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ABSTRACT

The Network of Cancer Genes (NCG, http://ncg.kcl.

ac.uk/) is a manually curated repository of cancer

genes derived from the scientific literature. Due to

the increasing amount of cancer genomic data, we

have introduced a more robust procedure to ex-

tract cancer genes from published cancer mutational

screenings and two curators independently reviewed

each publication. NCG release 5.0 (August 2015) col-

lects 1571 cancer genes from 175 published studies

that describe 188 mutational screenings of 13 315

cancer samples from 49 cancer types and 24 pri-

mary sites. In addition to collecting cancer genes,

NCG also provides information on the experimental

validation that supports the role of these genes in

cancer and annotates their properties (duplicability,

evolutionary origin, expression profile, function and

interactions with proteins and miRNAs).

INTRODUCTION

Cancer genome projects, including TheCancerGenomeAt-
las (TCGA, https://tcga-data.nci.nih.gov/) and the Inter-
national Cancer Genome Project (ICGC, https://dcc.icgc.
org/) have so far mapped DNA alterations in more than 13
000 cancer samples. These massive sequencing efforts show
that somatic modi�cations vary greatly between and within
cancer types (1–3). Only some of the acquired alterations,
however, confer a selective advantage that promotes can-
cer development (driver alterations). The large majority of
alterations have no or little role in cancer and are �xed in
the cancer genome as a by-product of the selection acting
on drivers (passenger alterations). One of the challenges of
cancer genomics is to effectively distinguish between driver
and passenger alterations in order to identify the molecu-
lar determinants of cancer. Most known driver alterations
modify protein-coding genes (cancer genes). The ability to
identify cancer genes among the wealth of mutated genes is

crucial to better understand cancer biology and to empower
the development of innovative anti-cancer therapy.
Network of Cancer Genes (NCG) is a database launched

in 2010 with the aim to collect cancer genes from the
literature. Curators constantly review cancer mutational
screenings and annotate altered genes that either have well-
established cancer functions (known cancer genes) or are pu-
tative cancer drivers (candidate cancer genes). Originally (4),
NCG collected data from only �ve mutational screenings
and annotated most known cancer genes from the Cancer
Gene Census (CGC) (5). The last �ve years have seen the
rapid accumulation of cancer genomic data from thousands
of samples, with almost all human genes mutated in at least
one sample (6,7). Due to this overwhelming amount of data
and to avoid the inclusion of mutated genes with no role
in cancer, in this release we have substantially reviewed the
procedure to identify cancer genes. NCG now collects 1571
cancer genes, 518 of which are known cancer genes. The re-
maining 1053 genes are candidate cancer genes whose driver
role has been predicted in the original publication using a
variety of methods (Supplementary Table S1). Given the
importance of a robust experimental support for the cancer
activity of candidate cancer genes, NCG now collects addi-
tional literature describing available orthogonal validations.
NCGalso annotates various properties of cancer genes such
as the presence of extra copies in the genome (gene duplica-
bility), the evolutionary origin, the connectivity of the en-
coded proteins in the protein–protein and miRNA interac-
tion networks, and the comprehensive gene expression pro-
�le across 38 human tissues and 1543 cancer cell lines.
The manual curation of the literature to extract cancer

driver genes and the annotation of a large number of addi-
tional properties make NCG a comprehensive and updated
resource to navigate the overwhelming amount of cancer
data with a particular focus on the genetic determinants of
cancer.

MANUAL ANNOTATION OF CANCER GENES

In this release of NCG, the procedure for the inclusion of
cancer genes in NCG has been reviewed and standardized
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Figure 1. Curation procedure and comparison between NCG 5.0 and NCG 4.0: (A) Flowchart of the curation procedure used in NCG. After the identi�-
cation of relevant publications describing cancer mutational screenings, two independent curators extract cancer genes and related information on types of
screening and cancer, primary sites, screened samples and supporting methods. (B) Number of publications, screenings, cancer types and screened samples
in NCG 5.0 as compared to NCG 4.0. (C) Venn diagram of cancer genes in NCG 4.0 and NCG 5.0. The reasons for the removal of 778 genes from the
database are detailed in Supplementary Table S2. (D–E) Growth of NCG data in time. Shown are the number of publications, screenings and cancer genes
starting from 2010, year of the �rst release of NCG. All screenings that were published prior of 2010, were collapsed.

