
NCryptfs: A Secure and Convenient Cryptographic File System

Charles P. Wright, Michael C. Martino, and Erez Zadok
Stony Brook University

Appears in the General Track of the USENIX 2003 Annual Technical Conference

Abstract

Often, increased security comes at the expense of user
convenience, performance, or compatibility with other
systems. The right level of security depends on specific
site and user needs, which must be carefully balanced.
We have designed and built a new cryptographic file
system called NCryptfs with the primary goal of allow-
ing users to tailor the level of security vs. convenience
to fit their needs. Some of the features NCryptfs sup-
ports include multiple concurrent ciphers and authenti-
cation methods, separate per-user name spaces, ad-hoc
groups, challenge-response authentication, and transpar-
ent process suspension and resumption based on key va-
lidity. Our Linux prototype works as a stackable file
system and can be used to secure any file system. Per-
formance evaluation of NCryptfs shows a minimal user-
visible overhead.

1 Introduction
Securing data is more important than ever. As the In-
ternet has become more pervasive, security attacks have
grown. Widely-available studies report millions of dol-
lars of lost revenues due to security breaches [19]. Such
concerns have prompted regulation efforts for the health-
care (HIPAA [26]) and financial services (GLBA [16])
industries, as well as commitments from software ven-
dors to provide better security facilities.

Yet, software to secure data files is not in wide use
today. We believe one of the main reasons for this is
that security software is not convenient to use: securing
data files cannot be done easily and transparently. For
security software to become universal, it has to balance
several conflicting concerns: security, performance, and
convenience. Whitten reported in 1999 that even expe-
rienced computer users could not use PGP 5.0 in less
than 90 minutes and that one-quarter of the test subjects
accidentally revealed the secret they were supposed to
protect [28]. Work on security software in recent years
has often focused on increasing the level of security and
on performance, as reported in a recent comprehensive
survey of storage systems security [21]; not much con-
sideration has been given to user convenience [28]. It is
not surprising that in recent years, prominent researchers

such as Hennessey and Pike have advocated that the re-
search community begin tackling difficult problems such
as software usability [8, 18].

We have designed and developed an encryption file
system (NCryptfs) whose primary goal is to ensure data
confidentiality, while balancing security, performance
and convenience. NCryptfs is a security wrapper that
binds to a directory that stores ciphertext data. The ci-
phertext directory may be on any file system (e.g., EXT2
or NFS). Through NCryptfs, a cleartext view is pre-
sented via the standard UNIX file access API. We pro-
vide convenience by allowing administrators and users
to customize the behavior of NCryptfs, while picking
sensible defaults.

The threat models NCryptfs addresses include net-
work sniffers, untrusted servers, and stolen machines.
Normally, when exporting file systems over the network,
cleartext data is sent over the network and the server
must be trusted to keep the data confidential. When
NCryptfs is deployed on the clients, only ciphertext file
data is sent over the network, and the server does not
have access to the cleartext data. Corporations and gov-
ernments are storing more and more sensitive data on
laptops, which are often stolen along with their valuable
data. When NCryptfs is used, a stolen laptop will not
reveal useful information to the thief. In both of these
scenarios, NCryptfs attempts to restrict the information
a compromised system reveals to an attacker to just the
information that is actively being used.

NCryptfs is a successor to our much simpler encryp-
tion file system called Cryptfs [32]. Cryptfs was a proof-
of-concept example of what useful features stackable
file systems could offer. We used Cryptfs as a starting
point and developed a comprehensive stackable crypto-
graphic file system that offers new security and conve-
nience features not available in Cryptfs. Both Cryptfs
and NCryptfs were developed from our portable stack-
able file system toolkit called FiST [30, 33, 34]. Such
stackable file systems can use any file system (e.g.,
EXT3, NFS, or CIFS) as the backing store for encrypted
data. Some of the features that NCryptfs includes are:

• Support for multiple users, multiple keys, multiple
ciphers, and multiple authentication methods (in-

1



cluding challenge-response authentication between
user processes and the kernel).

• Ad-hoc groups, allowing users to delegate “join”
privileges to others, and for others to join or leave
groups as needed.

• Per-process and per-session keys, with hooks for
processes to be informed of certain activities in
NCryptfs (e.g., a request to re-authenticate).

• Key timeouts and revocation, which in addition to
per-process keys allows us to suspend and resume
processes based on key validity, as well as to add
encryption transparently to unmodified programs
that have already begun running.

In developing NCryptfs on Linux, we also noticed that
a secure file system cannot be easily built as a standalone
file system (stackable or native). The reason is that
important file system information is accessed by other
kernel components without consulting the file system.
For example, we enhanced the Linux directory cache
(dcache) and inode cache (icache) so that all accesses
to cached (possibly cleartext) objects are validated first
through NCryptfs. Additionally, we enhanced Linux’s
process management so that process destruction actions
are coordinated with NCryptfs; the latter removes any
related security info (e.g., keys and other objects) when
a process or session terminates.

Many past secure file systems often made arbitrary de-
cisions along a security-performance axes, with minimal
consideration for user convenience [21]. NCryptfs was
carefully designed so as to allow many levels of security
and still offer ease-of-use and high performance; when-
ever possible, we allow administrators and users to select
among several choices. Our performance benchmarks
show NCryptfs’s overhead to be just 5% for normal user
activities.

The rest of this paper is organized as follows. Sec-
tion 2 surveys background work. Section 3 describes
the design of our system. We discuss interesting imple-
mentation aspects in Section 4. Section 5 presents an
evaluation of our system. We conclude in Section 6.

2 Background
In this section we briefly describe other cryptographic
file systems that provided the motivation for NCryptfs.

SFS SFS is an MSDOS device driver that encrypts an
entire partition [6]. Once encrypted, the driver presents a
decrypted view of the encrypted data. This provides the
convenient abstraction of a file system, but relying on
MSDOS is not secure because MSDOS provides none
of the protection of a modern OS.

CFS CFS is a cryptographic file system that is imple-
mented as a user-level NFS server [1]. It requires the
user to create a directory on the local or remote file sys-

tem to store encrypted data. The cipher and key are
specified when the directory is first created. The CFS
daemon is responsible for providing the owner access to
the encrypted data via a special attach command. The
daemon, after verifying the user ID and key, creates a
directory in the mount point directory that acts as an un-
encrypted window to the user’s encrypted data. Once at-
tached, the user accesses the attached directory like any
other directory. CFS is a carefully designed, portable file
system with a wide choice of built-in ciphers. Its main
problem, however, is performance. Because it runs in
user mode, it must perform many context switches and
data copies between kernel and user space.

