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ABSTRACT

The Auto-Nowcast System (ANC), a software system that produces time- and space-specific, routine (every
5 min) short-term (0–1 h) nowcasts of storm location, is presented. A primary component of ANC is its ability
to identify and characterize boundary layer convergence lines. Boundary layer information is used along with
storm and cloud characteristics to augment extrapolation with nowcasts of storm initiation, growth, and dissi-
pation. A fuzzy logic routine is used to combine predictor fields that are based on observations (radar, satellite,
sounding, mesonet, and profiler), a numerical boundary layer model and its adjoint, forecaster input, and feature
detection algorithms. The ANC methodology is illustrated using nowcasts of storm initiation, growth, and
dissipation. Statistical verification shows that ANC is able to routinely improve over extrapolation and persistence.

1. Introduction

This paper describes the Auto-Nowcast System
(ANC), a software system that produces time- and
space-specific 0–1-h nowcasts1 of convective storm lo-
cation and intensity. ANC combines meteorological ob-
servations, a numerical boundary layer model and its
adjoint [Variational Doppler Radar Analysis System
(VDRAS); Sun and Crook 2001], forecaster input, and
feature detection algorithms to provide routine nowcasts
of thunderstorm position. ANC was developed by the
National Center for Atmospheric Research (NCAR)
with prime funding from the Federal Aviation Admin-
istration (FAA).2

Early nowcasting techniques relied upon the simple
extrapolation of storm positions. Even for periods less
than 60 min, extrapolation nowcasts are often not useful
because they fail to take into account storm initiation,

* The National Center for Atmospheric Research is sponsored by
the National Science Foundation.

1 The term nowcast is used in this paper to emphasize that the
nowcasts are time and space specific for periods less than a few hours.
The nowcasts may include initiation, growth, and dissipation of
storms.
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growth, and dissipation. Wilson et al. (1998) provide a
review of nowcasting systems and their capabilities. Ex-
isting extrapolation systems in the United States include
(a) the Storm Cell Identification and Tracking (SCIT)
algorithm used in the National Weather Service Warning
Decision Support System (Johnson et al. 1998), and (b)
the Thunderstorm Identification, Tracking, Analysis and
Nowcasting algorithm (TITAN; Dixon and Wiener
1993) used in the National Convective Weather Forecast
(Megenhardt et al. 2000) and elsewhere.

The need for more precise nowcasting has spawned
four operational nowcasting systems that forecast storm
initiation, growth, and dissipation. Two of these are used
at the United Kingdom’s Met Office: (a) GANDOLF
(Generating Advanced Nowcasts for Deployment in Op-
erational Land Surface Flood Forecast; Pierce and Har-
daker 2000) and (b) Nimrod (Golding 1998). The third
is the FAA Regional Convective Weather Forecast and
Terminal Convective Weather Forecast system (Boldi et
al. 2002). The fourth is ANC. Development of the latter
two systems is jointly funded by the FAA AWRP. The
ANC is currently operational at the Army Test and Eval-
uation Command meteorological units at White Sands
Missile Range in New Mexico and Redstone Arsenal in
Alabama. ANC was also deployed from 1997 to 2000
at the Washington–Baltimore National Weather Service
Office in Sterling, Virginia, as part of the System for
Convective Analysis and Nowcasting (SCAN) program
(Smith et al. 1998). Efforts are under way to begin trans-
fer of ANC components to the Advanced Weather In-
teractive Processing System (Smith et al. 1998). As part
of the Sydney 2000 World Weather Research Program
Field Demonstration Project (Keenan et al. 2003), Nim-
rod, GANDOLF, ANC, TITAN, and SCIT ran for a 3-
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month period at the Sydney office of the Australian
Bureau of Meteorology.

A primary component of ANC is its ability to identify
and characterize boundary layer convergence lines. Fea-
ture detection algorithms and VDRAS are used to mon-
itor and nowcast boundary layer structure. The impor-
tance of the boundary layer in thunderstorm develop-
ment was first shown by the Thunderstorm Project
(Byers and Braham 1949). They found that boundary
layer mesoscale convergence was a precursor to con-
vective storm development. Purdom (1973, 1976, 1982)
indicated the importance of monitoring cloud lines with
satellite data to nowcast storms. Wilson and Carbone
(1984) suggested the utility of radar-detected clear-air
‘‘boundaries’’ for use in thunderstorm nowcasting.
Boundaries are defined here as narrow zones of bound-
ary layer convergence associated with weather phenom-
ena such as gust fronts, sea-breeze circulations, terrain-
induced circulations, horizontal convective rolls, and
synoptic-scale fronts. Forecasters worldwide appreciate
the importance of boundaries in nowcasting convective
storms. Wilson and Mueller (1993, hereafter WM93)
provided conceptual models for using boundaries to
nowcast thunderstorm evolution. These conceptual
models form the basis for many of the nowcasting pro-
cedures utilized by ANC and are summarized in section
2. For a detailed discussion of the model, the reader is
referred to WM93.

Section 2 describes and illustrates ANC methodology
utilizing a case from the Washington–Baltimore area,
section 3 summarizes a case study from the Denver area,
section 4 summarizes performance statistics from White
Sands and Sterling, and section 5 discusses ANC
strengths, weaknesses, and potential improvements.

