between the strategies produced by our NBV
module and strategies produced by other means (e.g., trained human operators). Moreover, our module
can generate very different strategies, depending on the input parameters to the score function. However,
our tests reveal so far that the NBV module produces strategies that cannot be easily out-done by a human
operator. Our system also demonstrates that polygonal maps are feasible representations for indoor mapping
tasks. As it was argued in Section 5, polygons offer significant advantages over other representations.

The most obvious limitation of our map-building system is that it only builds a cross-section of the
environment at a fixed height. Therefore, important obstacles may not be sensed. One way to improve
sensing is to emit laser rays at multiple heights. The techniques described in this article would remain
applicable without significant changes.

A more fundamental limitation of our implementation is the lack of error-recovery capabilities. Any
serious error in polyline extraction or during image alignment can result in a completely unacceptable model.
For that reason, the design of the experimental system is very conservative. For instance, often many points
given by the sensor are discarded to avoid generating incorrect polylines. This may lead the robot to sense
the same part of an environment several times, hence producing a longer motion path. Moreover, the
image-alignment function always runs under user supervision to avert serious registration errors.

Matching transforms are computed locally to align the global model with the local model generated
at the robot’s current location. Once a transform has been computed, it is never revised. This has its

10 mts0

after 6 iterations

AO position

Open door

Glass door

(a)

(b)

(c)

Next−best view

Figure 17: A run around the Robotics Laboratory at Stanford University (Gates building, wing 1-A): (a)
map built after 6 iterations; (b) the robot has moved into a second hall, after the user overrode a decision of
the NBV module to move toward a glass door; (c) the robot maps the second hall until it reached the large
open area, which the NBV module decided to explore next.

Figure 18: Observed polylines after the robot has completed a tour around our Lab. The polylines shown in
light color (red) were captured at the last location of the robot. There is a slight mismatch with polylines
sensed at an early stage of the tour.

disadvantages. In corridors bounded by parallel featureless walls, line matching only corrects positioning
errors in the direction perpendicular to the walls. Odometry can be used, but imprecision in the direction
parallel to the walls grows bigger with distance. A possible solution to this problem is to track successive local
models and transformations to enable the periodic optimization of a global matching criterion, especially
after the robot has completed a long loop. This could be achieved by including some recent SLAM techniques
in our system. For large environments such global optimization would produce more precise layouts, and
solve mismatches like the one shown in Figure 18. More generally, we believe that SLAM and NBV solve
two distinct and complementary aspects of the same map-building problem. Future systems should combine
both SLAM and NBV techniques.

Finally, the current system should handle multiple robots with relatively minor changes. If a team
composed of N robots is available, and their relative positions are known, a single model can be generated
from all the captured scans. A central NBV planner then computes the set of N positions that stations the
team for the aggregated next-best view. However, when the relative positions of the robots are not known,
the problem becomes considerably more difficult. In this case, the robots act independently (distributed
planning), and perhaps communicate only sporadically. The techniques presented in this article would then
have to be revised and extended in order to cover this case.

Acknowledgments: This work was funded by DARPA/Army contract DAAE07-98-L027, ARO MURI
grant DAAH04-96-1-007, NSF grant IIS-9619625, and a gift from Honda R&D, Americas. We also wish to
thank L. Guibas, T.M. Murali, R. Murrieta and S. Thrun, whose contributions enriched the ideas presented
in this article, and S. Yao and E. Mao for their assistance during the implementation of the robot system.

References

[1] J.E. Banta, Y. Zhien, X.Z. Wang, G. Zhang, M.T. Smith, and M.A. Abidi. A “next-best-view” algorithm
for three-dimensional scene reconstruction using range images. In SPIE, volume 2588, pages 418–29,
1995.

[2] A.J. Briggs and B.R. Donald. Automatic sensor configuration for task-directed planning. In IEEE Int.
Conf. on Robotics and Automation, pages 1345–1350, 1994.

[3] R. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun. Collaborative multi-robot exploration. In
IEEE Int. Conf. Robotics & Automation, pages 476–481, 2000.

[4] J.A. Castellanos and J.D. Tardos. Mobile Robot Localization and Map Building: A Multisensor Fusion
Approach. Kluwer Academic Pub., Boston, MA, 2000.

[5] R. Chatila. Mobile robot navigation: Space modeling and decisional processes. In Third Int. Symp. on
Robotics Research, pages 373–378, 1985.