TCFS TCFS is a cryptographic file system that is im-
plemented as a modified kernel-mode NFS client. Since
it is used in conjunction with an NFS server, TCFS
works transparently with the remote file system, elimi-
nating the need for specific attach and detach commands.
To encrypt data, a user sets an encrypted attribute on di-
rectories and files within the NFS mount point [2]. TCFS
integrates with the UNIX authentication system in lieu
of requiring separate passphrases. It uses a database in
/etc/tcfspwdb to store encrypted user and group
keys. Group access to encrypted resources is limited to
a subset of the members of a given UNIX group, while
allowing for a mechanism (called threshold secret shar-
ing) for reconstructing a group key when a member of a
group is no longer available.

TCFS has several weaknesses that make it less than
ideal for deployment. First, the reliance on login pass-
words as user keys is not safe. Also, storing encryption
keys on disk in a key database further reduces security.
Finally, TCFS is available only on systems with Linux
kernel 2.2.17 or earlier, limiting its availability.

BestCrypt BestCrypt is a commercially available
loopback device driver supporting many ciphers [10].
Such a loopback device driver creates a raw block device
with a single file, called a container, as the backing store.
This device can then be formatted with any file system or
used as swap space. Each container has a single cipher
key. The administrator creates, formats, and mounts the
container as if it were a regular block device. BestCrypt
is ideal for single user environments but unsuitable for
multiuser systems. In a single-user workstation, the user
controls the details of creating and using a container. In
a multi-user environment, however, the user must give
the encryption key to a potentially untrustworthy admin-
istrator. Moreover, the ability to share containers among
groups of users is limited, as BestCrypt gives different
users equal rights to the same container. The Crypto-
Graphic Disk driver is similar to BestCrypt, and other
loop-device encryption systems, but it uses a native disk
or partition as the backing-store [4].

2



Cryptfs Cryptfs [32] is the stackable, cryptographic
file system that serves as the basis for this work. It was
never designed to be a secure file system, but rather a
proof-of-concept application of FiST [34]. It supports
only one cipher and implements a limited key manage-
ment scheme.

EFS EFS is the Encryption File System found in Mi-
crosoft Windows, based on the NT kernel (Windows
2000 and XP) [14]. It is an extension to NTFS and uti-
lizes Windows authentication methods as well as Win-
dows ACLs [15, 21]. EFS encrypts files using a long-
term key. Encryption keys are stored on the disk in a
lockbox that is encrypted using the user’s login pass-
word. This means that when users change their pass-
word, the lockbox must be re-encrypted. If an admin-
istrator changes the user’s password, then all encrypted
files become unreadable.

StegFS StegFS is a file system that employs steganog-
raphy as well as encryption [13]. If adversaries inspect
the system, then they only know that there is some hid-
den data. They do not know the contents or extent of
what is hidden. This is achieved via a modified EXT2
kernel driver that keeps a separate block-allocation table
per security level. It is not possible to determine how
many security levels exist without the key to each secu-
rity level. Data is replicated randomly throughout the
disk to avoid loss of data when the disk is mounted with
an unmodified EXT2 driver and random blocks may be
overwritten. Although StegFS achieves plausible deni-
ability of data’s existence, the performance degradation
is a factor of 6–196, making it impractical for most ap-
plications.

3 Design

NCryptfs’s primary design goals were to balance the of-
ten conflicting concerns of security, convenience, and
performance [21]. Our two most important goals were
security and convenience:

Security We ensure that the data stored using NCryptfs
remains confidential, by using strong encryption
to store data. We also modified the kernel to no-
tify NCryptfs upon the death of a process and evict
cleartext pages from the cache.

Convenience If a system is not convenient then users
will not use it, or will circumvent its functionality
[28]. The inconvenience of current cryptographic
systems contributes to their lack of widespread
adoption. NCryptfs makes encryption transparent
to the application: any existing application can
make use of strong cryptography with no modifica-
tions. We designed NCryptfs to be cipher agnostic,
so it is not tied to any one cipher.

We also want the performance of our system be as
close as possible to a raw encryption operation as pos-
sible. Our final design goal was portability, which we
achieve through the use of stackable file systems [33].

In Section 3.1 we describe the players in our system.
In Section 3.2 we describe our key management. In Sec-
tion 3.3 we describe the concept of an attachment, which
we use to provide much of the convenience associated
with NCryptfs. In Section 3.4 we discuss ad-hoc groups.
In Section 3.5 we discuss key revocation and timeouts.
We describe system operation in Section 3.6.

3.1 Players
When designing any system, one of the most impor-
tant questions is who are the players, or more simply
who uses it. In NCryptfs we identified three groups of
players: (1) the system administrator, (2) owners, and
(3) readers and writers. We use the same taxonomy as
Riedel, but add the system administrator [21].

System Administrator The system administrator
originally mounts NCryptfs and must be able to en-
force usage policies. The system administrator is trusted
to properly install the NCryptfs kernel and user-space
components. However, the system administrator is not
trusted with encryption keys.

Owners The owner is the user who controls the en-
cryption key for the data. The owner receives permis-
sions (see Section 3.3) from the system administrator
and may delegate them to other users.

Readers and Writers All other authorized users are
either readers or writers. The only difference between
an owner and a reader or writer is that the owner sup-
plies the encryption key; all other readers and writers
do not know the encryption key. An owner is implic-
itly a reader or writer, depending on the permissions that
the system administrator delegates. For the system to be
convenient, readers and writers must be able to use en-
cryption transparently. Authorized readers and writers
must also be able to delegate permissions received from
other authorized readers and writers.

Any user who attempts to exceed their delegated per-
missions is considered an adversary.

3.2 Key Management
The security of encrypted data is only as strong as the
policy that is put in place to protect the keys. NCryptfs
makes the assumption that the underlying storage media
can be read and tampered with, so to ensure data con-
fidentiality, it must be encrypted. Before the encrypted
data is used, the owner must provide the key to NCryptfs
(presently by entering a passphrase). Once the key is
sent to kernel space, NCryptfs stores it in core memory.
NCryptfs will use the encryption key on behalf of read-
ers and writers, without revealing it to them. When cryp-

3



tographic algorithms are used for authentication, authen-
tication information is distinct from the encryption key.
After the initial authentication takes place, the result is
bound to a specified user, group, session, or process.

NCryptfs uses a long-lived key to encrypt all data and
file names written to disk. If we used a short-lived key,
then whenever the key changed, all data would have to
be re-encrypted. To avoid this performance penalty, we
use long-lived keys. NCryptfs uses the underlying file
system to store ciphertext data, but all other data related
to the encryption key is stored in pinned core memory
that can not be swapped to disk.

