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Background

It has been revealed that the human genome shows some degrees of inter-individual and 

inter-population variations which make it an appropriate target to rigorous functional 

genomic analysis [1, 2]. Recent cost-effective next-generation sequencing (NGS) tech-

nologies have provided a huge amount of genome sequences of individual human [3]. 

It has been discovered that more than 99% of human genomes are completely identical. 

�erefore, it turns out that the vast differences among people can be emerged from less 

than 1% variations [4, 5]. Single nucleotide polymorphisms (SNPs) refer to the genetic 
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variations which are more frequent. A sequence of SNPs that co-occur in a specific chro-

mosome is named as haplotype. In diploid species like humans, there are two copies of 

each chromosome. Since each haplotype is derived from a copy of a specific chromo-

some, as a result, there are two copies of haplotypes.

Haplotypes provide more attainable information than individual SNPs which can be 

remarkable for investigating the relationship between genetic variations and complex 

diseases [6], studying human history [7], providing personalized medicine [8] and study-

ing biological mechanisms [9].

Although obtaining the haplotypes is an important task, direct experimental analysis 

of haplotypes is labor-intensive, expensive, and restricted to obtaining local haplotypes. 

In practice, human haplotypes are provided as sequencing reads (fragments). Assuming 

the importance of detecting genetic variations accompanied by limitations over molecu-

lar approaches, obtaining haplotype information from these numerous fragments may 

have profound effects on different aspects of medicine and molecular biology [10–13]. 

Availability of the fragments makes it possible to assemble haplotypes in a process 

referred to as single individual haplotyping (SIH) [14] which is performed by in silico 

(computer-aided) analysis using statistical and computational approaches.

For this purpose, the requested region of the specified chromosome is sequenced sev-

eral times and a number of fragments are provided. Due to the limitations of sequenc-

ing methods, the fragments involve errors and gaps. It should be noted that the former 

derived from the wrong determination of allele’s measure; while, the latter is related to 

the low-confidence measures of allele positions. SIH attempts to assign each fragment 

to the right chromosome copy. �en, it detects and corrects the errors to reconstruct 

the desired haplotypes. In order to solve this problem, several models have been pro-

posed which minimum SNP removal (MSR) [14], minimum fragment removal (MFR) 

[14], and minimum error correction (MEC) [15] are the chief models. Among the exist-

ing models, MEC is more efficient and has been applied in several approaches [16–19]. 

�e aim of this model is to find and correct the errors by applying the minimum letter 

changes in the input fragments. It has been proved that all of the models are NP-Hard 

[14]. Most of the current methods construct a weighted graph such that each frag-

ment corresponds with a vertex and the weight of each edge represents the amount of 

similarity between the connecting fragments. Based on the used model, each method 

transforms the built graph into a bipartite graph. For example in the MEC model, this is 

performed by deleting the least number of conflicting edges. AROHap [19] and FCM-

Hap [20] are two recent methods which have been addressed the problem according to 

the MEC model. �e first, through the use of asexual reproduction optimization (ARO) 

algorithm, attempts to improve the fitness function which is designed based on the MEC 

model. �e second, by exploiting the Fuzzy c-means (FCM) clustering algorithm tries to 

improve the initial haplotypes iteratively. It is worthwhile noting that the method divides 

the input fragments into two groups and the haplotypes are obtained as the center of 

the clusters. However, some popular methods such as MCMC [21] and HapCUT [16] 

build the graph in a different way. �ese methods start with a set of arbitrary sequences 

as initial haplotypes and improve it step by step regarding the input fragments. �ey 

make a similar weighted graph in their distinctive model; but instead of fragments, SNPs 

are the vertices. Each pair of SNPs is connected if they are covered by at least one input 
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fragments. �e weight of each edge describes the amount of consistency with their cor-

responding positions in the current haplotypes. Albeit, this model efficiently describes 

the consistency of the current haplotype with the input fragments; but the existence of 

gaps and noise may lead to achieving inaccurate weights [22].

In this paper, we propose a fast and accurate method to solve haplotype reconstruc-

tion named NCMHap which involves two steps. First, a weighted fuzzy conflict graph 

is made such that each node corresponds with an input fragment and the weight of 

each edge represents the measurement of incompatibility between the corresponding 

input fragments. By removing the least of conflicting edges based on the MEC model 

and bi-partitioning the input fragments, an initial fragment clustering is obtained. Next, 

to decrease the effect of noise and outliers on the obtained clusters, the Neutrosophic 

c-means (NCM) clustering method is applied. NCM by assigning a coefficient to each 

input fragment can reduce the noise effects on the clustering process. �e performance 

of the proposed method is validated with both simulated and real datasets. According to 

the obtained results, by selecting appropriate measures for the parameters of NCM, our 

method can provide high throughput reconstructed haplotypes close to the optimal.

