
Research Article

Navigation System Heading and Position Accuracy
Improvement through GPS and INS Data Fusion

Ji Hyoung Ryu,1 Ganduulga Gankhuyag,2 and Kil To Chong2,3

1Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea
2Electronics Engineering, Chonbuk National University (CBNU), Jeonju 54896, Republic of Korea
3Advanced Electronics and Information Research Center, CBNU, Jeonju 54896, Republic of Korea

Correspondence should be addressed to Kil To Chong; kitchong@jbnu.ac.kr

Received 5 July 2015; Revised 13 November 2015; Accepted 3 December 2015

Academic Editor: Hana Vaisocherova

Copyright © 2016 Ji Hyoung Ryu et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Commercial navigation systems currently in use have reduced position and heading error but are usually quite expensive. It is
proposed that extended Kalman 	lter (EKF) and Unscented Kalman Filter (UKF) be used in the integration of a global positioning
system (GPS) with an inertial navigation system (INS). GPS and INS individually exhibit large errors but they do complement each
other by maximizing the advantage of each in calculating the heading angle and position through EKF and UKF. �e proposed
method was tested using low cost GPS, a cheap electronic compass (EC), and an inertial management unit (IMU) which provided
accurate heading and position information, verifying the e
cacy of the proposed algorithm.

1. Introduction

Computation of accurate heading and position data is a key
task in a navigation system. Numerous products are available
in the market which can perform above computations.
However, they are expensive. Hence, there is a lot of research
work devoted towards developing a precise navigation system
which is reasonably priced.

Global positioning system (GPS) is used in a variety of
	elds such as scienti	c and engineering, due to its supe-
rior capability of providing accurate navigation information.
However, there are issues in the system such as the following:
when the GPS does not receive the satellite signal leading to
issue in generation of valid data. �e heading information
from only one GPS is not highly accurate. An inertial
navigation system (INS) provides more accurate heading
information than the GPS, but its position data is less reliable
than that of the GPS. It can be seen that the GPS and INS
do complement each other leading to various research works
on integrated INS/GPS navigation systems for the past two
decades. �e above given problems are resolved in this work
by fusing data from GPS, INS, and electronic compass (EC).

Several types of complementary 	lters utilizing low-pass
and high-pass 	lters were proposed due to the frequency
	ltering properties of a linear system [1, 2]. A ship heading
control obtained using disturbance compensatingmodel pre-
dictive control (DC-MPC) algorithm inwave 	eldswas previ-
ously suggested [3]. Some works also combined Kalman 	lter
(KF) and fuzzy inference in improving the accuracy of a nav-
igation system [4–6]. �e sensor selection was done through
fuzzy logic while KF was utilized for sensor fusion. KF and
its variations have been widely used for sensor fusion such as
in determining an accurate azimuth of a pedestrian system
by fusing EC and INS gyroscope information through decen-
tralized Kalman 	lter [7] while another work fused EC, INS,
and multiple GPS using extended Kalman 	lter-covariance
intersection (EKF-CI) to determine heading information
[8]. A dual-rate Kalman 	lter (DRKF) was designed to
integrate GPS pseudoranges and time-di�erenced GPS car-
rier phases (possessing low noise and millimeter measure-
ment precision) with INS measurements [9]. Estimation
in nonlinear systems is extremely important since most
systems are inherently nonlinear in nature. �e successful
practical nonlinear system implementation of a GPS/MEMS
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(microelectromechanical systems) based-IMU (inertial mea-
surement unit) with heading update in an extended Kalman
	lter (EKF) framework has been previously demonstrated
[10]. Another work utilized adaptive two-stage KF since EKF
cannot e�ectively track time-varying or unknown param-
eters [11]. A major drawback of EKF is that it does not
e�ectively estimate if the system is highly nonlinear since
it uses 	rst-order Taylor series expansion for linearizing
the nonlinear system. �e mean and covariance estimates
acquired using the Unscented Kalman Filter (UKF) on the
other hand are accurate at least up to the second order
[12]. Several works have con	rmed the higher estimation
accuracy of UKF against the EKF [13–16] but their key
limitation is that both cannot undertake the problem of
nonlinear systems with non-Gaussian noise. An unscented
particle 	lter algorithm, which is a particle 	lter using EKF to
generate the proposal distribution, was proposed to solve this
issue [17]. One study compared complementary 	lter and KF
depending on the system model simplicity [16, 18]; another
showed that EKF exhibited good performance in estimating
attitude/orientation using low cost sensor in environments
where GPS signals are denied [19].

Locally weighted regression and smoothing scatterplot
were previously utilized in deriving a more accurate heading
angle using GPS data but it was limited for postprocessing
only [20–23].�eseworkswere expanded by further integrat-
ing EC with INS gyroscopic data for more accurate heading
while the position informationwas determined by integrating
GPS with ISN accelerometer data through EKF and UKF.
It was observed that sensor fusion through KF improved
accuracy similar to results of previous works [22–26].