NCryptfs is cipher agnostic. It uses cipher modules
that are treated as simple data transformations. The only
requirement that NCryptfs makes of the cipher is that it
must be able to encrypt an arbitrary length buffer into
a buffer of the same size. Most widely-used ciphers
are able to do this in Cipher Feedback Mode (CFB)
[25]. CFB mode allows us to keep the size of encrypted
files the same. Changing the size of files complicates
stackable file systems and decreases performance [31].
Selecting an appropriate cipher allows the user to se-
lect where they want to lie on the security-performance-
convenience continuum. If the user is more concerned
about performance, then a faster but less secure cipher
may be chosen (e.g., one with a shorter key length). This
also affects convenience: if the cipher is too slow then
the user may not use encryption at all.

3.3 Attachments
We associate each encryption key with an attach. At-
tachments, inspired by CFS, allow owners to have
personal encrypted directories [1]. An attach is
much like an entirely separate instance of a stack-
able file system. Each attach has a correspond-
ing directory entry within the NCryptfs mount point
and stacks on a different lower-level directory. This
relationship can be seen in Figure 1. There are
three attachments: each attach is a directory entry
within /mnt/ncryptfs and stacks on a separate
lower directory. In this figure the three attaches are
proj, mcm, and cpw—which stack on /proj/src,
/home/mcm/enc, and /home/cwright/mail, re-
spectively. Encrypted files are stored within the direc-
tories /proj/src, /home/mcm/enc, and /home/
cwright/mail. The plaintext view of these files
is available through /mnt/ncryptfs/proj, /mnt/
ncryptfs/mcm and /mnt/ncryptfs/cpw, re-
spectively.

An attach can be thought of as a lightweight user-
mode mount. Unlike a regular mount, an NCryptfs at-
tach is not a dangerous operation that only superusers
can perform safely. A mount may hide data by mount-
ing on top of a non-empty directory, but an attach can not

/home/cwright/mail

/mnt/ncryptfs

Mike

Charles

Mike,Erez
Authorized:

NFS File System

proj

cpw

mcm

EXT2 File System

NCryptfs File System

Cleartext View Ciphertext View

/proj/src

/home/mcm/enc

Figure 1: Attach Mode Mounts. This example shows
three attachments. Each attach is a directory entry within
/mnt/ncryptfs.

hide any data because NCryptfs does not allow any files
or directories to be created in the root of the NCryptfs
file system. A mount may introduce new, possibly dan-
gerous data, such as devices or setuid programs, but
NCryptfs only presents an unencrypted view of the ex-
isting data in the system, without modifying metadata.
Since an attachment does not hide data or introduce new
data, unlike a mount, it is a safe operation.

There are compelling reasons to use an attach to
achieve this behavior, rather than simply mounting
NCryptfs multiple times. In general, only the superuser
may mount a new file system. It is possible to allow a
user to mount a specific file system with specific param-
eters, but if we want to allow users to encrypt arbitrary
data then this does not suffice, because /etc/fstab
entries need to be created for each encrypted directory.
Finally, most UNIX operating systems have a hard limit
on the number of mounts that are allowed; or the OS uses
per-mount data structures that do not scale well (e.g.,
linked lists). Using an attach permits the use of a spe-
cific type of stackable enhancement for many lower di-
rectories without running into hard limits or degrading
system performance for other operations. NCryptfs uses
the directory cache (dcache) to store attaches, because in
Linux the dcache organizes many entries efficiently.

Attaches were originally designed for convenience.
However, separating the name space for each encryption
key also provides several other benefits in the context of
stackable file systems. Foremost among these benefits is
that the dcache can not handle two different views of an
encrypted file system. For example, the situation where
cpw has /mnt/ncryptfs/foo encrypted with one
key, and user ezk has /mnt/ncryptfs/foo en-
crypted with another key is possible without attaches—
since foo may encrypt to different ciphertexts with dif-
ferent keys. Having two files with the same name causes
their data to get intermixed within the dcache and page
cache. Even if the data can not be read, knowing the ex-
istence of a given file may provide valuable information
to an attacker. The better way to allow multiple users to
concurrently use a single cryptographic file system is to

4



separate the name space. The only name space mixing
using attach mode is the name of the attach (which must
be unique). This means that NCryptfs has a completely
separate name space for each set of encrypted files.

Each attach has private data that is relevant only to
that specific attachment. The per-attach data is made up
of an encryption key, authorizations (access control en-
tries), and active sessions. These three data structures
separate encryption, authorization, and active sessions.
These three data structures model flexible and diverse
policies including ad-hoc groups:

Encryption Key This information is specific to the ci-
pher for this attach. This data includes the encryption
key and any information (such as initialization vectors)
required to perform encryption. NCryptfs passes this
data to each encryption or decryption operation, but has
no knowledge about the contents of this data. The cipher
is wholly responsible for its maintenance and interpreta-
tion. This data is opaque to NCryptfs so that a multi-
tude of ciphers can be used without any modifications to
NCryptfs.

Authorizations Each attach has one or more autho-
rizations. An authorization gives an entity access to
NCryptfs after the entity meets a certain authentication
criteria. An entity may be a process, session, user, or
group. The authentication criteria consists of a method
(e.g., password) and data that is specific to this method
(e.g., a salted hash of the password).

Active Sessions Each attach also has one or more ac-
tive sessions. An active session contains the description
of an entity and the permissions granted to that entity.
Note that NCryptfs active sessions are not necessarily
the same as UNIX sessions (e.g., an active session can
be bound to a user or process). Once an entity has au-
thenticated according to the rules in an authorization, an
active session is created. One authorization can map to
multiple active sessions (e.g., a user authenticates in two
sessions using a single authorization entry). Each ac-
tive session corresponds to an authorization that exists
or existed in the past. If an authorization is removed,
the active sessions are allowed to remain (revocation is
discussed in Section 3.5).

To ensure maximum flexibility, NCryptfs uses fine-
grained permissions. Each authorization and active ses-
sion contains a bitmask of permissions. NCryptfs per-
missions are the standard read, write, and execute bits
that UNIX already defines plus an additional seven op-
erations:

• Detach allows removal of the attachment from
NCryptfs. When users have completed their work,
the detach operation ensures that all resources (in-
cluding keys) are freed.

• Add an Authorization allows users to delegate a
subset of their permissions to new authorizations.
By default, only the session that created the attach
is authorized. This allows an owner to work with
multiple sessions (e.g., using two different xterms)
or to give other users permission to use the attach.
Using a UNIX session identifier makes it more dif-
ficult to hijack an authentication, whereas a UID
can be easily changed using /bin/su.

• List Authorizations allows users to verify and ex-
amine which entities (users, sessions, processes,
and groups) are authorized to use this attach. Sensi-
tive information (such as the authentication criteria)
is not returned.

• Delete an Authorization allows users to remove an
authorization from an attach.