[6] R. Chatila and J.P. Laumond. Position referencing and consistent world modeling for mobile robots. In
Proc. IEEE Int. Conf. on Robotics and Automation, pages 138–143, 1985.

[7] H. Choset and J. Burdick. Sensor based motion planning: The hierarchical generalized voronoi dia-
gram. In J.-P. Laumond and M. Overmars, editors, Proc. 2nd Workshop on Algorithmic Foundations
of Robotics. A.K. Peters, Wellesley, MA, 1996.

[8] C. I. Conolly. The determination of next best views. In IEEE Int. Conf. on Robotics and Automation,
pages 432–435, 1985.

[9] B. Curless and M. Levoy. A volumetric method for building complex models from range images. In
Proc. ACM SIGGRAPH, pages 303–312, August 1996.

[10] M.W.M.G. Dissanayake, P. Newman, H.F. Durrant-Whyte, S. Clark, and M. Csorba. A solution to
the simultaneous localization and map building (slam) problem. IEEE Tr. Robotics & Automation,
17(3):229–241, 2001.

[11] H.F. Durrant-Whyte, M.W.M.G. Dissanayake, and P.W. Gibbens. Toward deployment of large scale
simultaneous localisation and map building (slam) systems. In J. Hollerbach and D. Koditschek, editors,
Robotics Research - The Ninth Int. Symp., pages 161–167. Springer, New York, NY, 2000.

[12] A. Elfes. Sonar-based real world mapping and navigation. IEEE J. Robotics and Automation, RA-
3(3):249–265, 1987.

[13] P.W. Finn, L.E. Kavraki, J.C. Latombe, R. Motwani, C. Shelton, S. Venkatasubramanian, and A. Yao.
Rapid: Randomized pharmacophore identification for drug design. J. of Comp. Geometry: Theory and
Applications, 10:263–272, 1998.

[14] H. González-Banos, A. Efrat, J.C. Latombe, E. Mao, and T.M. Murali. Planning robot motion strategies
for efficient model construction. In J. Hollerbach and D. Koditschek, editors, Robotics Research - The
Ninth Int. Symp., Salt Lake City, UT, 1999. Springer-Verlag.

[15] H. González-Banos, L.J. Guibas, J.C. Latombe, S.M. LaValle, D. Lin, R. Motwani, and C. Tomasi.
Motion planning with visibility constraints. In Y. Shirai and S. Hirose, editors, Robotics Research - The
8th Int. Symp., pages 95–101, 1998.

[16] H. González-Banos and J.C. Latombe. Planning robot motions for range-image acquisition and au-
tomatic 3d model construction. In Proc. AAAI Fall Symposium Series, Integrated Planning for Au-
tonomous Agent Architectures, Orlando, Florida, October 23-25 1998. AAAI Press.

[17] J. Guivant and E. Nebot. Optimization of the simultaneous localization and map building algorithm
for real time implementation. IEEE Tr. Robotics & Automation, 17(3):242–257, 2001.

[18] B. Kuipers, R. Froom, W.K. Lee, and D. Pierce. The semantic hierarchy in robot learning. In J. Connell
and S. Mahadevan, editors, Robot Learning. Kluwer Academic Publishers, Boston, MA, 1993.

[19] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, MA, 1991.

[20] J.J. Leonard and H.F. Durrant-Whyte. Mobile robot localization by tracking geometric beacons. IEEE
Transactions on Robotics and Automation, 7(3):376–382, 1991.

[21] J. Maver and R. Bajcsy. Occlusions as a guide for planning the next view. IEEE Trans. Pattern Analysis
and Machine Intelligence, 15(5):417–433, May 1993.

[22] K. Mehlhorn and St. Nahër. LEDA: A Platform of Combinatorial and Geometric Computing. Cambridge
University Press, Cambridge, UK, 1999.

[23] J.S.B. Mitchell. Shortest paths and networks. In J.E. Goodman and J. O’Rourke, editors, Handbook of
Discrete and Computational Geometry, pages 445–466. CRC Press, Boca Raton, FL, 1997.

[24] P. Moutarlier and R. Chatila. Stochastic multisensory data fusion for mobile robot location and envi-
ronment modeling. In H. Miura and S. Arimoto, editors, Robotics Research - The 5th Int. Symp., pages
85–94. MIT Press, Cambridge, MA, 1989.

