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Abstract Currently, electric wheelchairs are commonly

used to improve mobility in disabled people. In severe

cases, the user is unable to control the wheelchair by

themselves because his/her motor functions are disabled.

To restore mobility function, a brain-controlled wheelchair

(BCW) would be a promising system that would allow the

patient to control the wheelchair by their thoughts. P300 is

a reliable brain electrical signal, a component of visual

event-related potentials (ERPs), that could be used for

interpreting user commands. This research aimed to pro-

pose a prototype BCW to allowed severe motor disabled

patients to practically control a wheelchair for use in their

home environment. The users were able to select from 9

possible destination commands in the automatic mode and

from 4 directional commands (forward, backward, turn left

and right) in the shared-control mode. These commands

were selected via the designed P300 processing system.

The wheelchair was steered to the desired location by the

implemented navigation system. Safety of the user was

ensured during wheelchair navigation due to the included

obstacle detection and avoidance features. A combination

of P300 and EOG was used as a hybrid BCW system. The

user could fully operate the system such as enabling P300

detection system, mode shifting and stop/cancelation

command by performing a different consecutive blinks to

generate eye blinking patterns. The results revealed that the

prototype BCW could be operated in either of the proposed

modes. With the new design of the LED-based P300

stimulator, the average accuracies of the P300 detection

algorithm in the shared-control and automatic modes were

95.31 and 83.42% with 3.09 and 3.79 bits/min, respec-

tively. The P300 classification error was acceptable, as the

user could cancel an incorrect command by blinking 2

times. Moreover, the proposed navigation system had a

flexible design that could be interfaced with other assistive

technologies. This research developed 3 alternative input

modules: an eye tracker module and chin and hand con-

troller modules. The user could select the most suit-

able assistive technology based on his/her level of

disability. Other existing assistive technologies could also

be connected to the proposed system in the future using the

same protocol.
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Introduction

Disabled people suffer difficulties in their daily life due to

some normal function that has been disabled. They cannot

walk or move normally in daily life if their motor function

is impaired, such as due to muscle weakness, spinal cord

injury (SCI), Huntington’s disease (HD), ALS, cerebral

palsy and stroke patients. Many research groups have

sought to allow disabled patients to regain their movement

abilities. These patient may be able to restore some normal

function, e.g., standing, walking or grasping by using

functional electrical stimulation (FES) to directly stimulate

their muscles (John et al. 2008) or exoskeletons to hold

their body (Hugh 2009). Nevertheless, the limitations of

using FES and exoskeletons remain a major issue. Muscles

need to be trained to increase their muscle mass before
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using FES, and FES works for only a short period of time

due to muscle fatigue. The most common way to improve

mobility in disabled people is the use of an electric

wheelchair. The patient is able to control the wheelchair by

hand control. Some disabled who have lost hand function,

for example quadriplegic patients, may be able to use their

remaining function to control a customized wheelchair that

supports some specific control input module, such as a

tongue movement detector (Jeonghee et al. 2013), a tooth-

click controller (Tyler et al. 2008), a Sip and Puff switch

(SnP) (Michael et al. 2008), a sniff controller (Anton et al.

2010), a chin pointer (Torsten and Rainer 2007), a head

pointer (Gwang et al. 2007), voice recognition or an eye

tracker (Susumu et al. 2006). Tongue movement detectors

and tooth-click controllers employ the tongue to control

wheelchair directions. These techniques have fast control

responses because the tongue can be rapidly moved in the

oral area. However, the patients need to have some material

in their mouth, which may be uncomfortable. SnP switches

and sniff controllers use air pressure from the patient’s

lungs to control pneumatic sensors. A pattern of inhaling

and exhaling can be used to control wheelchair direction.

These methods are the most popular for wheelchair control

because the systems are reasonably priced and less com-

plex. However, the tube or straw must be cleaned fre-

quently. Some patients who have limited ventilation

systems cannot use these techniques. Chin and head

pointers require the patient to perform head-neck move-

ments to control the wheelchair direction. These techniques

are one of the most accurate controlling methods and are

low in cost but are limited to patients who have normal

head neck function. Voice recognition is generally used in

typing applications and also could be used for wheelchair

control. However, this technique is sensitive to noise, and

the wheelchair must be able to controlled in various envi-

ronments. Pupil direction can be detected by an eye tracker.

The pupil direction reflects the wheelchair direction con-

trol. However, light intensity causes problems with eye

trackers and cameras that mount in front of the user may

obstruct their vision.

Brain computer interface (BCI) techniques can be used

as assistive technology for disabled people by processing

their brain waves or electroencephalograms (EEGs)

(Jonathan et al. 2002). BCIs allow disabled people to type

(Farwell and Donchin 1988), control an electric device

(Yunyong and Yodchanan 2012) and drive machines

(Yunyong and Yodchanan 2010; Karl et al. 2013) including

electric wheelchairs called brain controlled wheelchairs

(BCWs). Presently, BCWs can be categorized into three

different types based on brain phenomena. The first brain

phenomenon is event related desynchronization (ERD) and

event related synchronization (ERS). Users can control

wheelchairs to move in the left or right directions based on

motor imagery (imagine moving to the left or right). The

mu band (11–13 Hz) and beta band (18–25 Hz) at the

contralateral side of the motor cortex change in power

when the user prepares to move (ERD) and after actual

movement (ERS) (Kyuwan and Andrzej 2008; Kazuo et al.

2005; Johan et al. 2007). The user can freely control the

wheelchair by using this technique, but it yields low

accuracy, and the significant effort and training time by the

user are needed. Another brain phenomenon is steady-state

visual evoked potentials (SSVEPs). When the subjects look

at a flickering light source, the same frequency occurs in

the occipital area together with its harmonic frequencies.

Flickering 4 LEDs that each has a different frequency are

defined as different directions (forward, turn left or turn

right) (Christian et al. 2009). This approach gives a fast

response and high accuracy. However, focusing at flick-

ering light causes the user’s eyes to fatigue easily. More-

over, the SSVEP technique has a limited number of

commands due to the harmonic frequencies. The final brain

phenomenon used in BCWs is the P300 signal. This signal

occurs as a positive peak at a latency approximately

300 ms after the stimulus onset. Target commands, such as

wheelchair direction or destination, shown on a monitor or

LED panel are randomly flashed or changed in appearance

to induce the P300 component. The user can select the

command by staring or focusing on the desired target

(Jonathan et al. 2002; Inaki et al. 2009; Rossella et al.

2008; Brice et al. 2006, 2010). The P300 technique is

usually characterized by high accuracy, less fatigue and a

high number of commands compared to SSVEP and ERD/

ERS techniques.

Each type of brain controlled wheelchair method carries

both advantages and disadvantages. ERD/ERS BCWs

facilitate free will control, stimulation free and be able to

use for user with impaired sensory organ but modulating

ERD/ERS signal is usually difficult. P300 and SSVEP

BCWs usually needs simple calibration, no extensive

training is required. Almost user can achieve high suc-

cessful rate. However, these systems need stimulators

causing unnatural control to users. SSVEP BCW gives

fastest response and highest accuracy but it provokes fati-

gue and can cause epileptic seizures.

Present BCWs use different wheelchair control method

which could be classified into 3 types, low-level navigation

(Varona-Moya et al. 2015), high-level navigation (Ng et al.

2014; Zhang et al. 2015) and shared-control (Duan et al.

2014) navigation. Low-level navigation offers a simple

navigation command for example; forward, turn left or

right. The users could design their own path to achieve the

desired destinations without any assistance from the sys-

tem. Most ERD/ERS BCWs use low-level navigation.