2. ANC system methodology

The practice of nowcasting requires the forecaster to
review and assimilate a variety of disparate observations
and model results within the context of their knowledge
of how the atmosphere works (i.e., the ‘‘conceptual
model’’). By the nature of the nowcast problem, the
time available for the human to review data and make
a nowcast is always very limited.

ANC mimics much of what is normally done by the
human (but without feeling the time stress). It uses a
data fusion system to assimilate a variety of datasets
(which could include forecaster input) to create now-
casts that are issued at regular intervals (usually every
5 min) and that are based on conceptual models of how
storm’s initiate, grow, and dissipate. ANC uses a fuzzy
logic system (e.g., McNeill and Freiberger 1993). Fuzzy
logic provides an efficient manner to combine datasets
and apply conceptual models. In meteorology, fuzzy
logic has been used for a variety of applications in-
cluding gust front detection and extrapolation (Delanoy
and Troxel 1993), profiler winds analysis (Cornman et
al. 1998), radar-based cloud particle typing (Vivekan-

anandan et al. 1999), anomalous propagation (AP) de-
tection and mitigation (Kessinger et al. 2001), icing de-
tection (Bernstein et al. 2000), and turbulence detection
and forecasting (Sharman et al. 2000). Fuzzy logic elim-
inates the binary yes–no decision required by decision
trees and, instead, uses mathematical functions based
on conceptual models to nowcast the likelihood of
storms over a grid point in a defined region. Perfor-
mance statistics are used to help tune the functions, but
the fuzzy logic system is primarily physically based.
Large datasets used by neural networks or other statis-
tical techniques are not required to train or tune the
system. Modifications to the fuzzy logic parameters can
be made efficiently for different sites, weather condi-
tions, and as new capabilities such as improved forecast
models and more advanced observational systems be-
come available.

ANC methodology is presented in this section by con-
tinued reference to a particular case study that shows a
nowcast for the initiation of a squall line during the
SCAN program. Figure 1a shows satellite data close to
the time the nowcast was issued. The large line of clouds
in Pennsylvania was associated with a cold front. The
line of cumulus through northern Virginia and Maryland
(within the white box) is the focus of this nowcast.
Figure 1b shows for the same time the radar reflectivity
and the low-level winds retrieved by VDRAS in a do-
main centered on the Sterling Weather Surveillance Ra-
dar-1988 Doppler (WSR-88D). A boundary is in evi-
dence both from the VDRAS winds and from the line
of enhanced reflectivity. This boundary was moving rel-
atively slowly at 8 m s21. The steering level was from
the west at ;10 m s21. The line of cumulus quickly
grew into a squall line that produced damaging winds
and ¾- to 2-in.-diameter hail. ANC correctly nowcasts
the initiation of the squall line. The Sterling National
Weather Service Science and Operations Officer noted
that ‘‘Although our forecasters had discussed the po-
tential for severe thunderstorms to break out, we were
anticipating a late start based on extrapolation of the
line of storms over Pennsylvania. The 2 June event un-
derscores the critical nature of detecting boundaries to
help in the convective initiation problem. . . . The au-
tomated forecast . . . actually showed potential for thun-
derstorms to form where they did prior to the thunder-
storms actually forming’’ (S. Zubrick 2000, personal
communication). An example of a 30-min nowcast for
initiation of echoes $35 dBZ and the nowcast verifi-
cation is shown Fig. 2. This case will be used in the
following section to illustrate the nowcast system’s
methodology.

a. Overview

Figure 3 provides a generalized schematic of the ANC
system. The steps in producing the nowcast are briefly
reviewed here to give an overview of the entire system.
Operational datasets used in the system include full-
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FIG. 1. (a) GOES satellite visible imagery at 2130 UTC 2 Jun 2000
over western PA, and northern WV, northern VA, and MD. Box
indicates domain of (b). (b) Beam-to-beam radar reflectivity from the
0.58 elevation tilt, VDRAS low-level (180 m AGL) winds, and man-
ually entered boundary location (solid line).

resolution radar (generally WSR-88D), satellite, surface
stations (including special mesonets), lightning, profil-
ers, numerical model, and radiosondes. These data are
input into analysis algorithms to calculate predictor
fields as shown in Fig. 3. Analysis algorithms include
data quality control routines, feature detection algo-
rithms, and VDRAS. In some cases, it is beneficial for
a forecaster to interact with ANC by manually inputting
the position of boundaries as shown in step 2. The fore-
caster-detected boundary positions are used as input into
nowcast algorithms and to train the boundary detection
algorithm. Because the boundary detection algorithm

uses the forecaster input as guidance over a period of
time, manually entering boundaries does not have to be
done routinely.

The predictor fields are combined using a fuzzy logic
approach as indicated in step 3. The fuzzy logic ap-
proach uses membership functions to map the predictor
fields to the likelihood of storms (likelihood fields). The
dimensionless likelihood fields are meant to represent
the relationship between the predictor fields (listed in
Table 2) and the existence of convective storms at val-
idation time. These likelihood fields are not equivalent
to probability; high values of likelihood for a single
predictor field may have very low probabilities. The
likelihood fields are weighted and summed to produce
a combined likelihood field. The combined likelihood
field is filtered and thresholded in step 4 to generate the
nowcast areas of convective activity. In ANC deploy-
ments to date, the automated nowcasts are used as guid-
ance by the forecasters.

b. Analysis algorithms, forecaster input, and resultant
predictor fields (steps 1 and 2)