Results

In this section, the performance of NCMHap is evaluated by using two simulated and 

publicly available real datasets.

Setting the parameters

�e proposed method was implemented in MATLAB and all experiments were com-

pleted on a Core i5 Intel with 2.7 GHz and 8G RAM. Among the parameters, m and ε are 

common with fuzzy c-means clustering which usually are set by 2 and 10−5 , respectively. 

�e other parameters i.e. δ , w1,w2 , and w3 are set as 25 , 0.7, 0.2, and 0.1, respectively, 

which were tuned by trial and error. For this aim, similar to the study of Guo and Sengur 

[23], a grid search of the trade-off constant δ on {5, 10, 15,…, 30} and w1,w2 , and w3 on 

{0.1, 0.2, 0.3,…, 0.9} was performed to find the optimal results. Similar to the previous 

works [16, 19, 22, 24–27], Reconstruction rate (RR) measure is used to evaluate the qual-

ity of the obtained haplotypes.

Competitor methods

In this experiment, NCMhap is compared with a set of state-of-the-art and well-known 

methods. Some important notes about these competitors are described as follows:

1 H-PoP [26] clusters the DNA reads into k groups such that the elements of each 

cluster have minimum distance with each other while are far from the reads of the 

other clusters. Moreover, it exploits the genotype information to improve the recon-

structed haplotypes.

2 SCGD [28] is a heuristic-based method that models SIH as the low-rank matrix fac-

torization problem and represents a modified of the gradient descent algorithm to 

solve the problem.

3 FastHap [25] is an iterative based method which models the similarities between the 

input fragments with a weighed fuzzy conflict graph.
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4 FCMHap [20] uses the Fuzzy C-means clustering method to divide the input frag-

ments into two segments with minimum MEC measure.

5 HGHap [22] exploits the hypergraph model to describe the similarities between the 

input fragments more precisely.

6 AROHap [19] is a nature-inspired method that utilizes the Asexual Reproduction 

optimization method to cluster the input fragments with the best MEC score.

7 ALTHap [27] is an iterative algorithm that formulates the haplotype assembly prob-

lem as a sparse tensor decomposition.

8 HRCH [29] utilizes a chaotic viewpoint to reconstruct haplotypes. For this aim, the 

obtained haplotypes are mapped to some coordinate series by applying chaos game 

representation. �en, the positions with low confidences are improved by using a 

local projection.

Simulated data

In order to evaluate the performance of the proposed method, first, the experiments 

have been carried out on a widely used dataset named as Geraci’s dataset [30]. It was 

provided by the international Hapmap project which is based on 22 chromosomes of 

269 different individuals.

�e individuals have been nominated from Japan (JPT), China (HCB), Nigeria (YR), 

and Utah (CEU). Haplotype length (l), coverage (c), and error rate (e) are the main 

parameters which l = {100, 350, 700} , c = {3, 5, 8, 10} and e = {0.1, 0.2, 0.3} . It should be 

noted that for each combination of these parameters there are 100 instances.

Since the proposed method involves two steps, it can be desired to evaluate the influ-

ence of each step independently. For this purpose, the initial clustering, NCM algorithm, 

and NCMHap are separately executed on the Geraci’s dataset. �e obtained results for 

haplotypes with length 100, 350, and 700 are listed in Tables 1, 2 and 3 respectively. It 

should be noted that the first two columns in these tables are the error rate e and the 

coverage c, respectively. In each table, �e NCM column represents the results when it 

starts with a random initial guess for each cluster center.

Table 1 The average reconstruction rate over 100 instances with length 100

e c Initial NCM NCMhap

0.1 3 0.657 0.817 0.916

5 0.677 0.846 0.971

8 0.676 0.946 0.983

10 0.675 0.885 0.989

0.2 3 0.611 0.693 0.822

5 0.620 0.730 0.907

8 0.616 0.793 0.931

10 0.633 0.826 0.936

0.3 3 0.554 0.581 0.684

5 0.568 0.677 0.759

8 0.565 0.653 0.816

10 0.564 0.692 0.843
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It can be seen in the last column of Tables 1, 2 and 3, the synergistic of these steps 

achieved promising results which completely outperform the other cases.

