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Navigation With Cellular CDMA Signals—Part II:

Performance Analysis and Experimental Results
Joe Khalife , Student Member, IEEE, and Zaher M. Kassas , Senior Member, IEEE

Abstract—A framework for navigation using cellular code di-
vision multiple access (CDMA) signals is studied in this paper.
Theoretical lower bounds on the navigation performance using
pseudorange measurements drawn from the cellular CDMA base
transceiver stations (BTSs) are derived. Moreover, the navigation
performance for a mapper/navigator framework is studied in the
presence of timing discrepancies between the mapper and navi-
gator. In this framework, a mapping receiver (mapper) estimates
the stochastic dynamic clock biases of the BTSs and shares these
estimates with a navigating receiver (navigator). The optimal nav-
igation performance of the mapper/navigator framework in the
presence of timing discrepancies is analyzed, and a practical up-
per bound on the resulting position error is derived. Experimental
results for a ground vehicle and unmanned aerial vehicles (UAVs)
are presented. The ground vehicle results show a mean distance
difference of 5.51 m between the cellular CDMA-only navigation
solution and a GPS navigation solution in the absence of clock bias
discrepancies. The UAV results show an improvement of 10.57 m
in the root-mean-square error of the cellular CDMA navigation so-
lution, when the sector clock bias discrepancies are accounted for
utilizing the statistical model relating observed clock biases from
different sectors of the same BTS cell.

Index Terms—Radionavigation, signals of opportunity, oppor-
tunistic navigation, direct-sequence code-division multiple access,
wireless sensor networks.

I. INTRODUCTION

E
XPLOITING ambient radio frequency (RF) signals of op-

portunity (SOPs) for positioning and navigation in envi-

ronments where global navigation satellite system (GNSS) sig-

nals are not usable (e.g., in deep urban canyons [1] and under

jammed and spoofed situations [2], [3]) has received consider-

able attention recently [4]–[7]. The literature on SOPs answers

theoretical questions on the observability and estimability of

the SOP signal landscape [8], [9], motion planning in the SOP

signal landscape for optimal information gathering [10]–[12],

and collaborative SOP landscape map building [13]. More-

over, different studies have been conducted for specific types of
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SOPs including AM/FM radio [14], [15], iridium satellites [16],

[17], digital television [18], [19], cellular [20]–[25], and Wi-Fi

[26]–[28].

There are three main challenges associated with using SOPs

for navigation: (1) the unavailability of appropriate low-level

signal models for optimal extraction of states and parameters

of interest for navigation and timing purposes, (2) the ab-

sence of published receiver architectures capable of produc-

ing navigation observables, and (3) the unavailability of error

and performance analyses for SOP-based navigation. The first

two challenges were addressed in the prequel to this paper for

cellular code division multiple access (CDMA) signals. This

paper mainly addresses the third challenge by studying a frame-

work for cellular CDMA-based navigation and characterizing

the navigation performance for this framework in the presence

of sources of errors pertaining to cellular CDMA systems.

Unlike GNSS, the states of a cellular CDMA base transceiver

station (BTS) are unknown to a navigating receiver and need

to be estimated. Although the cdma200 standard states that

a CDMA BTS should transmit its position, local wireless

providers do not usually transmit such information [29], [30].

Hence, the positions of the BTSs need to be manually sur-

veyed or estimated on-the-fly individually or collaboratively

[31], [32]. A substantial part of the literature on navigation us-

ing cellular signals considers time of arrival (TOA) and time

difference of arrival (TDOA) measurements; however, certain

assumptions such as perfect synchronization or negligible vari-

ations between the transmitter and receiver clocks are made to

eliminate the clock biases of the BTS and the receiver from the

measurement model [33]–[35]. Such assumptions may not hold

in practical scenarios; therefore, the receiver and BTS clock bi-

ases must be accounted for. While the position states of a BTS

are static, the clock error states of the BTS are dynamic and need

to be continuously estimated either (1) via a mapping receiver,

which shares such estimates with the navigating receiver or (2)

by the navigating receiver itself by adopting a simultaneous lo-

calization and mapping approach [7], [11], [36]. In either case,

the navigating receiver must have appropriate models for (1)

the measurement it is drawing from the BTS, (2) relevant BTS

states’ dynamics, and (3) all relevant sources of errors.

Since SOP-based navigation is a relatively new paradigm, the

literature on identification of sources of errors and performance

characterization under such errors is scarce for navigation us-

ing SOPs. While the performance of cellular CDMA systems

has been well studied from a communication systems perspec-

tive [37]–[39], the identification of sources of errors that affect
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the navigation performance of such systems remains a topic

of research. In [24], a new source of error pertaining to cellu-

lar CDMA systems, namely the discrepancy between the clock

biases of different sectors of the same BTS cell, has been dis-

covered. A rudimentary random walk model for the dynamics

of the discrepancy was identified and a bound on the optimal

estimation performance for a static estimator under such model

was derived in [40]. A more elaborate exponentially correlated

model for this discrepancy was developed and experimentally

validated in the prequel to this paper [41]. This paper derives

the optimal estimation performance bounds for the exponen-

tially correlated model for both static and batch estimators. In

addition to having appropriate models for these discrepancies,

the optimal BTS–receiver geometrical configuration must be

identified in order to characterize bounds on the estimation per-

formance. Such configurations have been extensively studied;

however, the literature does not provide a lower bound on the

estimation error covariance for localization with TOA measure-

ments with non-identical noise variances [42], [43]. This paper

also presents the BTS–receiver geometrical configuration that

achieves the derived bounds on the estimation performance.

While this paper builds on Part I [41], the contributions herein

are comprehensive and independent of its prequel. Part I deals

with the identification of the discrepancy between the clock bi-

ases of different sectors of the same BTS cell, a practical issue

that arises in navigation using cellular CDMA signals, without

further analyzing the navigation performance. This paper delves

into thorough and rigorous analysis that is not limited to the

subjects treated in Part I. To this end, this paper derives theoret-

ical bounds applicable to any set of sensors (receivers) making

pseudorange measurements on a source (transmitter). Subse-

quently, closed-form expressions of these bounds are found in

the presence of the discrepancy identified in Part I. This example

application is backed with simulation and experimental results.

This paper makes three contributions summarized below:

1. Optimal estimation performance with pseudorange mea-

surements:
� A lower bound on the logarithm of the determinant of the

estimation error covariance is derived for the case of uncor-

related measurement noise with non-identical variances.
� An optimal BTS–receiver geometrical configuration that

achieves the lower bound is identified.
� The above two results are applicable beyond cellular

CDMA systems to the general case of a set of sensors (re-

ceivers) making pseudorange measurements on a source

(transmitter).

2. Optimal estimation performance for the mapper/navigator

framework:
� This paper extends the work in [40], presenting a frame-

work for navigating with cellular signals that employs col-

laborating mapping and navigating receivers. The naviga-

tion performance under this framework in the presence of

sources of errors pertaining to cellular systems that were

identified in [41] is analyzed in this paper. The source of

error of interest is namely the discrepancy between the

clock bias observed in different sectors of the same BTS

cell.

� Lower bounds on the navigation performance of the map-

per/navigator framework for static and batch estimators are

derived.
� Moreover, a practical upper bound on the position error

due to the sector clock bias discrepancy is derived.

3. Experimental results:
� The paper presents experimental results comparing the tra-

jectories corresponding to (1) a navigation solution from

GPS and (2) a navigation solution from cellular signals

exclusively produced by the cellular CDMA navigation

software-defined receiver (SDR) proposed in the prequel

paper [41], via the navigation framework discussed in this

paper.
� For a ground vehicle, experimental results show a mean

distance difference of 5.51 m with a standard deviation of

4.01 m and a maximum difference of 11.11 m.
� For an unmanned aerial vehicle (UAV), experimental

results show a reduction in the root-mean square er-

ror (RMSE) of 10.57 m with a stationary mapper and

7.04 m with a mobile mapper (another UAV) when the

sources of errors are appropriately accounted for using the

models derived in Part I of this paper [41].
� In addition, the paper compares the experimental logarithm

of the determinant of the estimation error covariance versus

the theoretical lower bound derived in this paper.

The remainder of the paper is organized as follows. Section II

studies a mapping/navigating receiver framework for navigation

with celluar CDMA signals. Section III derives a lower bound

on the determinant of the estimation error covariance for pseu-

dorange measurements with uncorrelated measurement noise

and analyzes the navigation performance using cellular CDMA

signals in the presence of clock bias discrepancies between BTS

sectors. Section IV shows experimental results of navigation us-

ing cellular CDMA signals for (1) a mobile ground vehicle and

stationary mapper, (2) a UAV with a stationary mapper, and (3)

a UAV with a mobile mapper. Concluding remarks are provided

in Section V.