The first step in the ANC system is to process the
observational datasets to produce predictor fields. Table
1 lists the analysis algorithms, input data streams, the
purpose of each algorithm, and a numerical index to the
derived predictor fields listed in Table 2. Table 2 lists
the current ANC predictor fields along with a descrip-
tion of each field, its relative importance to the nowcast
(relative weight used for the fuzzy logic summation),
and references. These predictor fields are derived from
conceptual models. The conceptual models are de-
scribed in WM93 and are based on determining the
overlap of regions where there is conditional instability
(generally determined by cloud type and vertical de-
velopment of the clouds), a favorable boundary to trig-
ger convection, and the translated position and char-
acteristics of current storms. Cloud fields are used to
imply potential for convection initiation because no rou-
tine direct measurements of boundary layer thermody-
namics (temperature and water vapor) are available on
a temporal or spatial scale suitable for nowcasting. Con-
vective storm initiation is very sensitive to the small-
scale variations in boundary layer temperature and water
vapor (Crook 1996) and the vertical depth of the bound-
ary layer moisture (Mueller et al. 1993). Convective
clouds provide an indication of where moisture may be
sufficient for deep convection (Weckwerth 2000). Con-
versely, anvil-level cloud shields resulting from deep,
moist convection can suppress new convection by sta-
bilizing the air mass below the anvil.

WM93 provided a number of nowcast rules. Some
examples of these rules include 1) if existing storms are
moving in association with a boundary, the storms are
nowcast to maintain and grow; 2) if there are clouds
along two colliding boundaries, storms are nowcast to
initiate and rapidly develop at the collision point, and
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FIG. 2. Low-level (1.5 km MSL) radar reflectivity; the contour is the 30-min ANC nowcast. (a) The ANC 30-min nowcast at issue time,
2218 UTC 2 Jun 2000, and (b) the same nowcast superpositioned over reflectivity at verification time, 2248 UTC.

FIG. 3. Schematic of ANC. Boxes indicate algorithmic steps (soft-
ware processes and human input). Shaded areas indicate data and
various predictor and nowcast fields.

3) if a boundary moves rapidly away from a storm, the
storm is nowcast to dissipate. In all these cases, infor-
mation about the cloud field (used as a proxy for sta-
bility), boundary layer forcing (boundaries), and storm
characteristics are evaluated and extrapolated in position
to the 0–1-h nowcast time to determine the likelihood
of storms at that time. The predictor fields in ANC re-
flect the rules described in WM93 and build on recent
research (references listed in Table 2). In Table 2, the
predictor fields are divided into information about storm
characteristics (fields 1–5), boundary layer structure
(fields 6–10), and cloud characteristics (fields 11–13).

1) STORM CHARACTERISTICS PREDICTORS

The storm characteristics predictors provide infor-
mation to ANC about current storms. These predictor
fields are based on storm area and trend information
with time obtained by TITAN and on motion vectors

obtained by the Tracking Radar Echo by Correlation
(TREC) software package (Rineheart 1981; Tuttle and
Foote 1990). Figure 4 shows the extrapolated gridded
reflectivity field along with the ANC 30-min nowcast.
Comparing the two nowcasts with the verification ob-
servations in Fig. 2b shows the extrapolation is useful,
in that the motion of the line is captured. However, in
this case there was considerable growth of the storm
that was not captured by extrapolation alone. Although
storm history is useful to the ANC system, storm char-
acteristics and trends by themselves do not provide suf-
ficient information to nowcast storms because the phys-
ical processes that influence how a storm will change
in the future are not fully reflected in the storm’s past
(Tsonis and Austin 1981; MacKeen et al. 1999). One
of the primary nowcast predictor fields is the extrapo-
lated reflectivity based on the TREC software package.

Motion vectors for the extrapolation nowcasts are
based on filtered radar-reflectivity data. An ‘‘elliptical’’
filter (Wolfson et al. 1998) is used to smooth and remove
the small and more perishable scales from the reflectiv-
ity field. Typical dimensions of the filter are 5 km by
19 km. The elongated shape of the elliptical filter en-
hances the linear features allowing TREC to capture the
propagation speed of the line or area as opposed to
individual cell motions. A 1-km gridded reflectivity field
is extrapolated using the TREC motion vectors and the
resultant field is the extrapolation nowcast field.

2) BOUNDARY LAYER CHARACTERISTICS

PREDICTORS

The detection of boundary layer convergence lines is
crucial to nowcasts of initiation, growth, and dissipation
of storms. ANC uses boundary layer predictor fields to
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TABLE 1. List of system processes (analysis algorithms) used in ANC, including the data software processes they employ, the purpose of
the algorithm, and the fields predicted (the numbers refer to the list of predictors in Table 2). VAD refers to Velocity Azimuth Display; RUC
refers to the Rapid Update Cycle.