�e remainder of this paper is organized as follows. EKF
and UKF are explained in detail in Section 2 through the
navigation systemmodel utilized in this work.�e simulation
and experimental tests are presented in Section 3 followed by
the concluding remarks in Section 4.

2. Background and Algorithm

2.1. Extended Kalman Filter (EKF). KF is an e
cient recur-
sive 	lter that estimates the state of a linear or nonlinear
dynamic system from a series of noisy measurements while
EKF is a representative algorithmofKF expanded and applied
to nonlinear system. �e study of EKF necessitates the
understanding of a nonlinear system model 	rst. Consider
the following general nonlinear system equation:

�� = � (��−1) + ��−1, (1)

�� = ℎ (��) + V�, (2)

where (1) and (2) are the state and measurement models
of the nonlinear system while random variables �� and V�
are the process and measurement noise, respectively. Both
noises are assumed to be zero-mean white noise with normal
probability distribution, such that

	 (�) ∼ � (0, �) ,
	 (V) ∼ � (0, ) . (3)

�e process noise � and measurement noise  covariance
matrices might change with each time step or measurement
but they are assumed to be constant for this study.

�eEKF can nowbe applied to the systemupon obtaining
the system model. �e schematic �ow chart of the EKF in
Figure 1(a) shows that the algorithm consists of two main
operations, namely, the prediction and update processes [23].

(1) Prediction process (Step (I)) is responsible for pro-
jecting forward the current state and error covariance
estimates to obtain a priori estimates for the next step.

(2) Correction or update process (Steps (II)–(IV)) which
is the main point of the EKF is responsible for
the feedback, to incorporate the new measurement
into the a priori estimate to obtain an improved a
posteriori estimate.

Jacobian is utilized to linearize the nonlinear model in EKF.
�e� and�matrices in Figure 1(a) can be derived using the
following equations:

� ≡ ����
���������̂� ,

� ≡ �ℎ��
���������̂−� .

(4)

2.2. Unscented Kalman Filter. EKF is not e
cient enough
when the system is highly nonlinear with the following main
drawbacks: (a) linearization may lead to highly unstable
system and (b) the derivation of Jacobian matrices is not
important inmost applications andmost o�en leads to imple-
mentation di
culties.

UKF utilizes unscented transformation to perform state
estimation of nonlinear systems without linearizing the
system and measurement models. A set of carefully and
deterministically chosen weighted samples that parameterize
the mean and covariance of the belief is used in the trans-
formation. Suppose � is a random variable with dimension �
through a nonlinear function � = �(�) and � has covariance�� and mean �� (� ∼ �(��, ��)). A set of points, called
sigma points, are chosen such that their mean and covariance
are �� and ��, respectively. �ese points are applied in the
nonlinear function � = �(�) to get �� and ��. �e �-dimen-
sional random variable � is approximated by 2� + 1 weighted� sigma points. �e sigma points (��) and weights (��) for �
are de	ned as follows:�1 = ��;��+1 = �� + ��, � = 1, 2, . . . , �;

��+�+1 = �� + ��, � = 1, 2, . . . , �,
(5)

�1 = �� + � ;
��+1 = �2 (� + �) , � = 1, 2, . . . , �;

��+�+1 = �2 (� + �) , � = 1, 2, . . . , �,
(6)
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(ẑk, Pz = UT(h(�i ,Wi, R( ( (

(

h − ẑk
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Figure 1: Filtering algorithms.

where �� is a row vector from the matrix � and � is an
arbitrary constant:

�	� = (� + �) ��. (7)

�e method instantiates each sigma point through the
function � = �(�) resulting in a set of transformed sigma
points, mean, and covariance as

�� = 2�+1∑
�=1
��� (��) ,

�� = 2�+1∑
�=1
�� {� (��) − ��} {� (��) − ��}	 .

(8)

�e state and measurement with their covariance can
be predicted upon understanding unscented transformation.
�e remaining steps of the UKF shown in Figure 1(b) are
similar to that of KF.

�e system function is applied to each sample resulting
in a group of transformed points. �e propagated mean and
covariance are the mean and covariance of this group of
points. �e Jacobians of the system and measurement model
do not have to be calculated since there is no linearization
involved in the propagation of the mean and covariance
which makes UKF practically attractive.

