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Abstract

Exome sequencing provides unprecedented insights into cancer biology and pharmacological response. Here we assess
these two parameters for the NCI-60, which is among the richest genomic and pharmacological publicly available cancer
cell line databases. Homozygous genetic variants that putatively affect protein function were identified in 1,199 genes
(approximately 6% of all genes). Variants that are either enriched or depleted compared to non-cancerous genomes, and
thus may be influential in cancer progression and differential drug response were identified for 2,546 genes. Potential gene
knockouts are made available. Assessment of cell line response to 19,940 compounds, including 110 FDA-approved drugs,
reveals <80-fold range in resistance versus sensitivity response across cell lines. 103,422 gene variants were significantly
correlated with at least one compound (at p,0.0002). These include genes of known pharmacological importance such as
IGF1R, BRAF, RAD52, MTOR, STAT2 and TSC2 as well as a large number of candidate genes such as NOM1, TLL2, and XDH.
We introduce two new web-based CellMiner applications that enable exploration of variant-to-compound relationships for
a broad range of researchers, especially those without bioinformatics support. The first tool, ‘‘Genetic variant versus drug
visualization’’, provides a visualization of significant correlations between drug activity-gene variant combinations. Examples
are given for the known vemurafenib-BRAF, and novel ifosfamide-RAD52 pairings. The second, ‘‘Genetic variant summation’’
allows an assessment of cumulative genetic variations for up to 150 combined genes together; and is designed to identify
the variant burden for molecular pathways or functional grouping of genes. An example of its use is provided for the EGFR-
ERBB2 pathway gene variant data and the identification of correlated EGFR, ERBB2, MTOR, BRAF, MEK and ERK inhibitors.
The new tools are implemented as an updated web-based CellMiner version, for which the present publication serves as a
compendium.
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Introduction

Exome sequencing has been recently used for molecular

diagnosis and identification of underlying disease gene mutations

[1,2,3,4]. In the cancer context, its uses have included identifica-

tion of low and high-penetrance mutations in cancer-susceptibility

genes and mutations associated with clinically relevant pheno-

types, such as drug sensitivity [5,6,7,8]. In the context of

pharmacology and therapeutics, where both germline and somatic

variants are of importance [9,10], the results of exome sequencing

have been proposed for use in precision oncology [11], although

there is recognition of the need for increased expertise to achieve

clinically actionable information [12].

Cancerous cell lines provide test cases to improve understanding

of cancer physiology and pharmacological response, with the

potential for rapid translational application. Recent cancer cell

studies are providing proof-of-principle by identifying genomic

biomarkers to targeted pharmacological agents [11,13,14,15,16].

The sixty cell lines of the US National Cancer Institute was the

first cell line panel set up to explore drug responses, including 9

tissues of origin including refractory tumors such as lung, ovarian,

colon, breast, brain and renal cancers, and melanomas together
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Figure 1. The two tabs for retrieving WES data in CellMiner. A. The Query Genomic Data Sets tab. All exome data for a gene may be accessed
at http://discover.nci.nih.gov/cellminer/ under the ‘‘Query Genomic Data Sets’’ tab. HUGO name may be selected in Step 1, and List in Step2. The
gene identifiers (up to 150 per query) are entered as HUGO names, also in Step 2. The data set, DNA:Exome Sequencing is entered in Step 3. Enter
your email address in Step 6, and click ‘‘Get data’’ to receive the output (as an Excel file). B. The NCI-60 Analysis Tools tab. Five forms of synopsis data
are available for selection in Step 1; Cell line signatures [15], Cross-correlation [15], Pattern comparison [15], Graphical output for DNA:Exome
sequencing [15], and Genetic variant versus drug visualization (Figure 5). Identifiers are entered in Step 2. Enter your email address in Step 3, and click
‘‘Get data’’.
doi:10.1371/journal.pone.0101670.g001
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with more treatable cancers such as leukemias [17,18,19]. This

was done by the Developmental Therapeutics Program (DTP)

[20]. Among the NCI-60, two cell line pairs (M14 and MDA-MB-

435, and SNB-19 and U251) have subsequently been found to

have genotypic similarity [21]. One line, NCI-ADR-RES, is an

adriamycin-resistant derivative of the parental OVCAR8 [15].

Over the years, the DTP drug database has grown to .100,000

compounds including an up-to-date list of FDA-approved

anticancer drugs as well as several hundred investigational drugs

as they emerge from the cancer drug development pipeline

[15,19]. It is by far the largest publicly accessible compound and

drug database worldwide [16]. At the same time, the NCI-60 is

also the publicly available cancer cell line panel database with the

most complete analyses of gene expression [15,22] and the only

cell line panel with publicly available whole exome sequencing

(WES) data [11,21]. Identification of cancer specific variants in the

NCI-60 WES provided several pharmacogenomics correlations

[11]. These data are freely available in different formats, including

BAM [11], CellMiner [23] and Ingenuity [24].

Additional large cell line-drug databases have been developed

recently, including the Cancer Cell Line Encyclopedia (CCLE)

from the BROAD Institute [25], and the collaborative Wellcome

Trust Sanger-Massachusetts General Hospital Genomics of Drug

Sensitivity in Cancer (GDS) project [26]. The larger number of

cell lines in these datasets provides increased ability to identify rare

cancer genomic alterations on a larger number of tissues of origin

as well as disease subtypes. Notably, 56 and 44 cell lines are in

common with the NCI-60 in the GDS and CCLE, respectively,

which enables data cross-validation and expansion studies. In the

arena of drugs and compounds, however, the NCI-60 provides

data on 19,940 as compared to 24 for CCLE and 138 for CPG.

The 19,940 compounds include 110 FDA-approved and 53

clinical trial drugs, as well as 337 with known mechanism of

action.