(Figure 1A). The �rst difference with previous versions is
to restrict the inclusion only to studies that describe mu-
tational screenings of cancer samples and that distinguish
between cancer genes and genes with passenger mutations.
This led to the identi�cation of 119 new publications. To be
consistent with these inclusion criteria, all 68 studies present
in the previous release were re-analysed. Twelve of them
were excluded because they screened cancer cell lines rather
than cancer samples or used no methods to identify cancer
genes among all mutated genes. As a result of this exten-
sive literature search,NCG5.0 currently collects 175 studies
(Supplementary Table S1). Two curators reviewed indepen-
dently each publication to extract cancer genes and com-
plementary information, such as the screening and the can-
cer types, the primary sites, the number of sequenced sam-
ples and the methods that were applied to identify cancer
genes (Figure 1A). This manual curation resulted in 1260
cancer genes, 207 of which were annotated as known can-
cer genes in CGC. The remaining 1053 genes were candi-
date cancer genes identi�ed in the original study using one
or more methods (Supplementary Table S1). Additional
known cancer genes were also added from CGC (February
2014), leading to a total of 1571 cancer genes. If informa-
tion was available, cancer genes were further annotated as
dominant (mostly oncogenes) or recessive (mostly tumour-
suppressors) genes.
As compared to NCG 4.0 (8), NCG 5.0 now collects

information from more than the double number of publi-
cations, screenings and cancer types and from four times
more cancer samples (Figure 1B). Despite this substantial
increase of data, the number of cancer genes decreased from
2000 to 1571 (Figure 1C), because of the more restrictive

criteria. In particular, 612 genes were removed because the
original publication was excluded and 166 genes because
they had no support as cancer drivers (Supplementary Ta-
ble S2). Overall, the studies in NCG 5.0 describe 188 mu-
tational screenings, including 125 whole exome sequenc-
ings, 33 whole genome sequencings, 17 screenings of se-
lected gene panels and 13 screenings based on multiple ap-
proaches (Figure 1D). Interestingly, the number of cancer
genes with a well-documented role in cancer increases at a
much slower pace as compared to candidate cancer genes
(Figure 1E). This highlights the currently unmet need of ef-
�cient experimental assays that support the predicted role
of candidate genes in cancer.
Almost all mutational screenings collected in NCG 5.0

applied only one method to identify cancer genes (Supple-
mentary Table S1). The most common was the recurrence
of mutation of a given gene across samples, which was taken
as a sign of functional selection (Figure 2A and Supplemen-
tary Table S1). Other commonly used methods included
MutSig (6) and MuSiC (9) (Figure 2A and Supplementary
Table S1). Interestingly, the majority of known cancer genes
(67%) had the support of at least two methods (Figure 2B),
while most candidate cancer genes (78%) have been pre-
dicted by only one method (Figure 2C). In agreement with
this, known cancer genes were overall identi�ed as drivers
across a higher number of mutational screenings and pri-
mary cancer sites as compared to candidate cancer genes
(Figure 2D). The tendency of candidate cancer genes to be
cancer speci�c was also re�ected by the lower overlap be-
tweenmethods that support them as compared to those that
support known cancer genes (Figure 2E). Cases where the
overlap was higher (i.e. between MutSig and Invex, Figure
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Figure 2. Overview of data in NCG 5.0: (A) Cancer mutational screenings divided according to the method that was applied to identify cancer genes in the
original publication. Methods and corresponding screenings are described in Supplementary Table S1. (B–C) Fractions of known and candidate cancer
genes supported by one or more methods. Gene counts are reported in brackets. (D) Number of mutational screenings and primary sites where each cancer
gene has been reported as a driver. TP53 is an outlier and has been excluded from the analysis because it has been identi�ed in 113 screenings across 22
primary sites. (E) Heatmaps of the overlap between methods identifying known and candidate cancer genes. Each box represents the percentage of cancer
genes identi�ed with one method that are also supported by another. For each method, the total number of associated cancer genes is reported in brackets.

2E) corresponded to screenings where both methods were
used (Supplementary Table S1).

EXPERIMENTAL VALIDATION OF CANDIDATE CAN-
CER GENES

Candidate cancer genes that are identi�ed using computa-
tional methods often lack additional experimental valida-
tion of their cancer driver role. Themain reason is that func-
tional follow-ups are often cumbersome and require ad hoc
design for individual genes. The experimental proof of pre-
dicted driver role is however crucial for the translatability
of potentially relevant discoveries into increased knowledge
and novel treatments.
In this release of NCG, we have extensively reviewed the

literature to search for experimental validations of candi-
date cancer genes. NCG now annotates available orthogo-
nal experiments that have been performed in the original
study or in follow-up studies for 120 out of 1053 candidate
cancer genes (11% of the total, Table 1 and Supplementary
Table S3). Most commonly used approaches measure the
effect of gene silencing or gene overexpression in cell lines
(Figure 3A and Supplementary Table S3) and the major-