High-level navigation offers comfortability to the users by

applying high-level command such as ‘‘go to bedroom’’.
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Various sensors for environment sensing must be equipped

and processed by intelligent system. Shared-control navi-

gation allows both user and the system to control the

wheelchair. The users give a simple command and the

system assists for navigation. This method minimizes

command errors and controlling time.

Low-level and shared-control navigation allow the user

freely control the wheelchair. However, the users need to

control the wheelchair in a series of commands. They may

become fatigued at some distance due to physical limita-

tions. Moreover, an accident may possibly occur to the

users in some critical environments, such as a corridor or

obstructed area. These problem can be reduced by the high-

level navigation, the integration of a navigation system in

the electric wheelchair. Some research groups have

developed P300-based BCWs that allow the users control

the wheelchair by a single command selection (Rossella

et al. 2008; Brice et al. 2006, 2010). The users could go to a

defined location on a map (e.g., living room, bed room,

kitchen or toilet) automatically using the navigation sys-

tem. This system offers comfort to the users. Nevertheless,

the users lack freedom control because they are restricted

to the pre-defined locations on the map.

In this study, we propose a prototype of an automated

navigation system for a P300-based BCW. The proposed

system offers 2 modes of operation, automatic navigation

and shared-control modes. Automatic navigation mode

allows the user to control the wheelchair to a desired

location on a pre-determined map by a single command.

The wheelchair safely navigates to the destination by path

planning, obstacle detection and avoidance features. When

the users achieve the desired destination, they can freely

control the wheelchair direction in shared-control mode.

These destinations in automatic navigation mode and

directional commands in shared-control mode are selected

through a P300 detection system. The combination of P300

and the eye-blinking signal is proposed in this study.

Defined patterns of eye blinking corresponding to 2, 3, or 4

consecutive blinks were used as stop/cancel commands,

enabling the P300 system and mode switching, respec-

tively. The users could fully operate the proposed system

by themselves. Moreover, the proposed automated navi-

gation system was designed to be compatible with other

assistive technologies. This research offers 3 additional

modules, hand control, chin pointer and eye tracker mod-

ules, as alternative assistive technologies. These alternative

input modules could be selected based on the disability

levels of the patient. If the user has hand control (for

example, for a short period of time as in muscle weakness

patient, cerebral palsy or elderly) they may consider using

hand control. If their hand cannot be controlled but they

can perform head-neck movements (spinal cord injury),

they may be suitable candidates for the chin pointer. Eye

trackers and BCWs would be incorporated for severe motor

disability, such as quadriplegic patients.

Figure 1 shows an overview of the proposed system in

which the users can choose the most suitable assistive

technologies for themselves. These alternative input mod-

ules can be plugged and processed using a computer (Intel

compute stick). The classified output command from the

compute stick is sent to another computer unit (mini PC)

via wireless communication. This mini PC was used for

Fig. 1 System overview of the proposed system; the main control

unit composed of computer, microcontroller and power supply. The

alternative assistive technologies could be plugged in this control unit.

All hardware for wheelchair navigation including wheelchair driver

were interfaced with this main control unit. User could monitor

wheelchair status and their command via graphic user interface on the

monitor screen connected to the computer
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wheelchair navigation by processing information from a

main laser scanner, a rotating laser scanner and an

odometer. The odometry data were acquired and processed

via a microcontroller connected to the computer through

serial communication (RS232). This microcontroller was

also used as a peripheral processor, such as to control the

rotational mechanism of a rotating laser scanner, to mon-

itor the power from batteries and to drive the wheelchair

according to the command velocities from the navigation

system. The user can monitor the wheelchair status and

their selected commands via a graphic user interface (GUI)

on the monitor screen connected to the compute stick.

P300 based BCW

System overview

P300 is a type of event related potential (ERP) that can be

elicited post-stimulation. The stimuli can be light (visual

evoked potential, VEP), sound (auditory evoked potential,

AEP), or tactile (somatosensory evoked potential, SSEP).

The P300 signal is elicited as a positive pulse approxi-

mately 300 ms after stimulus onset. A clear P300 response

can be observed by averaging several trials. The P300

signal can be applied to many applications, such as use in

spelling systems (Farwell and Donchin 1988), to control

electric devices (Yunyong and Yodchanan 2012), in mobile

phones (Krzysztof and Piotr 2015) and in electric wheel-

chairs (Kyuwan and Andrzej 2008; Kazuo et al. 2005;

Johan et al. 2007; Christian et al. 2009; Inaki et al. 2009;

Rossella et al. 2008; Brice et al. 2006, 2010).

Our previous research demonstrated that the combina-

tion of eye link artifacts and the P300 signal allowed the

user to operate the wheelchair by themselves (Dilok and

Yodchanan 2012). Our previous work offers 4 target des-

tinations in automatic navigation mode and 4 directional

commands in shared-control mode. Figure 2 shows the

hybrid EOG and P300 system proposed in this study. The

P300 stimulator would be installed in front of the user. This

stimulator was installed approximately 0.3 m from the

subject’s eyes. The details of the P300 stimulator design

are discussed in the next section. The EEG signals were

recorded from the scalp via Ag/AgCl electrodes with

conductive gal or salt solution. Generally, the P300

response occurs in the central, parietal and occipital areas.

To obtain the P300 response, the electrodes were posi-

tioned at O2 (?), Cz (-) and Fz (Ground) according to the

10–20 system EEG montage. Eye blink artifacts or electro-

electrooculography (EOG) can be obviously observed in

the frontal area. Hence, electrode positions were located at

Fp2 (?), C4 (-) and T4 (ground) for capturing the eye-

blinking signal. These two tiny brain waves (in micro

scale) were amplified by a bio-signal amplifier. This study

used a BIOPAC amplifier for signal amplification and noise

filtering. The amplified EEG signals were digitized by an

NI USB-6008 data acquisition card. The digitized signals

were processed to detect the P300 response and the eye-

blinking signal by a LABVIEW programming imple-

mented in the compute stick. The proposed technique for

P300 detection and eye blink detection is discussed later.

The P300 stimulator was initially off. The user could

start the P300 stimulator by blinking 3 times within 2 s.

Once each target stimulus was consequently flashed, the

user could select the desired target command, such as the

destination command in automatic navigation or the

direction command in shared-control modes, by focusing

on only the target being selected. The user’s EEG signal

was processed and classified to obtain the user command.

The proposed system offered 9 destinations in automatic

navigation and 4 directions in shared-control modes. These

modes could be switched by blinking 4 times within 2 s. In

case of emergency, the users could abort their command or

stop the wheelchair by blinking 2 times within 2 s. The

combination of the eye blink pattern and P300 allowed the

wheelchair user to command the wheelchair in both auto-

matic navigation and shared-control modes by themselves.

Fig. 2 P300-based BCW system; the user chooses the desired

command by looking at the P300 stimulator. The output command

was classified and sent to the navigation system. P300 and eye-

blinking pattern were processed from the EEG signal measured at the

user’s scalp
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P300 stimulator design

The P300 stimulator used in this study was based on visual

stimulation. The VEP response could be elicit when the

subject focused on some source of light, e.g., the screen

(LCD) or LED. An LED light was used in this study

because it is the most suitable for wheelchair control

applications. In practice, the wheelchair might be

employed in various locations that may have low light

intensity. Less illumination can diminish P300 detection

accuracy. Our previous study revealed that the LED-based

P300 stimulator yields better performance than LCD

monitors (Dilok and Yodchanan 2011). The accuracy of the

LCD-based P300 stimulator is lower than the LED-based

P300 stimulator when the light intensity is decreased.