For the purpose of systems molecular biology and pharmaco-

logical analyses, accuracy and range of available data are of

importance. For the CCLE and GDS, transcript levels are

dependent on the results of one platform each, (the Affymetrix

Figure 2. Homozygous, amino-acid changing, putative protein-function-affecting genetic variants present in the NCI-60, and
absent in the 1000 Genomes and ESP5400. A. The four categories of protein-function-affecting variants, and their level of occurrence. The x-axis
is the number of variants in each category, with exact numbers given to the right. B. Potential knockout cell lines for tumor suppressors. The x-axis
indicates the cell lines. The y-axis indicates the tumor suppressors. Green, red, black, and blue square indicate the presence of homozygous
splicesense, frameshift, premature stop, and SIFT or PolyPhen-2 knockouts, respectively (as in A). Additional potential knockouts for the whole
genome across the NCI-60 can be readily found in Table S1.
doi:10.1371/journal.pone.0101670.g002
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U133+2 and HT-HG-U133A v2, respectively). For the NCI-60

there are currently 5 platforms, yielding the opportunity for

internal quality and consistency control [15]. Additional forms of

information available for the NCI-60 include: i) karyotypic analysis

with multiple parameters of genomic instability [27], ii) array

comparative genomic hybridization (aCGH) [28,29,30,31], iii)

single nucleotide polymorphisms [32], iv) DNA genomic variation

[21], v) DNA fingerprinting [33], vi) microRNA expression

[22,34], vii) reverse-phase protein lysate microarrays [35], viii)

global proteomic analysis [36], and ix) metabolite profiling [37].

Specialized profiling includes: i) identification of putative tumor

stem cell markers [38], ii) HLA class I and II genotyping [39], iii)

and quantitative RT-PCR expression of nuclear receptors [40],

and ABC transporters [41]. Phenotypic assays include: i) response

to ionizing radiation [42], ii) identification of homologous

recombination and base excision repair phenotypes [43], iii)

CD95 Type I or II status and apoptotic sensitivity [44], iv) DNA

damage-induced S-1 phase arrest [45], and v) rhodamine efflux

[46]. This is not meant to be an exhaustive list of prior work, but

to establish that the NCI-60 has the broadest set of features for

systems biology and pharmacology of any data panel.

In the current study, we extend our initial NCI-60 WES analysis

[11] with the inclusion of the normal vs. cancer-specific variants,

and the introduction of two new genomic and pharmacological

tools that complement the existing CellMiner suite. Included are

both homozygous variants absent in the normal genomes, and

enriched or depleted variants present in the normal genomes.

Drug and compound analyses are extended, both for the cell lines

independently, and for their integration with the genetic variants.

The new CellMiner tools extend the prior basic data accessibility

functionalities [23], enabling researchers with limited bioinfor-

matics support to mine the NCI-60 WES data, and facilitate its

comparison with other genomic and pharmacological parameters

for the NCI-60. The ‘‘Genetic variant versus drug visualization’’

tool allows the user to quickly and easily compare any

compound:gene pairing of interest to them, compiling the relevant

data into a single output, and assessing their correlation. The

‘‘Genetic variant summation’’ tool extends the prior basic data

retrieval functionality by providing a rapid synopsis of all the

protein affecting variants from 1–150 genes within any user-

defined set. This both provides a snapshot of mutational burden

on these genes, and organizes the result into our standard format

for easy comparison to all other molecular and pharmacological

parameters.

Materials and Methods

Cell lines, whole exome sequencing of variants in the
NCI-60, and data access
The cell lines used in this study were obtained from the

Developmental Therapeutics Program (DTP), and have been

described previously [20] [17] [18]. The sequencing technique has

been described previously [11]. In brief, 38 Mb of coding region

for each cell line was captured using the Agilent SureSelect All

Exon v1.0 Kit (Agilent) from sheared DNA libraries were

generated. The size-selected samples were sequenced as paired-

end 80-mer reads on an Illumina Genome Analyzer IIx

instrument (Illumina) following the manufacturer’s protocol. Data

may be accessed as described in Figure 1.

Annovar determinations
The sequence alignment to the hg19 reference genome, variant

call annotation, amino acid number identification and variant

effect (used in Figure 2 and subsequently), determination of variant

frequency in the 1000 Genomes [47] and ESP5400 [48], scores for

Sorting Intolerant From Tolerant (SIFT) [49], and Polyphen-2

Figure 3. Comparisons of variant frequencies in the NCI-60 to that in non-cancerous tissues (the ESP5400). A. Scatter plot for all 84,861
variants that occur both in the NCI-60 and the ESP5400. The x-axis is the ratio of frequencies of variants in the NCI-60 vs. the frequencies of the same
variants in the ESP5400. The y-axis is the number of the variants, ordered by the frequency ratio. The boxed ‘‘Enriched’’ variants (in the NCI-60) include
2,792 variants, and the boxed ‘‘Depleted’’ variants numbers 319. Enrichment is defined as the top 2.5% of variants for which the ratio of frequencies is
$10. Depletion is defined as the bottom 2.5% of variants, for which the ratio of frequencies is #0.1. In both A and B, the vertical lines drawn at x = 1
indicate equal frequencies in the NCI-60 and non-cancerous genomes (ESP5400). B. Scatter plot for the protein-function-affecting variants that occur
in both the NCI-60 and the non-cancerous genomes. The y-axis is the percent of protein function affecting amino-acid changing variants (as
compared to all variants) within a sliding window of size 2001.
doi:10.1371/journal.pone.0101670.g003
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Table 2. Genes that are either enriched or depleted in the NCI-60), and are cancer-driver genesa.