II. MAPPER/NAVIGATOR FRAMEWORK FOR NAVIGATION WITH

CELLULAR CDMA SIGNALS

By making pseudorange observations to 3 or more BTSs, one

may estimate the two-dimensional (2–D) position and clock bias

of a cellular CDMA receiver, provided that the BTS locations

and their clock biases are known. The observability of envi-

ronments comprising multiple receivers making pseudorange

observations on terrestrial SOPs was studied in [9] and the esti-

mation of unknown cellular CDMA SOP states was addressed in

[31]. This section describes a framework for navigating with cel-

lular CDMA signals. The framework consists of two receivers:

a mapping receiver and a navigating receiver, referred to as the

mapper and navigator, respectively [41]. Each receiver is ca-

pable of producing pseudorange measurements to nearby SOP

BTSs. The mapper could be deployed on top of a building;

therefore, it has access to GNSS signals. However, the naviga-

tor is located between the buildings where GNSS signals are

severely attenuated and cannot be used to produce a navigation
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Fig. 1. Mapper and navigator in a cellular SOP environment.

solution. Note that cellular CDMA signals are orders of mag-

nitude more powerful that GNSS signals (carrier-to-noise ratio

around 60 dB-Hz, see Fig. 3 in Part I [41], while the carrier-to-

noise ratio of GNSS signals outdoors is around 41–46 dB-Hz

[44]). Alternatively, the navigator may lose access to GNSS sig-

nals in a situation where it is located in the vicinity of a personal

privacy device (i.e., GNSS jammer [2]), which makes GNSS

signals unusable. Subsequently, the mapper is assumed to have

knowledge of its own state vector and is estimating the states

of the unknown SOP BTSs. These estimates are shared with

the navigator, which has no knowledge of its own states. This

section considers the estimation of receiver and SOP states in a

static framework. As such, the time argument will be dropped

for simplicity of notation.

A. Pseudorange Measurement Model

The state of the receiver is defined as xr � [rT
r , cδtr ]

T, where

rr = [xr , yr ]
T is the position vector of the receiver, δtr is the

receiver’s clock bias, and c is the speed-of-light. Similarly,

the state of the ith BTS is defined as xsi
� [rT

si
, cδtsi

]T, where

rsi
= [xsi

, ysi
]T is the position vector of the ith BTS and δtsi

is the clock bias. The pseudorange measures the time-of-flight

of the signal from the BTS to the receiver and can be modeled

as the addition of three terms: the true range between the BTS

and the receiver, a term due to the difference between the BTS

and receiver clock biases, and a measurement noise term [9]. The

pseudorange measurement to the ith BTS, ρi , can be therefore

expressed as

ρi = ‖rr − rsi
‖2 + c · [δtr − δtsi

] + vi ,

� hi(xr ,xsi
) + vi , (1)

where hi(xr ,xsi
) � ‖rr − rsi

‖2 + c · [δtr − δtsi
] and vi is

the measurement noise, which is modeled as a zero-mean Gaus-

sian random variable with variance σ2
i . Assuming that the re-

ceiver is drawing pseudoranges from N ≥ 3 BTSs with known

states, the receiver’s state can be estimated by solving a weighted

nonlinear least-squares (WNLS) problem [24]. The estimation

of the BTS states is discussed next.

B. BTS State Estimation

Consider a mapper with knowledge of its own state vector

(by having access to GPS signals, for example) to be present in

the navigator’s environment as depicted in Fig. 1 [24].

The mapper’s objective is to estimate the BTSs’ position and

clock bias states and share these estimates with the navigator

through a central database. The position states of the BTSs are

assumed to be known and stored in a database. The position

states could be readily obtained via multiple mappers in the

environment, estimating the position states of the BTSs for a

sufficiently long period of time. These estimates are physically

verifiable via surveying or satellite images. Unlike the position

state estimates, the clock bias state estimates are time-varying

and difficult to verify. Therefore, in the sequel, it is assumed

that the mapper is only producing for the ith BTS an estimate

δt̂si
and an associated estimation error variance σ2

δts i
.

Consider M mappers and N SOP BTSs. Denote the state

vector of the jth mapper by xrj
, the pseudorange measurement

by the jth mapper on the ith BTS by ρ
(j )
i , and the corresponding

measurement noise by v
(j )
i . Assume v

(j )
i to be independent for

all i and j with a corresponding variance σ
(j )
i

2
. The measure-

ment ρ
(j )
i is hence given by

ρ
(j )
i =

∥
∥rrj

− rsi

∥
∥

2
+ c
(
δtrj

− δtsi

)
+ v

(j )
i .

The mapper knows rrj
, rsi

, and cδtrj
. Subsequently, define the

set of measurements made by all mappers on the ith BTS as

zi �

⎡

⎢
⎢
⎣

‖rr1
− rsi

‖ + cδtr1
− ρ

(1)
i

...

‖rrM
− rsi

‖ + cδtrM
− ρ

(M )
i

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

cδtsi
− v

(1)
i

...

cδtsi
− v

(M )
i

⎤

⎥
⎥
⎦

= cδtsi
1M + vi ,

where 1M � [1, . . . , 1]T and vi � −[v
(1)
i , . . . , v

(M )
i ]T. The

clock bias δtsi
is estimated by solving a weighted least-

squares (WLS) problem, resulting in the estimate δ̂tsi
= 1

c (1T

M

W1M )−1
1

T

M Wz and associated estimation error variance

σ2
δts i

= 1
c (1T

M W1M )−1 , where W = diag[ 1

σ
( 1 )
i

2 , . . . , 1

σ
(M )
i

2 ]

is the weighting matrix. The true clock bias of the ith BTS can

now be expressed as δtsi
= δ̂tsi

+ wi , where wi is a zero-mean

Gaussian random variable with variance σ2
δts i

.

C. Discrepancy Between Clock Biases of Different Sectors of

a BTS

A typical CDMA BTS transmits into three different sectors

within a particular cell. Ideally, all sectors’ clocks should be

driven by the same oscillator, which implies that the same clock

bias (after correcting for the pseudo noise sequence offset)

should be observed in all sectors of the same cell. However,

factors such as unknown distance between the phase-center of

the sector antennas, delays due to RF connectors and other com-

ponents (e.g., cabling, filters, amplifiers, etc.) cause the clock

biases corresponding to different BTS sectors to be slightly dif-

ferent. This behavior was consistently observed experimentally

at different times and different BTS locations corresponding to

different cellular providers [45]. A sample realization of the ob-

served clock bias for different BTS sectors is depicted in Fig. 2.
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Fig. 2. (a) A receiver placed at the border of two sectors of a cell, making
pseudorange observations on both sector antennas simultaneously. The receiver
has knowledge of its own states (from GPS signals) and has knowledge of the
BTS position states. (b) Observed BTS clock bias for the two sectors (after
correcting for the pseudo noise sequence offset).

The clock biases observed in sectors pi and qi of the ith BTS

are denoted by δt
(p i )
si and δt

(q i )
si , respectively. The relationship

between δt
(p i )
si and δt

(q i )
si is captured by

δt(q i )
si

= δt(p i )
si

+ [1 − 1q i
(pi)] · ǫi ,

where ǫi is a random sequence that models the discrepancy

between the sectors’ clock biases and

1q i
(pi) =

{
1, if pi = qi ,
0, otherwise,

is the indicator function. A model for the discrepancy ǫi was

identified in [41], which is given by

ǫi(k) = φk
i ǫi(0) +

k−1∑

l=0

φk−1−l
i ζi(l),

where φi � e−α i T , αi is the inverse of the system’s time con-

stant (on the order of 10−4 Hz), ζi is a zero-mean Laplace-

distributed random sequence with parameter λi (in continuous-

time), and k is the time index. The initial discrepancy ǫi(0) is

assumed to be known and without loss of generality, is assumed

to be zero. After nine time steps, ǫi can be modeled as a zero-

mean Gaussian random variable with variance
λ2

i

α i
(1 − e−2α i kT )

[41]. In the sequel, λi ≡ λ and αi ≡ α, ∀ i. The discrepancy

ǫi can be particulary harmful if the mapper and navigator are

listening to two different sectors of the same BTS cell. The re-

sulting pseudorange model in the presence of this discrepancy

is presented in the next subsection.