Software name Data Purpose Predictor fields

Elliptical filter Cartesian radar Filter perishable scales 1, 2
TREC Same as above Extrapolate radar reflectivity 1, 2, 3, 4
TITAN Same as above Storm characteristics and trends 3, 4
Precip accumulation Same as above Calculate precipitation accumulation

based on standard Z–R relationship
5

COLIDE Human-inserted bound-
aries

Extrapolates boundary position 6, 7, 8, 9, 10

VDRAS High-resolution radar
data, mesonet data
and VADs from sur-
rounding radars

Cloud-scale numerical model and its ad-
joint used for single radar retrieval of
boundary layer winds and thermody-
namics

9, 10

Boundary collision and bound-
ary-storm collision

COLIDE extrapola-
tions, TITAN, and
steering flow from
profiler or RUC data

Delineates regions where a boundary
collision, boundary intersection, or
boundary–storm collision will take
place

7

Boundary grid COLIDE extrapola-
tions, steering flow,
and VDRAS winds

Delineates regions associated with
boundary lifting and provides bound-
ary layer characteristics in those re-
gions

6, 8, 9, 10

Satellite applications GOES satellite visible
and IR data

Provides information about cloud type
and growth

12, 13, 14

quantify the characteristics of boundaries and relate this
to their likelihood to trigger storms. Boundary location
and motion are obtained by use of automated feature
detection algorithms such as the Machine Intelligent
Gust Front Algorithm (MIGFA; Delanoy and Troxel
1993) or Convergence Line Detection (COLIDE; Rob-
erts et al. 1999). MIGFA and COLIDE detect, track,
and extrapolate the positions of boundaries. The COL-
IDE algorithm can be run in automated or interactive
modes. Boundary detection has proven to be a difficult
topic. Although the human eye can often detect features
in radar, satellite, and mesonet data that indicate the
presence of a boundary, it is difficult to build an al-
gorithm that consistently detects the boundaries’ more
subtle features without inducing false detections. The
forecaster can manually enter boundaries that guide the
automated algorithms (step III in Fig. 3). Thus the fore-
caster enhances the nowcast without interfering with
routine ANC output. COLIDE runs continually with or
without human input. If the forecaster enters a boundary
manually, then COLIDE uses the forecaster’s input to
enhance the boundary detections. The future position of
the boundary is based on extrapolation of recent posi-
tions.

Once boundary location and motion are established,
ANC calculates gridded predictor fields. The boundary
predictor fields are obtained from the 1) boundary mo-
tion, 2) steering-level winds (obtained from sounding
or numerical model data), and 3) VDRAS. VDRAS re-
trieves a 3D wind and thermodynamic analysis of the
boundary layer based on single-Doppler radar and me-
sonet data. An example of one of the boundary layer
predictor fields is shown in Fig. 5. Figure 5a shows the
VDRAS vertical velocity (w) data and boundary posi-

tion information used to create the so-called MaxW pre-
dictor field (see Fig. 5b). The MaxW predictor field is
calculated in a three-step process. First, the w values
are assigned to discrete 10-km boundary segments using
the maximum value of the VDRAS vertical velocity at
;1 km above ground level (AGL) along the segment.
Second, the boundary position is extrapolated. Finally,
the grid around the extrapolated boundary position is
populated with the MaxW values assigned to the bound-
ary segments. The resulting field (Fig. 5b) shows an
elongated feature that surrounds the position of the ex-
trapolated boundary. The cross-boundary width of the
elongated MaxW field is based on statistical studies of
storm initiation and growth relative to boundaries (Wil-
son and Schreiber 1986; Mueller et al. 1997). In the
case of moving boundaries, one-third of the field is
placed in front of the boundary and the cross-boundary
width is generally 25 km. The region around stationary
boundaries is centered on the boundary and the width
is 15 km. Other boundary layer predictors are sum-
marized in Table 2.

3) CLOUD CHARACTERISTICS PREDICTORS

ANC uses cloud characterization fields as indicators
of instability. The cloud predictor fields are based on
either satellite or radar data. The Geostationary Oper-
ational Environmental Satellite (GOES) data are used
to indicate regions of cumulus and cumulus congestus
based on cloud-type algorithms (Bankert 1994; Roberts
1997). In addition to cloud type, the change in GOES
IR temperature (channel 4, 11 mm) is monitored as an
indicator of vertical cloud growth (Roberts 1997; Rob-
erts and Rutledge 2003).
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FIG. 4. Comparison of 30-min ANC output and echo extrapolation
(gray shades) nowcasts. Verification of these nowcasts is shown in
Fig. 2b.

FIG. 6. The Radar Cu predictor field is shown along with ANC 30-
min nowcast (black lines).

FIG. 5. (a) VDRAS horizontal wind vectors (180 m AGL) and vertical velocity field (gray shades) at 940 m AGL, and (b) MaxW
predictor field in gray shades. The boundary position is shown as a solid line and 30-min extrapolation as a dashed line.

When satellite data are not available or the low-level
clouds are obscured by upper-level cloudiness, radar
data are used. Knight and Miller (1993) showed that
sensitive radars similar to the WSR-88Ds are capable
of detecting early cumulus clouds prior to the devel-
opment of precipitation size particles. Strong gradients
in moisture along the cloud edges produce weak echoes
(,5 dBZ) from Bragg scattering that are called mantel
echoes. However, the WSR-88D scan strategy is not
optimal for detecting these shallow clouds (Roberts
1997). In addition, algorithms cannot easily discern
weak echo associated with developing cumulus from
weak echo associated with other weather such as strat-

iform debris. Therefore, the earliest stage of cumulus
development that ANC detects routinely is cumulus con-
gestus.

Figure 6 illustrates the Radar Cu predictor field (Table
2) showing the presence of convective echoes between
0 and 55 dBZ in the height range of 3–6 km. ANC
allows cloud fields determined by radar and satellite to
be extrapolated in many ways based on user input. Gen-
erally the steering-level winds obtained from soundings,
profilers, or numerical model data are used. However,
calculating a good motion vector for the cloud fields is
a major challenge. Sometimes the observed clouds re-
main fixed to the boundary and other times move with
the mean flow in the volume of the space they occupy.
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FIG. 7. (a)–(j) Common membership functions used in ANC.