Variant identification and effect

Gene nameb Functional categoryc AA impactd Unique identifierd dbSNP IDe

NCI-60/

ESP5400

frequencyf

TP53 Tumor suppressor, DDR, Apoptosis R116Q chr17:7577538_C_T rs11540652 538

PIK3CA Oncogene, Protein kinase chr3:178928178_C_T 472

TET2 Tumor suppressor S460F chr4:106156478_C_T 358

NCOR1 R121C chr17:16075191_G_A rs140151735 358

GATA2 Oncogene V211V chr3:128204808_G_C 358

SETBP1 V81V chr18:42281554_G_A 179

ASXL1 Tumor suppressor A611T chr20:31022346_G_A 179

APC Tumor suppressor, Apoptosis S140G chr5:112103053_A_G rs150973053 179

ARID1A Tumor suppressor R1053H chr1:27094450_G_A 179

ARID1B A1922A chr6:157528080_G_T 179

PRDM1 Tumor suppressor A385V chr6:106553591_C_T 179

ACVR1B D502D chr12:52387882_C_T 179

ASXL1 Tumor suppressor T557T chr20:31021672_C_T 179

SMARCB1 Tumor suppressor E201D chr22:24158958_G_T rs142218902 179

BAP1 Tumor suppressor chr3:52439102_C_A rs186001194 179

BRCA2 Tumor suppressor, DDR, Apoptosis R2784Q chr13:32944558_G_A rs80359076 179

MSH2 Tumor suppressor, DDR E198E chr2:47637460_A_G 179

CDH1 Tumor suppressor V391V chr16:68847251_C_T rs148080550 179

RUNX1 Tumor suppressor V137V chr21:36252870_G_A 179

MLH1 Tumor suppressor, DDR E219A chr3:37067468_A_C 179

TSC1 Tumor suppressor, Protein kinase, Apoptosis chr9:135782112_C_T 179

BRCA2 Tumor suppressor, DDR, Apoptosis R2896C chr13:32950860_C_T 179

NCOR1 S1867S chr17:15961885_G_A 179

ARID1B D1713D chr6:157527453_C_T rs189662115 179

NF1 Tumor suppressor L1954L chr17:29661968_T_C 179

TP53 Tumor suppressor, DDR, Apoptosis G113S chr17:7577548_C_T rs28934575 179

DNMT1 S809S chr19:10260240_C_T 179

ABL1 Oncogene, Protein kinase, Apoptosis P986P chr9:133760635_A_G rs35445683 179

ATM Tumor suppressor, DDR, Apoptosis R32C chr11:108098524_C_T rs148061139 179

PTCH1 Tumor suppressor chr9:98241268_G_A 179

NOTCH2 Tumor suppressor, Apoptosis H1160R chr1:120479948_T_C rs142876168 179

SETBP1 Q1244R chr18:42533036_A_G 179

SETBP1 P256P chr18:42530073_C_T rs141858699 179

NF1 Tumor suppressor A2596V chr17:29684089_C_T 179

APC Tumor suppressor, Apoptosis chr5:112154629_C_T 179

CDC73 Tumor suppressor chr1:193091510_G_A 179

MSH2 Tumor suppressor, DDR D487E chr2:47690244_C_G rs35107951 179

ARID1A Tumor suppressor A1136A chr1:27098992_G_A rs146598030 179

ATM Tumor suppressor, DDR, Apoptosis R337C chr11:108117798_C_T rs138398778 179

ALK Oncogene L9L chr2:30143499_G_C rs4358080 0.092

KDM6A Tumor suppressor chrX:44913052_T_A rs5952285 0.066

SMARCA4 Tumor suppressor D1599D chr19:11170839_T_C rs7275 0.063

aGenes selected from the boxed fractions from Figure 3A. Cancer-driver genes are as described previosly [58].
bOfficial gene names as defined by the HUGO Gene Nomenclature Committee (http://www.genenames.org/).
cDDR is DNA damage response, and SLC is solute carrier.
dAmino acid impact. Example, R116Q indicates a change from R (Arg, arginine) to Q (Gln, glutamine).
dDenotes the chromosome number, start location, and the nucleotide change. _* indicates that either an addition (+) or a deletion (2) of nucleotides.
eSingle nucleotide polymorphisms identifiers as defined at dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/).
fFrequency calculated as described in Materials and Methods.
doi:10.1371/journal.pone.0101670.t002
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[50], and presence or absence in COSMIC [51] were done within

Annovar [52], and have been described previously [11].

Variant identifiers, reference sequence accession
numbers, and frequency of variants
Previously identified variants are defined by the National

Center for Biotechnology Information (NCBI) database of Single

Nucleotide Polymorphisms site (dbSNP) [53]. The accession

number is for the reference sequence from the NCBI used in

determining amino acid change affects [54]. For comparison to

the NCI-60 variants, we used the ESP5400 (downloaded

December 20, 2011).

The frequency of variants present in the ESP5400 in Figure 3A

and B is calculated as an average of the allelic frequencies for each

cell line (as determined by Annovar). The number of genomes in

the ESP5400 was 5400. The 1000 Genomes were not included in

this calculation due to their being a different and variable form of

data (whole genome sequencing) as opposed to exome sequencing

(as for the NCI-60 and ESP5400) that might distort the ratio of

frequencies in Figure 3A and B.

Determination of statistical enrichment,
overrepresentation, and underrepresentation
Calculation of enrichment for cancer-driver genes in Figure 3

and Table S2 was done using Fishers exact testing. For enriched

and depleted groups of ‘‘present’’ variants in Figure 3A, the 2.5%

cutoff occurred within a large group with equivalent ratios, all of

which were included. The determination of the percent of protein

function affecting variants in Figure 3B was done using a sliding

window of 2001 (variants).

Quantitation of drug activities
The 50% growth inhibitory levels (GI50s) at 48 hours were

determined by the Developmental Therapeutics Program (DTP)

[20] as described previously [55]. All GI50 data was assessed and

transformed to z scores as described previously [15], yielding

patterns for 19,940 compounds (CellMiner version 1.4 [23]).

Comparison of variants and drug activities
The combination of up to five variants with the highest

correlation to each compounds activity was identified. Only

variants that were ‘‘amino-acid changing’’ were included; defined

as missense, splice-sense, frameshift, read-through, non-frameshift

insertion or deletion (nucleotides are changed in factors of 3), or

premature stops. Other criteria for inclusion of variants for

comparison to drug activity are, i) there are,13 cell lines with any

single variant, ii) the combination identified for a gene were

associated to the response of at least three cell lines, iii) they did not

occur in segmental duplications (assessed using Annovar), and iv)

they did not map to more than one genomic location (using BLAT

[56]). Drugs activities were considered shifted for a cell line if they

were changed from the 60-cell line mean by 0.5 standard

deviations.

The Matthews correlation coefficient (MCC) was calculated as

follows:

MCC~
(TP)(TN){(FP)FN)

ffip
(TPzFP)(TPzFN)(TNzFP)(TNzFN)

TP is the number of true positives (number of cell lines that

have the variant and respond to the drug), FP number of false

positives (number of cell lines that have the variant but do not

respond to the drug), FN the number of false negatives (number of

cell lines that do not have the variant but respond to the drug), and

TN the number of true negatives (number of cell lines that do not

have the variant and do not respond to the drug).