• Revoke an Active Session allows users to pre-
vent a currently-authenticated user from access-
ing NCryptfs. This can be combined with the
authorization-deletion operation to prevent any fu-
ture use of an attach.

• List Active Sessions allows users to verify and ex-
amine which users have authenticated to an attach.

• Bypass VFS Permissions allows users to take on
the identity of the file’s owner for files within the
attach. This permission is required to implement
ad-hoc groups, which allow the convenient sharing
of encrypted data (see Section 3.4).

3.3.1 Attach Access Control

By default, any user is allowed to create an attachment
with full permissions (except bypass VFS permissions).
The system administrator can change this default policy
by adding authorizations to the NCryptfs mount point.
Each authorization allows a single entity to attach or au-
thenticate to an attach. The main NCryptfs mount point
has no active sessions, only authorizations. The mount
point can not require authentication, because authentica-
tion takes place through an ioctl. If the user has not
already been granted permission, then the ioctl will
not be permitted. Once the attach or authentication takes
place, the entity receives a subset of permissions in the
authorization. Authorizations for the NCryptfs mount
point require two additional permissions:

• Attach allows a user to create an attach.
• Authentication allows a user to authenticate to an

attach.

The system administrator can also limit the maximum
numbers of attaches and the maximum and minimum
key timeouts both on a global and on a per user basis.

5



3.3.2 Attach Names
There are three methods to generate attach names. First,
when a user attaches, by default the user is allowed to
choose the name for their attach. This allows a conve-
nient name that the user can easily remember and type,
but this name may reveal information about the contents
and multiple users may want to use the same name (e.g.,
mail or src).

In the second method, NCryptfs generates a name
based on the entity doing the attaching to prevent name
space collisions between users. We do this by append-
ing a one-letter prefix based on the entity type to the en-
tity’s numeric identifier. For example, u500 represents
UID 500, and u500s200 represents UID 500 with ses-
sion ID 200. These names are easy to remember, but
reveal who is doing the attach. This method is less con-
venient than allowing users to chose their own names,
and may not be unique since each entity can have multi-
ple attaches (e.g., UID 500 may have several encrypted
directories, all used in session ID 200).

The third method is to randomly generate unique at-
tach names. This allows a specific user to have mul-
tiple generated attaches. This method has the added
benefit that it enforces using names for attaches that
do not reveal information about the attachments’ con-
tents. NCryptfs guarantees randomly generated names
that have no name space collisions. These names reveal
no information about the contents, but are harder to re-
member and type. This method is even less convenient
to users, but guarantees unique names.

3.4 Groups
NCryptfs supports native UNIX groups like any other
entity. A UNIX group has some disadvantages, primar-
ily that a group needs to be setup by the system adminis-
trator ahead of time. This means that users must contact
the system administrator, and then wait for action to be
taken.

NCryptfs supports ad-hoc groups by simply adding
authorizations for several individual users (or other en-
tities). The problem with this approach is that each
additional user must have permissions to modify the
lower level objects, since NCryptfs by default respects
the standard lower-level file system checks. If the per-
missions on the lower level objects are relaxed, then
new users can modify the files. However, without a
corresponding UNIX group, it is difficult to give per-
missions to precisely the subset of users that must have
them. If the permissions are too relaxed, then rogue
users can trivially destroy the data and cryptanalysis be-
come easier—even without the system being compro-
mised.

NCryptfs’s bypass-VFS-permissions option solves
this problem. The owner of the attach can delegate this

permission (assuming root has given it to the owner).
When this is enabled, NCryptfs performs all permis-
sion checks independently of the lower-level file system.
This allows NCryptfs to be used for a wider range of ap-
plications. This feature is described in depth in Section
4. When ACLs become common, they can be used in
place of this mechanism [5, 9].

3.5 Timeouts and Revocation

Keys, authorizations, and active sessions all can have
a timeout associated with them. When an object times
out, NCryptfs executes a user-space program optionally
specified at attach time. For example, the user may spec-
ify an application that ties into a graphical desktop envi-
ronment to prompt for the user’s passphrase.

NCryptfs takes one of four actions when a timed-out
object is referenced:

• All further file system operations fail with “permis-
sion denied.” This policy is strict and secure, but it
is inconvenient.

• Opening a file fails, but already open files continue
to function. This is useful because it allows existing
work to complete.

• Files that are already open continue to function, but
when a user attempts to open a new file, the pro-
cess is put to sleep until the operation can succeed
(e.g., the user re-authenticates). This also allows
old work to complete, but no operations will imme-
diately fail, so users do not need to sort out as many
partial completions and errors.

• All operations cause the process to be put to sleep
until the operation can succeed: open, read, write,
etc. block until re-authentication. This prevents
even open files from being accessed until the user
re-authenticates, and is convenient because no op-
eration will fail until the user has had a chance to
re-enter the passphrase. This is similar to the au-
thentication timeout employed in Zero-Interaction
Authentication [3].

After the user re-authenticates, blocked processes
wake up (or successfully complete operations). If the
system is configured to cause all operations to fail or
cause all processes to go to sleep, the key timeout deletes
the key from memory. If existing files are permitted to
continue functioning, then the key must remain in mem-
ory, but NCryptfs prevents new files from accessing it.

An authorization timeout prevents new users from au-
thenticating with that authorization, but active sessions
may continue to use the attach. This can be used to cre-
ate login windows, such that all logins must take place
between 9:00AM and 10:30AM.

An NCryptfs kernel thread wakes up sleeping pro-
cesses after a user-specified duration. The function

6



that caused NCryptfs to put the process to sleep returns
an error. This prevents processes from waiting indef-
initely for an event that may never occur (e.g., a re-
authentication).

Active sessions can be revoked. A timeout is a special
case of a revocation because it is a scheduled revocation,
so an active session revocation has the same behavior
as an active session timeout with one key difference. If
an active session times out, then it may be indefinitely
extended by re-authenticating even if the corresponding
authorization was removed. When an active session is
revoked, it may not be re-enabled. If manual interven-
tion was taken by the owner to prevent a user from ac-
cessing NCryptfs, then we can not safely allow the user
to undo that operation.

3.6 System Operation
In this section we describe a typical scenario for
NCryptfs usage. The end product of the following ex-
ample is the structure seen in Figure 1. We show the
steps that lead up to the attach structure that is in place.

First, the system administrator mounts NCryptfs on
/mnt/ncryptfs, then adds authorizations for Mike,
Erez, and Charles. User Erez has full permissions in-
cluding bypass VFS permissions, and other users have
full permissions except bypass-VFS-permissions. No
data is encrypted just yet. The mount point only con-
tains the “.” and “..” directory entries.