D. Pseudorange Model in the Presence of Sector Mismatch

Since the navigator is using the BTS clock bias estimate

produced by the mapper(s), the pseudorange measured by the

navigator in sector qi of the ith BTS can be expressed as

ρ
(q i )
i = ĥ

(p i )
i + ηi − [1 − 1q i

(pi)] · [cǫi ] ,

where ĥ
(p i )
i � hi(xr , x̂

(p i )
si

), x̂(p i )
si

= [rT
si

, cδ̂t
(p i )

si
]T, δ̂t

(p i )

si
is

the ith BTS clock bias estimate produced by the mapper in

sector pi , and ηi � vi − wi models the overall uncertainty in

the pseudorange measurement, which is a zero-mean Gaussian

random variable with variance σ2
η i

= σ2
i + c2σ2

δts i
. The quan-

tities ǫi , ηi , and δ̂t
(p i )

si
are time-varying quantities with δ̂t

(p i )

si

known at all times. Therefore, the pseudorange at time-step k is

given by

ρ
(q i )
i (k) = ĥ

(p i )
i (k) + ηi(k) − [1 − 1q i

(pi)] · [cǫi(k)] , (2)

where ĥ
(p i )
i (k) = hi [xr (k), x̂(p i )

si
(k)] indicates that the obser-

vation estimate is calculated using the mapper estimates and the

receiver state at time k.

E. Fusion of BTS Clock State Estimates Into the Navigation

Solution

The navigator is assumed to be drawing pseudorange mea-

surements from N BTSs, Ns of which have a mismatch between

the mapper and navigator sectors. Without loss of generality, the

set of pseudorange measurements are assumed to be sorted such

that the first Ns measurements correspond to ones coming from

the BTSs with sector mismatch between the mapper and naviga-

tor. If the navigator is either stationary or mobile but has perfect

knowledge of the change in its position, it can solve through a

batch LS estimator for its: (1) initial position state rr (k0) and

(2) clock bias at time-steps k0 to k0 + K − 1 by utilizing all the

measurements from k0 to k0 + K − 1. Alternatively, the navi-

gator may solve for its current position and clock bias through

a LS estimator (point solution with K = 1). In either case, the

estimator is estimating the state vector x′
r given by

x′
r = [xr (k0), yr (k0), cδtr (k0), . . . , cδtr (k0 + K − 1)]T.

The measurement model is therefore given by

ρ = ĥ + cǫ + η, (3)

where

ρ �

[
K ρ

T

1 , . . . , K ρT

N

]T

,

Kρi �

[

ρ
(q i )
i (k0), . . . , ρ

(q i )
i (k0 + K − 1)

]T

,

ĥ �

[
K ĥ

T

1 , . . . , K ĥ
T

N

]T

,

K ĥi �

[

ĥ
(p i )
i (k0), . . . , ĥ

(p i )
i (k0 + K − 1)

]T

,

ǫ �

[
K ǫ

T

1 , . . . , K ǫT

N ,0K̄×1

]T

,

K ǫi � [ǫi(k0), . . . , ǫi(k0 + K − 1)]T,

η �

[
Kη

T

1 , . . . , KηT

N

]T

, Kηi � [ηi(k0), . . . , ηi(k0 + K −1) ]T,

and K̄ � K · (N − Ns). The Jacobian matrix H of the

set of observations with respect to x′
r is given by H =

[G ĪN ], where G � [
rr −rs 1

‖rr −rs 1
‖1

T

K . . .
rr −rs N

‖rr −rs N
‖1

T

K ] and ĪN �

[IK×K . . . IK×K ]T where IK×K indicates the K × K identity

matrix. The “overall” measurement noise, (cǫ + η), captures

the errors due to measurement noise, mapper estimation errors,
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and discrepancies between the sectors’ clock biases. It is mod-

eled as a zero-mean random variable with a covariance matrix

R. The structure of R will be discussed in Subsections III-B–

III-C. The navigator’s state can now be estimated by solving

a WNLS problem, to obtain an estimate of its state x̂′
r and an

associated estimation error covariance P. The iterated WNLS

equations are given by

x̂′
r
(l+1) = x̂′

r
(l) +

(
H

T
R

−1
H
)−1

H
T
R

−1 (ρ − ρ̂)

P
(l) =

(
H

T
R

−1
H
)−1

,

where l is the iteration number and ρ̂ is ĥ evaluated at the current

estimate x̂′
r
(l) .

III. PERFORMANCE CHARACTERIZATION IN THE PRESENCE OF

SECTOR CLOCK BIAS DISCREPANCIES

In this section, the estimation performance in the presence of

the discrepancy discussed in Subsection II-C is analyzed as a

function of time and the number of mismatches between the BTS

cell sectors which the mappers are listening to and those cell

sectors which the navigator is listening to. The estimation per-

formance was characterized for a special case of this problem

and for a static estimator only, where the discrepancy model

was assumed to adhere to a random walk [40]. This section

derives lower bounds on the determinant of the estimation er-

ror covariance for point and batch estimators with uncorrelated

measurements between sets of sensors (SOPs), where each set

has an arbitrary measurement noise covariance, and for a dis-

crepancy that is modeled as an exponentially correlated random

sequence. First, a general lower bound on the determinant of the

estimation error covariance in the case of uncorrelated measure-

ment noise is derived. Next, analytical expressions of the lower

bounds on the determinant of the estimation error covariance in

the presence of sector mismatch for two estimation frameworks

are presented, namely a point solution and a batch solution.

Finally, a practical upper bound on the position error is derived.

A. Estimation Error Covariance Lower Bound

This subsection derives the lower bound on the determinant

of the estimation error covariance (D-optimality criterion) in the

case of uncorrelated measurement noise and specifies an optimal

BTS configuration that achieves this bound. The D-optimality

criterion is chosen, since it is equivalent to minimizing the vol-

ume of the uncertainty ellipsoid [46] and is also a commonly

used metric when studying the geometric dilution of precision

[47]. The results are captured in the following two theorems. It

is important to note that the results presented in these two the-

orems are applicable beyond cellular CDMA systems. In fact,

they apply to the general problem of a set of sensors (receiver)

making pseudorange measurements on a source (transmitter).

This problem is encountered in navigation and source localiza-

tion.

Theorem III.1: Given N ≥ 3 sets of K pseudorange mea-

surements modeled according to (3) with a measurement noise

covariance R = diag[R1 , . . . ,RN ] where {Ri}N
i=1 is a set

of K × K positive definite matrices, the determinant of the

Fig. 3. (a) Re-parametrization of the unit line-of-sight (LOS) vectors by the
bearing angles. (b) Optimal distribution of the BTSs around the receiver where
each color represents a different set of BTSs.

estimation error covariance P is lower bounded by

det [P] ≥ 4
(
∑N

i=11
T

K R
−1
i 1K

)2

det
[
∑N

i=1R
−1
i

] . (4)

Proof: First, the Jacobian matrix H is re-parameterized

by the bearing angles {θi}N
i=1 between the receiver and

the N BTSs, as shown in Fig. 3(a). Subsequently, the

matrix G can be re-expressed as G = [x y], where x �

[cos θ11
T

K , . . . , cos θN 1
T

K ] and y � [sin θ11
T

K , . . . , sin θN 1
T

K ].
The information matrix M is given by

M = P
−1 = H

T
R

−1
H =

[
G

T
R

−1
G G

T
R

−1
ĪN

Ī
T

N R
−1

G Ī
T

N R
−1

ĪN

]

.

Assuming that G is full column-rank, which is guaranteed

whenever at least three of the BTSs are non-collinear, and from

the Schur complement properties, the determinant of M can be

expressed as

det [M] = det [M1 ] det [M2 − M3 ] ,

where M1 � G
T
R

−1
G, M2 � Ī

T

N R
−1

ĪN =
∑N

i=1R
−1
i , and

M3 � Ī
T

N R
−1

G(GT
R

−1
G)−1

G
T
R

−1
ĪN . By definition, M is

a positive definite matrix, hence

M1 ≻ 0 and M2 − M3 ≻ 0.

Also by definition, M2 is a positive definite matrix. Since

G is full column-rank and R
−1 is positive-definite, then

(GT
R

−1
G)−1 will be positive-definite as well. The matrix M3

may also be expressed as M3 = B
T(GT

R
−1

G)−1
B, where

B � G
T
R

−1
ĪN ; which readily shows that M3 is positive semi-

definite. Therefore, it can be deduced that

M2 � M2 − M3 ,

and hence

det [M2 ] ≥ det [M2 − M3 ] .