Precision is the fraction of the variant(s)-containing cell lines that

also have the drug response, calculated as: TP/(TP+FP).

Recall is the fraction of cell lines with drug response that also

have variant(s), calculated as FN/(TP+FP).

The ‘‘Genetic variant summation’’ web-based tool
The summation of variants for an individual gene is derived

from the observed level of the variant. If there are multiple

variants present, these probabilities are considered to be indepen-

dent. The maximum effect of a single gene’s variants may go to

100% for any cell line, and are calculated as follows.

Gene variant percentage per cell

~1{ 1{P1ð Þx 1{P2ð Þ . . . :: 1{Pnð Þ½ �

P1= Percentage for variant 1

P2= Percentage for variant 2

Pn= Percentage for variant n

The summation of amino acid changing variants for multiple

genes is the sum of the individual genes values for each cell line

(with no maximum value).

Composite correlations for gene’s variants versus
compounds based on presence or absence in the non-
cancerous genomes
For the comparison of variants either present or absent in the

non-cancerous genomes to drug response in toto, the gene’s

variants (from one to five) that yielded the highest significant

correlations for each of the compounds were characterized as

being either present or absent in the non-cancerous genomes,

totaled, and their proportions determined at four p value

thresholds (p,0.05, 261024, 161026, and 161028 using

Matthew’s correlation).

Results

Variants in the NCI-60 and new CellMiner tool to facilitate
their retrieval and interpretation
Of the 140,171 individual genetic variants identified [11],

86,887 (62%) are ‘‘present’’ in either the 1000 Genome project or

the ESP5400 non-cancerous genomes, whereas 53,284 (37%) are

absent (cancer cell associated). As described previously [11], the

data are accessible through our CellMiner web-based tool [23]

with tabular data for individual genes retrieved at the ‘‘Query

Genomic Data’’ tab by checking ‘‘DNA:Exome Seq’’ in Step 3

[see Figure 1A [11]]. Graphical data can be retrieved at the ‘‘NCI-

60 Analysis Tools’’ tab using the ‘‘Graphical output for DNA:

Exome sequencing’’ tool [see Figure 1B [11]].

Catalog of homozygous deleterious variants across the
NCI-60
Among the variants, we catalogued a subset of 1,447 that are: i)

homozygous, ii) absent from the 1000 Genomes and the ESP5400,

iii) alter the amino acid sequence and iv) likely to affect protein

function. The criteria for affecting protein function were the

introduction of i) splicesense changes, ii) frameshifts, iii) premature

stops, or iv) missense changes with SIFT values ,0.05, or

NCI-60 WES and Pharmacogenomics
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Figure 4. Overall drug responses in the NCI-60. A. Compounds and drugs used in the present analyses. B. The cellular responses to the 19,940
compounds were categorized for each cell line, as resistant (z score #20.5), no response (z score .20.5 to ,0.5), or sensitive (z score $0.5). The
number of compounds categorized as leading to sensitivity or resistance was determined for each cell line. The ratio of these resistance:sensitivity
determinations (plotted as 2log10 values) is on the x-axis. The cell lines are on the y-axis. Asterisks denote ABCB1-positive cells as measured by
rhodamine efflux [46]. Arrowheads denote cell lines that are TP53 wild-type. C. Scatter plot of resistance:sensitivity ratios for the 19,940 compounds
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Polyphen-2 (values $0.85). The numbers of variants that fit each

of these criteria are presented in Figure 2A.

In all, 1,199 genes contain variants from at least one of the four

categories. A subset of putative function affecting mutations that

occur in cancer-relevant genes is presented in Table 1, with the

complete listing of 1,447 variants (that fit the above criteria) in

Table S1. Tumor suppressor homozygous variants are presented

in Figure 2B, including several not previously described (BCOR,

SETD2, TUSC3 and PBRM1) in either the Cancer Cell Line

Encyclopedia [13] or the Sanger Cancer Genome Project [14]

[57]. The 1,199 gene set (Table S1) are significantly enriched (p,

2610224) for previously recognized cancer-driver genes [58].

Identification of normal variants either enriched or
depleted in the NCI-60
There are 84,861 ‘‘normal’’ variants (SNPs) in the NCI-60 that

are also present in the ESP5400 database. Their distribution,

expressed as their frequencies in the NCI-60 variants/ESP5400 is

visualized in Figure 3A. Variants that: i) occur in the top or bottom

2.5% of ratio values, and with ratios greater than 10:1 (enriched),

or smaller than 1:10 (depleted) for the ESP5400 dataset were

identified. This yielded 2,792 enriched and 319 depleted variants.

Of these, 1,547 (52.9%) of the enriched, and 88 (73.9%) of the

depleted variants affect amino acids in 1,214 and 84 unique genes,

respectively. Variants that do not affect amino acid sequence have

been included as these changes can still potentially have biological

effects.

Figure 3B depicts the frequency of the normal variants that are

predicted to affect protein function (as defined in Figure 2A). As

variant frequency in the NCI-60 (the x-axis values) increases from

a ratio of 1, so does the proportion of those functionally relevant

variants (the y-axis values). A subset of the enriched or depleted

variants that occur in previously recognized cancer-driver genes

[58] is listed in Table 2. The total list of enriched or depleted

variants is in Table S2.

Overall drug activity database for the NCI-60
Growth inhibition 50% data (GI50, from the DTP) were filtered

and converted to z scores [15] for 19,940 compounds (Table S3),

including 110 FDA-approved drugs (Figure 4A). Cell lines were

considered to be either sensitive or resistant to a compound if their

response was shifted by $0.5 or #20.5 standard deviations from

the 60 cell line mean, respectively. The number of compounds to

which each cell line was found to be sensitive or resistant was

totaled. Ratios calculated from these two totals (Figure 4B)

revealed a 83-fold range between the most sensitive (leukemia SR)

and most resistant (ovarian OVCAR-5) cells. Eliminating the

leukemias, which are generally most sensitive to drugs, the

resistance/sensitivity ratio range remained at 65-fold.