ity of candidate genes (83 out of 120) have been validated
through multiple assays (Figure 3B).
An interesting case is CSMD3, the gene associated with

benign adult familial myoclonic epilepsy (10) that encodes
a long multi-repeat protein (Figure 3C). CSMD3 has been
found recurrently mutated across several cancer types and,
therefore, has been predicted as a cancer driver by several
methods (Figure 3D). Because of its length, sequence com-
position and location in proximity of fragile sites of the
genome, CSMD3 was regarded as a possible false positive
in NCG 4.0. The fact that CSMD3 is constitutionally not
expressed in many tissues where it is mutated (Figure 3E)
also supports the passenger role of the acquired mutations.
Despite this, however, the stable knockout ofCSMD3 in im-
mortalized epithelial cells has been reported to increase cell
proliferation (11), thus suggesting a tumour-suppressor role
for this gene. This example highlights the dif�culty to cor-
rectly predict the driver role of mutated genes and the need
of multiple independent pieces of evidence to assess the role
of mutations in cancer.
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Table 1. Experimental validation of candidate cancer genes

Experimental validation Candidate cancer genes (n) Publications (n)

Gene overexpression 60 74
Transient RNA interference 58 52
Mutagenesis 31 41
Immunostaining 25 26
Stable gene knockout 23 22
Survival analysis 20 21
Protein activity assay 19 20
Drug response assay 15 17
In silico protein modelling 12 14
Xenograft 10 11
Rhotekin pull-down 2 5
Total 275 (120 unique genes) 303 (166 unique publications)

For each type of experimental validation, the numbers of validated candidate genes and corresponding publications are shown. The complete gene list with
references to the original papers is given in Supplementary Table S3.

Figure 3. Validation of candidate cancer genes and alteration spectrum ofCSMD3: (A) Fractions of validated candidate cancer genes according to the used
experimental assay. Gene silencing refers to stable knockout or transient knockdown via RNA interference. Other assays include in silico protein modelling,
survival analysis, drug response, protein activity, rhotekin pull-down and xenograft cancer models. (B) Percentage of candidate cancer genes that have been
validated using one or more experimental approaches. The corresponding number of genes is shown above each bar. The full list of experiments and genes
is reported in Supplementary Table S3. (C) Protein domain architecture of CSMD3 according to the SMART database (32). (D) Percentage of mutational
screenings, cancer types, primary sites and methods that support the cancer driver role of CSMD3. Corresponding numbers are provided. (E) Expression
pro�le of CSMD3 in normal human tissues. Tissues where the gene is expressed in GTEx and Protein Atlas are highlighted in red.

ANNOTATION OF CANCER GENE PROPERTIES

To annotate the properties of cancer genes, original data on
human genes, orthology, protein–protein and miRNA in-
teractions and gene expression have been updated (Table 2).
Applying the previously described method (12), protein

sequences from RefSeq v.63 (13) were aligned to the human
genome assembly Hg19 to identify unique gene loci. These
included 1525 of the 1571 cancer genes (13 cancer genes did
not have RefSeq entries and 33 had no match in Hg19 or
were gene isoforms). Cancer genes con�rm their lower du-
plicability as compared to non-cancer genes and the signal
derives from recessive cancer genes (P-value = 0.02, chi-
square test, Table 2).

Orthology information from EggNOG v.4 (14) was used
to trace the evolutionary origin of 1501 cancer genes, as de-
scribed earlier (15). In line with previous reports (15–17),
a higher fraction of cancer genes have orthologs in pre-
metazoan species as compared to other human genes (P-
value = 0.03, chi-square test, Table 2).

Four sources of primary interaction data (BioGRID
v.3.4.125 (18); MIntAct v.190 (19); DIP (April 2015) (20);
HPRD v.9 (21)) were integrated to rebuild the human
protein–protein interaction network. This network included

1332 cancer proteins, which encode a higher fraction of
hubs (de�ned as 25% most connected nodes of the net-
work) as compared to other human proteins (P-value = 2.7
× 10−56, chi-square test, Table 2). We veri�ed that cancer
genes encode a higher fraction of protein hubs also in the
network derived from high-throughput screenings (P-value
= 7.7 × 10−13, chi-square test, Table 2). This excludes bi-
ases due to the higher number of single-gene experiments
involving cancer proteins.
To complete the annotation of protein–protein interac-

tions, NCG now collects also information on 752 cancer
proteins involved in complexes as gathered from three re-
sources (CORUM (February 2012) (22), HPRD v.9 (21),
Reactome v.53 (23)). Supporting the signal from the over-
all protein–protein interaction network, a higher percent-
age of cancer proteins engage in complexes as compared to
non-cancer proteins (P-value= 3.0× 10−67, chi-square test,
Table 2).