Subsequently, the following upper bound may be established on

det[M]

det [M] ≤ det
[
G

T
R

−1
G
]
det

[
N∑

i=1

R
−1
i

]

. (5)
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The matrix M1 = G
T
R

−1
G may be expressed as

G
T
R

−1
G =

[
xT

R
−1x xT

R
−1y

yT
R

−1x yT
R

−1y

]

,

which has the determinant

det
[
G

T
R

−1
G
]

=
(
xT

R
−1x
) (

yT
R

−1y
)
−
(
xT

R
−1y
)2

≤
(
xT

R
−1x
) (

yT
R

−1y
)
. (6)

Equations (5) and (6) yield

det [M] ≤
(
xT

R
−1x
) (

yT
R

−1y
)
det

[
N∑

i=1

R
−1
i

]

. (7)

Using the definition of x and y and noting that R
−1 =

diag[R−1
1 , . . . ,R−1

N ], the following can be deduced

xT
R

−1x + yT
R

−1y =

N∑

i=1

1
T

K R
−1
i 1K cos2 θi

+

N∑

i=1

1
T

K R
−1
i 1K sin2 θi

=

N∑

i=1

1
T

K R
−1
i 1K . (8)

Defining u � xT
R

−1x and a �
∑N

i=11
T

K R
−1
i 1K and incorpo-

rating the geometric constraint (8) into (7) yields

det [M] ≤ u (a − u) det

[
N∑

i=1

R
−1
i

]

. (9)

The right-hand side of (9) is maximized when u⋆ = a
2 = 1

2∑N
i=11

T

K R
−1
i 1K . This finally yields

det [P] =
1

det [M]
≥ 4
(
∑N

i=11
T

K R
−1
i 1K

)2

det
[
∑N

i=1R
−1
i

] .

�

Corollary III.1.1: If K = 1, i.e., Ri = σ2
i , the lower bound

simplifies to

det [P] ≥ 4

[trace (R−1)]3
.

Proof: This can be seen by noting that
∑N

i=11
T

K R
−1
i 1K =

∑N
i=1R

−1
i =

∑N
i=1

1
σ 2

i
= trace(R−1). �

Theorem III.2: Given a total of N BTSs grouped into L
sets with Nl ≥ 3 BTSs in each set, where l = 1, . . . , L, and

given that the receiver is drawing K pseudorange measure-

ments from each set of BTSs with noise covariance {Σl =
diag[Rl , . . . ,Rl ]}L

l=1 where {Rl}L
l=1 is a set of K × K posi-

tive definite matrices, the optimal estimation performance that

minimizes the determinant of the estimation error covariance is

achieved when each set of BTSs forms a regular polygon around

the receiver, i.e.,

θ
(l)
il

=
2π

Nl
il + θ

(l)
0 , il = 1, . . . , Nl ,

where θ
(l)
il

is the bearing angle between the receiver and the il th

BTS in lth set and θ
(l)
0 is an arbitrary offset angle.

The optimal BTS configuration is illustrated in Fig. 3(b).

Proof: In general, for {θil
= 2πil

N l
+ θi0

}N l
il =1 and any integer

Nl ≥ 3 and constant offset angle θi0
, the following holds [48]

N l∑

il =1

cos2 θil
=

N l∑

il =1

sin2 θil
=

Nl

2
, (10)

N l∑

il =1

cos θil
sin θil

=

N l∑

il =1

cos θil
=

N l∑

il =1

sin θil
= 0. (11)

Note that (10) and (11) hold for any offset angle θi0
. The infor-

mation matrix can be expressed as

M =

⎡

⎢
⎣

xT
R

−1x xT
R

−1y xT
R

−1
ĪN

yT
R

−1x yT
R

−1y yT
R

−1
ĪN

Ī
T

N R
−1x Ī

T

N R
−1y Ī

T

N R
−1

ĪN

⎤

⎥
⎦ .

Define the partitioned vectors

x �

⎡

⎢
⎣

x1

...

xL

⎤

⎥
⎦ , y �

⎡

⎢
⎣

y1
...

yL

⎤

⎥
⎦ , 1N �

⎡

⎢
⎣

1N1

...

1NL

⎤

⎥
⎦ ,

where xl = [cos θ
(l)
1 1

T

K , . . . , cos θ
(l)
N l

1
T

K ]T and yl = [sin θ
(l)
1

1
T

K , . . . , sin θ
(l)
N l

1
T

K ]T, where l = 1, . . . , L. The overall mea-

surement noise covariance is defined as

R � diag [Σ1 , . . . ,ΣL ] ,

where Σl = diag[Rl , . . . ,Rl ] (repeated Nl times). Subse-

quently, xT
R

−1x can be expressed as

xT
R

−1x =

L∑

l=1

xT

l Σ
−1
l xl

=

L∑

l=1

N l∑

il =1

1
T

K R
−1
l 1K cos2 θ

(l)
il

=

L∑

l=1

1
T

K R
−1
l 1K

N l∑

il =1

cos2 θ
(l)
il

. (12)

Similarly, it can be shown that

xT
R

−1x =

L∑

l=1

1
T

K R
−1
l 1K

N l∑

il =1

sin2 θ
(l)
il

, (13)

xT
R

−1y =

L∑

l=1

1
T

K R
−1
l 1K

N l∑

il =1

cos θ
(l)
il

sin θ
(l)
il

, (14)

xT
R

−1
ĪN =

L∑

l=1

1
T

K R
−1
l

N l∑

il =1

cos θ
(l)
il

, (15)
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yT
R

−1
ĪN =

L∑

l=1

1
T

K R
−1
l

N l∑

il =1

sin θ
(l)
il

, (16)

Ī
T

N R
−1

ĪN =
L∑

l=1

NlR
−1
l . (17)

From (10)–(17) and the optimal BTS configuration, i.e., each

set of BTSs forms a regular polygon around the receiver, the

information matrix can be expressed as,

M =

⎡

⎢
⎢
⎣

∑L
l=1

N l

2 1
T

K R
−1
l 1K 0 0

T

K×1

0
∑L

l=1
N l

2 1
T

K R
−1
l 1K 0

T

K×1

0K×1 0K×1

∑L
l=1NlR

−1
l

⎤

⎥
⎥
⎦
,

hence

P =

⎡

⎢
⎢
⎢
⎣

2
∑L

l = 1 N l 1
T

K R
−1
l 1K

0 0
T

K×1

0 2
∑L

l = 1 N l 1
T

K R
−1
l 1K

0
T

K×1

0K×1 0K×1

[
∑L

l=1NlR
−1
l

]−1

⎤

⎥
⎥
⎥
⎦

.

(18)

By noting that
∑N

i=11
T

K R
−1
i 1K =

∑L
l=1Nl1

T

K R
−1
l 1K and

that
∑N

i=1R
−1
i =

∑L
l=1NlR

−1
l , the determinant of the estima-

tion error covariance may be expressed as

det [P] =
4

(
∑N

i=11
T

K R
−1
i 1K

)2

det
[
∑N

i=1R
−1
i

] . (19)

Therefore, the configuration described in Theorem III.2 (with

determinant computed in (19)) indeed achieves the lower bound

established in Theorem III.1 (cf. (4)). �

It is worth noting that the results in Theorem III.2 are applica-

ble beyond cellular CDMA systems and the mapper/navigator

framework. The problem can be regarded as an optimal sensor

placement problem, where it is desired to place sensors (map-

pers) in a way that minimizes the uncertainty in the SOP’s state.

Moreover, these results can provide an insight on the minimum

requirements of the system. If the required performance hap-

pens to violate the bound, the system designer will know that

this performance is not achievable and either more SOPs or sen-

sors must be employed or more measurements must be taken.

Hence, Theorem III.2 could be used to deduce necessary system

settings to make a desired performance achievable. The optimal

performance based on minimizing the determinant of the esti-

mation error covariance in the presence of sector mismatch is

analyzed next.

B. Lower Bound on the Determinant of the Estimation

Error Covariance in the Presence of Sector Mismatch:

Point Solution

In this scenario, the navigator is solving for its state at time k
using the measurements made at time k, i.e., k0 = k and K = 1.

The overall measurement noise covariance in this case is given

by

R = diag
[(

σ2
η + σ2

ǫ (k)
)
IN s ×N s

, σ2
η I(N −N s )×(N −N s )

]
,
(20)

Fig. 4. (a) Surface plot of log det[P⋆
x ,y ] as a function of Ns and k.