Next, Charles, Mike, and Erez create attaches. For
example, Charles runs the command “nc attach
-c blowfish /mnt/ncryptfs cpw /home/
cwright/mail”. Then, nc attach prompts for a
key. The key may be entered as a hexadecimal or ASCII
string. An encryption key is then derived from this string
using PKCS#5 PBKDF2 [23]. The key is passed to
the Blowfish cipher module [25]. After this command
is completed, /mnt/ncryptfs/cpw presents a de-
crypted view of the files in /home/cwright/mail.
In this situation, Charles may access the encrypted files
and he has full permissions. The mapping between mcm
and /home/mcm/enc is created in the same manner.

Erez performs the same operation to map /mnt/
ncryptfs/proj to /proj/src. Erez wants to give
Mike the ability to read files in this attach as well. Mike
and Erez share no UNIX group among themselves, but
Erez has the ability to bypass VFS permissions. Erez
adds an authorization for Mike with the bypass-VFS-
permissions option enabled. To create this authoriza-
tion, Erez specifies several options aside from the per-
missions. The first, required setting, is the authoriza-
tion criteria. In this example password authentication
was chosen. A salted MD5 hash of the passphrase is
passed to the kernel when creating a password autho-
rization [22]. Using a salted MD5 hash allows Mike to

choose his passphrase without revealing it to Erez, and
Erez can store it in a configuration file without the orig-
inal passphrase being revealed. Additionally, Erez may
authorize any session that Mike opens, but to use the
attach from a session, Mike needs to be authenticated
in that particular session. This ties an active session to
a specific virtual terminal, to make hijacking the active
session more difficult.

Finally, Erez can specify timeouts for the authoriza-
tion that he is creating. In this example, we chose an au-
thorization timeout of six hours, an active session time-
out of one hour, and an inactivity timeout of fifteen min-
utes. This means that Mike can authenticate to the attach
within the next six hours; once authenticated, he can use
the attach for one hour without re-authenticating; and if
he does not use the encrypted files for more than fifteen
minutes, he must re-authenticate. After a timeout, all of
Mike’s processes go to sleep until Mike re-authenticates.
This shrinks the window in which the encryption key
may be used.

To use the attach that Erez has created, Mike runs
nc auth /mnt/ncryptfs proj, and nc auth
prompts him for a passphrase. If Mike is successful, then
he may use the files in /mnt/ncryptfs/proj. Mike
starts a large compile, which lasts for more than an hour.
After an hour, the active session timeout is triggered.
Mike has configured a user-space hook for his timeout;
this hook loads a small X11 program which prompts him
for his passphrase, and re-authenticates to NCryptfs. Af-
ter Mike successfully enters his passphrase, his compile
resumes. If Mike is unable to enter the passphrase, then
after a configurable amount of time the compile fails
with a “permission denied” message.

4 Implementation

We implemented a prototype of NCryptfs on Linux
2.4.18 using FiST, a language for stackable file systems,
as a starting point [33]. Although much of NCryptfs was
implemented as a standalone stackable file system, we
needed to modify some parts of the kernel to increase
the security of NCryptfs. Using stackable mechanisms
allows us to create new file systems without changes to
the rest of the OS. However, Linux is not sufficiently
flexible to allow the creation of completely independent
secure file systems. Although this reduces portability
as compared to a standalone stackable file system, the
increased security is worth this trade off. We have de-
signed these features in a way that NCryptfs can be used
without them (at the cost of reduced security). In this
section, we discuss four interesting aspects of our im-
plementation: on-exit callbacks for tasks, cache clean-
ing, the imperfect stacking characteristics of permission
handling in Linux, and our use of cryptography.

7



On-exit callbacks Linux does not provide a way for
kernel components to register interest in the death of a
process. We extended the Linux kernel to allow an ar-
bitrary number of private data fields and corresponding
callback functions to be added to the per-process data
structure, struct task. When a process exits, the
kernel first executes any callback functions before de-
stroying the task object. NCryptfs uses such callbacks
in two ways. First, when processes die, we immedi-
ately remove any active sessions that are no longer valid
(e.g., if the last process in a session dies, we remove the
NCryptfs active session). The alternative to on-exit call-
backs would have been to use a separate kernel thread to
perform periodic garbage collection, but that leaves se-
curity data vulnerable for an unacceptably long window.
If an authenticated process terminates and the active ses-
sion remains valid, then an attacker can quickly create
many processes to hijack the active session entry. Us-
ing the on-exit call back, the information is invalidated
before the process ID can be reused. Also with on-exit
callbacks we release memory resources as soon as they
are no longer needed.

The second use for private per-process data is
in NCryptfs’s challenge-response authentication ioctl,
which proceeds as follows. First, the user process runs
an ioctl to request a challenge. We generate a random
challenge, store it as task-private data, and then send
the challenge’s size back to the user. Second, the user
allocates a buffer and calls the ioctl again. This time
the kernel actually returns the challenge data. The user
performs some function on the data (e.g., HMAC-MD5
[12]), that requires some piece of secret knowledge to
transform the data. Finally, the user program calls the
ioctl a third time with the response. If the response
matches what the kernel expects, then the user is authen-
ticated. Using the task private data sets up a transaction
between the kernel and a task. Even though there are
several ioctls in this authentication sequence, it is no dif-
ferent than if a process had authenticated itself using a
single ioctl. The challenge and its size are not useful
to an attacker, since the challenge can only be used for
a single authentication attempt. Only the last ioctl call
modifies the state of the task. Finally, if an authentica-
tion is aborted, then the challenge is discarded on pro-
cess termination.

Cache Cleaning Cleartext pages normally exist in the
page cache. Unused file data and metadata may re-
main in the dcache and icache, respectively. If a sys-
tem is compromised, then this data is vulnerable to at-
tack. For example, an attacker can examine memory
(through/dev/kmem or by loading a module). To limit
this exposure, NCryptfs evicts cleartext pages from the
page cache, periodically and on detach. Unused den-

tries and inodes are also evicted from the dcache and
icache, respectively. For added security at the expense
of performance, NCryptfs can purge cleartext data from
caches more often. In this situation, the decryption ex-
pense is incurred for each file system operation, but I/O
time is not increased if the ciphertext pages (e.g., EXT2
pages) are already in the cache. Zero-Interaction Au-
thentication (ZIA), another encryption file system based
on Cryptfs, takes the approach of encrypting all pages
when an authentication expires [3]. This is less effi-
cient than the NCryptfs method, because ZIA will also
maintain copies of pages in the lower-level file system.
ZIA requires the initial encryption of pages, and will use
memory for these encrypted pages.