The same analysis for the 110 FDA-approved drugs included in

the database yielded a 87-fold range (with or without leukemias).

Comparison of all compounds to FDA-approved drugs (Figure 4C)

showed a robust statistical significance (r = 0.75, p = 3.7610212 by

Pearson’s correlation), indicating cellular response to all com-

pounds is quite similar to the FDA-approved subset. Notably, we

did not find significant correlation (r =20.12) between the drug

response ratios and ABCB1 gene expression, or TP53 wild-type

versus mutant status (asterisks and arrows, respectively, in

Figure 4B) [46]. In addition, we looked for associations to the

protein function affecting variants (as defined in Figure 2) for: i)

DNA damage response, ii) oncogenes, iii) tumor suppressors, iv)

ABC transporters, v) solute carriers, vi) apoptosis genes, and vii)

the total number of genes (with protein function affecting

mutations) per cell line, but found no significant relationship.

However, drug sensitivity was found significantly correlated with

cell line doubling-times (p,0.0015) [59], and epithelial (BR, CO,

LC, OV, PR, and RE) versus non-epithelial (CNS, LE, and ME)

tissue of origin status (p,0.02).

Comparison of single gene variants with drug responses
The 42,990 amino acid changing variants were compared to the

activities of the 19,940 compounds from Figure 4A (,16.561029

compound-gene-cell line combinations). For each gene, the

combinatorial of one to five variants that yielded the highest

correlation to each compound activity was determined, and

Mathew’s correlation coefficients (MCC) were computed. Our

selection criteria for variants associated with drug response

included i) MCC of $0.596 (p#0.0002 for n= 35), ii) precision

$0.70, iii) overall precision for a gene’s variants of $0.50, and iv)

that three or more cell lines had both the identified variant(s) and a

consistent shift in drug response (either more sensitive or resistant;

see Materials and Methods for details). Variants were included

regardless of presence or absence in the normal genomes, as our

goal was to recognize both disease-associated and germline

influences on pharmacological response.

Using these criteria, we identified 80,265 increased-sensitivity,

and 21,436 increased-resistance gene-drug pairs (Table S4A and

B, respectively). For the 19,940 compounds assessed, this includes

at least one gene match for 13,891 of the compounds, involving

7,288 unique genes. For the 163 drugs that are either FDA-

approved or under clinical trial, we identified 406 increased-

sensitivity and 205 increased-resistance gene drug pairs. There are

75 and 58 recognized cancer-driver genes in the increased

sensitivity, and resistance listings (Table S4A and B), respectively.

Some genes have variations that are associated with multiple

compounds, a potential flag for pharmacological importance.

These include i) the DNA damage responder RAD52 with 45

sensitive and 0 resistance-correlated compounds, ii) the kinase

BRAF with 56 sensitive and three resistance-correlated com-

pounds, iii) the zinc finger domain containing gene ZC3H4 with

229 sensitive and 3 resistant-correlated compounds, and iv) the

helicase CHD4 with 976 sensitive and 27 resistance-correlated

compounds. A subset of the gene-drug pairs including FDA-

approved or clinical trial drugs, and genes of interest in either the

cancer or pharmacological context, are shown in Table 1. This is

an unbiased mathematical comparison designed to identify

relationships between genetic variants and drugs, and the resultant

pairings should be considered in the context of biological and

pharmacological knowledge. Significant correlation is not a proof

of a causal relationship but could be a valuable tool to generate

hypotheses.

Comparison of variants either present or absent in the
non-cancerous genomes to drug response in toto

To obtain an indication of relative contribution to pharmaco-

logical response for the genetic variants, we summed those variants

from Table S4A and B (column D, AA Impact) with respect to

their presence or absence in the non-cancerous genomes. Based on

(x-axis) versus the 110 FDA-approved drugs (y-axis). The same ratios of resistance:sensitivity from B were determined for the subset of 110 FDA-
approved drugs. Each point is a cell line (plotted as -log values). Tissues of origin are indicated: BR is breast, CNS is central nervous system, CO is
colon, LC is lung cancer, LE is leukemia, ME is melanoma, OV is ovarian, PR is prostate, and RE is renal.
doi:10.1371/journal.pone.0101670.g004
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these summations, the proportion of variants correlated to

pharmacological response was 56.7% absent and 43.3%, present

(in the normal genomes). This is evidence that more than half of

the effect of genetic variants on pharmacological response come

from the group absent from the non-cancerous genomes. This

occurs despite the absent variants occurring in fewer cell lines, and

thus being numerically much less abundant (7.0%) than the

present (93.0%). Biologically, this implies that the present variants

individually tend to be less influential in their effect on

pharmacology; however, this is compensated for due to their

numerical predominance.

A Web-based tool to explore and visualize variant-drug
relationships
To facilitate the exploration of potential relationships between

gene’s variants and compound activities, we created the ‘‘Genetic

variant versus drug visualization’’ tool (Figure 5). This tool is

accessible through the URL in Figure 5A under the ‘‘NCI-60

Analysis Tools’’ tab, as shown in Figure 5B. The tool is selected in

Step1 and the ‘‘compound:gene’’ combinations of interest entered

in Step 2 with the compound as NSC number followed by a colon

and the HUGO gene name (Fig. 5B); note that up to 150

combinations can be entered in the same query (see example in

Fig. 5B). In Step 3, users enter their email address and click ‘‘Get

data’’ to receive the output.

For each query, the output, sent by return email within a few

minutes, as an Excel file, contains a bar plot of the compound

activity z scores (Figure 5C). In addition, there is side-by-side

tabular data for these activity values, plus the amino acid changing

variant percentages for the input gene for each cell line. Significant

correlations (p,0.05) are indicated by yellow coloring of the bars

for compound activity, and yellow highlighting of the percent

conversions for the variants (Figure 5C). Additional information

not shown in Figure 5C include: i) the drug name, ii) the drug

mechanism of action (if known), iii) the compound PubChem

identifier, iv) the variant genomic location, v) the variants

nucleotide and amino acid changes, vi) the SIFT and Polyphen-

2 scores for each variant, and whether these are considered to

affect protein function, and vii) whether individual variants occur

(and at which frequency) in normal genomes (either in the 1000

Genomes or the ESP5400). The two examples in Figure 5 illustrate

the validity and usefulness of the approach. As expected, the

activity of the BRAF inhibitor, vemurafenib is highly selectively for

the BRAF-V600E mutated cell lines, which include most of the

melanoma and 2 of the colon cell lines. Other associations can be

explored at will. Notably, ifosfamide was correlated with RAD52

mutations (Fig. 5C, right panels).