Figure 3 shows our design P300 stimulator for the

proposed Hybrid EOG and P300 system. This stimulator

can be used for stimulating the target commands in both

modes. The user can select 9 possible target destinations

(A, B, C, …, I) and 4 directional targets (forward (B),

backward (H), turn left (D) and turn right (F)) in the

automatic navigation and shared-control modes, respec-

tively. Each LED is controlled by a microcontroller

embedded in the stimulator. This microcontroller is con-

nected to the compute stick to receive start, mode shifting

and stop commands and to send the stimulus sequence for

P300 signal segmentation. After stimulus onset in each

target, EEG data are segmented and averaged to yield a

clear P300 response.

The P300 detection accuracy and transfer rate of the

command decrease in relation to the number of targets and

its position. When the target place is adjacent to the non-

target, the non-target may distract the user and cause low

transfer rate and accuracy. In this study, the human visual

field was considered (see Fig. 3) to eliminate interference

between the target and non-target stimulus. Normally, the

visual angle of the fovea, the parafovea and the macula are

2, 5 and 20–25 degrees, respectively (Horacio et al. 2011;

Gray et al. 1997). When the stimulator was installed

300 mm from the user eyes, the diameter of the visual field

projected at the stimulator could be calculated by a simple

trigonometry property. The visual field at the stimulator

was approximately 10, 26.2 and 109–139 mm for fovea,

parafovea and macula angles, respectively. Therefore, our

proposed P300 stimulator used a minimal clearance

between each target of approximately 65 mm. Therefore,

non-target stimuli would not be presented at the focal point

of the fovea and parafovea. The target stimulus (10 mm

diameter of LED) would appear at the focal point at the

fovea. The clearance of the target and non-target in shared-

control mode was higher than in the automatic navigation

modes because forward (B), backward (H), turn left

(D) and turn right (F) targets were located 90 mm from one

another. It was hypothesized that the accuracy and transfer

rate in shared-control mode would be higher than in

automatic mode due to clearance and matrix size. In

automatic navigation mode, the inter stimulus interval (ISI)

and the flash time interval were 400 ms and 100 ms,

respectively. Whereas, ISI and flash time interval were 200

ms and 100 ms, respectively, in shared-control modes. The

total diameter of the proposed P300 stimulator was

170 9 170 mm.

P300 detection

Many studies have sought to achieve high accuracy and

transfer rates by using several EEG channels with a com-

plicated algorithm. The best reported P300 detection

accuracy was approximately 94.5% (Miami 2009; Ulrich

et al. 2008), which used 8 EEGs in a P300-based brain

spelling system. In practice, implementing a high number

of electrodes placed on the scalp is time consuming and

requires a skillful assistant to setup the device. Moreover,

processing of a complicated algorithm based on several

EEG channels is computationally expensive.

This research used one EEG channel for P300 detection.

This EEG signal was captured from O2, Cz and Fz, which

corresponded to plus, minus and ground electrodes,

respectively. Analog-to-digital conversion was set at a

200 Hz sampling frequency. When the P300 stimulator

was started, each target would be randomly flashed in a

sequent at different points of time. The stimulated target

sequence was sent to the compute stick as a marker for

EEG signal segmentation. The EEG data were segmented

for 800 ms after stimulus onset. Mean removal was applied

to each trial to eliminate movement artifact. All sub trials

in each target were averaged to remove background noise.

The grand average was then filtered by a fourth-order

Butterworth band pass filter in a range of 0.5–25 Hz.
Fig. 3 P300 stimulator design; visual field effect consideration to

avoid non-target interference
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Figure 4 (bold line) shows the grand average from 10

epochs of target A, B, C and D. The user was focusing on

target C so that its grand average contained clear N200 and

P300 components. Because our designed P300 stimulator

could elicit strong N200 and P300 responses, P300 detec-

tion could be performed by a template matching technique.

Figure 4 (dotted line) shows a P300 template that was

recorded prior to classification. The template could be

recorded by focusing on one target on the P300 stimulator

for 40 s (approximately 33 trails). This template was user

dependent. Figure 4 demonstrates that target C was the best

match to the P300 template.

The similarities between the recorded P300 template and

a current grand averaged P300 response can be calculated

according to the correlation coefficient as given in Eq. 1.

r ¼
1

n� 1

X

n

i¼1

x ið Þ � x

Sx

� �

y ið Þ � y

Sy

� �� �

ð1Þ

where r is the correlation coefficient (value between -1

and 1) between the P300 template and the current P300

response, x(i) is the template, y(i) is the input signal that

could be either the target and non-target P300 signal, n is

the sample number, x bar and y bar are the mean x(i) and

y(i) signals, and Sx and Sy are the standard deviations of the

xi and yi signals, respectively.

The correlation coefficients of target A, B, C and D in

Fig. 4 compared to the template were -0.1147, 0.1881,

0.7293 and -0.1474, respectively. For the decision making

method, the percentage different between the greatest

maximum value (max1) and the second maximum value

(max2) was calculated. If this percentage was greater than

the setting percent of detection (POD), which was initially

set to 20%, the target that had the maximum value would

be selected as the output command. For example, in Fig. 4,

the correlation coefficient of max1 (target C) and max2

(target B) were 0.7293 and 0.188, respectively. The per-

centage difference was 54.12%, which was greater than the

DOF (20%). Therefore, target C would be classified as the

output command. Each target stimuli would be repeated a

maximum of 20 times. There was no output sent to the

navigation system if the percentage difference between

max1 and max2 was less than the defined DOF after time

out. In contrast, an output command could possibly be

classified earlier if the target response matched the

template.

Eyes-blinking detection

A pulse of the eye blink artifact could be clearly observed

at the frontal area. Figure 5 shows that the EEG signal

contained 3 pulses of eye blinking. This EEG signal was

captured from electrodes placed at Fp2, C4 and T4, which

refer to the plus, minus and ground electrodes, respectively.

This EEG signal was converted from analog to digital at a

200 Hz sampling frequency. A forth-order Butterworth

band pass filter in the range of 1–10 Hz was applied to the

EEG signal to remove the high frequency and DC offset

(zero frequency). A pulse of eye blinking could be detected

by a template matching method. The proposed eye blinking

detection used a Gaussian function as the template because

its shape has similarities to the eye blink artifact pulse.

Because the amplitude and width of Gaussian functions can

be adjusted, the generated bell shape can be adjusted

individually for each user.

A pulse of eye blink artifact was detected by calculating

the correlation coefficient between the template Gaussian

function and the sampled EEG data using Eq. 1. A 250 ms

(50 elements) window size of EEG data with 98% over-

lapping was continuously matched to the array of 50 ele-

ments (250 ms) of the Gaussian function. Because the

value of the correlation coefficient ranges from 1 to -1, the

detection criterion (threshold) was set initially to 0.5 but

could be adjusted. If 3, 4 or 2 blinks were detected, the

P300 would be initiated, the control mode would be swit-

ched and the navigation would be stopped, or the selected

command would be aborted, respectively.

Fig. 4 Correlation coefficient calculation between the recorded P300

template and the current signal for the A, B, C and D targets; the

subject was asked to concentrate on target C. Therefore, target C was

the best match to the P300 template

Fig. 5 EEG signal contains 3 blinking artifacts
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Alternative input modules

Eye tracking system

Some research groups have developed eye controlled

wheelchairs (Gautam 2014; Arai and Ronny 2011; Dilok

et al. 2014) that allow the disable people to control

wheelchair direction using their eyes. Some systems install

a proximity sensor to avoid collision. However, the avail-

able system use a huge camera attached to goggles (Gau-

tam 2014) or eye glasses (Arai and Ronny 2011). The large

camera may obstruct user vision. Moreover, control of the

wheelchair with eye movements for long distances causes

user fatigue.