TABLE 3. Verification statistics for the ANC nowcast shown in Fig.
2, extrapolation shown in Fig. 4, and persistence. A reflectivity of
35 dBZ is used to define extrapolation and persistence forecasts and
as the threshold for the observations.

POD (%) FAR (%) CSI (%) Bias

ANC
Extrapolation
Persistence

38.3
3.8
0

54.8
0

100

26.1
3.8
0

0.85
0.04
0.04

FIG. 8. (a) Combined-likelihood field for the relatively simple nowcast shown in Fig. 2. (b) Filtered combined likelihood field that is
thresholded (white contour) to produce the final nowcast.

The Radar Cu field shown in Fig. 6, for example, is
extrapolated by using the boundary motion.

c. Fuzzy logic algorithm and nowcast (steps 3 and 4)

Nowcasts are obtained by converting the predictors
just discussed (and summarized in Table 2) to likelihood
fields using the membership functions shown in Fig. 7,
weighting the importance of each field to the nowcast,
and summing. The membership functions are based on
one’s insight into the physical processes taking place,
and converting the predictors into the dimensionless
likelihood fields. These likelihood fields have a dynamic
range from 21 to 1; increasing positive numbers are
used to indicate a region of increasing likelihood of
storms, decreasing negative numbers indicate regions of
decreasing likelihood, and zero indicates neutral like-
lihood. The various likelihood fields are weighted using
the values shown in Table 2 and the results are summed
to produce the combined likelihood field. The combined
field is filtered, smoothed, and then thresholded to pro-
vide the final nowcast.

Figure 8a shows the combined likelihood field for the
example case. In this relatively simple case, the con-
tributions of various predictors are identified. The elon-
gated-shaped region is associated with boundary char-
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FIG. 9. Nowcast statistics for 2 Jun 2000. The 30-min nowcasts
issued at 5-min intervals are evaluated. Times are verification time.
Extrapolation nowcasts are shown in solid line, ANC nowcasts in
dashed line.

acteristics. The Radar Cu and extrapolated reflectivity
positions lead to enhanced values of the combined like-
lihood field and hence increased likelihood of storms.
[Satellite predictors were not used in this example. Rob-
erts and Rutledge (2003) show nowcasts from this case
with and without satellite predictor fields.] In effect, the
combined likelihood field provides a method of deter-
mining the overlap of the various predictors and hence
the expected regions of storms.

The combined likelihood field is filtered and thres-
holded to produce the final forecast (see Fig. 8b). The
filter type varies depending on the locations of the
boundaries. In the area outside of the elongated feature
that surrounds the position of the extrapolated boundary,
small nowcast regions of high combined likelihood are
removed and large regions are generally reduced

(whether the region is reduced and the extenet of the
reduction is dependent on the magnitude of the com-
bined likelihood field). Inside the elongated features,
the nowcast regions are enlarged. The resultant field,
Fig. 8b, is thresholded to provide the nowcast. The value
used to threshold the field is determined by data review
and statistical evaluation.

d. Verification
This section provides a review of the verification

methodology, and section 4 discusses verification sta-
tistics in detail. Contingency tables based on grid-to-
grid comparison of the nowcast and observed fields (Do-
swell 1986) are used to calculate the probability of de-
tection (POD), false-alarm rate (FAR), and critical suc-
cess index (CSI). A perfect score for POD is 100%,
FAR is 0%, and CSI is 100%. Persistence, extrapolation,
and ANC statistics are generally evaluated and com-
pared. Generally the verification field (observation) is
a constant-altitude plot of radar reflectivity measure-
ments at a height of 1.5 km AGL. A 35-dBZ threshold
is used to delineate the storm–no-storm boundary.

The POD, FAR, and CSI values for the extrapolation
and ANC nowcasts shown in Fig. 4 (observations are
shown in Fig. 2b) are given in Table 3. Although the
nowcast is quite accurate, the value of the nowcast sta-
tistics are relatively low. In fact, the 1-km grid-to-grid
comparison is a very stringent verification approach and
the actual magnitudes of the statistics are not intuitively
meaningful. In addition, the magnitudes of the statistics
are strongly dependent on the methodology used in the
calculations. Therefore, in order to glean useful infor-
mation from the statistics, comparisons with other base-
line nowcast techniques such as persistence and extrap-
olation are necessary. In this case, persistence has no
skill (Table 3). ANC improves over extrapolation in
terms of POD and CSI. The FAR is much higher for
the ANC system because the extrapolated reflectivity
echo was very small in comparison to the ANC forecast.

Time series statistics for the 2 June 2000 ANC and
extrapolation nowcasts are shown in Fig. 9. ANC con-
sistently provides superior results as compared to ex-
trapolation for both POD and CSI. This improvement
is shown for all time periods but is especially evident
in the initial nowcast periods. The importance of in-
cluding accurate boundary motions into the analysis is
shown by the dip in ANC POD and FAR scores at
;2318 UTC. The boundary motion was incorrectly
nowcast to increase but instead the motion remained
steady. The resultant ANC nowcast mislocated the
boundary and the Radar Cu field (that was advected
with the boundary motion) based on faster than actual
motion, resulting in the poor scores.