Bypassing VFS Permissions When intercepting per-
missions checks, it is trivial to implement a policy
that is more restrictive than the underlying file sys-
tem’s normal UNIX mode-bit checks. To support ad-hoc
groups without changing lower-level file systems, how-
ever, NCryptfs needed to completely ignore the lower-
level file system’s mode bits so that NCryptfs could im-
plement its own authentication checks and yet appear to
access the lower-level files as their owner.

The flow of an NCryptfs operation that must bypass
VFS permissions (e.g., unlink) is as follows:

sys_unlink { /* system call service routine */
vfs_unlink { /* VFS method */

call nc_permission()
if not permitted: return error
nc_unlink { /* NCryptfs method */

call nc_perm_preop() /* code we added */
vfs_unlink { /* VFS method */

call ext2_permission()
if not permitted: return error
call ext2_unlink() /* EXT2 method */

} /* end of inner vfs unlink */
call nc_perm_fixup() /* code we added */

} /* end of nc unlink */
} /* end of outer vfs unlink */

} /* end of sys unlink */

The VFS operation (e.g., vfs unlink) checks
the permission using the nc permission func-
tion. If the permission check succeeds, the corre-
sponding NCryptfs-specific operation is called (e.g.,
nc unlink). NCryptfs locates the lower-level object
and again calls the VFS operation. The VFS operation
checks permissions for the lower-level inode before call-
ing the lower-level operation. This control flow means
that we can not actually intercept the lower-level per-
mission call. Instead, we change current->fsuid
to the owner of the lower-level object before the op-
eration is performed and restore it afterward, which is
done in nc perm preop and nc perm fixup, re-
spectively. We change only the permissions of the cur-
rent task, and the process can not perform any additional
operations until we restore the current->fsuid and

8



return from the NCryptfs function. This ensures that
only one lower file system operation can be performed
between nc perm preop and nc perm fixup.

Linux 2.6 will have Linux Security Modules (LSMs)
that allow the interception of many security operations
[29]. Unfortunately, the LSM framework is not suf-
ficient to bypass lower-level permissions either. Their
VFS calls the file-system–specific permission operation
first. The LSM permissions operation is called only if
the file-system–specific operation succeeds. The LSM
operation can allow or deny access only to objects that
the file system has already permitted. A better solution
is to consult the file-system–specific permission opera-
tion. This result should be passed to the LSM module
which can make the final decision, possibly based on the
file-system–specific result.

Cryptography To ensure data confidentiality,
NCryptfs uses strong cryptography algorithms (e.g.,
Blowfish or AES in CFB mode). File data and file
names are handled in two different ways.

Data is encrypted one page at a time, using an initial-
ization vector (IV) specified along with the encryption
key XORed with the inode number and page number.
For security, ideally the entire file would be encrypted
at once, but then random access would be prohibitively
expensive; to access the nth byte of data, n bytes would
need to be decrypted, and any write would require re-
encryption of the entire file. For optimal performance,
each byte would be encrypted individually, but without
data interdependence, encryption becomes significantly
less secure [24].

File names are encrypted with the IV XORed with the
inode number of the directory, but the output may con-
tain characters that are not valid UNIX pathnames (i.e.,
/ and NULL). To rectify this problem, the result is base-
64 encoded before being passed to the lower-level file
system. This reduces the maximum path length by 25%.
A checksum is stored at the beginning of the encrypted
file name for two reasons. First, if a file name is not
encrypted with the correct key, then this checksum will
prevent it from appearing in NCryptfs. Second, since
CFB mode is used, if two files have a common prefix,
then they will have a common encrypted prefix. Since it
is unlikely that these two files will have the same check-
sum, prefixing their names with the checksum will pre-
vent them from having the same prefix in the ciphertext.
Finally, the directory entries “.” and “..” are not en-
crypted to preserve the directory structure on the lower-
level file system.

5 Evaluation

We developed a prototype of NCryptfs in Linux 2.4.18.
We compare it with CFS, TCFS, and BestCrypt. We

chose these three different systems because they repre-
sent a cross section of techniques:

• CFS is a localhost NFS server, and among the first
widely-used cryptographic file systems.

• TCFS is an NFS client that implements crypto-
graphic functionality including data integrity assur-
ance.

• BestCrypt is an encrypted loopback device driver.
BestCrypt is a commercial product.

• NCryptfs is our stackable file system.

We begin by describing the various features, security,
and convenience aspects of each system in Section 5.1.
We compare their performance in Section 5.2.

5.1 Feature Comparison

In this section we present a comparison of the different
functionality implemented by CFS, TCFS, BestCrypt,
Cryptfs (the predecessor to NCryptfs), and NCryptfs.
We identified the following metrics, which we summa-
rized in Table 1:

1. No keys stored on disk: If keys are stored per-
sistently, then encryption adds little security. All
of the systems we compared, except TCFS, do not
store keys on disk. TCFS stores each user’s key in a
database encrypted using the user’s login password.
Login passwords are restricted to eight characters,
must contain only printable characters, and are of-
ten used and thus may be inadvertently exposed in
cleartext. If separate passwords were used, then
this would not be a weakness in TCFS.

2. Keys protected from swap devices: If memory
becomes scarce, memory that could contain keys
may be swapped. NCryptfs prevents this by pin-
ning keys in physical memory, but cleartext pro-
cess data can still be written to swap. An encrypted
swap partition can prevent all sensitive data (and
non-sensitive data) from being written to persistent
media in the clear [20]. BestCrypt can encrypt an
entire swap device to prevent data from leaking.

3. Reveals no directory structure information:
CFS, TCFS, and NCryptfs reveal the number of
files and their structure as well as inode meta-data
information. BestCrypt uses a single file for an en-
tire encrypted file system so it does not reveal this
information.

4. Multiple Concurrent Users: CFS and NCryptfs
allow users to create their own personal attach-
ments. NCryptfs additionally allows multiple users
to use a single attachment, with distinct permis-
sions. TCFS allows multiple users to use a common
name space with different keys. BestCrypt allows
different users to use the same container with dif-
ferent passwords, but with the same permissions.

9



Feature CFS TCFS BestCrypt Cryptfs NCryptfs
1 No keys stored on disk ✔ a ✔ ✔ ✔

2 Keys protected from swap devices ✔ b ✔

3 Reveals no directory structure ✔

4 Multiple concurrent users ✔c ✔ ✔ ✔

5 Users do not need root intervention ✔ ✔

6 Multiple ciphers ✔ ✔ ✔ ✔

7 Automatic cipher loading ✔ ✔

8 Separate permissions per user ✔

9 Group support – UNIX GID ✔ ✔

10 Group support – ad-hoc ✔

11 Challenge-response authentication ✔

12 Data integrity assurance ✔

13 Per-file encryption flag ✔

14 Threshold secret sharing ✔

15 Key timeouts ✔ ✔

16 User-space timeout callback ✔

17 Process sleep/wakeup on key timeout ✔

18 Implementation technique NFS server NFS client loop device stackable stackable
19 No. of systems available any UNIX 3d 2 3 1e

20 Additional Blowfish LOC (Lines Of 33 109 99 0 76
Code, excludes cipher implementation)

21 Total core LOC 5258 14731 3526 4943 6537

Table 1: Feature comparison. A check mark indicates that the feature is supported, otherwise it is not.
aTCFS stores on disk keys encrypted with login passwords.
bBestCrypt can encrypt the entire swap device.
cCFS supports multiple users, but is single threaded.
dTCFS provides cipher modules and data integrity assurance only on Linux.
eNCryptfs is based on the FiST templates, which are available on three systems.