2.3. Navigation System Model. �e kinematics of a vehicle is
given by the following state equation [24]:

[[[[
�

"

#

]]]]
= [[[

c# −s# 0
s# c# 00 0 1

]]]
[[[
�
V'
]]]
+ �

= [[[
�c# − Vs#�s# + Vc#'

]]]
+ � = � (�) + �,

(9)

where �, V, and� are the linear velocities and ' is the angular
velocity along �-axis (yaw), while c and s represent cosine
and sine functions. �e measurement model can be de	ned
as follows, based on the need to identify the position (�, �)
and heading angle (#):

�� = [[[
1 0 00 1 00 0 1

]]]
[[[
�"#
]]]
+ V = �� + V. (10)



4 Journal of Sensors

(a) Experimental board setup (b) Experimental car setup (c) Experiment location

Figure 2: Experimental setup.

Jacobian matrices � and � are derived using (4) in order to
linearize the system:

� =
[[[[[[[[[[

��1�� ��1�" ��1�#��2�� ��2�" ��2�#��3�� ��3�" ��3�#

]]]]]]]]]]
= [[[

0 0 −�s# − Vc#0 0 �c# − Vs#0 0 0
]]]
,

� = *3×3.

(11)

Matrix � does not change since measurement model (6) is
linear. Process noise covariance � and measurement noise
covariance  are chosen based on experimental data:

� = [[[
0.01 0 00 0.01 00 0 1

]]]
,

 = [[[
0.3 0 00 0.07 00 0 0.03

]]]
.

(12)

3. Simulation Setup and Result

�e GPS, EC, and INS (with gyroscope and accelerometer)
mounted on an experimental board as shown in Figure 2(a)
were utilized for data gathering. �e CMPS03 EC has a
heading accuracy of 3 to 4 degrees and costs $44. �e uBlox
GPS receiver with model UIGGUB01-V02R01 has a position
accuracy of 10m and data rate of 10Hz, utilizes NMEA 0183
protocol, and costs $40. �e MySEN-M INS has a data rate
of 100Hz and heading accuracy of 4 degrees. A Furuno SC50
satellite compass system was utilized as the reference system.
It has a heading accuracy of 0.5 degrees, position accuracy of
2 to 3m, and setting time of 3min and costs $4,995.

�e experiment board and reference system are placed
on top of the car as shown in Figure 2(b). A car was utilized
instead of a ship due to the di
culty of performing the test
out on the ocean. A roadway on a newly reclaimed area
in Gunsan city of South Korea was chosen for the location
of the experiment, due to the availability of open-sky area
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Figure 3: Comparative position information (GPS, EKF, UKF, and
Furuno).

withminimal tra
c.�e actual experimental location as seen
through Google Earth is shown in Figure 2(c).

GPS and accelerometer data from INS were set as the
measurement state and the state to estimate the position,
respectively. �e resulting position information when using
both EKF and UKF is shown in Figure 3 with several parts
zoomed in order to clearly distinguish the performance of
each. �e raw gyroscope and EC data shown in Figure 4 are
fused to obtain accurate heading information for navigation.
Heading information based on the GPS COG, EKF, UKF,
and reference systems is shown in Figure 5 with EKF giving
values closest to that of the reference system. COG is “Course
Over Ground” heading information from the GPS device
while HDT is “True Heading” of the GPS device obtained by
processing RF cycle in the GPS carrier frequency:

RMSEposition = √ 1�
�∑
�=1
(Δ"�2 + Δ��2),

RMSEheading = √ 1�
�∑
�=1
(#̂� − #�)2.

(13)

�e rootmean square errors (RMSE) calculated using (13) are
shown in Table 1 to give a better perspective in the di�erences
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Figure 4: Heading information.
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Figure 5: Comparative heading information (GPS COG, EKF, UKF,
and Furuno HDT).

of the position and heading result.�eEKF took 132.4128 secs
while UKF took 137.0245 secs to fully simulate the process.

4. Conclusion

Commercial navigation systems produce accurate informa-
tion with reduced errors but are usually expensive.�is work
proposes a system that can estimate accurate heading and
position information comparable to more expensive ones
at a fraction of the cost. Low cost sensors such as global
positioning system (GPS) and electronic compass (EC) are
fused with inertial navigation system (INS)/inertial mea-
surement unit (IMU) through extended Kalman 	lter (EKF)

Table 1: Heading and position errors.

EKF UKF GPS COG

Heading (RMSEheading) 0.326 deg. 0.2196 deg. 8.1218 deg.

Position (RMSEposition) 1.12m 1.12m 1.33m

and Unscented Kalman Filter (UKF) to achieve the desired
results. It was shown that individual heading information
from several cheaper devices with big errors can produce a
much more accurate fused heading value.

Position estimation results for both EKF and UKF show
the same slight increase in accuracy, but heading estimation
results showed that UKF output was closer to the reference
than that of EKF. It was seen that EKF is better than UKF
when taking into consideration the time it took to perform
the process. It can be eventually concluded that accurate
heading and position information can be obtained from the
fusion of several low cost sensors, verifying the e�ectiveness
of the proposed algorithm.
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