[25] J. O’Rourke. Visibility. In J.E. Goodman and J. O’Rourke, editors, Handbook of Discrete and Compu-
tational Geometry, pages 467–479. CRC Press, Boca Raton, FL, 1997.

[26] R. Pito. A solution to the next best view problem for automated cad model acquisition of free-form
objects using range cameras. Technical Report 95-23, GRASP Lab, U. of Pennsylvania, May 1995.

[27] R. Pito. A sensor based solution to the next best view problem. In Proc. IEEE 13th Int. Conf. on
Pattern Recognition, volume 1, pages 941–5, 1996.

[28] W.H. Press, S.A. Teukolsky, W.T. Vettering, and B.P. Flannery. Numerical Recipes in C. Cambridge
University Press, 1994.

[29] T. Shermer. Recent results in art galleries. Proc. IEEE, 80(9):1384–1399, September 1992.

[30] R. Smith and P. Cheeseman. On the representation and estimation of spatial uncertainty. Int. J. of
Robotics Research, 5(4), 1987.

[31] S. Teller. Automated urban model acquisition: Project rationale and status. In Proc. 1998 DARPA
Image Understanding Workshop, pages 455–462. DARPA, 1998.

[32] S. Thrun. An online mapping algorithm for teams of mobile robots. Int. J. of Robotics Research,
20(5):335–363, 2001.

[33] Jorge Urrutia. Art gallery and illumination problems. In J. R. Sack and J. Urrutia, editors, Hanbook
on Computational Geometry, pages 387–434. Elsevier Science Publishers, 1997.

[34] L. Wixson. Viewpoint selection for visual search. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition, pages 800–805, 1994.

A The Complexity of a Free Curve is O(1)

This appendix demonstrates that the complexity of a free curve is constant. Specifically, we provide here
the proof for Theorem 3.1:

Theorem 3.1 (Free Curves) Let r2(θ; a2, b2) succeed r1(θ; a1, b1) in the output list Π of a sensor operating
under Definition 2.2 and located at the origin. If ∂W is continuously differentiable, then the free curve
f(θ; b1, a2) connecting r1 to r2 consists of at most three pieces. Each piece is either a line segment, a circular
arc, or a section of a logarithmic spiral of the form r = ro exp(±λθ) (where ro is a constant and λ = tan τ).

In order to prove this claim we need the following lemma:

Lemma A.1 (Unobserved Obstacles) Let r2(θ; a2, b2) succeeds r1(θ; a1, b1) in the list Π. Let C be some
obstacle, and suppose that neither r1 nor r2 are part of the boundary of C (i.e., C is disjoint from r1 and
r2). If ∂W is continuously differentiable, then no portion of C lies within a distance rmax from the origin in
the polar interval b1 < θ < a2.

Proof: Suppose the lemma is not true — that is, there is a portion of C within rmax of the origin inside
the polar interval (b1, a2). Let p be the closest point to the origin in the boundary of C. Because ∂W is
differentiable, the normal of ∂W at p points toward the origin. Therefore, p and its vicinity should have
been observed. The vicinity of p must then be part of an element of Π. But this contradicts our assumption
that r2 succeeds r1 and that C is disjoint from r1 and r2. ¤

The consequence of Lemma A.1 is that if there exists an obstacle (or a portion of an obstacle) within
the sensor’s range inside the polar interval (b1, a2), then r1 and/or r2 represent a portion of this obstacle’s
boundary. In other words, in order to construct the worst-case scenario in the polar sector (b1, a2), we can
assume that the workspace has no holes, and consider r1 and r2 as boundary sections of the same obstacle.

From here on, let β = a2 − b1, ρ1 = r1(b1) and ρ2 = r2(a2); and let l1 and l2 denote the rays connecting
the origin with point p1 = (ρ1, b1) and point p2 = (ρ2, a2), respectively.

Each endpoint of a curve in Π represents one of the following events: the sensor line-of-sight was occluded
(denoted as case {o}), the range constraint was exceeded (case {e}), or the incidence constraint was exceeded
(case {v}). To join p1 with p2 there are a total of 6 distinct cases: {v,v}, {v,o}, {v,e}, {e,e}, {o,o} and {e,o}.
The cases {o,e}, {o,v} and {e,v} are mirror images of other cases.