(b)–(d) Plots of log det[Px ,y ] for 500 Monte Carlo simulations along with
the theoretical lower bound log det[P⋆

x ,y ]. Simulation parameters: N = 12,

T = 0.2s, α = 10−3 Hz, σ2
η = 4 m2 , and λ = 66 ns/s.

where σ2
ǫ (k) � c2 λ2

α (1 − e−2αkT ). By applying Theorem III.2

and Corollary III.1.1, the optimal estimation error covariance

under sector clock bias discrepancies can be found from (18) to

yield

P
⋆ =

[
P

⋆
x,y 02×1

01×2

(
σ⋆

cδtr

)2

]

=

[

2σ2
eqI2×2 02×1

01×2 σ2
eq

]

, (21)

where

σ2
eq �

1

trace (R−1)
=

1
N s

σ 2
η +σ 2

ǫ (k) + N −N s

σ 2
η

=

[

σ2
η + c2 λ2

α

(
1 − e−2αkT

)]

σ2
η

Nσ2
η + (N − Ns)

c2 λ2

α (1 − e−2αkT )
. (22)

In order to demonstrate the result in (21), Monte Carlo simu-

lations were conducted for several Ns and k values. The loga-

rithm of the determinant of each resulting position estimation

error covariance Px,y , namely log det[Px,y ], for 500 runs were

plotted along with log det[P⋆
x,y ] obtained in (21). A surface

plot of log det[P⋆
x,y ] and the Monte Carlo simulation results for

log det[Px,y ] are shown in Fig. 4.

The following remarks can be concluded from these simula-

tions.

Remark 1: For a fixed Ns < N , log det[P⋆
x,y ] becomes almost

constant after five to ten time steps and converges to a constant

value that can be approximated to be

lim
k→∞

log det
[
P

⋆
x,y

]
≈ log

⎡

⎣4

(

σ2
η

N − Ns

)2
⎤

⎦ . (23)

The derivation of (23) is given in Appendix A. The same expres-

sion is obtained when the navigator uses only the measurements

from the N − Ns BTSs with no sector mismatch to estimate

its state. This is attributed to the fact that the variance of the

error in the measurements coming from the BTSs with sector
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mismatch increases with time until it reaches a steady value

(cf. (20)). This steady state value is much larger than σ2
η and

therefore these measurements will be “almost neglected” by the

estimator.

Remark 2: For large k, one can approximate log det[P⋆
x,y ]

log det
[
P

⋆
x,y

]
≈ −2 log

(

1 − Ns

N

)

+ ξ, (24)

where ξ is a finite constant. The derivation of (24) is given in

Appendix B. It can be readily seen that (24) approaches ∞ as

Ns approaches N . It is therefore imperative to have at least one

BTS with no sector mismatch in order for the estimation error

covariance to be bounded.

C. Lower Bound on the Determinant of the Estimation Error

Covariance in the Presence of Sector Mismatch: Batch

Estimator

In this scenario, the navigator is assumed to be either sta-

tionary or mobile but has perfect knowledge of the change in its

position with k0 = 1 and K > 1. Starting at k0 = 1 ensures that

the pseudorange measurements are affected by the error due to

clock bias discrepancy in the case of sector mismatch. In order

to make the analysis more tractable, the exponentially corre-

lated model in the batch estimator is approximated by a random

walk, i.e., α → 0. For small values of α and k, the relative error

between the variances of these processes is guaranteed to be less

than an arbitrary small threshold [41]. Subsequently, σ2
ǫ (k) is

approximated by

σ2
ǫ (k) ≈ σ̄2

ǫ (k) � lim
α→0

σ2
ǫ (k) = 2kTc2λ2 , (25)

where k = 1, . . . , K. The overall measurement noise covariance

in this case is given by

R = diag [R1 , . . . ,RN ] ,

where {Ri}N
i=1 is a set of K × K positive definite matrices with

Ri =

{

σ2
η IK×K + Rǫ , if i ≤ Ns ,

σ2
η IK×K , otherwise,

where

[Rǫ ]m,n = σ2
ǫ [min {m,n}] , m, n = 1, . . . K,

and [Ψ]m,n denotes the element in the mth row and nth col-

umn of matrix Ψ. Using this approximation of σ2
ηs

(k) and by

applying Theorem III.2, the optimal estimation error covariance

under sector clock bias discrepancies for a batch estimator can

be approximated by

P
′⋆ ≈

[

P
′⋆
x,y 0

T

K×1

0K×1 P
′⋆
cδtr

]

,

where

P
′⋆
x,y =

4c2λ2Tσ2
η I2×2

f(β)σ2
ηNs + 2c2(N − Ns)Kλ2T

, (26)

P
′⋆
cδtr

=

[

NsRǫ
−1 +

N − Ns

σ2
η

IK×K

]−1

, β �
σ2

ηs

σ2
ǫ (1)

,

Fig. 5. (a) Surface plot of log det[P′⋆
x ,y ] as a function of Ns and k. (b)–

(d) Plots of log det[P′
x ,y ] for 500 Monte Carlo simulations along with the

theoretical lower bound log det[P′⋆
x ,y ]. Simulation parameters: N = 12, T =

0.2 s, α = 10−3 Hz, σ2
η = 4 m2 , and λ = 66 ns/s.

and f(β) is a function of β. The expression of f(β) and the

derivation of (26) are outlined in Appendix C.

Monte Carlo simulations for several Ns and k values were

conducted to demonstrate the result in (26). The logarithm of

the determinant of each resulting position estimation error co-

variance P
′
x,y , namely log det[P′

x,y ], for 500 runs were plot-

ted along with log det[P′⋆
x,y ] obtained in (26). A surface plot

of log det[P′⋆
x,y ] and the Monte Carlo simulation results for

log det[P′
x,y ] are shown in Fig. 5.

The following remarks can be concluded from these simula-

tions.

Remark 1: For a fixed Ns < N , log det[P′⋆
x,y ] is a strictly

decreasing function of K, and it can be concluded that (26)

approaches zero as K → ∞. This implies that a good strategy

for the navigator in the presence of sector mismatch is to stand

still if it does not have exact knowledge on the change in its

position.

Remark 2: For large K, the approximation f(β)Nsσ
2
η + 2c2

(N − Ns)Kλ2T ≈ 2c2(N − Ns)Kλ2T can be made, since

f(β)Nsσ
2
η is constant for a given σ2

η and σ̄2
ǫ (1), and therefore

2c2(N − Ns)Kλ2T >> f(β)Nsσ
2
η for large K. Subsequently,

(26) can be approximated by

P
′⋆
x,y ≈

2σ2
η I2×2

(N − Ns) K
. (27)

The same expression is obtained when the navigator uses only

the measurements from the N − Ns BTSs with no sector mis-

match to estimate its state. This results from the fact that the

measurements coming from the Ns BTSs with sector mismatch

are highly correlated in time and the uncertainty associated with

these measurements is a strictly increasing function of K. Thus,

subsequent measurements from BTSs with sector mismatch will

bring little to no contribution in estimating the state of the nav-

igator and will therefore be “neglected” by the estimator.
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Remark 3: It is also worth noting that when Ns = N , the

optimal position estimation error covariance becomes

P
′⋆
x,y =

4c2Kλ2T I2×2

f(β)σ2
ηN

,

which is a finite constant. In contrast to the point solution case,

the need to have at least one measurement coming from a BTS

with no mismatch between the mapper and navigator sectors is

eliminated in the batch estimator.

D. Practical Upper Bound on the Position Error

This subsection characterizes an upper bound on the position

error due to the discrepancy between sectors’ clock biases. To

this end, it is assumed that Ns = N , i.e., the mapping receivers

are listening to different sectors than the navigating receiver, and

the latter is not aware of the presence of these discrepancies.

It is also assumed that the WNLS is in steady state, and the

discrepancies ǫ = [ǫ1 , . . . , ǫN ]T are suddenly introduced into

the measurements, which will induce an incremental change in

the receiver state estimate δxr = c(HT
Rη

−1
H)−1

H
T
Rη

−1ǫ.

