
nbgrader: A Tool for Creating and Grading Assignments
in the Jupyter Notebook
Project Jupyter1, Douglas Blank7, David Bourgin1, Alexander Brown8,
Matthias Bussonnier1, Jonathan Frederic2, Brian Granger3, Thomas L.
Griffiths1, Jessica Hamrick4, Kyle Kelley9, M Pacer9, Logan Page5,
Fernando Pérez1, Benjamin Ragan-Kelley6, Jordan W. Suchow1, and
Carol Willing3

1 University of California, Berkeley 2 Google Inc. 3 Cal Poly, San Luis Obispo 4 DeepMind 5
University of Pretoria 6 Simula Research Laboratory 7 Bryn Mawr College 8 Lafayette College 9
Netflix, Inc.

DOI: 10.21105/jose.00032

Software
• Review
• Repository
• Archive

Submitted: 06 October 2018
Published: 06 January 2019

License
Authors of papers retain copy-
right and release the work un-
der a Creative Commons Attri-
bution 4.0 International License
(CC-BY).

Note: Authors on this paper are listed in alphabetical order.

Summary

nbgrader is a flexible tool for creating and grading assignments in the Jupyter Notebook
(Kluyver et al., 2016). nbgrader allows instructors to create a single, master copy of an
assignment, including tests and canonical solutions. From the master copy, a student
version is generated without the solutions, thus obviating the need to maintain two sepa-
rate versions. nbgrader also automatically grades submitted assignments by executing the
notebooks and storing the results of the tests in a database. After auto-grading, instruc-
tors can manually grade free responses and provide partial credit using the formgrader
Jupyter Notebook extension. Finally, instructors can use nbgrader to leave personal-
ized feedback for each student’s submission, including comments as well as detailed error
information.
nbgrader can also be used with JupyterHub (Jupyter Development Team, 2018), which
is a centralized, server-based installation that manages user logins and management of
Jupyter Notebook servers. When used with JupyterHub, nbgrader provides additional
workflow functionality, covering the entire grading process. After creating an assignment,
instructors can distribute it to students, who can then fetch a copy of the assignment
directly through the Jupyter Notebook server interface. Students can submit their com-
pleted assignment through the same interface, making it available for instructors. After
students submit their assignments, instructors can collect the assignments with a single
command and use the auto-grading functionality in the normal way.
Since its conception in September 2014, nbgrader has been used in a number of educational
contexts, including courses at UC Berkeley, Cal Poly, University of Pretoria, University of
Edinburgh, Northeastern University, Central Connecticut State University, KTH Royal
Institute of Technology, CU Boulder, University of Amsterdam, George Washington Uni-
versity, Texas A&M, Bryn Mawr College, Lafayette College, and University of Maryland;
and, as of May 2018, over 10,000 nbgrader-based notebooks exist on GitHub. In addition
to its core functionality, nbgrader has expanded to support a number of other features,
including the ability to handle multiple courses on the same JupyterHub instance; the op-
tion to either include or hide automatically graded tests; customizable late penalties; and
support for importing assignment files downloaded from a Learning Management System
(LMS).

Jupyter et al., (2019). nbgrader: A Tool for Creating and Grading Assignments in the Jupyter Notebook. Journal of Open Source Education,
2(11), 32. https://doi.org/10.21105/jose.00032

1

https://doi.org/10.21105/jose.00032
https://github.com/openjournals/jose-reviews/issues/32
https://github.com/jupyter/nbgrader
https://doi.org/10.5281/zenodo.2532780
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/jose.00032


Statement of Need

The use of computational methods has become increasingly widespread in fields outside
of computer science (Wing, 2008). As these disciplines begin to require computational
tools, undergraduate curricula also begin to include topics in programming and com-
puter science. However, perhaps because students are focused on the discipline that is
the object of their study—and programming is likely a secondary interest—it has been
shown that teaching computer science can be more effective when courses include inter-
disciplinary motivations (Cortina, 2007; Forte & Guzdial, 2005; Guzdial & Forte, 2005).
One approach for teaching programming in a way that facilitates exploration with in-
terdisciplinary questions is to teach students computational concepts in an interactive
environment where it is possible to quickly write, test, and tweak small units of code.
Many such environments exist, including Mathematica (Wolfram Research, Inc., 2018),
Maple (Maplesoft, a division of Waterloo Maple Inc., n.d.), MATLAB (The MathWorks,
Inc., 2018), Sage (Stein & others, 2018) and IPython (Pérez & Granger, 2007). However,
these are often focused on programming in a single language, and lack an efficient system
for distributing, collecting, and evaluating student work.

In recent years, the IPython project introduced the Jupyter Notebook (Kluyver et al.,
2016), an interface that is conducive to interactive and literate computing, where program-
mers can interleave prose with code, equations, figures, and other media. The Jupyter
Notebook was originally developed for programming in the Python programming lan-
guage, but multiple languages are now supported using the same infrastructure. The
Jupyter Notebook is ideal for educators because it allows them to create assignments
which include instructions along with code or Markdown cells, in which students can pro-
vide solutions to exercises. Students can, for example, write code both to compute and
visualize a particular result. Because the Jupyter Notebook is interactive, students can
iterate on a coding problem without needing to switch back and forth between a command
line and a text editor, and they can rapidly see results alongside the code which produced
them.