3. Examples of initiation, growth, and dissipation
nowcasts

This section presents examples of initiation, growth,
and dissipation nowcasts using a case on 5 July 2001
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FIG. 10. ANC 30-min nowcasts for Denver, CO, area. The frames are at 18-min intervals from (a) 2354 UTC 5 Jul to (i) 0218 UTC 6
Jul 2001. White vectors indicate VDRAS low-level winds and the cyan lines are human-generated boundaries. The white contours are 30-
min nowcasts issued at the time of radar PPIs shown. The radar echoes that existed at the corresponding verification times are shown in
Fig. 11. Light green represents 0–10 dBZ; dark green, 10–25 dBZ; khaki, 25–35 dBZ; yellow, 35–45 dBZ; pink, 45–55 dBZ; and red, .55
dBZ.

in the Denver, Colorado, area. On this day, synoptic-
scale forcing over Colorado was weak. The steering-
level winds were approximately 5 m s21 from the south-
east. Surface dewpoints were ;108C, which are typical
values observed on days when thunderstorms occur in
the Denver area in the summer convective season.
Storms formed, grew, and dissipated within the ANC
domain. During the storms, Denver International Air-
port’s ground operations were shut down for over an
hour while the storm produced a good deal of lightning
and hail.

The 30-min ANC nowcasts are shown in Fig. 10 by
the white lines with the corresponding verification data
shown in Fig. 11. The nine panels are at 18-min inter-

vals. The nowcasts shown in Figs. 10a and 10b predict
the initiation of storms associated with a boundary col-
lision. In Figs. 10c,d,e storms have already initiated and
the nowcasts are for storm growth. Last, in Figs.
10f,g,h,i, the nowcasts predict storm dissipation as the
boundary moves away from the storm. In general, ANC
nowcasts for both 30 and 60 min are quite good.

A time series of area coverage of 35 dBZ or greater
observations, Fig. 12, illustrates the rapid development
and dissipation of the system. The time periods of ini-
tiation (I), growth (G), and dissipation (D) are labeled
on the graph. The nowcast statistics for the 30- and 60-
min nowcasts are shown in Fig. 13. Four nowcast tech-
niques were evaluated: 1) persistence, 2) extrapolation,
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FIG. 11. The verification images for the nowcast shown in Fig. 10.

3) ANC with automated boundaries, and 4) ANC with
human-generated boundaries. Statistics are based on a
1-km grid-to-grid comparison. Times of initiation,
growth, and decay are indicated. Table 4 lists the relative
contributions of ANC predictor fields for 30- and 60-
min initiation, growth, and dissipation portions of the
nowcasts. The table shows a subjective evaluation of
which predictors were the most important to the now-
casts. The satellite fields were not useful on this day
because high-level cirrus from mountain convection ob-
scured low-level clouds.

Figures 13a,c,e show that the 30-min ANC skill
scores using automated and human boundary inputs are
almost equivalent during the initiation and growth stag-
es. Review of the nowcasts shows that ANC with hu-
man-generated boundaries covered slightly larger areas
than the automated version, but the nowcast locations

were basically the same. However, the automated and
human-generated boundaries used by ANC were not the
same. The automated system only captured the bound-
ary coming from the north and the motion vector was
too fast. Even with the poor detection by the automated
system, both human and automated systems had bound-
ary-relative steering-level speed fields that were favor-
able for initiation and that overlapped with a Radar Cu
field. Thus, both automated and human systems met the
minimum requirements for an initiation nowcast and
because the Radar Cu field was the same for both sys-
tems, the nowcasts were similar. In the case of the 60-
min nowcasts, the verification statistics (Figs. 13b,d,f)
indicated that the human-generated boundary nowcasts
captured the initiation 30 min prior to the automated
system. At 60 min the boundary characteristics were the
primary contributors to the nowcasts and, in this case,
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FIG. 12. Area coverage of time series for the 5–6 Jul case. Veri-
fication times for nowcasts shown in Figs. 10 and 11 are indicated
by arrows. Initiation (I), growth (G), and dissipation (D) phases are
indicated.

boundary collision was the most important field. The
automated system was unable to detect either of the
southern boundaries and therefore missed the collision
and did not produce a timely initiation nowcast.

The nowcasts for continued growth at both 30 and
60 min were based heavily on a strong positive vertical
motion determined from VDRAS winds, storm–bound-
ary collision, and positive storm area growth. The 30-
min nowcast also uses Radar Cu. For the 30-min now-
cast, the extrapolated storm positions, Radar Cu, and
storm area trend play a much larger role than in the 60-
min nowcast. The 60-min nowcast is more dependent
on the environmental conditions associated with the
boundaries (e.g., MaxW) and storm–boundary collision.

Finally, during the dissipation stage, both the 30- and
60-min nowcasts were based on the absence of a bound-
ary and negative growth rates.

Short-term nowcasts of less than 30 min depend pri-
marily on accurate detection and extrapolation of the
cumulus field either as determined by satellite or radar,
or by storm trends in association with a boundary. As
the nowcast period increases, accurate knowledge of the
boundary layer structure and stability become more im-
portant. In all cases, accurate extrapolations of the var-
ious fields are required and are often difficult to obtain
thus decreasing the potential spatial accuracy of the
nowcast.