In general, the discrepancy vector ǫ can be expressed as

ǫ = b1N + ψ, (28)

where b � 1
N

∑N
i=1 ǫi = 1

N 1
T

N ǫ, and ψ � [ǫ1 − b, . . . , ǫN −
b]T. The term b is referred to as the common error and the

vector ψ as the unbiased error. It follows from this defini-

tion that
∑N

i=1 ψi = 0. By replacing the expression of ǫ in

a WNLS step, the incremental change in the receiver state

estimate can be expressed as δxr = δx
(b)
r + δx

(ψ )
r , where

δx
(b)
r = cb(HT

Rη
−1

H)−1
H

T
Rη

−1
1N is the effect of the com-

mon error and δx
(ψ )
r = c(HT

Rη
−1

H)−1
H

T
Rη

−1ψ is the ef-

fect of the unbiased error.

1) Effect of Common Error on Navigation Solution: The

common error term will only affect the receiver clock bias esti-

mate. This can be shown by realizing that

He3 = [G 1N ] e3 = 1N , (29)

where e3 = [0, 0, 1]T. Then, using (29), the incremental change

due to the common term becomes

δx(b)
r = cb

(
H

T
Rη

−1
H
)−1

H
T
Rη

−1
1N

= cb
(
H

T
Rη

−1
H
)−1

H
T
Rη

−1
He3 = cbe3 , (30)

which has a non-zero component only in the clock bias state.

Thus, if the individual discrepancies ǫi happen to be all equal,

the receiver’s position estimate will be unaffected.

2) Effect of Unbiased Error on Navigation Solution: Unlike

the common error, the unbiased error will affect all receiver

states. The following theorem establishes a bound on the er-

ror introduced by the unbiased error in the receivers position

estimate.

Theorem III.3: In a cellular environment comprising N
BTSs in which the mapping and navigating receivers are ex-

periencing bounded sector mismatches ǫi , such that |ǫi | ≤ α,

∀ i, the error induced by the mismatches in the receiver’s

position estimate is bounded by

‖δrr‖ ≤
{√

Nα κ, if N is even,
√

N 2 −1
N α κ, if N is odd,

where κ � c‖(HT
Rη

−1
H)−1

H
T
Rη

−1‖.

Proof: The incremental change in the receiver position

state estimate can be expressed as δrr = Tδxr = Tδx
(b)
r +

Tδx
(ψ )
r , where T = [I2×2 02×1 ]. By replacing δx

(b)
r with its

expression from (30), the change in position becomes

δrr = cbTe3 + Tδx(ψ )
r = Tδx(ψ )

r . (31)

Taking the 2-norm on both sides of (31) yields

‖δrr‖ =
∥
∥
∥Tδx(ψ )

r

∥
∥
∥

≤ ‖T‖ ·
∥
∥
∥δx(ψ )

r

∥
∥
∥ =

∥
∥
∥δx(ψ )

r

∥
∥
∥ , (32)

since ‖T‖ = 1. Replacing δx
(ψ )
r by its expression in the WNLS

update, (32) becomes

‖δrr‖ ≤
∥
∥
∥c
(
H

T
Rη

−1
H
)−1

H
T
Rη

−1 (ǫ − b1N )
∥
∥
∥

≤ κ ‖ǫ − b1N ‖ . (33)

Therefore, to determine the upper bound of (33), the term

‖ǫ − b1N ‖, or equivalently its square, must be maximized,

leading to

maximize
ǫ

‖ǫ − b1N ‖2 = ‖Aǫ‖2 , (34)

A �

⎡

⎢
⎢
⎢
⎢
⎣

(1 − 1
N ) − 1

N · · · − 1
N

− 1
N (1 − 1

N ) · · · − 1
N

...
...

. . .
...

− 1
N − 1

N · · · (1 − 1
N )

⎤

⎥
⎥
⎥
⎥
⎦

.

Motivated by experimental data collected in different BTS cell

sectors and for various cells, it is reasonable to assume that

|ǫi | ≤ α, ∀ i, (35)

where α is some positive constant. As such, the maximization

problem in (34) becomes constrained by (35). The function in

(34) is convex, since it is the composition of the norm with a

linear mapping, and the box constraints in (35) form a convex

set. Therefore, the maximizer of (34) subject to the constraints

(35) lies on the extreme points of the feasibility region, namely

|ǫ⋆
i | = α, ∀ i.

If N is even, the maximum is achieved whenever
∑N

i=1 ǫi =
0; hence, the maximizer is ǫ⋆

i = (−1)iα, ∀ i. If N is odd, the

maximum is achieved whenever
∑N

i=1 ǫi = α; hence, the max-

imizer is ǫ⋆
i = (−1)iα for i = 1, . . . , N − 1, and ǫ⋆

N = ±α.

Therefore, the maximum error introduced in the receiver’s po-

sition is bounded by

‖δrr‖ ≤

⎧

⎨

⎩

√
Nα κ, if N is even,
√

N 2 −1
N α κ, if N is odd.

�
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IV. EXPERIMENTAL RESULTS

Navigation using the proposed mapper/navigator framework

discussed in Section II was tested in three experiments with (1)

a mobile ground vehicle and a stationary mapper, (2) a UAV

and a stationary mapper, and (3) a UAV and a mobile map-

per. In both experiments, the cellular CDMA module of the

LabVIEW-based Multichannel Adaptive TRansceiver Informa-

tion eXtractor (MATRIX) SDR developed in [24] was used to

process the cellular CDMA signals, and the Generalized Ra-

dionavigation Interfusion Device (GRID) SDR [49] was used to

process the GPS signals. The measurement noise variance for

the mapper and navigator was calculated from [41]

σ2
i =

c2 Bn,DLL q (teml)

2 (C/N0)i (1 − 2Bn,DLL TC O )
, (36)

where teml is the early-minus-late time in the CDMA re-

ceiver’s delay-locked loop (DLL) correlators (expressed in

chips), Bn,DLL is the DLL loop noise bandwidth (expressed

in Hertz), (C/N0)i is the measured carrier-to-noise ratio for the

ith BTS (expressed in Hertz), TC O = 1
37.5 s is the predetection

coherent integration time, and q(teml) is a function of the auto-

correlation of the cellular CDMA short code, whose expression

is given in [41]. Moreover, the three-dimensional (3–D) posi-

tion states of the BTSs involved in the experiments were mapped

prior to the experiments according to the framework discussed

in [32]. The following subsections present results for each ex-

periment.

A. Ground Vehicle Results

In this experiment, two cars (a mapper and a navigator)

were equipped with two antennas each to acquire and track:

(1) GPS signals and (2) signals from nearby cellular CDMA

BTSs. The receivers’ CDMA antennas used for the experiment

were consumer-grade 800/1900 MHz cellular antennas, and the

GPS antennas were surveyor-grade Leica antennas. The GPS

and cellular signals were simultaneously down-mixed and syn-

chronously sampled via two universal software radio periph-

erals (USRPs) driven by the same GPS-disciplined oscillator

(GSPDO). The receivers were tuned to the cellular carrier fre-

quency 882.75 MHz, which is a channel allocated for U.S. cel-

lular provider Verizon Wireless. Samples of the received signals

were stored for off-line post-processing. Over the course of the

experiment, both receivers were listening to the same 3 BTSs.

The mapping receiver and the navigating receiver were listen-

ing to the same sectors; hence, there were no additional errors

due to the discrepancies between sector clocks. The mapping

receiver was stationary during the experiments and was estimat-

ing the clock biases of the 3 BTSs with known position states

via a WLS estimator as discussed in Subsection II-B. The BTSs’

position states were expressed in a local 3–D frame whose hori-

zontal plane passes through the three BTSs and is centered at the

mean of the BTSs’ positions. The height of the navigator was

known and constant in the local 3–D frame over the trajectory

driven and was passed as a constant parameter to the estima-

tor. Hence, only the navigator’s two-dimensional (2–D) position

and its clock bias were estimated through the WNLS described

in Subsection II-E. The weights of the WNLS were calculated

Fig. 6. Experimental hardware setup, navigator trajectory, and mapper and
BTS locations for ground experiments. Map data: Google Earth.

using (36). For the first pseudorange measurement, the WNLS

iterations were initialized by setting the navigator’s initial hori-

zontal position states at the origin of the 3–D local frame and the

initial clock bias to zero. For each subsequent pseudorange mea-

surement, the WNLS iterations were initialized at the solution

from the previous WNLS. The experimental hardware setup,

the environment layout, and the true and estimated navigator

trajectories are shown in Fig. 6.