Instructors in many fields have begun using the Jupyter Notebook as a teaching plat-
form. The Jupyter Notebook has appeared in over 100 classes (Castaño, 2018a, 2018b;
J. B. Hamrick & Team, 2016) on subjects including geology, mathematics, mechanical
engineering, data science, chemical engineering, and bioinformatics. Software Carpentry,
an organization that aims to teach graduate students basic computational skills, has also
adopted the Jupyter Notebook for some of its lessons (Wilson, 2014).

Despite its appearance in many classrooms, yet before the existence of nbgrader, the
Jupyter Notebook was rarely used on a large scale for graded assignments. Instead, it was
often used either for ungraded in-class exercises, or in classes small enough that notebooks
could be graded by hand (sometimes even by printing them out on paper and grading
them like a traditional assignment). This is because there are several challenges to using
the Jupyter Notebook for graded assignments at scale. First, for large classes, it is not
feasible for an instructor to manually grade the code that students write: there must be a
way to automatically grade the assignments. However, a notebook is not a typical script
that can be run and may contain multiple parts of a problem within the same notebook;
thus, automatically grading a notebook is less straightforward than it is for a traditional
script. Second, for many courses, programming is a means to an end: understanding
concepts in a specific domain. Specifically, instructors may want students to provide
both code and written free-responses interpreting the results of that code. Instructors
thus need to be able to rely on automatic grading for the coding parts of an assignment,
but also be able to manually grade the written responses in the surrounding context of
the student’s code. Third, the process of distributing assignments to students and later
collecting them can be tedious, even more so with the Jupyter Notebook because there
is a separate interface for accessing notebooks beyond the standard system file browser.

Jupyter et al., (2019). nbgrader: A Tool for Creating and Grading Assignments in the Jupyter Notebook. Journal of Open Source Education,
2(11), 32. https://doi.org/10.21105/jose.00032

2

https://doi.org/10.21105/jose.00032


This often leads to confusion on the part of students about how to open notebooks after
downloading them, and where to find the notebooks in order to submit them.

nbgrader streamlines the repetitive tasks found in course management and grading, and
its flexibility allows greater communication between instructor and student. nbgrader has
moreover enabled instructors to use Jupyter Notebook-based assignments in classes with
hundreds of students, which was previously not possible to do without excessive human
effort. Overall, nbgrader does—and with further development will continue to—improve
the learning experience for both instructors and students, enabling them to focus on
content and building understanding.

References

• nbgrader source code: https://github.com/jupyter/nbgrader
• nbgrader documentation: http://nbgrader.readthedocs.io/en/stable/

Castaño, E. L. (2018a, May). Jupyter map. doi:10.5281/zenodo.1245087

Castaño, E. L. (2018b, May). Jupyter usage in institutions with coordinates.
doi:10.5281/zenodo.1244833

Cortina, T. J. (2007). An introduction to computer science for non-majors using principles
of computation. ACM SIGCSE Bulletin, 39(1), 218. doi:10.1145/1227504.1227387

Forte, A., & Guzdial, M. (2005). Motivation and non-majors in computer science: Iden-
tifying discrete audiences for introductory courses. IEEE Transactions on Education,
48(2), 248–253. doi:10.1109/TE.2004.842924

Guzdial, M., & Forte, A. (2005). Design process for a non-majors computing course.
ACM SIGCSE Bulletin, 37(1), 361. doi:10.1145/1047124.1047468

Hamrick, J. B., & Team, J. D. (2016, May). 2016 Jupyter education survey.
doi:10.5281/zenodo.51701

Jupyter Development Team. (2018). JupyterHub.

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B. E., Bussonnier, M., Frederic, J.,
Kelley, K., et al. (2016). Jupyter notebooks: A publishing format for reproducible
computational workflows. In ELPUB (pp. 87–90). doi:10.3233/978-1-61499-649-1-87

Maplesoft, a division of Waterloo Maple Inc. (n.d.). Maple. Waterloo, Ontario.

Pérez, F., & Granger, B. E. (2007). IPython: A system for interactive scientific comput-
ing. Computing in Science and Engineering, 9(3), 21–29. doi:10.1109/MCSE.2007.53

Stein, W., & others. (2018). Sage Mathematics Software. The Sage Development Team.

The MathWorks, Inc. (2018). MATLAB. Natick, MA.

Wilson, G. (2014). Software Carpentry: lessons learned. F1000Research, 3, 62.
doi:10.12688/f1000research.3-62.v1

Wing, J. M. (2008). Computational thinking and thinking about computing. Philo-
sophical Transactions of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences, 366(1881), 3717–3725. doi:10.1098/rsta.2008.0118

Wolfram Research, Inc. (2018). Mathematica. Champaign, IL.

Jupyter et al., (2019). nbgrader: A Tool for Creating and Grading Assignments in the Jupyter Notebook. Journal of Open Source Education,
2(11), 32. https://doi.org/10.21105/jose.00032

3

https://github.com/jupyter/nbgrader
http://nbgrader.readthedocs.io/en/stable/
https://doi.org/10.5281/zenodo.1245087
https://doi.org/10.5281/zenodo.1244833
https://doi.org/10.1145/1227504.1227387
https://doi.org/10.1109/TE.2004.842924
https://doi.org/10.1145/1047124.1047468
https://doi.org/10.5281/zenodo.51701
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.12688/f1000research.3-62.v1
https://doi.org/10.1098/rsta.2008.0118
https://doi.org/10.21105/jose.00032

	Summary
	Statement of Need
	References