Case {v,v}: The incidence constraint was exceeded immediately after θ = b1 and immediately before
θ = a2. Therefore, the normal to ∂W just after r1 and just before r2 is oriented at an angle larger than
τ with respect to the sensor. Suppose that the boundary ∂W continues after r1 with its surface normal
constantly oriented at exactly an angle τ with respect to the sensor’s line-of-sight. This curve in polar
coordinates satisfies the following relations:

n
.
= −r δθ êr + δr êθ , (2)

n · (−rêr) = r|n| cos(τ) =⇒
1

r

δr

δθ
= ±λ, with λ

.
= tan(τ). (3)

Hence, the curve’s equation is r = ro exp [±λ(θ − θo)], with ro = ρ1 and θo = b1. The equation now defines
two spirals: a spiral s+

1 growing counter-clockwise from p1 (or shrinking clockwise), and a second spiral
s−1 shrinking counter-clockwise from p1 (or growing clockwise). ∂W must continue from p1 in the counter-
clockwise direction either “above” s+

1 or “below” s−1 ; otherwise, the incidence constraint would not have
been violated.

Similarly, for the opposite end p2, let ro = ρ2 and θo = a2. The solution to equation (3) now defines
a spiral s−2 growing clockwise from p2 (or shrinking counter-clockwise), and a second spiral s+

2 shrinking
clockwise from p2 (or growing counter-clockwise). ∂W must continue from p2 in the clockwise direction
either “above” s−2 or “below” s+

2 .

Remark 1. ∂W cannot continue below s−1 when ρ1 exp(−λβ) < ρ2. In other words, ∂W cannot continue
below s−1 if this spiral curve cuts l2 below the point p2 (Figure 19(a)). To show this, suppose ∂W continues
below s−1 , which implies that ∂W bends toward the sensor immediately after r1. We know that ∂W does not
cross the origin, else nothing is visible under Definition 2.1 and Π would be empty. Hence, ∂W would have
to bend outwards before cutting the ray l2, otherwise r2 will be occluded. Since ∂W is differentiable, there
must then be a point p where the normal to ∂W points towards the origin. Because of Lemma A.1, this point
p is not occluded by any other section of ∂W that is disjointed from r1 and r2. Therefore, the vicinity of p
is a visible portion of ∂W. This violates our assumption that r2 succeeds r1. Thus, when ρ1 exp(−λβ) < ρ2,
the first section of the curve f joining r1 to r2 coincides with s+

1 .

Remark 2. By symmetry, when ρ2 exp(−λβ) < ρ1 (i.e., s+
2 cuts l1 below p1), the last section of the

curve f coincides with s−2 (which grows clockwise from p2).

The point p2 may lie below the intersection of s−1 with l2, above the intersection of s+
1 with l2, or between

both intersections. Likewise, the point p1 may lie below the intersection of s+
2 with l1, above the intersection

of s−2 with l1, or between both intersections. There are total of 9 combinations of events for case {v,v}, but
only 3 of them are independent:

(a) s−1 cuts l2 above p2. Thus, ρ1 exp(−λβ) > ρ2, and this is equivalent to ρ2 exp(λβ) < ρ1. That
is, s−2 cuts l1 below p1.

1s−

r 2
1rp

2

p
1

s+
1

l1

l2

τ

τ

1r

r 2

l2

s2
−

l1

+
2s

s1
−

p
1

p

p
2

1s+ 2
−s

p
1p

2

1rr 2

l2

l1

p

(a) (b) (c)

Figure 19: Example of a free-curve construction: (a) this situation is impossible; (b) in this case the free
curve is composed of the segment joining p1 with p and the spiral s−2 joining p with p2; (c) here the free
curve is composed of the spiral s+

1 joining p1 with p and the spiral s−2 joining p with p2 (unless p is beyond
range, in which case a circular arc of radius rmax is added).

(b) s+
1 cuts l2 below p2. Thus, ρ1 exp(λβ) < ρ2, and this is equivalent to ρ2 exp(−λβ) > ρ1. That

is, s+
2 cuts l1 above p1.

(c) s−1 cuts l2 below p2 and s+
1 cuts l2 above p2. Thus, ρ1 exp(−λβ) < ρ2 < ρ1 exp(λβ), and this

is equivalent to ρ2 exp(−λβ) < ρ1 < ρ2 exp(λβ). That is, s+
2 cuts l1 below p1, and s−2 cuts l1

above p1.