Interactions between 324miRNAs and 1101 cancer genes
were derived from miRTarBase v.4.5 (24) and miRecords
(April 2013) (25). Similarly to the protein–protein interac-
tion network, also in the miRNA network a signi�cantly
larger fraction of cancer genes are target of miRNAs as
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Table 2. Data and properties of cancer genes in NCG 5.0

Data sets in NCG 5.0

All cancer

genes (1571) Known cancer genes (518)

Candidate cancer

genes (1053)

Other human

genes

Dominant (395) Recessive (112)

Human genes All genes 1525 382 112 1020 17 489

Duplicated genes (%) 280 (18%) 76 (20%) 12 (11%) 187 (18%) 3520 (20%)

Orthology All genes 1501 379 110 1001 16 618

Pre-metazoan genes (%) 992 (66%) 233 (61%) 80 (72%) 672 (67%) 10 516 (63%)

Protein–protein interactions All nodes 1332 371 110 840 13 262

Hubs (%) 558 (42%) 213 (57%) 78 (71%) 257 (31%) 2970 (22%)

All nodes in HT network 1177 339 108 720 11 481

Hubs in HT network (%) 386 (33%) 148 (44%) 52 (48%) 177 (25%) 2681 (23%)

Protein complexes Proteins (%) 752 (49%) 238 (62%) 87 (78%) 418 (41%) 4917 (28%)

miRNA interactions miRNA target genes (%) 1101 (72%) 332 (87%) 99 (88%) 662 (65%) 10 643 (61%)

miRNAs 324 247 163 250 438

Expression in normal tissues All genes in GTEx 1513 379 111 1012 16 818

Ubiquitous genes (%) 965 (64%) 301 (79%) 98 (88%) 555 (55%) 11 077 (66%)

Tissue-speci�c genes (%) 62 (4%) 5 (1%) 0 (0%) 57 (6%) 726 (4%)

All genes in Protein Atlas 1517 378 112 1016 16 889

Ubiquitous genes (%) 831 (55%) 278 (74%) 95 (85%) 447 (44%) 9492 (56%)

Tissue-speci�c genes (%) 90 (6%) 11 (3%) 1 (1%) 78 (8%) 1042 (6%)

Expression in cancer cell lines Cancer cell line encyclopedia 1426 367 106 942 15 158

COSMIC Cancer Lines 1398 358 105 924 14 788

Genentech data set 1524 381 112 1020 17 164

Of the 518 known cancer genes derived from CGC, 391 are annotated as dominant (mostly oncogenes), 108 as recessive (mostly tumour-suppressors), four as both as dominant and recessive and 15

have no speci�ed mode of action. Duplicated genes have one or more duplicated loci in the genome covering ≥60% of their length (12). Pre-metazoan genes originated in the Last Universal Common

Ancestor, Eukaryotes or Opisthokonts. Ubiquitously expressed genes are expressed in ≥95% tissues (29 tissues in GTEx and 30 tissues in Protein Atlas). HT = high throughput (publications reporting ≥100

interactions).

compared to other human genes (P-value = 3.0 × 10−18,
chi-square test, Table 2).

This release of NCG provides information on the ex-
pression of cancer genes in normal tissues and in cancer
cell lines. For normal tissues, NCG relies on GTEx v.1.1.8
(26) and Protein Atlas (April 2015) (27), which both derive
gene expression from RNASeq data in a total of 38 tissues.
Expression values (FPKM for GTEx and RPKM for Pro-
tein Atlas) were used to derive expression categories (low,
medium and high expression) for each gene and to calculate
the distribution of gene expression across samples in each
tissue. In both data sets, larger fractions of known cancer
genes, but not of candidate cancer genes, are ubiquitously
expressed (expression in >95% of all tissues) as compared
to other genes (P-value = 1.3 × 10−13 and P = 1.3 × 10−19

for GTEx and Protein Atlas, respectively, chi-square test,
Table 2). Conversely, signi�cantly lower fractions of known
cancer genes, but not of candidate cancer genes, are tissue
speci�c (P-value= 4.2× 10−4 andP-value= 6.9× 10−4, for
GTEx and Protein Atlas, respectively, chi-square test, Table
2).