5. Users do not need root intervention: After an ini-
tial setup, users do not need root intervention to cre-
ate new sets of encrypted data in CFS or NCryptfs.
In TCFS, the system administrator must run tcf-
sadduser for each user who needs TCFS access.
In BestCrypt and Cryptfs, root must allow each en-
crypted directory to be mounted.

6. Multiple Ciphers: CFS, TCFS, BestCrypt, and
NCryptfs support this.

7. Automatic cipher loading: TCFS and NCryptfs
support this feature. In CFS, all ciphers are stat-
ically compiled into cfsd. BestCrypt loads all
available ciphers, whether they are used or not.

8. Separate permissions per user: When using
groups, NCryptfs allows each member to have
individually-defined permissions (e.g., read, write,
or detach). Other systems treat all users the same
as each other.

9. Group support – UNIX GID: TCFS and NCryptfs
support UNIX groups.

10. Group support – ad-hoc: Only supported in
NCryptfs.

11. Challenge-response authentication: Only sup-
ported in NCryptfs.

12. Data integrity assurance: TCFS detects modifica-
tions to the ciphertext. If data is modified on the
underlying file system, then CFS, NCryptfs, and
BestCrypt do not detect this.

13. Per-file encryption flag: TCFS allows users to
specify whether data is encrypted on a per-file ba-
sis. This may confuse users, since not all files
within TCFS are be encrypted.

14. Threshold secret sharing: TCFS allows a group
key to be split into n pieces. If m of these n mem-
bers of the group insert their key into TCFS, then
the full key can be reconstructed.

15. Key timeouts: CFS can automatically detach an
attach after a certain period of time. NCryptfs can
time out keys, active sessions, and authorizations.

16. User-space timeout callback: NCryptfs can op-
tionally execute a user-space program on timeouts.

17. Process sleep/wakeup on key timeout: NCryptfs
has four types of possible behavior on timeouts: all
operations fail, new files operations fail, all opera-
tions put the calling process to sleep, or operations
on new files put the calling process to sleep.

18. Implementation technique: CFS is a user-space
localhost NFS server that works with standard NFS

10



clients. Running in user-space decreases perfor-
mance, but increases portability. TCFS is a kernel-
space NFS client that works with any NFS server.
BestCrypt is a kernel loopback device driver. This
means that it has lower overhead than other sys-
tems. Cryptfs and NCryptfs are stackable file sys-
tems that run in kernel space. Since stackable file
systems run in kernel space, they have better perfor-
mance than user-space file systems, and are easier
to develop than disk or network-based file systems.

19. Number of systems available: CFS can run on
any UNIX system. TCFS runs on Linux, Open-
BSD, and NetBSD, but is only feature complete
on Linux. BestCrypt runs on Linux and Windows.
Cryptfs runs on Linux, FreeBSD, and Solaris. The
NCryptfs prototype runs on Linux, but is based on
the FiST templates, which run on Linux, FreeBSD,
and Solaris.

20. Additional Blowfish Lines Of Code (LOC): The
total number of lines of code needed to interface
with an existing cipher is a good metric for how
difficult it is to add additional ciphers. To inter-
face with Blowfish, CFS, TCFS, BestCrypt, and
NCryptfs use small wrappers. Cryptfs hard-codes
the calls to Blowfish.

21. Total core LOC: The number of LOC in the file
system is a good measure of maintainability, com-
plexity, and the amount of initial effort to write the
system. CFS, Cryptfs, and NCryptfs have roughly
the same number of LOC. TCFS re-implements an
NFS client and is more than twice the size of any
other system. BestCrypt has the smallest imple-
mentation, which is to be expected because it is a
loopback device driver, not a file system.

NCryptfs supports a rich feature set that allows system
administrators and users to tailor it to their site-specific
security, performance, and convenience needs.

5.2 Performance Comparison
We compared the performance of CFS, TCFS, Best-
Crypt, and NCryptfs. We ran all benchmarks on a
1.7GHz Pentium 4 machine with 128MB of RAM. All
experiments were located on a 30GB 7200 RPM West-
ern Digital Caviar IDE disk formatted with EXT2. The
machine was installed with Red Hat Linux 7.3. For CFS,
BestCrypt, and NCryptfs, we ran a vanilla 2.4.18 kernel.
For TCFS, we used the most recent supported kernel,
2.2.17, with the TCFS patch applied. To ensure cold
cache, we unmounted the file systems where the exper-
iments took place between each test. All other executa-
bles and libraries (e.g., compilers) were located on the
root file system. We ran all tests several times, and our
computed standard deviations were less than 5%. We
chose Blowfish with a 128 bit key for our cipher, since

it is widely available and performs well in software. We
recorded elapsed, system, and user times for all tests.

5.2.1 Configurations
We used the following ten configurations:

• EXT2-24 A vanilla EXT2 running on the 2.4.18
kernel. It serves as a baseline for performance of
other configurations.

• EXT2-22 A vanilla EXT2 running on the 2.2.17-
tcfs kernel. It serves as a baseline for TCFS perfor-
mance.

• CFS-NULL CFS using the identity cipher (this
copies data with no modification). This demon-
strates the overhead of the file system without cryp-
tographic operations.

• TCFS-NULL TCFS using the identity cipher.
• BC-NULL BestCrypt using the identity cipher.
• NC-NULL NCryptfs using the identity cipher
• CFS-BF CFS using the Blowfish cipher. This

demonstrates the overhead of CFS including cryp-
tography.

• TCFS-BF TCFS using the Blowfish cipher. TCFS
is designed to generate several keys per file. How-
ever, due to a memory leak we discovered in TCFS,
we were forced to use a single key for all encryp-
tion operations. This means that the overhead intro-
duced by TCFS will be underrepresented because
initializing a Blowfish key is an expensive oper-
ation, which uses 4168 bytes of memory and re-
quires 521 iterations of Blowfish encryption [25].

• BC-BF BestCrypt using the Blowfish cipher.
• NC-BF NCryptfs using the Blowfish cipher.