4. Performance statistics

ANC has been run in several different environments.
The Sterling, Virginia, region that is used in this study
is characterized by relatively strong synoptic-scale forc-
ing and thunderstorms, which form into large, long-
lived multicellular lines. Steering-level winds are gen-
erally brisk (.12 m s21), and the multicell lines are
driven primarily by advection from the steering-layer
flow. A good radar echo extrapolation is a required el-

ement of a good nowcast. Widespread thunderstorm ini-
tiation is relatively rare. However, thunderstorm com-
plexes do evolve rapidly and require the extrapolation
nowcasts to be augmented with nowcasts of thunder-
storm growth and decay.

In contrast, the White Sands, New Mexico, region
tends to have very weak synoptic-scale forcing. Thun-
derstorm activity is generally isolated and short lived.
Steering-level winds are generally weak, ,5 m s21, and
storms tend to be slow moving or stationary; a persis-
tence nowcast often shows more skill than an extrap-
olation nowcast especially over the mountainous terrain.
Because the storms are short lived, nowcasts of storm
initiation and dissipation are crucial to the nowcast prob-
lem. The Denver, Colorado, region represents a mix
between these two extremes. In spring and early sum-
mer, synoptic-scale forcing is frequently a factor in con-
vective development. During the remainder of the con-
vective season synoptic forcing is weak, and boundaries
produced by a variety of mechanisms are common and
they tend to control storm evolution.

Because of the different weather conditions, terrain,
and available observations, each of the ANC sites just
mentioned used a different set of predictors. For in-
stance, VDRAS was not run at White Sands due to the
mountain–valley terrain; therefore, the boundary-rela-
tive low-level shear and MaxW were not available. At
Sterling and Denver, high-level clouds often obscured
the underlying cumulus so that the satellite fields pro-
vided little information. However, in White Sands, the
satellite data were almost always useful for initiation
and growth nowcasts. The time periods also varied
among the sites. For the short-lived storms at White
Sands, nowcast periods longer than 30 min showed little
skill. At Sterling and Denver accurate nowcasts out to
an hour were achieved.

The summary statistics presented in this paper pro-
vide some limited operational evaluation of the utility
of ANC. Examples of verification statistics are shown
for Sterling and White Sands operational nowcasts. Fig-
ure 14 shows 30-min nowcast statistics calculated for
eight Sterling and five White Sands case study days
representing 22 and 24 h of data, respectively. The days
were chosen based on the occurrence of convective ac-
tivity and the existence of complete datasets. Boundary
positions were entered by a human. The POD and CSI
scores in Fig. 14 indicate that in all Sterling cases, ANC
shows improvement over extrapolation. ANC skill
scores (Wilks 1995) are calculated using

A 2 ArefSS 5 3 100%.ref A 2 Aperf ref

where A is a measure of accuracy, Aref is a set of ref-
erence forecasts, and Aperf is the value of the accuracy
measure that would be achieved by perfect forecasts.
The numerical values shown in Fig. 14c are calculated
using CSI for the measure of accuracy, A. The reference



AUGUST 2003 557M U E L L E R E T A L .

FIG. 13. Verification statistics for 30- and 60-min nowcasts for 5–6 Jul 2001 (verification times) are shown. POD scores for (a) 30- and
(b) 60-min nowcasts, FAR for (c) 30- and (d) 60-min nowcasts and (e), (f ) CSI. The broken light gray, solid light gray, broken black, and
solid black lines show nowcasts for persistence, extrapolation, ANC with automated boundaries, and ANC with forecaster-generated bound-
aries. Initiation (I), growth (G), and dissipation (D) phases are indicated.

forecast is extrapolation and the Aperf is set to one. Scores
range from 12% for a White Sands case where there
was a significant amount of growth and decay to 2%
for a Sterling case that was primarily advection of a
squall line. For Sterling, in six of the eight days, ANC
has slightly lower FAR than extrapolation. Conversely,
ANC FARs for White Sands tended to be slightly higher
than extrapolation. This is the result of overnowcasting
thunderstorm initiation.

White Sands real-time verification statistics for 30-
min nowcasts are shown in Figs. 15 and 16. These sta-
tistics are based on a fully automated system and en-
compass daytime nowcasts (from 0800 to 2000 LT) dur-
ing July and August 2000. Satellite data are used rou-
tinely (Roberts and Rutledge 2003). In general, Fig. 15

shows that the ANC POD is better than the PODs for
extrapolation and persistence. However, the FAR tends
to be slightly higher for ANC and thus the CSI scores
are similar for extrapolation and ANC nowcasts. Dis-
tributions of the differences in ANC and extrapolation
nowcast CSI scores are shown in Fig. 16. The distri-
bution shows that about a third of the time the difference
is near zero. However, in a majority of the cases the
nowcasts show improvement over extrapolation and the
distribution is strongly skewed to the right. Review of
these nowcasts shows that the majority are associated
with forecasts of initiation or growth. The relatively
frequent successes of ANC tend to be diluted in the
review of only summary statistics, particularly during
periods dominated by strongly forced synoptic convec-
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TABLE 4. List of predictors used in ANC, Table 2, along with their subjective contribution to the 5 Jul 2001 forecast of initiation, growth,
and dissipation. A 1 indicates it was a major factor, 2 indicates a significant factor, and 3 a contributing factor.