Figures 1, 2 and 3 demonstrate the comparison of RRs obtained from the run of the 

NCMHap as well as the benchmarking algorithms on Geraci’s dataset for haplotypes 

with length 100, 350, and 700 respectively. Each figure represents a heatmap. �e color 

of each row ranges from green i.e. the minimum RR to red i.e. the maximum RR. It 

should be noted that each heatmap cell is obtained based on computing the average over 

100 data samples.

By investigating the heatmap of Fig. 1, it reveals that the proposed method can provide 

high-quality results and completely comparable against the other approaches. Compar-

ing the results demonstrates that the proposed method completely outperforms SCGD, 

FastHap, FCMHap, and AROHap algorithms in all parameters.

As can be seen in Fig.  2, by increasing the length of fragments, the quality of the 

obtained haplotypes is efficiently improved. Particularly, when the amount of noise 

Table 2 The average reconstruction rate over 100 instances with length 350

e c Initial NCM NCMhap

0.1 3 0.639 0.688 0.953

5 0.655 0.718 0.982

8 0.664 0.805 0.989

10 0.665 0.812 0.993

0.2 3 0.586 0.632 0.856

5 0.600 0.678 0.921

8 0.610 0.720 0.939

10 0.619 0.703 0.948

0.3 3 0.527 0.580 0.712

5 0.539 0.583 0.803

8 0.540 0.590 0.850

10 0.547 0.611 0.870

Table 3 The average reconstruction rate over 100 instances with length 700

e c Initial NCM NCMhap

0.1 3 0.635 0.704 0.958

5 0.656 0.761 0.984

8 0.647 0.745 0.990

10 0.657 0.746 0.994

0.2 3 0.584 0.634 0.865

5 0.607 0.624 0.925

8 0.598 0.714 0.938

10 0.599 0.708 0.946

0.3 3 0.520 0.545 0.720

5 0.538 0.569 0.808

8 0.535 0.590 0.849

10 0.545 0.618 0.958
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is increased, it can preserve the quality of reconstructed haplotypes against the other 

approaches and in most cases outperforms the benchmarking methods.

Finally, as demonstrated in Fig. 3, for input fragments with length 700, except for one 

situation, NCMHap has achieved better reconstruction rates than any other algorithms. 

It should be noted that the obtained RR measures are listed in Additional file 1: Tables 

S1–S3.

Investigating the obtained results demonstrates that the proposed method can provide 

high performance in dealing with long input fragments. In fact, increasing the length of 

input fragments as well as the rate of coverage enable the proposed method to compute 

the similarity between the fragments more precisely. Moreover, increasing the length of 

input fragments can aid to identify and decrease the effect of outliers more accurately.
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Fig. 1 Performance comparison of NCMHap and other methods on the Geraci’s dataset [30] with haplotype 
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Since the Neutrosophic c-means clustering is a developed form of Fuzzy c-means 

method and moreover NCMHap like Fast method uses weighted fuzzy conflict graph to 

model the similarity between the input fragments, its performance is compared against 

FCMHap and FastHap approaches when it deals with long block haplotypes and a huge 

amount of noise. Figure  4 demonstrates the quality of obtained results for haplotypes 

with length 700 and error rate e ≥ 0.2.

It is apparent the results of the proposed method are valuable against comparing 

methods in dealing with input fragments with a high error rate.
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Fig. 3 Performance comparison of NCMHap and other methods on the Geraci’s dataset [30] with haplotype 

block length l = 700

Fig. 4 Comparison the reconstruction rate of the proposed method against FastHap and FCMHap methods 

while e ≥ 0.2
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Experimental data

For more investigation, we tested the performance of our method on a real dataset which 

involves data provided by the 1000 genome project [31]. �is data belongs to an individual 

NA12878 [32] which is frequently used to investigate the performance of the existing SIH 

methods. Moreover, the trio-phased variant calls from the GATK resource bundle [33] was 

used as the true haplotypes. �e represented heatmap in Fig. 5, illustrates the reconstruc-

tion rate of the proposed method as well as H-PoP [26], SCGD [28], FastHap [25], HGHap 

[22], AROHap [19], ALTHap [27], and HRCH [29]. �e obtained results demonstrate that 

our method achieves the highest and second-highest RRs for most of the chromosomes.

Evaluating the obtained results on both simulated and experimental datasets demon-

strates that the proposed method can provide promising reconstructed haplotypes in deal-

ing with low-quality sequencing data. Moreover, in the worst case, NCMHap can solve the 

problem in less than 3 min which this runtime is suitable against the existing approaches. It 

should be noted that the running times of the competitor methods are represented in Addi-

tional file 1: Tables S5–S8.