Three data sets (Cancer Cell Lines Encyclopedia (28),
COSMIC Cancer Lines Project (29) and the recently re-
leased Genentech data set (30)) were used to derive gene ex-
pression in a total of 1543 cancer cell lines (Table 2). For
each cancer gene, NCG provides the original expression
value in each cell line as well as the normalized expression
score, calculated as previously reported (31).

DATA ACCESS

NCG web interface has been reorganized, with particu-
lar focus on the summary of gene information and on the
visualization of gene expression pro�les. The gene sum-
mary now includes additional cross-references to external
resources on protein domain architecture (32), drug and
compound interactions (33,34) and protein druggability
(35). For each cancer gene, the type of mutational screen-

ings, the supporting methods and any experimental valida-
tion are detailed. Gene expression pro�les are now shown
as interactive graphs reporting the distribution of expres-
sion levels in each normal tissue and as summary tables in
cancer cell lines.
NCG website provides overview statistics of the data

contained in the database, including the list of 49 cancer
types and corresponding 24 primary sites, the distribution
of known and candidate cancer genes per primary sites, and
information on 48 possible false positives. These include 14
genes derived from the literature (6), 4 additional genes that
likely accumulate a high number of alterations due to their
length and 30 olfactory receptor genes. All data contained
in the database can be exported in batch using the advanced
search option.

NCG USAGE

NCG offers a multi-level annotation of cancer genes that
can be queried to gain insights on mutation status, proper-
ties, function and expression pro�les of cancer genes (Fig-
ure 4A). This information facilitates the characterization of
cancer genes and associated features. For example, gene du-
plicability has been exploited to extract duplicated tumour
suppressor genes and to verify the occurrence of negative
epistasis between them and their paralogs (36). Another
useful feature of NCG is the comprehensive overview of
gene expression pro�les across a vast range of normal tis-
sues and cancer cell lines. This can guide the selection of
the most adequate cell systems for planning in vitro experi-
ments (Figure 4B).
NCG is exploited widely as a repository of cancer genes

(17,37–50). Examples include the use of NCG to test for the
proximity of cancer genes to retrovirus insertion sites (48)
and to evaluate the features of cancer classi�cation meth-
ods (41). NCG also facilitates the interpretation of cancer
mutational screenings by annotating the properties of mu-
tated genes (Figure 4C) overall and in selected cancer types
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Figure 4. Examples of NCG usage: (A) Example of information available in NCG for a given cancer gene, in this case the oncogene AKT2. NCG summa-
rizes the gene mutation pro�le across cancer types, information on duplicability, orthology, protein–protein and miRNA interactions and gene expression
(B) NCG can facilitate the selection of the best cell systems for experimental assays by providing the expression pro�le of the gene of interest in several
tissues and cell lines. (C) NCG can be used to annotate altered genes from mutational screenings. (D) The advanced search interface of NCG allows the
identi�cation of drivers in a variety of cancer types. (E) NCG can be integrated in gene enrichment analysis pipelines as a source of cancer genes.

(Figure 4D). For example, NCG has been used to verify
whether genes undergoing copy number variations in famil-
ial breast cancer were already known cancer genes (49). Fi-
nally, NCG can be easily integrated into more complex an-
alytical pipelines (Figure 4E). In the method developed by
Zeller et al., NCG provides a source of true cancer genes to
prioritize drivers (50). In the DOSE bioconductor package,
NCG is implemented as a source of cancer genes to perform
enrichment analysis (51).

FUTURE WORK

It is expected that mutational screenings of cancer sam-
ples will continue to produce large amounts of data in the
next years. The launch of personal genome initiatives ((52)
and www.genomicsengland.co.uk) and the delivery of pan-
cancer projects will substantially enlarge the spectrum of
cancer types and samples with available mutational pro�les.

This will allow the discovery of novel cancer genes, partic-
ularly of those that recur in few samples and are currently
dif�cult to identify. In parallel, the development of novel
approaches for high-throughput functional screenings (e.g.
based on the CRISPR-Cas technology (53–56)) promises to
improve the ef�ciency of experimental validation assays.
In this exciting scenario, NCG will continue in its com-

mitment to manually curate the literature to extract can-
cer genes and annotate available orthogonal supports. NCG
will also expand to include other types of cancer driver al-
terations, such as copy number variations, gene rearrange-
ments and non-coding modi�cations (57,58). In addition to
enlarge the repertoire of cancer drivers, NCG will integrate
new properties, e.g. the epigenetic regulation of cancer genes
and their germline mutations.
As data become available, NCG will include the clini-

cal relevance of cancer genes, such as their actionability
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as pharmacological targets (59) and their applicability as
biomarkers of cancer progression. All these efforts will con-
tribute towards a more complete characterization of the
molecular determinants of cancer.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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