Predictors (units)

Initiation

30 min 60 min

Growth

30 min 60 min

Dissipation

30 min 60 min

1) Extrapolated reflectivity (dBZ )
2) Extrapolated reflectivity with stratiform regions removed (dBZ )
3) Storm area (km2)
4) Negative and positive growth rates (km2 h21)
5) Precipitation accumulation (mm)

1
3
3
1

2
3
3
2 1 1

6) Boundary location and speed (m s21)
7) Boundary collision and storm–boundary collision
8) Boundary-relative steering flow (m s21)
9) Boundary-relative low-level shear (m s21)

10) MaxW (m s21)

3
2
1

1

3
1
2

1

3
1
2

1

3
1
2

1

1 1

11) Radar Cu (dBZ )
12) Satellite cloud type
13) IR temp cooling (8C over 15 min)
14) IR temp–clear

1 2

FIG. 14. Summary statistics from Sterling, VA, and White Sands,
NM, case study days. The light gray bars to the left and black bars
to the right represent the extrapolation and ANC nowcasts scores,
respectively. (c) Numerical ANC skill scores in relation to extrapo-
lation and based on CSI for each day.

FIG. 15. Summary statistics from Jul and Aug 2000 for White
Sands, NM, daytime 30-min nowcasts. The light gray, medium gray,
and black bars represent the persistence, extrapolation, and ANC
scores, respectively. The observations and nowcasts were expanded
3 km in all directions prior to the grid-to-grid comparisons.

tion where large areas of echoes are rapidly advected.
A successful nowcast of the initiation of a line of storms
as demonstrated earlier for 2 June is of major operational
significance. However this significance is poorly reflect-
ed due to limitations in the statistics presented here.

5. Conclusions

ANC is used to its best advantage in the prediction
of boundary layer–forced storms, and it performs well
in conditions of both weak (White Sands) and strong
(Sterling) synoptic forcing. Boundary detection and
characterization are crucial to nowcasts of storm initi-
ation, growth, and dissipation. Automated boundary de-
tection algorithms tend to provide adequate skill for a
30-min storm forecast because the nowcasts are pri-
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FIG. 16. Frequency distribution of the difference between ANC and
extrapolation nowcasts calculated every 5 min. Positive values in-
dicate the amount of improvement of ANC over extrapolation as
measured by CSI.

→

FIG. 17. Example of 60-min nowcast of reflectivity. Images show
(a) the extrapolated reflectivity field, (b) the ANC reflectivity field
nowcast, and (c) verification. The normal ANC nowcast is shown as
a white contours in all three images. This nowcast was issued at 0000
UTC, which corresponds to Fig. 10b. Color scales as in Fig. 10.

marily dependent on radar and satellite observations of
the current and developing storms and trends in their
size. Although accurate 30-min nowcasts of storms are
significantly affected by boundary detection, the deter-
mination of boundary characteristics is not so crucial
for 30-min nowcasts as compared to the 60-min now-
casts. At longer time periods, current storms and trends
are less important to the nowcasts because the life cycle
of convective elements is generally less than an hour
(Battan 1953; Foote and Mohr 1979; Henry 1993). Ac-
curately nowcasting boundary layer forcing, shear, and
instability becomes more important. Thus, boundary de-
tection and extrapolation need to be accurate. With to-
day’s technology, consistently accurate boundary de-
tections and extrapolations require a forecaster’s input.
The capability for real-time human input to help guide
the automated system is currently incorporated into
ANC. Additional effort is required to ensure the tem-
poral continuity of the boundaries.

Correctly extrapolating the various predictor fields,
which all tend to move with different motion vectors,
is another difficult problem that tends to compound with
longer nowcast intervals. Extrapolating the positions of
objects that have a steady motion for at least three time
periods is generally good. However in many cases mo-
tions are not steady or there is not a history. Important
situations that are often incorrectly predicted include
clouds not moving with the steering-level winds and
instead remaining attached to the boundary, thus moving
with the boundary motion; severe storms becoming right
movers or developing a bow; boundaries stalling or ac-
celerating; and initial storm motions being incorrectly
based on steering-level winds when the storm is in fact
tied to a forcing feature such as terrain or boundaries.

Stability issues also become more important as the
nowcast period and domain increase. Currently, ANC
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uses clouds as a proxy for stability since there is no
operationally direct means for obtaining high-resolution
stability information. The use of clouds works well for
short periods (0–30 min), but longer-period nowcasts
require more direct measurements and nowcasts of sta-
bility. Efforts are on going to incorporate stability pa-
rameters from mesoscale numerical models into ANC.
New water vapor observing technologies are also being
closely followed. Presently the convergence and vertical
motion associated with boundaries are based on retriev-
als from VDRAS. Efforts are under way to enhance
VDRAS to forecast boundary layer winds for periods
of 1–2 h.

A new algorithm in ANC nowcasts the reflectivity
field and precipitation rate instead of the single nowcast
contour shown in Figs. 8 and 10. An example of a 60-
min reflectivity field nowcast is shown in Fig. 17. In
this algorithm, two combined likelihood fields are gen-
erated: 1) likelihood for storm initiation and 2) likeli-
hood for storm growth, maintenance, or dissipation.
These fields are used to either initiate new storms (gen-
erally at an intensity of 35 dBZ) or to grow, maintain,
or decrease the size of existing storms extrapolated to
a new position. Figure 17a shows the existing echo in
the extrapolated position. The resultant ANC reflectivity
field is shown in Fig. 17b. The areas of growth and
initiation are identified. The reflectivity field can be
mapped to precipitation rate based on a Z–R relation-
ship. Although promising results have been achieved
using this method, much work is still required to ac-
curately forecast intensity.
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