Our previous work (Dilok et al. 2014) demonstrated that

our eye tracking-based wheelchair control could facilitate

the wheelchair user to control the wheelchair direction and

select a destination. The pupil directions could be captured

by a tiny camera and processed in an embedded board

(Raspberry Pi). Use of a tiny camera diminished visual

obstruction to the user. Moreover, the user had less fatigue

when controlling over long distances in automated navi-

gation mode. However, our previous design uses a CMOS

camera (PI camera for Raspberry PI) whose accuracy

depends on light intensity. Illumination control is impos-

sible in this research because the wheelchair must be able

to be used in various environments. Moreover, customized

glasses cause discomfort to the user due to their structure.

To eliminate the light intensity problem, a tiny infrared

(IR) camera was applied in this study. This IR camera was

attached to the head band, as shown in Fig. 6. Figure 7

shows our prototype of the integrated headband-camera

module. The camera was installed on an adjustable actua-

tor. This actuator was used to adjust the camera position

individually for each user. The user could rotate the actu-

ator around the x and z axis and translate along the x axis.

The analog output from this camera was converted to a

digital image using a LogiLink AV/USB converter. The

digitized imaged would then be processed in a compute

stick at 30 frames per second. The raw image was con-

verted to a grayscale image. The location of the user’s eye

on the image was localized by HAAR cascade algorithm

and segmented as an area of interest. The segmented image

underwent histogram equalization and noise reduction for

image quality enhancement. Finally, this image was con-

verted to a binary image, as shown in Fig. 6. Summation of

the binary image along the x and y axis was used for pupil

direction classification. If both maximum values on the x

and y axis were located between 30 and 70% of the seg-

mented image scale, this condition was considered a neu-

tral condition. When the maximum value on the x axis was

greater or lower than 70 or 30% while the maximum value

on the y axis remained neutral, these conditions were

considered as right and left conditions, respectively. If the

maximum value on the y axis was greater or lower than 70

or 30% while the maximum value on the x axis remained

neutral, these conditions were considered as up/forward or

down/backward conditions, respectively.

The users could control the wheelchair in both auto-

mated navigation and shared-control modes by the defined

protocol. The users could select the destination shown on

monitor screen by the eye tracking system. In automatic

navigation mode, the user must confirm their selection by

blinking. After command confirmation, the wheelchair

could be automatically navigated to the desired destination.

The user could switch modes by closing their eye until a

beep sound occurred. The wheelchair would stop and

change mode. The wheelchair could be controlled to the

direction according to the user’s eye movement in shared-

control mode.
Fig. 6 Eye tracker-based wheelchair control; pupil direction is

captured by a tiny IR camera. The captured image is converted,

processed and classified to obtain the output command

Fig. 7 Integrated headband-camera; a tiny IR camera was mounted

to an adjustable actuator attached at the headband. This camera could

be adjusted in the x axis and rotated on the x and y axis individually
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Hand and chin hand control

Users that can use their hands, such as elderly or SCI

patients with injury below the C8 level, may consider using

hand control. If their hands are not functional but head-

neck movements can be performed, such as for SCI at the

C5–C8 level or cerebral palsy, such users may select chin

control. Both the hand (see Fig. 8 top right) and chin (see

Fig. 8 bottom right) joysticks employed the same principle

as wheelchair’s joystick. It was composed of two variable

resistors whose value changed according to joystick

direction. Two analog signals were acquired by the

microcontroller and processed in the compute stick. This

customized joystick was also embedded with a push switch

such that the joystick could be pressed for an additional

command, such as mode shifting or command confirma-

tion. The hand and chin joysticks were mounted at the end-

effector of the 3 DOF actuator, as shown in Fig. 8 (left).

This actuator could adjust the joystick position individually

for each user.

Controlling the modified wheelchair by either hand or

chin control is straightforward. The user can operate the

wheelchair in both automatic navigation and shared-control

modes. In automatic navigation mode, the user chooses a

destination by using hand or chin joystick to control the

pointer on a GUI on the monitor screen. The users can

confirm their command by pressing the joystick. The

selected command is sent to the navigation unit for the

wheelchair navigation task. The user can switch between

automatic navigation mode and shared-control mode

pressing the joystick for approximately 4 s until a beep

occurs. The user can control the wheelchair direction using

the hand and chin joysticks.

Wheelchair modification

Most disabled people already have their own familiar

wheelchair. Therefore, the proposed system was developed

as an add-on device that could be installed to an existing

electric wheelchair. This study used a YAMAHA light-

weight JWX-1 electric wheelchair. Figure 9 shows the

main component needed to be installed on the wheelchair.

Nevertheless, the component positioning on the wheelchair

is important because some components may obstruct the

users from getting into and out of the wheelchair. Our

previous works (Dilok and Yodchanan 2012) and existing

studies (Kyuwan and Andrzej 2008; Kazuo et al. 2005;

Johan et al. 2007; Christian et al. 2009; Inaki et al. 2009;

Rossella et al. 2008; Brice et al. 2006, 2010). install some

component in front of the user. Even this component can be

folded but it causes many difficulties for the user and their

assistant and makes the user feel uncomfortable. In this

research, the obstacle sensor module and the monitor were

mounted on a metal rod attached at the front-left side of the

wheelchair. The user can easily move in the wheelchair.

The position and angle of the obstacle sensor module and

monitor can be adjusted according to the physical condition

of each user. The control unit was install on the back side

of the wheelchair. In case of hand or chin users, the hand or

chin joystick would be mounted on the right arm-rest of the

wheelchair.

A normal electric wheelchair is controlled by a joystick

mounted on the wheelchair. To control the wheelchair

direction from the developed navigation system, the

wheelchair’s joystick needs to be modified. Generally, a

wheelchair’s joystick is composed of two variable resistors

that change according to joystick movement (see Fig. 10

left). Figure 10 (middle) shows the voltage output from

Fig. 8 Hand and chin input modules; hand (top right) and chin (left

below) joysticks were mounted on a three degree of freedom (DOF)

actuator installed on the wheelchair. The 3 DOF actuator could be

used to adjust the joystick position individually for each user

Fig. 9 System installation on a normal electric wheelchair; the first

module composed of obstacle sensors and a monitor was installed at

front-left side. The second module, the control unit, was installed on

the back side of the wheelchair. For hand and chin users, the hand or

chin joystick was mount at right side of the wheelchair
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both variable resistors (VR1 and VR2) in each condition.

The wheelchair is stopped when VR1 and VR2 are at 2.5

volts. The wheelchair moves forward, backward, turns left

or turns right when VR1 is 5 or 0 volts and VR2 is 5 or 0

volts, respectively. Hence, the wheelchair can be controlled

to move in the desired direction by generating a pattern of

voltages that are delivered to the wheelchair. These two

voltages were generated by an integrated circuit (IC) called

a PCF8574. This digital-to-analog converter (DAC) IC is

controlled by a microcontroller via an I2C bus. Figure 10

(right) shows the modified wheelchair’s joystick, which

could switch between the former joystick and the proposed

navigation system controls.

Wheelchair navigation system

Obstacle sensor module

Safety and accuracy are the most important issues in a

wheelchair navigation system. The system must be able to

sense an environment or obstacles and be able to localized

itself in the map. Our previous work implemented a sensor

module that used a laser scanner (HOKUYO, URG-04LX

240) in conjunction with a 3D camera (Kinect Xbox) [33].

The system could be localized by processing the distance

between detected environments from 0 to 240 degrees

about the wheelchair. The obstacles beneath the 2D plane

of the laser scanner could be detected by the point cloud of

the 3D camera. However, the URG-04LX 240 has a short

sight detection length (4 meters). The wheelchair would

lose localization when the environment or markers were

outside of the detection range. Moreover, the 3D camera

has a narrow angle of detection (43.5 degree). The

wheelchair could collide with obstacles when it turns left or

right.