A Web-based tool to identify variants for a single gene or
in a pathway or functional group
As different variants can affect the function of a given gene (for

instance TP53 or most tumor suppressor genes), and molecular

pathways can be affected by genetic variants present in the

different genes constituting the pathway, we designed a tool to

both identify and sum those variants. This is the ‘‘Genetic variant

summation’’ tool, accessible using the same URL as in Figure 5A,

and found under the ‘‘NCI-60 Analysis Tools’’ tab. The tool is

used by checking ‘‘Cell line signature’’ and ‘‘Genetic variant

summation’’ in Step 1 (Figure 6A). Up to 150 genes (or a single

gene) can be queried in a single search either by entering the list of

genes (using official HUGO names), or by uploading the genes

from a .txt or .xls file in Step 2. In Step 3, users enter their email

address, and click ‘‘Get data’’ to obtain the results, which are sent

by email within minutes as Excel files.

In the example in Figure 6A, six genes from the pharmacolog-

ically important EGFR-ERBB2-RAS pathway were included as

input (the tool works similarly well if users only wish to retrieve

data for a single gene). For each gene or gene list, the ‘‘Genetic

variant summation’’ tool returns an Excel file that lists: i) a

complete list of all the variants that affect amino acids (in a first

worksheet, ‘‘AA Change’’), and ii) in a second worksheet (‘‘Prot.

Func. Affecting AA Change’’), the subset of those variants that are

both predicted to affect protein function (based on the criteria

listed in Figure 2A) and absent in the non-cancerous 1000

Genomes and the ESP5400. To simplify the presentation,

Figure 6B only shows data from this second group (‘‘Prot. Func.

Affecting AA Change’’) for KRAS and selected cell lines. For each

cell line and variant, the numbers indicate the percent conversion

for that variant. For instance, in Figure 6B, four of the colon

carcinoma cell lines show protein-affecting variants. The classical

activating mutations G12V and G13D are observed in 3 cell lines:

HCT116, HCT15 and SW620. SW620 score 100 for the G12V

mutation indicating homozygous mutation, whereas HCT116 and

HCT15 score 36 and 42 for the G13D mutation indicative of

heterozygous mutation [11].

In the summary row (illustrated in Fig. 6B), for any given gene,

multiple variants can be observed in the same cell line; in which

case, the gene variants summation ‘‘Summary’’ is set to a

maximum of 100 percent for each cell line to reflect homozygosity

(see Materials and Methods).

The Genetic variant summation tool also provides the

summation pattern for the whole NCI-60 for the set of genes

included in the search (Figure 6D). Several summation pattern

examples are given in Figure 6D, for different subsets of gene

combinations (see Fig. 6A and Fig. 6D left panel for the 6 gene

result, and see right panel in Fig. 6D for BRAF alone). Additional

information provided for the variants in the Excel spreadsheet (not

shown in Fig. 6) includes: i) SIFT scores, ii) Polyphen-2 scores, iii)

Figure 5. The ‘‘Genetic variant versus drug visualization’’ web-based tool and output examples. A. The tool is accessed through our
CellMiner web-application at http://discover.nci.nih.gov/cellminer/. B. Within the ‘‘NCI-60 Analysis Tools’’ tab (shown in red), the tool is selected by
checking the box in Step 1. The compound and gene identifiers (up to 150 pairs) are entered in Step 2, using NSC numbers for the compounds, and
HUGO names for the genes. Enter your email address and click ‘‘Get data’’ in Step 3 to receive the output (as an Excel file). C. The output incudes a
bar-plot of the compound activity z scores. The x-axis is the activity z scores, and the y-axis the NCI-60 cell lines ordered by tissue of origin. The
tabular output includes the cell lines (in column 1), the compound z scores (in column 2), followed by the amino acid changing variants. Cell lines
whose activities or variant status contribute to a statistically significant relationship are indicated by yellow coloring. For the bar plot, brown fills
indicate cell lines for which no variant correlates with a shift in drug activity, and the white fill that the cell line has a variant correlated to a shift in the
drug activity, but that that cell does not contribute to the correlation. For the tabular data, the purple filled in headers indicate the variant(s) that
have significant correlation to the compound activity. The white box indicates that the cell line contains a variant that correlates to the compound,
but that that cell line has no significant shift in drug activity (that is it is less than plus or minus 0.5 standard deviations from the mean at 0).
doi:10.1371/journal.pone.0101670.g005
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type of amino acid affecting change (missense, nonsense, etc.), and

iv) percent presence in the 1000 Genomes and ESP5400. Users are

invited to explore on their own using our CellMiner tool to fully

appreciate the extent of the data made readily available in the

Excel result files.

Use of genetic variation patterns in the exploration of
drug response
The ‘‘Totals’’ of the amino acid-changing, protein function-

affecting variants as visualized in Figure 6D can be used as input

for our previously described and publicly available ‘‘Pattern

comparison’’ tool (also found under the NCI-60 Analysis Tools

tab) to interrogate any given pathway for potential pharmacolog-

ical impact [15]. An example is given for illustration in Figure 7.

The pattern from the Figure 7A gene input list generated using the

‘‘Genetic variant summation’’ tool is input to the ‘‘Pattern

comparison’’ tool. From this pattern, 12 drugs with known

mechanisms of action showed significant correlations, eight of

which target the pathway of the input genes. That is, drugs

targeting that pathway are robustly enriched (p= 2.661026) as

accessed using the Fishers Exact 2-tailed test calculation [60]. By

varying the input selection of genes, one may identify either the

minimal or optimal grouping of genes whose genetic variants are

correlated to these drugs activities (Figure 7B). Additionally, by

viewing the drug gene interactions in the pathway context, one

may determine those grouping of variants correlated to either

increased (positive correlations, grouped within the red box in

Figure 7C) or decreased (negative correlations, grouped within the

blue box in Figure 7C) drug activities. BRAF activation is seen to

have significant relationship to both sides of the pathway, although

it is most robust for the BRAF, MEK, and ERK inhibitors

(Figure 7C).