Let us analyze the first situation. ρ1 exp(−λβ) > ρ2 is equivalent to ρ2 exp(λβ) < ρ1, which in turn
implies that ρ2 exp(−λβ) < ρ1. In other words, both the clockwise-growing s−2 and the clockwise-shrinking
s+
2 cut l1 below p1 (see Figure 19(b)). From Remark 2, the last section of the free curve f coincides with

s−2 . Let p be the intersection between s−2 and l1. The free curve f joining r1 to r2 is thus composed of the
segment joining p1 with p and the spiral s−2 joining p with p2.

A symmetric argument applies to the second situation, when ρ2 exp(−λβ) > ρ1 (i.e., s+
2 cuts l1 above

p1), except that Remark 1 is used in this case.

The only remaining situation is (c). Here, ρ1 exp(−λβ) < ρ2 and ρ2 exp(−λβ) < ρ1. From Remarks 1
and 2, these inequalities imply that the first section of f coincides with s+

1 while the last section of f coincides
with s−2 . Let p be the intersection of s+

1 and s−2 . If p is within rmax, then the free curve f is composed of
the spiral s+

1 joining p1 with p and the spiral s−2 joining p with p2 (Figure 19(c)). Otherwise p is beyond
range, and f is composed of a section of s+

1 , a circular arc of radius rmax, and a section of s−2 .

Case {v,o}: As in the previous case, the curve r1 was interrupted at θ = b1 because the incidence
constraint was exceeded. The curve r2, however, was interrupted at θ = a2 because a portion of ∂W blocked
the sensor’s line-of-sight. In order to produce the occlusion, ∂W must be tangent to l2 at some point pt

below p2. We know from Lemma A.1 that the portion of ∂W producing the occlusion cannot be disjointed
from r1. Thus, pt is part of the same curve as r1.

∂W cannot continue from r1 below s−1 . To show this, suppose ∂W continues below s−1 . This implies that
∂W bends toward the sensor immediately after r1. But to cause the occlusion, ∂W has to bend outwards
before it reaches the tangent point pt. Since ∂W is differentiable, there must be a point where the normal to
∂W points towards the origin. But we already know that this violates our assumption that r2 succeeds r1.

Given that ∂W cannot continue from r1 below s−1 , then ∂W must continue above s+
1 .

For case {v,o}, it is always true that s+
1 cuts the ray l2 below p2 at some point p. Otherwise, it will be

impossible to produce the occlusion at pt, because ∂W continues from r1 above s+
1 . Thus, f is composed of

the spiral s+
1 joining p1 with p, and the segment joining p with p2.

Case {v,e}: As before, the incidence constraint was exceeded at θ = b1. But the curve r2 was interrupted
because the range constraint was exceeded at θ = a2. That is, ρ2 = rmax.

ρ1 < rmax because the point p1 is within range, which implies that ρ1 exp(−λβ) < ρ2 since ρ2 = rmax.
This is exactly the situation described in Remark 1 for case {v,v}. Thus, ∂W cannot continue below s−1 ,
and the first section of f coincides with s+

1 .

If s+
1 cuts the ray l2 below p2 at some point p, then f is composed of the spiral s+

1 joining p1 with p,
and the segment joining p with p2. Otherwise p is beyond range, and f is composed of a section of s+

1 and
a circular arc of radius rmax.

Case {e,e}: This case is trivial. The free curve is a circular arc connecting p1 with p2.

Cases {o,o} and {e,o}: These cases are impossible because of Lemma A.1. In case {o,o}, both r1 and
r2 are occluded. We know from Lemma A.1 that the portion of ∂W occluding r2 cannot be disjointed from
r1, and that the portion of ∂W occluding r1 cannot be disjointed from r2. But this situation is impossible.

For the case {e,o}, ∂W must be tangent to l2 at some point pt below p2. But ∂W continues after r1

beyond the maximum range. Therefore, ∂W has to bend toward the sensor to fall back within range, and
then bend outwards before it reaches the tangent point pt. Again, this violates our assumption that r2

succeeds r1, because ∂W is differentiable and there must be a point where the normal to ∂W points towards
the origin. Hence, this case is impossible.

We have accounted for all possible cases. This concludes our proof of Theorem 3.1. ¤