This research aimed to develop a robust navigation

system for wheelchair control. The environment and the

obstacles would be detected by the combination of the long

distance and rotating laser scanners. Figure 11 shows the

implemented obstacle sensor module. The main laser

scanner, the UTM-30LX (HOKUYO), which has a long

detection distance of 30 meters and wide detection angle of

270 degrees, was used for high performance wheelchair

localization. This main laser scanner was mounted on top

of the module. The rotating laser scanner used the short

detection length URG-04LX laser scanner installed in the

semicircle cylindrical case for 3D obstacle detection. This

laser scanner was rotated in the range of -30 to -50

degrees from the horizontal plane by a servo motor, as

shown in Fig. 12 (red area). This servo motor was driven at

an angular velocity of approximately 0.1 s/degree by the

microcontroller in the main control unit. The rotated angle

was detected by a linear potentiometer. The distances of

the entire range (240 degrees) of the URG-04LX was

matched with the angle information from the linear

potentiometer for 3D obstacle reconstruction, as shown in

Fig. 15. This wide area modified 3D obstacle sensor could

detect obstacles on left and right sides of the wheelchair.

The obstacle sensor module was tightened to the metal rod

that was attached to the wheelchair, as shown in Fig. 12.

Main control unit

Figure 13 shows the main control unit which was com-

posed of three main components: a computer, a micro-

controller and a power management unit. The computer, a

Lenovo mini PC IdeaCentre Q190, was used for navigation

processing and to communicate with the compute stick to

obtain user commands from the alternative assistive

Fig. 10 Joy stick modification; a pattern of control voltages was

generated by an integrated circuit (IC) in the main control unit
Fig. 11 Obstacle sensor module; a main laser scanner (top) was used

for sensing long distance environments in a fixed 2 dimensional plane,

and a rotating laser scanner was used for short length obstacle

detection in 3 dimensions in front of the wheelchair

Fig. 12 Area of detection of the rotating laser scanner; obstacles in

the red area would be detected
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technologies. This mini PC was attached to the black box,

as shown in Fig. 13. The UTM-30LX and URG-04LX laser

scanners were connected to the mini PC through USB1 and

USB2 ports, respectively. The microcontroller, an Arduino

ATMEGA2560, communicated with the mini PC via a

USB to serial converter at USB3 port. The Arduino

ATMEGA2560 and its peripheral circuit was designed to

be compatible with a particular peripheral device. This

board was embedded in the black box. The Arduino

ATMEGA2560 controlled the servo motor to revolve the

rotating laser scanner by pulse width modulation (PWM)

and also to read the bending angle from the linear poten-

tiometer via the ADC feature. Odometer was implemented

by interfacing with the two encoders embedded in each

wheel via an interrupted input module. The wheelchair was

controlled by the two analog signals generated by the

digital-to-analog converter (DAC) IC. This IC communi-

cated with the Arduino ATMEGA2560 via the I2C bus.

The power for all devices was supplied by two recharge-

able 22.2 V 6 amp/hour Lithium batteries. The power

management circuit was designed to transform the battery

input voltage into 5, 12 and 19 V outputs via a switching

regulator circuit. The 5 voltage DC source was supplied to

the microcontroller and its peripheral circuit, laser scan-

ners, servo motor and wheelchair driving circuit. The 12

voltage DC source was supplied to the monitor screen and

cooling fans. The 19 voltage DC source was supplied to the

mini PC.

Wheelchair navigation processing

The navigation system was developed based on an open

source robotic operating system (ROS) (Morgan et al.

2009). The ROS was embedded and operated in the mini

PC running Linux OS. The ROS provides package libraries

to handle a particular task, such as map building, path

planning and navigation packages. All sensors and other

peripheral devices must be tuned for the ROS navigation

system. The coordination (x, y, z) of the laser scanners on

the wheelchair must be defined to provide a transformation

tree to the ROS package. In this study, the base link (0, 0,

0) was the position between two wheels of the wheelchair

on the floor. The main and rotating laser scanners were

positioned at (0.45, 0.19, 0.84) and (0.52, 0.19, 0.084),

respectively. Therefore, all objects detected by each laser

scanner could be transformed to the base frame. The

wheelchair geometry (footprint) and clearance, as shown in

the small and large green boxes of Fig. 14, respectively,

must be declared to prevent collision with an obstacle.

Map building

A 2D map was generated by a hector mapping (Stefan et al.

2013) package that uses a simultaneous localization and

mapping (SLAM) approach (Hugh and Tim 2006a,b).

Environmental information acquired by the main laser

scanner (UTM-30LX) was used for map building. This

ROS package provides a 2D pose estimation that allows the

system to localize the wheelchair location and direction on

the map. Figure 14 shows a 2D map of the BCI lab at

Mahidol University, where white, black and grey pixels

refer to clear areas, obstacles and unexplored areas. The

green box indicates the estimated current location and pose

of the wheelchair on the 2D map. The user could record up

to 9 goal destinations, such as a bedroom, living room,

kitchen, or bathroom, on the map, as shown by the green

rod in Fig. 15.

Navigation

Figure 14 shows an overview of the ROS navigation sys-

tem. When the navigation system received a destination

command, the global planner package would determine a

possible path (rough path) from the current location to the

desired destination based on the global cost map from the

map server. Figure 15 shows a planned path in green from

the base frame (wheelchair) to the defined target destina-

tion (red rod). Then, the local planner package would

determine a local path based on the local cost map acquired

Fig. 13 Main control unit; composed of a computer (mini PC), a

microcontroller unit and a power management unit

Fig. 14 Overview of the navigation system in the ROS
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from the odometer and the UTM-30LX and URG-04LX

(rotating) laser scanners. The local cost map information is

then updated in the 2D map in bright pixels, as in Fig. 15.

Cyan pixels represented a clearance for collision preven-

tion. The several red lines indicate obstacle scanning by the

URG-04LX laser scanner rotating every 1 degree from -30

to 50 degrees. To control the wheelchair, the move-base

package was used to determine the command velocities

(direction and velocity) to drive the base frame (wheel-

chair) along the local path. These command velocities were

calculated from the local path planning information. When

the wheelchair was displaced during navigation, it was

localized and the wheelchair location and pose were

updated by the hector mapping package.

During navigation, static or dynamic obstacles in front

of the wheelchair would be detected in 3 dimensions by the

UTM-30LX and URG-04LX laser scanners. Figure 16

shows obstacle detection and avoidance. When the obsta-

cles were captured, the local cost map would update

environment information in the global cost map to recal-

culate a new path by the global planner package. Then, the

command velocities could be re-determined from the

updated local path from the local planner package. The

recovery behaviors package was used to monitor naviga-

tion behavior. The navigation would be aborted when the

wheelchair was stuck.

Graphic user interface

A graphic user interface (GUI) was displayed on the 5-inch

TFT monitor screen, which was mounted to a metal rod on

the front-left of the wheelchair (see Fig. 18). This screen

could be adjusted for each user. The monitor screen was

connected to the compute stick via an HDMI port. The GUI

was developed as a web server based on HTML 5 in the

compute stick. The user commands and wheelchair status

were published wirelessly through an ROS socket. Fig-

ure 18 (top right) shows the wheelchair status when it was

navigating to a destination. Figure 17 (bottom) shows the

target selection in automatic navigation mode.

Fig. 15 Wheelchair navigation on a 2D map; the wheelchair was

controlled from one destination (green rod) to another destination

(red rod) by following the planned path (green line). (Color

figure online)

Fig. 16 Obstacle avoidance; when an obstacle is present in the

system, the global planner would determine a new path (green line) to

avoid collision with the object (brightened pixels). Cyan pixels

represent the clearance to the obstacle. (Color figure online)

Fig. 17 Graphic user interface (GUI); 5-inch TFT monitor screen

(top left), wheelchair status during navigation to the destination (top

right) and target selection in automatic navigation mode (bottom)
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Results

P300 detection results

All experiments was conducted under the rules and regu-

lations regarding to the Center of Ethical Reinforcement

for Human Research, Mahidol University (COA No. MU-

CIRB 2015/065.2105). Four healthy right-handed subjects

(two men 23 and 24 years old and two women 24 and

30 years old) participated in this study. The first subject

had experience with a BCI system while the rest were new.