Discussion

Haplotypes could have profound impacts on personalized medicine. Moreover, it can 

be used for the study of human evolutionary history. Haplotype assembly includes 

assembling a pair of haplotypes from a huge amount of individual’s aligned DNA 

sequence fragments. Nevertheless, the quality of the reconstructed haplotypes is poor 
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due to the sparsity as well as the amount of noise in the sequenced fragments. NCM-

Hap reconstructs the haplotypes based on the Neutrosophic c-means (NCM) cluster-

ing algorithm.

By evaluating the results of NCMHap on both simulated and real datasets, we found 

that the proposed approach could effectively overcome the challenge of the occur-

rence of noise in the input fragments, and could provide promising results compared 

with current methods.

In order to increase the convergence speed of NCM as well as improving the accu-

racy of the results, as a pre-processing step, a weighted fuzzy conflict graph is con-

structed, where the nodes correspond with the fragments and each edge represents 

the similarity of the corresponding fragments. By partitioning the graph, and cluster-

ing the input fragments, an initial haplotype is obtained which feds to the next step.

According to the obtained results, it can be concluded that NCMHap provides 

comparable performance while offering reasonable execution speed. Moreover, when 

the length of input fragments is increased, it can outperform other methods in terms 

of the reconstruction rate. By utilizing NCM, the proposed method can more accu-

rately identify long noisy input fragments as outliers and decreases their effects on 

the reconstructing of haplotypes.

It should be noted that the performance of the proposed method relied on initializing 

the parameters of NCM. Consequently, these parameters should be tuned appropriately.

Moreover, although NCMHap performance is already good enough compared with 

other existing methods, it can only be applied for diploid organisms. �erefore, further 

research should be conducted to reconstruct haplotypes for the polyploid organisms.

Conclusion

In this paper, we presented a method based on the Neutrosophic c-means (NCM) clus-

tering algorithm for haplotype assembly problem. Time complexity and handling high 

error rate datasets are the main challenges of the existing methods. Due to improving 

the NCM’s convergence speed, the proposed method consists of two phases. First, the 

input fragments are divided into two partitions based on their similarities. Second, infor-

mation of bi-partitioning is employed as initial centers by the NCM clustering method. 

Applying the information in NCM can improve the speed of convergence and decrease 

the number of iterations. Using simulated and real datasets, the proposed method pro-

vides promising performance, in terms of reconstruction rate and running time, to the 

current methods. Moreover, the obtained results demonstrate that the proposed method 

provides high efficiency to reconstruct haplotypes with a high-error-rate.

As demonstrated in a series of recent publications (see, e.g., [22, 34–37]) in developing 

new prediction methods, user friendly and publicly accessible web-servers will signifi-

cantly enhance their impacts [26], we shall make efforts in our future work to provide a 

web-server for the prediction method presented in this paper. Also, the source code of 

NCMHap is freely available at https ://githu b.com/Fatem eh-Zaman i/NCMHa p.

https://github.com/Fatemeh-Zamani/NCMHap
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Methods

Problem formulation

As can be seen in Fig.  6, Xm×n is a SNP matrix where each row corresponds with an 

input fragment with length n. Since in most cases, there are two alleles at each SNP site, 

for simplicity, the major and minor alleles are represented by 0 and 1 respectively. It 

should be noted that if a SNP value cannot be determined with enough confidence, it is 

indicated by ‘−’.

Let fi and fj are two arbitrary input fragments. �e Hamming distance (HD) can 

describe their similarity as below:

where fi and fj are compatible if HD = 0 , else they are in conflict. In other words, when 

HD
(

fi, fj
)

 equals zero, it can be concluded that these fragments are originated from the 

same chromosome copy, otherwise, the fragments belong to different chromosome 

copy, or some of their positions are destroyed by noise. To solve the problem, the frag-

ments of the SNP matrix must be divided into two clusters such that the elements of 

each cluster will be compatible by the minimum number of letter flips i.e. MEC measure 

is minimized. �en, the center of each cluster equals with its corresponding haplotype. 

Figure  6, demonstrates the haplotype reconstruction in the diploid genome, X is SNP 

(1)HD
(

fi, fj
)

=

n
∑

k=1

D
(

fik , fjk
)

(2)D(a, b) =

{

1 if a, b �=′ −′ and a �= b
0 else

Fig. 6 An example of haplotype reconstruction using the MEC model [39]
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matrix which divided into two parts and H = {h1, h2} involves the reconstructed haplo-

types of each cluster.