Discussion

The present study provides novel insights into and tools for

exploring both genetic variant status and pharmacological

response, based on a systematic analysis of both. It also describes

how the data can be readily accessed by non-bioinformatics users

(Figure 1 and Figures 5–7). Figure 2, Table 1, and Table S1

variants (putatively protein function affecting and absent in the

non-cancerous genomes) identify putatively cancer-associated

functionally significant homozygous variants, and thus provide

valuable models of cancer cell behavior and drug response in the

presence of significant genetic alterations. This is informative in

the context of both synthetic lethal studies, and the identification

of putative gene knockout cell lines. Examples from Table 1 and

Table S1 include a wide variety of cancer and pharmacology

important genes, including drug targets (CKN2A, PTEN,

MAP3K5), tumor suppressors (TP53, APC, VHL, CDH4),

oncogenes (BRAF, KRAS, EGFR), and apoptosis (TRAF1 and

PIK3R2), DNA damage response (FANCM, MLH1, TDP1), and

drug efflux (ABCB1) genes. We have previously verified functional

alteration for TDP1 [61].

The variant frequency ratios in the NCI-60 compared to non-

cancerous genomes (Figure 3A) revealed inflection points at which

variant frequencies markedly deviate from the non-cancerous

genomes. Interestingly, the percentage of protein function

affecting, amino acid changing variants (Figure 3B) increases as

these ratios increase, implying functional relevance for the

enriched subset. As these variants occur in the normal population,

but at unusually high or low levels in individuals that have gone on

to develop cancer, there is implication of cancer pre-disposing or

protective functions. The presence of the 42 known cancer-driver

genes presented in Table 2 strengthens this hypothesis.

The systematic consideration of pharmacological response led

to the identification of the broad cellular diversity (in pharmaco-

logical response) visualized in Figure 4B. This implies the presence

of some combination of causal molecular events; however their

detailed identification is beyond the scope of the current study.

Our variant versus compound assessment (Table 3 and Table S4A

and B) identifies significant mathematical relationships between

gene variants and compound activities. Both germline and somatic

variants are included as our purpose is to reveal potential

influences on pharmacological response regardless of this distinc-

tion.

The Table S4A and B of significant relationships can be queried

by either gene or drug, dependent on the user’s interest, with

specific pairings of interest easily visualized using the Genetic

variant versus drug visualization tool (Figure 5). Examples from

these tables verifying previously associated pairings include BRAF

with i) vemurafenib (r = 0.939), ii) the MEK-ERK inhibitor

hypothemycin (r = 0.621), and iii) the MEK inhibitor ARRAY-

162 (NSCs 761431 354462, and 764042 respectively)

[11,13,14,62,63,64]. Prior literature also provides indirect prior

evidence for multiple pairings. SETD2 is a histone methyl-

transferase correlated (r = 0.637) to increased sensitivity in

azacytidine (NSC102816). Closely related 5-aza-29-deoxycytidine

has been shown to mediate histone methylation levels [65]. IGF1R

is an anti-apoptotic correlated (r = 0.627) to increased sensitivity

for the TOP2 inhibitor XK-469 (NSC697887). The same gene has

been previously associated with another TOP2 inhibitor, etoposide

[66]. STAT2 is a pro-apoptotic correlated (r = 0.603) with

increased sensitivity the DNA synthesis inhibitor aphidicolin

glycinate (NSC303812). The same gene has been previously

associated with another DNA synthesis inhibitor, 5-flourouracil

[67]. RAD52 is a homologous recombination gene correlated

(r = 0.629) with increased sensitivity for the A7 alkylating agent

ifosfamide (NSC109724) (Figure 5C). Homologous recombination

has been previously shown to be involved in the repair of A7

alkylating agents [68]. Our large-scale statistical assessment of the

relationships between genes’ variants and compounds’ activities

(Table 3 and Table S4A and B), present all results of the analysis,

consistent with prior publications [13,14].

Figure 6. The ‘‘Genetic variant summation’’ tool, and output. A. The tool is accessed through CellMiner at http://discover.nci.nih.gov/
cellminer/, under the ‘‘NCI-60 Analysis Tools’’ tab as described in Figure 5A. The tool is selected in Step 1, and the gene identifiers (up to 150) are
entered as HUGO names in Step 2. Enter your email address and click ‘‘Get data’’ in Step 3 to receive the output (as an Excel file). B. The output
incudes two versions of the data. The first contains the amino acid changing variants for each input gene. The second contains the subset of these
that are included in one of the protein function affecting categories (as defined in Figure 2), and are absent from the non-cancerous 1000 Genomes
and ESP5400. Both provide i) chromosome number, ii) nucleotide location and change, iii) amino acid number and change, iv) percent conversion of
each cell line for that variant for the NCI-60, and v) the summation of the gene’s variants present for each cell line (to a maximum of 100%). The
example of KRAS is shown for a subset (due to space constraints) of the cells. C. The tool provides a summation of the variants for all genes in the
input. The summary values from B for each gene are added together (with no maximum) to provide a measurement of variant burden (see ‘‘Totals’’,
bottom row). D. The totals from C are used to create a bar graph. The x-axis is the summation of variants values (‘‘Totals’’ from C). The y-axis is the cell
lines, color-coded by tissue of origin [15,70]. Several outputs are included for illustration, with the first being from the 6-gene input in A.
doi:10.1371/journal.pone.0101670.g006
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Figure 7. Use of the ‘‘Genetic variant summation’’ tool output for pharmacological exploration. A. The 6-gene input from Figure 6A
yields a summation pattern for the NCI-60. Input of this pattern to the ‘‘Pattern comparison’’ tool [15] identifies 12 significantly correlated drugs with
known mechanism-of-action, including 8 that target the input pathway. B. By using the different outputs from the ‘‘Genetic variant summation’’ tool
from Figure 6D as inputs to ‘‘Pattern comparison’’, one may identify the minimum and optimal identifiers for the 8 drugs that target the input
pathway. C. The molecular pathway from which the input genes were selected, including the targets of the 8 correlated drugs from A and B. The red-
filled and blue-filled boxes indicate the drugs that work better, or worse, respectively, in the presence of the genetic variants from A and B.
doi:10.1371/journal.pone.0101670.g007
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Our web-based ‘‘Genetic variant versus drug visualization’’ tool