All subjects were recruited from undergraduate and grad-

uate student populations of the Department of Biomedical

Engineering, Faculty of Engineering, Mahidol University.

The subjects had no neurological or psychiatric problems

and had a normal or corrected-to-normal vision. Each

subject was asked to sit in the wheelchair during the

experiment. The P300 stimulator was installed approxi-

mately 300 mm in front of the subject. Before starting the

experiment, each subject was trained and motivated to

generate a P300 signal for approximately 10 min. The

experiments were performed in the BCI laboratory on the

4th floor, Engineering Building 1, Salaya campus, Mahidol

University. The experiment consisted of 2 studies: offline

and online lessons.

During the offline study, the P300 template was first

recorded, which required the subject to concentrate on the

desired target for 40 s (approximately 33 trials). The

experiment was designed in 2 runs. Each run consisted of

17 commands (9 commands in automatic mode (A, B, C,

…, I) and another 8 commands in shared-control mode (2

runs each for forward, backward, turn left and turn right

movements)). Totally, the subjects underwent to 18 desti-

nation selections in automatic mode and 16 direction

selections in shared-control mode. For each command

selection, the EEG signal was recorded during the task for

40 s for off-line analysis.

The EEG data were analyzed separately between auto-

matic navigation (9 targets, matrix 3 9 3) and shared-

control (4 targets, matrix 2 9 2) modes. The correlation

coefficient between the template and input signals were

calculated by Eq. 1. System accuracy and information

transfer rate (bit rate) were calculated every 2 s for 40 s.

The bit rate was the amount of information communicated

per unit time [3, 21]. Figures 18 and 19 show the accuracy

(d in blue line) and bit rate (min red line) with respect to

the time for 4 subjects in shared-control (directions for-

ward, backward, turn left and turn right) and automatic

modes (destinations A, B, C, …, and I), respectively. The

results revealed that the accuracy was very poor when

performed using the P300 signal classification during

0–4 s. The performance increased as the time increased.

Conversely, the bit rate tended to decrease as the time

increased. One hundred percent accuracy was achieved by

subject C in shared-control mode.

Figure 20 shows the averaged accuracy (d in blue line)

and bit rate (m in red line) with respect to time for all 4

subjects in shared-control mode (left) and automatic mode

(right). The results revealed that incrementing numbers of

targets in automatic mode caused a decrease in accuracy

compared to shared-control mode. This supported existing

experiments with different sizes and inter-stimulus inter-

vals of stimulators affecting the system accuracy. The

average bit rate of all subjects in automatic mode seemed

Fig. 18 Average accuracy (d or blue line) and bit rate (m or red line)

with respect to time for 4 subjects in shared-control mode (forward,

backward, turn left and turn right). (Color figure online)

Fig. 19 Average accuracy (d or blue line) and bit rate (m or red

line) with respect to time for 4 subjects in automatic navigation mode

(A, B, C, …, I). (Color figure online)

Fig. 20 Average accuracy (d in blue line) and bit rate (min red line)

of 4 subjects in shared-control mode (left) and automatic mode

(right). (Color figure online)
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to have a higher bit rate than in shared-mode because of the

higher number of targets (9 targets vs. 4 targets). The

average accuracies of the P300 detection algorithm in

shared-control and automatic modes were 95.31 and

83.42% with 3.09 and 3.79 bits/min, respectively. The

average accuracy and bit rate of the proposed system with 1

channel of EEG signal were comparable to existing P300

detection systems [29, 30], which use at least 4 EEG sig-

nals. Less electrodes would result in easier and more

practical actual usage. The lower accuracy in automatic

mode was acceptable because the user could stop or cancel

a mistaken command by blinking twice.

Online P300 classification could be performed using the

implemented software in LabView. This software consisted

of 2 screens: setup and output monitoring screens, as

shown in Fig. 21 and 22, respectively. Raw EEG data for

P300 processing (first graph) and eye blinking detection

(second graph), PSD (left below graph) and the P300

template (right below graph) were displayed in the setup

screen, as shown in Fig. 21. The filtering parameters and

the percent of eye blinking detection could be adjusted in

this screen. The raw EEG data for eye blink detection in

Fig. 21 contained 3 times the eye blink pulses. This con-

dition would enable the P300 stimulator to begin stimula-

tion. Figure 22 shows the output monitoring screen.

Destination B was classified as the output command

because the correlation coefficient between the P300 tem-

plate (red line) and the grand averaged P300 response at

destination B was 0.78 (max1), where max2 was 0.32 at

destination I. The percent different between B and I was

40.4%, which was higher than the setting POD (20%).

For the online experiment, the percent of eye blinking

detection (threshold) and the percent of P300 signal

detection (POD) were set at 60 and 20%, respectively. For

P300 signal detection, the processing time was varied

depending on the percent different between max1 and

max2. The system could quickly detect and classify an

output command by the 6th epoch in shared-control mode

and by the 7th epoch in automatic mode. Regarding the

different of ISI in each mode, the reaction time required to

classify the P300 signal was 9.6 s/command in shared-

control mode (ISI = 400 ms, matrix 2 9 2, 6th epoch,)

and 12.6 s/command in automatic mode (ISI = 200 ms,

matrix 3 9 3, 7th epoch).

Figure 23 shows the difference in the powers of the

N200 and P300 components between target and non-target

stimuli. This figure was captured while the subject con-

centrated on destination H. It was found that the N200 and

P300 amplitudes between the target and non-targets stimuli

were affected by the visual field. The target stimulus had

the highest N200 and P300 power of approximately 3.95.

The power of a non-target decreased when the clearance

was increased. For example, destinations E and G, which

were placed 65 mm away from destination H, had powers

of approximately 0.77 and 1.28, respectively. The furthest

non-target (destination D, 90 mm away from the target)

had the lowest power of approximately 0.48. Therefore, the

proposed P300 visual stimulator could diminish the inter-

ference between the target and non-target stimuli.

Navigation system test

Five disable people (3 spinal cord injured patients and 2

cerebral palsy patients) and 5 healthy subjects participated

in navigation system testing. The disable patients were

recruited from the Putthamonthon Independent Living

Center (PILC), and the normal subjects were recruited from

Fig. 21 The setup screen of the implemented software for EEG

processing for online P300 classification

Fig. 22 The output monitoring screen of the implemented software

for EEG processing for online P300 classification

Fig. 23 The effect of the visual field on the N200 and P300

components of the target and non-target stimuli
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the undergraduate population of the Department of

Biomedical Engineering, Faculty of Engineering, Mahidol

University. The experiments were performed at the BCI

laboratory on the 4th floor, Engineering Building 1, Salaya

campus, Mahidol University.

Each subject was asked to control the wheelchair in a

round trip manner from location A to B in both automatic

navigation and shared-control modes. In automatic navi-

gation mode, locations A and B were recorded beforehand

on the 2D map. The subject was asked to select the defined

location in this mode. These two locations were located

approximately 10 meters away from each other. The path

along these two locations comprised a doorway and a

corner. In shared-control mode, the subject was required to

manually control the wheelchair to reach the goal position.

The experiment was repeated 6 times for statistical anal-

ysis. The time elapsed during each trial was recorded and

used to quantitatively evaluate the system performance.

Moreover, the proposed system was qualitatively evaluated

by questionnaires from the subject’s post-operation. The

alternative assistive technology used in this experiment

was a chin controller. The subjects used their chin to

manually control the wheelchair directions in shared-con-

trol mode. In automatic navigation mode, the subject used

their chin to select the destination.