It can be seen from Fig. 6 that the navigation solution obtained

from the cellular CDMA signals follows closely the navigation

solution obtained using GPS signals. The mean distance differ-

ence along the traversed trajectory between the GPS and CDMA

navigation solutions was calculated to be 5.51 m with a stan-

dard deviation of 4.01 m and a maximum error of 11.11 m. The

mean receiver clock estimate difference between the GPS and

CDMA navigation solutions was calculated to be −45 ns with

a standard deviation of 23.03 ns.

B. UAV Results

Two UAV experiments were conducted: (1) one with a sta-

tionary mapper and (2) one with a mobile mapper.

1) UAV Results With a Stationary Mapper: In this experi-

ment, the mapper consisted of a GPSDO-driven dual-channel

USRP connected to a high-gain tri-band cellular antenna and

a surveyor-grade Leica GPS antenna deployed on the roof of

Winston Chung Hall at the University of California, Riverside.

A DJI Matrice 600 UAV was used as the navigator, which was
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Fig. 7. SOP BTS environment and experimental hardware setup with station-
ary mapper. Map data: Google Earth.

equipped with a consumer-grade 800/1900 MHz cellular an-

tenna and a small consumer-grade GPS antenna to discipline

the on-board oscillator. The cellular signals on the navigator

side were down-mixed and sampled by a single-channel Ettus

E312 USRP driven by a GPS-disciplined temperature compen-

sated crystal oscillator (TCXO). The cellular receivers were

tuned to the cellular carrier frequency 883.98 MHz, which is

also a channel allocated for Verizon Wireless. Samples of the

received signals were stored for off-line post-processing. The

ground-truth reference for the navigator trajectory was taken

from the UAV’s on-board navigation system, which uses GPS,

inertial navigation system, and other sensors. Fig. 7 shows the

SOP BTS environment in which the mapper and navigator were

present as well as the experimental hardware setup, which is

similar to the one employed in [40], [41].

Over the course of the experiment, the mapper and the nav-

igator were listening to the same 2 BTSs. Since only 2 BTSs

were available for processing, an extended Kalman filter (EKF)

framework was adopted (for observability considerations) to es-

timate the navigator’s state xr , which is composed of its 2–D po-

sition rr , velocity ṙr , clock bias δtr , and clock drift δ̇tr , namely

xr � [rT
r , ṙT

r , cδtr , cδ̇tr ]. Similarly to the ground experiment,

all position states were expressed in a local 3–D frame whose

horizontal plane is defined by the two BTSs and the mapper and

is centered at the mean of two BTSs’ and the mapper’s posi-

tions. The UAV was programmed to fly at a constant height and

at a constant speed. Hence, similarly to the ground experiment,

the height of the navigator was passed as a constant parameter

to the filter. The navigator’s position and velocity states were

assumed to evolve according to velocity random walk dynam-

ics, and the clock bias and clock drift dynamics were modeled

according to the standard clock error model: double integrator

driven by noise, as discussed in [9]. The power spectral den-

sities of the process noise driving ẍr and ÿr were obtained by

post-processing the data sampled from the UAV’s on-board nav-

igation system. The time averages of the x and y accelerations

were approximately zero with time variances σ2
ẍ ≈ 0.36 (m/s2)2

Fig. 8. UAV’s true and estimated trajectories for a stationary mapper. Map
data: Google Earth.

and σ2
ÿ ≈ 0.24 (m/s2)2 . These variances were used to form the

covariance matrix of the process noise driving the position and

velocity states [9]. Alternatively, the power spectra of the ac-

celeration process noise may be estimated adaptively [31], or

an inertial measurement unit (IMU) may be used to propagate

the position and orientation states of the navigator. The process

noise covariance of the clock error states can be parameter-

ized by the white frequency coefficient h0 and the frequency

random walk coefficient h−2 [50], [51]. Since the USRP on-

board the navigator is equipped with a TCXO, the aforemen-

tioned coefficients were chosen to be h0 = 9.4 × 10−20 and

h−2 = 3.8 × 10−21 [31]. The EKF states corresponding to the

UAV’s position and velocity were initialized with the values ob-

tained from the on-board navigation system with a zero initial

uncertainty. The EKF state corresponding to the clock bias was

initialized according to

cδ̂tr (0| − 1) = ρ1(0) − ‖rr (0) − rs1
‖2 + cδ̂ts1

(0),

where rr (0) is the UAV’s initial position obtained from the on-

board navigation system and δ̂ts1
(0) is the first BTS’s clock bias

estimate given by the mapper at k = 0. The initial uncertainty

associated with cδ̂tr (0| − 1) was set equal to the estimation

error variance σ2
δts 1

given by the mapper. The EKF state corre-

sponding to the clock drift was initialized to zero with an initial

uncertainty of 10 (m/s)2 . The measurement noise covariance

matrix was obtained using (20) and (36). Three scenarios were

tested. In the first scenario, the mapper and the navigator were

listening to the same sectors; hence, there were no additional

errors due to the discrepancies between sector clocks. In the sec-

ond scenario, the mapper was forced to listen to a different sector

of BTS 1 than the navigator; however, the measurement noise

covariance was not modified to compensate for the discrepancy

introduced. The third scenario is similar to the second, except

that the measurement noise covariance was modified to account

for the sector clock bias discrepancy, as defined in (20). The

initial discrepancy was calculated and was known to the EKF

for scenarios 2 and 3. Moreover, the parameters λ and α were

calculated offline by the mapper and were found to be λ = 13
ns/s and α = 8 × 10−4 Hz. The navigator’s true trajectory and

estimated trajectory for each scenario are shown in Fig. 8 and

the resulting RMSEs are tabulated in Table I.
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TABLE I
EXPERIMENTAL RESULTS FOR UAV WITH STATIONARY MAPPER

Fig. 9. SOP BTS environment and experimental hardware setup with a mobile
mapper. Map data: Google Earth.

Fig. 8 and Table I show a significant improvement in the

estimation performance when the sector clock bias error model

identified in this paper is used, which is reflected in a reduction

of around 11 m in the RMSE, 6 m in the standard deviation, and

7 m in the maximum error. Note that the UAV position estimate

deviates from the true trajectory initially even though the UAV

had not performed sharp maneuvers. This is due to the error

in the pseudorange measurements caused by multipath. These

multipath errors are not negligible, since the UAV is flying

slightly lower than the BTSs, which are located around 1 and

2.3 km away from the UAVs.

2) UAV Results With a Mobile Mapper: In this experiment,

the mapper and the navigator were identical Autel Robotics

X-Star Premium UAVs equipped with a single-channel Ettus

E312 USRP driven by a GPS-disciplined TCXO connected to

a consumer-grade 800/1900 MHz cellular antenna and a small

consumer-grade GPS antenna to discipline the on-board oscil-

lator. The cellular receivers were tuned to the cellular carrier

frequency 882.75 MHz, which is also a channel allocated for

Verizon Wireless. Samples of the received signals were stored

for off-line post-processing. The ground-truth references for the

mapper and navigator trajectories were taken from the UAVs’

on-board navigation systems, which use GPS, inertial naviga-

tion system, and other sensors. Note that in this scenario, the

clock biases were taken with respect to the mapper’s clock bias.

Fig. 9 shows the SOP BTS environment in which the mapper

and navigator were present as well as the experimental hardware

setup.

Over the course of the experiment, the mapper and the naviga-

tor were listening to the same 4 BTSs. The same three scenarios

performed in the stationary mapper experiment were consid-

ered. In this case, SOP BTS 4 was the BTS cell in which the

mapper and the navigator were listening to different sectors.

The framework discussed in Subsection II-E was adopted. The

Fig. 10. UAV’s true and estimated trajectories for a mobile mapper. Map data:
Google Earth.

TABLE II
EXPERIMENTAL RESULTS FOR UAV WITH A MOBILE MAPPER

Fig. 11. Logarithm of the determinant of the position estimation error covari-
ance for (a) the point solution and (b) the batch estimator for scenarios 2 and 3.
The theoretical lower bounds are also plotted.

initial discrepancy was calculated and was known to the WNLS

for scenarios 2 and 3. Moreover, the parameters λ and α were

calculated offline by the mapper and were found to be λ =
15.28 ns/s and α = 2.2 × 10−4 Hz. The navigator’s true trajec-

tory and estimated trajectory for each scenario are shown in

Fig. 10 and the resulting RMSEs are tabulated in Table II.

Fig. 10 and Table II show a significant improvement in the

estimation performance when the sector clock bias error model

identified in this paper is used, which is reflected in a reduction

of around 7 m in the RMSE, a reduction of 3.7 m in the standard

deviation, and a reduction of 7 m in the maximum error. It is

worth mentioning that the position RMSE obtained by not using

SOP BTS 4 was around 11 m. This indicates that not using the

BTS in case of sector mismatch is not the best strategy. A better

performance may be obtained by exploiting all available BTSs’

and incorporating the rigorous error models derived in this paper.