In order to evaluate the quality of the obtained haplotypes, reconstruction rate (RR) 

[38] and MEC score are two useful measurements. Let Ĥ and H contain the recon-

structed haplotypes and the original haplotypes respectively. �e RR describes the simi-

larity between Ĥ and H that it is computed as below.

Neutrosophic c-means (NCM) algorithm

As stated previously, fragment clustering is an important phase of the haplotype assem-

bly. Also, a huge amount of noise and gaps in the input fragments have made this phase 

as a challenging task. In order to perform this phase efficiently, we consider the Neu-

trosophic c-means (NCM) clustering algorithm. �e algorithm computes the degrees 

belonging to the determinant and indeterminate clusters at the same time for each of 

the data points [23, 40]. Outlier and noise data are considered as Indeterminate clusters. 

�erefore, the NCM algorithm can detect outliers and noisy data. Also, by using some 

relevant functions, it can decrease the undesirable effects of noise and outliers on the 

clustering process. For this purpose, the NCM algorithm minimizes the objective func-

tion given in Eq. (4) through an iterative process, whereby the centers of the clusters are 

determined with the least error and the clustering accuracy is improved.

In the above relations, Tij is defined as the degree to determinant clusters, Ii is the degree 

to the boundary clusters, Fi is the degree belonging to the outlier data set, N number of data 

points, C number of clusters, w weighting factor, m is a fuzzification constant, xi is a data 

point, and δ is the number of objects that are considered as outliers. cimax is a constant that 

is calculated for each data point according to Eq. (5). �is parameter is used to precisely 

determine the value of function Ii , because the degree of indeterminacy of each data point 

depends on the two largest definite clusters close to it, namely Eqs. (6) and (7). �e cluster 

centers cj and membership Tij , Ii , and Fi are updated by Eqs. (8–11) respectively, where k is 

the iteration step.

(3)RR(

Ĥ .H

) = 1 −

min

(

HD

(

ĥ1, h1

)

+ HD

(

ĥ2, h2

)

,HD

(

ĥ1, h2

)

+ HD

(

ĥ2, h1

))

2n

(4)

J (T , I , F ,C) =

N
∑

i=1

C
∑

j=1

(

w1Tij

)m∥

∥xi − cj
∥

∥

2
+

N
∑

i=1

(w2Ii)
m�xi − cimax�

2+

N
∑

i=1

δ2(w3Fi)
m

(5)cimax =
cpi + cqi

2

(6)
pi = arg max

j=1,2,...,C

(

Tij

)

(7)
qi = arg max

j �=pi∩j=1,2,...,C

(

Tij

)
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NCMHap method

As can be seen in Fig. 7, the proposed method involves two main steps. First, in order to 

provide an initial clustering of the input fragments, a weighted graph, called fuzzy conflict 

graph, is constructed based on the SNP matrix. In this graph, fragments are considered as 

vertices, and the weight of each edge is the normalized Hamming distance (NHD) between 

corresponding fragments. �is measure is given as follows:

In the above relations, fi and fj are two fragments of X, Sij denotes the number of 

columns (SNPs) that are covered by either fik or fjk in X. In fact, Sij is a normalization 

factor that allows us to normalize the distance between the two fragments such that 

the resulting distance ranges from 0 to 1, and n represents the number of SNPs.

After constructing the graph, the edges with weight of 0.5 are removed because 

they do not provide sufficient information about the clustering of the connected 

fragments.

Next, an edge with the highest weight is found from the obtained graph and its con-

necting nodes (fragments) are assigned to different clusters (i.e. C1 and C2). �en, in 

an iterative manner, for each cluster (Ci, i = 1,2), a node with highest distance from 

the cluster is found. �en, it is assigned to the opposite cluster. �is step is repeated 

until all nodes will be assigned to the clusters.

In the second phase, the initial clustering is given to the NCM algorithm. �e cent-

ers of each cluster are considered as the primary centers in the NCM algorithm. Initial 

clustering can improve the convergence speed of the NCM algorithm. �is algorithm 

determines the impact of fragments on clustering based on the three membership func-

tions introduced and is able to reduce the impact of noise or outliers on the cluster-

ing process and consequently, the accuracy of clustering will be increased. �erefore, 
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clustering is achieved by repeating the optimal objective function and the membership 

degree of the determinant and indeterminate clusters and the centers of the clusters in 

each iteration will be updated by Eqs. (8–11). �e iteration is repeated until the differ-

ence between cluster centers at two successive iterations is greater than ε . Finally, the 

center of obtained clusters construct the set of reconstructed haplotypes.

Fig. 7 Flowchart of the proposed method
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