Figure 24 shows averaged time usage of each disabled

subject in automatic navigation (white bar) and shared-

control (gray bar) modes. Subjects 1–3 are the spinal cord

injured patients, and Subjects 4–5 are the cerebral palsy

patients. The results revealed that the automatic navigation

system required less controlling time in most subjects.

Subjects 4 and 5, the cerebral palsy patients, required

significantly longer time to operate the wheelchair in

shared-control mode because these patients cannot perform

head-neck movements well.

Figure 25 shows the grand averaged time used in both

automatic navigation and shared-control modes for all

disable subjects (left graph) compared to normal subjects

(right graph). The statistical analysis (n = 30) employing a

paired t test revealed that the automatic navigation system

had a significantly lower operating time than the shared-

control system (p value\0.01). A significant difference

(p\ 0.05) could also be observed in the normal subject.

This result indicated that the automatic navigation system

could save operation time and induced less fatigue in the

subjects. The automatic navigation would benefit disabled

patient who have less skill/experience or physical limita-

tions for wheelchair control.

The satisfaction of the subjects in using our proposed

system was observed post-wheelchair control. Figure 26

shows the average percentages of satisfaction levels of (1)

safety, (2) GUI, (3) wheelchair speed and (4) the entire

system in both automatic navigation and shared-control

modes based on a questionnaire completed by all subjects.

The results show that the subjects were approximately 68%

Fig. 24 The average time required for wheelchair control in both

automatic navigation (white bar) and shared-control (gray bar) modes

for each disabled subject. Sub 1–3 are the spinal cord injured patients,

and Sub 4–5 are the cerebral palsy patients

Fig. 25 Grand average time usage in automatic navigation and

shared-control modes for all disable subjects (left graph) compared to

all normal subjects (right graph)

Fig. 26 Average percentage of satisfaction levels of (1) safety, (2)

GUI, (3) wheelchair speed and (4) the entire system, in both

automatic navigation (Auto: High-level navigation, the users select

the destination and the system will fully navigate the wheelchair to

the desired destination) and shared-control modes (Share: Shared-

control navigation, the users select each command by themselves, the

navigation system is used only for obstacle avoidance) based on a

questionnaire
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satisfied with safety, GUI and the whole system. The sat-

isfaction score for wheelchair speed is small due to the

speed was set to minimum for safety. This velocity could

be adjusted and satisfaction level could be increased.

Discussions

EEG signal processing

P300 signal is usually has small SNR. Therefore, the existing

researches need several electrodes and complex classifier. In

this study, the proposed designed LED-P300 stimulator

based on human visual perception could elicit strong ERP

component especially P300 amplitude. The improved SNR

required less electrode and small computational time with a

comparable accuracy to existing research. Allowing users

enable P300 stimulator by themselves would be useful

because continuously applying P300 stimulation may bother

the users. Triggering P300 stimulator could be done many

different ways based on (1) EMG, (2) EEG, or (3) EOG. (1)

EMG is a reliable signal but severe disable people could not

voluntary control the target muscle. (2) Generating a strong

alpha wave in EEG is consistent by performing eye-close.

This triggering strategy is perfect since alpha wave could be

acquired by the same electrode as for P300 detection.

However, perform eye closing for a while before P300 tasks

is not affective due to eye’s dark/light adaptation. In addi-

tion, attach one more electrode at forehead could capture

attention of the user. This trigger is also a promising tech-

nique for triggering P300 stimulator command by control-

ling Alpha/Beta waves ratio. (3) Eye-blink artifact from

EOG signal could be captured by the same electrode position

as attention detection. Single eye-blink does not applicable

for triggering the system since it is usually occurred. Possi-

bly, eye blinking pattern such as 2, 3 and 4 consecutive blinks

could be used as three possible commands.

EEG signals were captured using an Ag/AgCl electrode

cap, amplified by a BIOPAC amplifier box set, digitized by

a DAQ card NI USB-6008, and processed by the compute

stick with integrated LabView software. The electrode cap

was easy to setup, but most of subjects noticed that they

felt uncomfortable when they wore the cap. Therefore, cup

electrodes were used to obtain EEG signals at Fp2, T4 and

C4 for the eye blinking detection signal and at O2, Cz and

Fz for the P300 detection signal. In the future, a customized

electrode head set with wireless communication would

reduce the setup time.

Two, 3 or 4 consecutive eye blinks within 2 s are unu-

sual conditions because most people blink their eyes

approximately 1 time in 2 s or more. Therefore, the defined

eye blinking patterns could be used to activate function. In

healthy subjects, 100% accuracy of eye blinking detection

was achieved using the proposed algorithm. Some of the

disable patients, such as spinal cord injured patients, could

perform eye blinking correctly. However, in some severe

cases, performing eyes blinking is difficult. Nevertheless,

the proposed idea using eye blinking pattern detection is a

promising tool that allows severe patients to operate the

entire system by themselves. The patients must be trained

to blink their eyes in different patterns. The optimal per-

centage of eye blinking detection should be adjusted

individually.

The proposed brain controlled wheelchair used visual

evoked potentials (VEPs) of the P300 response for target

command selection. The P300 stimulator was a crucial

component to enhance system accuracy and transfer rate by

allowing for the recording of a strong P300 signal response.

Many studies have investigated the effect of the P300

stimulator on the P300 response. A proper P300 stimulator

can be developed according to the literatures. This research

used an LED-based P300 stimulator, as our previous study

demonstrated that LEDs are the most suitable for brain

control wheelchair applications (Dilok and Yodchanan

2011). The LED-based P300 stimulator showed great per-

formance in eliciting the P300 response. However, the

target stimulus shape and appearance could not be changed

due to hardware limitation.

The P300 detection algorithm used a correlation coef-

ficient method, which calculated similarities between the

P300 template and the input P300 responses. The P300

template recording procedure was obtained beforehand.

The results showed that the average accuracies of the P300

detection algorithm in shared-control and automatic navi-

gation modes were 95.31 and 83.42% with 3.09 and 3.79

bits/min, respectively. The speed of P300 signal classifi-

cation was 9.6 s/command in shared-control mode and

12.6 s/command in automatic navigation mode. The per-

formance difference in each mode was caused by matrix

size differences, the clearance between the target and non-

target stimuli, and ISI. The results of our proposed P300

system were comparable with an existing P300 signal

processing (Miami 2009; Ulrich et al. 2008) with only 1

EEG channel for P300 detection. This would result in

easier and more applicable system setup. Because 100%

accuracy in BCIs is rarely achieved, the remaining error of

the P300 classification was acceptable because the users

could abort a mistaken command by blinking twice.

The proposed BCI system has been preliminary verified

with a severe ALS patient (30 years old male, cannot move

the whole body, can control eye muscle for a short time).

This test conducted without navigation task to avoid heavy

stress to the subject. The subject was sitting while the P300

stimulator was installed in front. The subject was informed

about experimental protocol, how to modulate P300 signal

and how to perform eye-blink patterns. The subject was
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trained how to generate P300 to the desired target and

execute a consecutive eye-blink. Due to the subject’s

physical condition, only twice training session was per-

formed. However, the acceptable average performance

accuracy of 70% for a set of 4 tasks (enable with EOG and

execute with P300) was obtained.