Fig. 11 shows log det[Px,y ] and log det[P′
x,y ] for a point

solution and a batch estimator, respectively, corresponding to

the experimental results of scenarios 2 and 3 along with the

theoretical lower bounds derived in Subsections III-B and III-C.

It can be seen that scenario 3 outperforms scenario 2 in terms

of estimation error uncertainty for both estimators. Moreover,

the lower bounds are never violated. The difference between
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the experimental logarithm of the determinant of the position

estimation error covariance and the theoretical lower bound is

attributed to the geometrical configuration of the BTSs, which

does not meet the optimal requirements in Theorem III.2.

Remark Comparing the proposed navigation approach with

the state-of-the-art in the literature is not straightforward, since

cellular CDMA navigation receivers were not documented in

a way that facilitates reproduction (they are mainly propri-

etary, e.g., [22]). Part I of this paper extensively discusses a

receiver architecture for navigation with cellular CDMA signals.

Moreover, the navigation frameworks proposed in the literature

are significantly different than the mapper/navigator framework

proposed in this work. In addition, to the authors’ knowledge,

this paper is the first to demonstrate UAVs navigating with cel-

lular CDMA signals. While a 1.68 m error has been reported

by combining cellular CDMA and digital television signals in

the literature [22], this paper reports 5 m accuracy using cellular

CDMA signals exclusively.

V. CONCLUSION

This paper studied a navigation framework consisting of a

mapping and a navigating receiver in a cellular CDMA environ-

ment. Theoretical lower bounds on the navigation performance

under errors due to the discrepancy between BTS sector clock

biases were derived and analyzed. Moreover, a lower bound on

the logarithm of the determinant of the estimation error covari-

ance was derived for non-identical measurement noise variances

and a receiver–BTS configuration that achieves this bound was

identified. A practical upper bound on the position error due to

the discrepancy between sector clock biases was characterized.

Also, two sets of experimental results were presented: one for

a ground vehicle and one for a UAV. The first experiment com-

pared the navigation solution from GPS versus that of cellular

CDMA and showed a mean distance difference of 5.51 m in

the absence of sector clock bias discrepancies. The second ex-

periment showed an improvement of nearly 11 m in the RMSE

when the discrepancy is accounted for utilizing the statistical

model relating observed clock biases from different sectors of

the same BTS cell.

APPENDIX A

DERIVATION OF EQUATION (23)

Using (21), the limit of log det[P⋆
x,y ] can be expressed as

lim
k→∞

log det
[
P

⋆
x,y

]
= lim

k→∞
log
[

4
(
σ2

eq

)2
]

= log

[

4

(

lim
k→∞

σ2
eq

)2
]

, (37)

It follows from (22) that

lim
k→∞

σ2
eq =

(

σ2
η + c2 λ2

α

)

σ2
η

Nσ2
η + (N − Ns)

c2 λ2

α

=

(

1 +
σ 2

η

c 2 λ2

α

)

σ2
η

N
σ 2

η

c 2 λ2

α

+ (N − Ns)
. (38)

Based on experimental data [41], ση ≈ 1 to 2 m, cλ ≈ 0.4 to

4 m, and α ≈ 10−4 to 10−3 Hz. Therefore, the ratio
σ 2

η

c 2 λ2

α

is

negligible, hence

lim
k→∞

σ2
eq ≈

σ2
η

N − Ns
,

therefore (37) becomes

lim
k→∞

log det
[
P

⋆
x,y

]
≈ log

⎡

⎣4

(

σ2
η

N − Ns

)2
⎤

⎦ .

APPENDIX B

DERIVATION OF EQUATION (24)

Using (21), log det[P⋆
x,y ] can be expressed as

log det
[
P

⋆
x,y

]
= log

[

4
(
σ2

eq

)2
]

= log(4) − 2 log

(
1

σ2
eq

)

, (39)

Noting that σ2
eq =

σ 2
η [σ 2

η +σ 2
ǫ (k)]

N s σ 2
η +(N −N s )[σ 2

η +σ 2
ǫ (k)] , (39) becomes

log det
[
P

⋆
x,y

]
= log(4) − 2 log

[
Ns

σ2
η + σ2

ǫ (k)
+

N

σ2
η

− Ns

σ2
η

]

= log(4) − 2 log

{

N

σ2
η

[

1 − Ns

N

(

1 −
σ2

η

σ2
η + σ2

ǫ (k)

)]}

= −2 log

[

1 − Ns

N

(

1 −
σ2

η

σ2
η + σ2

ǫ (k)

)]

+ log(4) − 2 log

(
N

σ2
η

)

︸ ︷︷ ︸

� ξ (constant)

.

For large k, the ratio
σ 2

η

σ 2
η +σ 2

ǫ (k) = 1 − 1

1+
σ 2

η

σ 2
ǫ (k )

becomes negli-

gible (see Appendix A), therefore

log det
[
P

⋆
x,y

]
≈ −2 log

(

1 − Ns

N

)

+ ξ.

APPENDIX C

DERIVATION OF EQUATION (26)

In this appendix, the expression for the optimal estimation

error covariance for the batch estimator given in (26) is derived.

From (25), σ̄2
ǫ (k) may be expressed as σ̄2

ǫ (k) = kσ̄2
ǫ (1). There-

fore, the elements of Rǫ can be approximated by [Rǫ ]m,n ≈
min{m,n}σ̄2

ǫ (1), hence

Rǫ ≈ σ̄2
ǫ (1)ΓK ,
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Fig. 12. Plot of (a) γ(β, K) and (b) f (β) = γ(β, K0 ) where K0 > 10.

where [ΓK ]m,n = min{m,n}, m, n = 1, . . . , K. For the batch

estimator, the sum
∑L

l=1Nl1
T

K R
−1
l 1K becomes

L∑

l=1

Nl1
T

K R
−1
l 1K = Ns1

T

K

(
σ2

η IK×K + Rǫ

)−1
1K

+ (N − Ns)1
T

K

(
σ2

η IK×K

)−1
1K

= Ns1
T

K

(
σ2

η IK×K + σ̄2
ǫ (1)ΓK

)−1
1K

+
(N − Ns) K

σ2
η

=
Ns

σ̄2
ǫ (1)

1
T

K

(

σ2
η

σ̄2
ǫ (1)

IK×K + ΓK

)−1

1K

+
(N − Ns) K

σ2
η

.

By defining β �
σ 2

η

σ̄ 2
ǫ (1) and γ(β,K) � 1

T

K (βIK×K +

ΓK )−1
1K , the above expression simplifies to

L∑

l=1

Nl1
T

K R
−1
l 1K =

Ns

σ̄2
ǫ (1)

γ (β,K) +
(N − Ns) K

σ2
η

. (40)

It can be shown that ΓK = UU
T, where U is a lower triangular

matrix with all its nonzero elements equal to one. Subsequently,

using the matrix inversion lemma, γ(β,K) can be expressed as

γ(β,K) = 1
T

K

[

1

β
I − 1

β2
U

(

I +
1

β
U

T
U

)−1

U
T

]

1K ,

where the K × K subscript on the identity matrices is dropped

for compactness of notation. The above expression may be ex-

pressed as

γ(β,K) =
K

β

[

1 − 1

Kβ
1

T

K U
(
βI + U

T
U
)−1

U
T
1K

]

.

A plot of γ(β,K) as a function of K and β is shown in

Fig. 12 (a). It can be seen that for a given β, γ(β,K) approaches

a finite value for relatively large K. This function is defined as

f(β) = γ(β,K0), where K0 > 10, and is shown in Fig. 12 (b).

Note that f(β) in Fig. 12 (b) was obtained by evaluating γ(β,K)
at K = 15.

For large K (greater than 10), (40) becomes

L∑

l=1

Nl1
T

K R
−1
l 1K =

Nsf(β)σ2
η + (N − Ns) Kσ̄2

ǫ (1)

σ̄2
ǫ (1)σ2

η

. (41)

It follows from the definition of R that

L∑

l=1

NlR
−1
l = NsR

−1
ǫ +

(N − Ns)

σ2
η

IK×K . (42)

From (41)–(42) and (18) in Theorem III.2, the estimation er-

ror covariance matrix with the minimum determinant is given

by (26).
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