(Figure 5) was designed to facilitate exploration of potential gene

variants versus drug relationships. An example from the vemur-

afenib versus BRAF comparison (Figure 5C) is that one

melanoma, LOXIMVI, although having the V600E alteration,

has reduced sensitivity as compared to the other cell lines with that

mutation. Thus LOXIMVI provides a test case for V600E

containing melanomas that have resistance to vemurafenib, a

frequent clinical problem. A second example comes from the

ifosfamide versus RAD52 pairing (Figure 5C). It suggests that

while the RAD52 Q221E and Y415X variants might contribute to

increased drug sensitivity, the S346X does not (X is a stop codon).

The second pharmacogenomic CellMiner tool introduced in the

present publication is the ‘‘Genetic Variant Summation’’ tool.

Using the web-based ‘‘Genetic Variant Summation’’ tool shown in

Figure 6A, one may quickly identify the summations for variants

present for any gene, and for gene combinations of interest

(examples presented in Figure 6D). Moreover, by using these

summations as input into our ‘‘Pattern Comparison’’ tool [15],

one in turn gains insight into relationships between variants and

pharmacological response. In the presence of the genetic variants

of the six genes from Figure 6A and 7A, the EGFR, ERBB2, and

MTOR inhibitors (within the blue box in Figure 7C) work less well

(have negative correlations), while the BRAF, MEK and ERK

inhibitors (within the red box in Figure 7C) work better (have

positive correlations). One may also gain insight into which genes

are most influential, in this case BRAF for the BRAF, MEK and

ERK inhibitors (Figure 7B, bottom half). Perhaps as importantly,

one may identify mutations not significantly influential, such as

those in KRAS and NRAS for the clinically important vemur-

afenib, and KRAS for selumetinib.

Taken in context with the CCLE and GDS databases, we

believe the NCI-60 has both liabilities and assets. The limited

number of cell lines renders difficult the detection and statistical

assessment of possible effects of rare genetic alterations. Likewise,

disease types absent within the set (for instance sarcomas and

hepatocellular carcinomas) are not assessable. Offsetting this, is the

unmatched array of clinically relevant drug and compound

information available in the NCI-60 DTP database, which

includes FDA-approved, clinical trial, known mechanism of action

drugs, and a vast number of compounds, including natural

products that can serve as seeds for novel anticancer classes [19].

The raw numbers for pharmacological comparison are: i) for

CCLE, 24 drugs on less than 1000 cells yielding ,24,000

responses, ii) for GDS, 138 drugs on less than 1000 cells yielding,

138,000 responses, and iii) for the NCI-60 19,940 compounds for

60 cells yielding 1,196,400 responses. This combination of known

and unstudied compounds is and will remain a unique asset for the

field. Known drugs may be used to identify important novel

molecular parameters in pharmacology, as was done for SLFN11

[69,70]. The unstudied compounds are particularly useful when

screening for any parameter for which drugs do not currently exist,

as was done in the case of Ro5-3335 for core binding factor

leukemia [71]. This aspect is entirely missing from both CCLE

and GDS. An additional important consideration for these activity

measurements are that the assays run for each group are different,

with CCLE measuring ATP levels at 72–84 hours, GDS

measuring either nucleic acid content or oxidation-reduction at

72 hours, and the DTP measuring total protein at 48 hours post

treatment. As no one measurement type or time gives all

information, these datasets should be considered to be compli-

mentary, not exclusively informative. A second important asset for

the NCI-60 is the broad scope and quality of the associated

molecular data (see introduction), which will be difficult, or more
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accurately unfeasible to obtain for 1,000 cell line sets. These

multiple forms of molecular data become invaluable for systems

pharmacological approaches. Thus, the NCI-60 is and will remain

an important resource in conjunction with the other cell line and

upcoming patient tumor xenograft (PDX) databases.

The present document can be viewed as a compendium for

using the NCI CCR CellMiner [23] and its associated NCI DTP

[20] websites. One of our aims is to allow the broadest possible

range of users to assess genomic variant status and compound

activity in the NCI-60, and their relationships to one another in a

systematic and intuitive fashion. The variant data provide a

compilation of homozygous protein function affecting variants. It

identifies variants that occur in the general population that are

enriched or depleted in the context of cancer, implying a role in

predisposition or protection with respect to cancer progression.

The cell lines are revealed to have significant intrinsic variability

for drug resistance, increasing their usefulness as pharmacological

response models. All significant gene variant-drug correlations are

identified, providing a unique resource for the field. An assessment

of the total relative influences of genetic variants relative to their

presence or absence in normal genomes is provided. Finally, the

introduction of the ‘‘Genetic variant versus drug visualization’’

and ‘‘Genetic variant summation’’ web-based tools will enable the

exploration of relationships between DNA variation and pharma-

cological response, both for single genes and groups of genes for

non-informaticists. This will provide the opportunity to generate

hypothesis, discover novel therapeutic agents, and gain insights

based on cancer genomics.

Supporting Information

Table S1 Homozygous, amino-acid changing, putative protein-

function-affecting genetic variants present in the NCI-60, and

absent in the 1000 Genomes and ESP5400. The full-length version

of Table 1.

(XLSX)

Table S2 3,111 variants over or under-represented in the NCI-

60 as compared to the ESP5400. The full-length version of

Table 2.

(XLSX)

Table S3 19,940 Compounds included in the analysis.

(XLSX)

Table S4 Table S4A and B. Combinatorial analysis for amino

acid changing variants that are significantly correlated to increased

sensitivity (Table S4A) or resistance (Table S4B) to compounds.

The full-length version of Table 3.

(XLSX)
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