Navigation system

Wheelchair control method for BCW could be done several

ways. The simplest method is direct-control the so called

low-level navigation. The wheelchair was driven to the

desired direction. This method is easy to implement and the

user could control a specific movement. However, the

system does not assist navigating the wheelchair. The

system normally has no sensor for detecting an obstacle. A

serious accident possibly be occurred. Next generation of

BCW comes with sensors that could perceive environment

and help executing the user command. This shared-control

navigation method offers obstacle detection and avoidance

features. The sensor can be a camera, a 2D scanner (laser

scanner), a 3D scanner (3D camera, 3D laser scanner). The

camera can capture an environment but could not get

accurate distance to the obstacle. 2D laser scanner shows a

good performance of wide rang detection, accuracy and

speed. However, obstacle beyond 2D plane could not be

detected. 3D camera has reasonable price. It can capture

3-dimensional environment but the detection field is nar-

row. 3D laser scanner has a great performance which it has

a wide detection range in 3-dimensions but it is costly. The

proposed obstacle sensor module, the combination of the

static and the rotating laser scanners, would be a promising

method for a wide range 3-dimensional obstacle detection.

The high performance BCW embedded with intelligence

system that could automatically navigate the wheelchair to

the predefine location on the map. Some BCW develop this

high-level navigation system that needs marker to localize

wheelchair position. The wheelchair is navigated following

the marker. Nevertheless, the system may lose of local-

ization when the markers is overlaid. Marker less naviga-

tion could be achieved by acquiring sensors information for

performing simultaneous localization and mapping

(SLAM). The system must create the map or read a floor

plan to get an exact dimension of the building. Marker less

navigation does not need modification to the build like

marker based navigation but processing sensors data for

wheelchair localization, navigation and obstacle avoidance

is computational expensive.

The high performance BCW is a promising method for

severe motor disability. The automatic navigation by a

single command would reduce the user’s stress. The safety

could be ensured by the obstacle avoidance function.

This study implemented high performance wheelchair

control. The high-level navigation was executed during

automatic mode while shared-control control mode used

share-control navigation. The proposed system can be

installed in normal electric wheelchairs. The wheelchair

could be driven by generating two analog signals via the

modified wheelchair joystick. The implemented navigation

system was based on ROS navigation. Map building, path

planning, base driving and obstacle avoidance were pro-

cessed by the available ROS package. Most of the wheel-

chair navigation system used laser scanners for obstacle

detection. However, obstacles that are present beneath or

above the 2D scanning plane would not be detected. Hence,

serious accidents could possibly occur. The proposed

navigation system developed a rotating laser scanner that

continuously rotated from -20 to -50 degrees. Therefore,

obstacles beneath the 2D plane of the main laser scanner

could be detected and safely avoided by the obstacle

avoidance feature. However, transparent objects, such as

glass and acrylic and clear plastics, would not be detect by

the laser scanner because infrared light can penetrate

through these objects.

The 2D map was built prior the navigation task. Map

building and the navigation system may fail to localize

itself in a crowded area. A clear map would result in the

best navigation performance. The user could add up to 9 of

their favorite locations on the created map.

Alternative assistive technologies

The proposed navigation system was designed to support

existing alternative input modules. This research offered 4

available alternative assistive technologies: a brain control

module, an eye tracker, a chin pointer and a hand control

module. All modules employ the same protocol to indicate

13 possible commands from the user: 9 destination com-

mands in automatic navigation mode and 4 directions

command in shared-control mode. The benefit of the

alternative input module is that the user can select an

appropriate assistive device to suit their disability level. If

the user has control of their hand function, he/she may

choose to use the hand control module. If the user did not

have hand function but they could perform head-neck

movement, he/she might choose chin control. If the user’s

entire body could not be controlled but they still had eye

and brain function, he/she might consider using the eye

tracker or brain control module, respectively. However, the

output classification accuracy and command rate of each

assistive technology were different, which decreased in the

following order from high to low accuracy: hand control

module, chin pointer, eye tracker, and brain control mod-

ule. The accuracy and command rate could be improved

after training.
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In the future, other assistive technologies, such as a

tongue movement detector, a tooth-click controller, an SnP,

a sniff controller and voice recognition, could be integrated

and controlled in our system via the same communication

protocol.

Conclusions

Many studies have sought to develop brain controlled

wheelchairs by using different types of EEG signals, such

as ERD/ERS (Kyuwan and Andrzej 2008; Kazuo et al.

2005; Johan et al. 2007), SSVEP (Christian et al. 2009),

and P300 signals (Inaki et al. 2009; Rossella et al. 2008;

Brice et al. 2006, 2010). The existing research on brain

controlled wheelchairs can be differentiated into 2 types:

wheelchair that require the user to perform a series of

commands (Kyuwan and Andrzej 2008; Kazuo et al. 2005;

Johan et al. 2007; Christian et al. 2009; Inaki et al. 2009)

and those that require the user to perform a single com-

mand (Rossella et al. 2008; Brice et al. 2006, 2010). There

are various advantages and disadvantages of each type. For

a series of commands, the users can freely control the

wheelchair direction. However, controlling this wheelchair

for a long distance would fatigue the user. For single

commands, the user needs to select only the destination

command and then allow the navigation system to steer the

wheelchair automatically. This type of automatic naviga-

tion system is very convenient. However, the users lack

freedom and are limited to the defined destinations.

This research combined the advantages of each config-

uration. The proposed system offers two operation modes,

shared-control automatic navigation modes that can be

controlled by a series of commands and by single a com-

mand, respectively. This system offers the user conve-

nience and freedom for wheelchair control.

The proposed BCW allows users to drive an electric

wheelchair by using a BCI system interfaced with a navi-

gation system. Nine destination commands (A, B, C, …, I)

in automatic navigation mode and four direction com-

mands (forward, backward, turn left and turn right) in

shared-control mode were provided to the users. These

commands can be selected by the proposed hybrid P300

and eye blink using the BCW system. After the destination

command selection in automatic navigation mode, the

wheelchair was steered automatically from the current

position to the desired destination. Possible user command

detection error was not a major issue because the user

could abort a mistaken command by the defined eye-

blinking pattern (2 times of eye blinking). Furthermore,

when the user reached to the destination in automatic

mode, the users could switch to shared-control mode by

blinking 4 times. The user could freely control wheelchair

movement in the forward, backward, left turn and right turn

directions. The defined patterns of eye blinking enabled

users to turn on or off the P300 stimulation system by

themselves by blinking 3 times. The proposed eye-blinking

detection algorithm was able to detect eye blinking pat-

terns. The proposed P300 detection algorithm with 1

channel of EEG exhibited a comparable accuracy to pre-

vious studies that used at least 4 EEG channels (Miami

2009; Ulrich et al. 2008), which would facilitate practical

uses of the system. The average accuracies of P300

detection in shared-control and automatic navigation

modes were 95.31 and 83.42% with 3.09 and 3.79 bits/min,

respectively. One hundred percent accuracy was achieved

in shared-control mode by subject C. The lower accuracy

in automatic mode was acceptable because blinking 2 times

stopped or canceled a mistaken command.

Moreover, another 3 alternative user input modules were

available in this research: an eye tracking system, a hand

controlling system, and a chin controlling system. The user

could select an appropriate input module according to his/

her disability level. Further assistive technologies could be

applied to our system with the same communication pro-

tocol in the future.

The implemented navigation system could perceive the

environment without any modification, for example, by

placing a marker or barcode on the ceiling or the floor

(Rossella et al. 2008; Brice et al. 2006, 2010). The devel-

oped obstacle sensors module could detect objects and

household structures in 3 dimensions. This environment

sensing data were used for map building, wheelchair

localization and obstacle detection and avoidance. A 2D

map was built with exactly the same dimensions and shape

as the actual home environment. The wheelchair could be

navigated to the goal position and controlled to the desired

direction in automatic navigation and shared-control

modes, respectively, while ensuring safety by the obstacle

avoidance feature.

The automatic navigation mode exhibited better per-

formance than shared-control mode. The user could

achieve the desired destination in less time and inducing

less fatigue when using the automatic navigation mode.

Global and local path planning facilitated the system to

drive the wheelchair via the fastest route and at the optimal

velocity.
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