5.2.2 Workloads
We tested our configurations using two workloads: one
CPU-intensive and another that is I/O intensive.

The first workload was a build of Am-utils [17]. We
used Am-utils 6.0.7: it contains over 50,000 lines of C
code in 425 files. The build process begins by running
several hundred small configuration tests to detect sys-
tem features. It then builds a shared library, ten bina-
ries, four scripts, and documentation: a total of 265 addi-
tional files. The Am-utils compile contains a fair mix of
file system operations; it is CPU intensive and performs
many meta-data operations during the configure pro-
cess. This workload demonstrates what type of perfor-
mance impact a user may see while using NCryptfs.

The second workload we chose was Postmark [11].
We configured Postmark to create 20,000 files and per-
form 100,000 transactions in ten directories. This bench-
mark uses little CPU, but is I/O intensive. Postmark fo-
cuses on stressing the file system by performing a se-
ries of file system operations such as directory lookups,
creations, and deletions on small files. A large number

11



of small files is common in electronic mail and news
servers where multiple users are randomly modifying
small files. We chose the above parameters for the num-
ber of files and transactions as they are typically used
and recommended for file system benchmarks [11, 27].

5.2.3 Am-utils Results

The elapsed time overhead for Am-utils is shown in Fig-
ure 2 and the first two rows of Table 2. This shows
that CFS and TCFS performance suffer from using the
network stack. TCFS performance additionally suffers
from data integrity checks. BestCrypt uses a kernel
thread to perform all encryptions, so cryptographic op-
erations may continue after the termination of the instru-
mented process. This helps to improve perceived perfor-
mance, which we further explore later in Section 5.2.4.
NCryptfs only minimally impacts performance.

���
���
���
���

��

����

	�	
�
������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

������

�� ������ ������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

 � � 
 � � 
 � � 
 � � 
 � � 
 � � 
 � � 
 � � 
 � � 
 � � 
 � � 
 � � 
 � � 
 � � 
 � � 
 � � 

!�!�!�!
!�!�!�!
!�!�!�!
!�!�!�!
!�!�!�!
!�!�!�!
!�!�!�!
!�!�!�!
!�!�!�!
!�!�!�!
!�!�!�!
!�!�!�!
!�!�!�!
!�!�!�!
!�!�!�!
!�!�!�!

"�"�"
"�"�"
"�"�"
"�"�"
"�"�"
"�"�"
"�"�"
"�"�"
"�"�"
"�"�"
"�"�"
"�"�"
"�"�"
"�"�"
"�"�"
"�"�"

#�#$�$

%&

'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'

(�(�(
(�(�(
(�(�(
(�(�(
(�(�(
(�(�(
(�(�(
(�(�(
(�(�(
(�(�(
(�(�(
(�(�(
(�(�(
(�(�(
(�(�(
(�(�(
(�(�(

 0

 50

 100

 150

 200

 250

CFS TCFS BC NC
 

Blowfish
NULL

EXT2−2.4
 EXT2−2.2

E
la

ps
ed

 T
im

e 
(s

ec
on

ds
)

Figure 2: Am-utils build elapsed time. Each bar represents an
EXT2 configuration, a NULL configuration, and an encrypting
configuration.

Configuration CFS TCFS BC NC

Elapsed Time – NULL 5.7 16.9 1.5 2.2
Elapsed Time – BF 8.4 28.4 1.7 4.5
System Time – NULL 25.5 50.3 0.7 4.6
System Time – BF 39.5 93.7 1.8 17.0

Table 2: Am-utils percentage overheads over EXT2

The system time used by a process demonstrates how
much CPU was used by the additional file system over-
head and encryption. These results can be seen in Figure
3 and the last two rows of Table 2. CFS has a user-space
process, cfsd, which performs all encryption. Best-
Crypt has a kernel-space thread that performs encryp-
tion. We added the time used by these processes into the
system time to represent the total time used on behalf of
the process. TCFS makes use of knfsd, but as this can
be on a remote server we do not include its overhead.
These results show that the overhead for CFS and TCFS
is quite large compared to BestCrypt and NCryptfs. This

)�)�)*�*�*

+�+,�,-�-.�.

/�/01�12

3456

7�7�7�7
7�7�7�7
7�7�7�7
7�7�7�7
7�7�7�7
7�7�7�7
7�7�7�7
7�7�7�7
7�7�7�7
7�7�7�7
7�7�7�7
7�7�7�7
7�7�7�7
7�7�7�7
7�7�7�7

8�8�8�8
8�8�8�8
8�8�8�8
8�8�8�8
8�8�8�8
8�8�8�8
8�8�8�8
8�8�8�8
8�8�8�8
8�8�8�8
8�8�8�8
8�8�8�8
8�8�8�8
8�8�8�8
8�8�8�8

9�9�9
9�9�9
9�9�9
9�9�9
9�9�9
9�9�9
9�9�9
9�9�9
9�9�9
9�9�9
9�9�9
9�9�9
9�9�9
9�9�9
9�9�9
9�9�9
9�9�9
9�9�9
9�9�9
9�9�9
9�9�9

:�:�:
:�:�:
:�:�:
:�:�:
:�:�:
:�:�:
:�:�:
:�:�:
:�:�:
:�:�:
:�:�:
:�:�:
:�:�:
:�:�:
:�:�:
:�:�:
:�:�:
:�:�:
:�:�:
:�:�:
:�:�:

;�;�;
;�;�;
;�;�;
;�;�;
;�;�;
;�;�;
;�;�;
;�;�;
;�;�;
;�;�;
;�;�;

<�<�<
<�<�<
<�<�<
<�<�<
<�<�<
<�<�<
<�<�<
<�<�<
<�<�<
<�<�<
<�<�<

=�=�=�=
=�=�=�=
=�=�=�=
=�=�=�=
=�=�=�=
=�=�=�=
=�=�=�=
=�=�=�=
=�=�=�=
=�=�=�=
=�=�=�=
=�=�=�=
=�=�=�=

>�>�>�>
>�>�>�>
>�>�>�>
>�>�>�>
>�>�>�>
>�>�>�>
>�>�>�>
>�>�>�>
>�>�>�>
>�>�>�>
>�>�>�>
>�>�>�>
>�>�>�>

?�?�?@�@�@

A�AB�BC�CD�D E�EFG�GH IJKL

M�M�M�M
M�M�M�M
M�M�M�M
M�M�M�M
M�M�M�M
M�M�M�M
M�M�M�M
M�M�M�M
M�M�M�M
M�M�M�M

N�N�N�N
N�N�N�N
N�N�N�N
N�N�N�N
N�N�N�N
N�N�N�N
N�N�N�N
N�N�N�N
N�N�N�N
N�N�N�N

O�O�O
O�O�O
O�O�O
O�O�O
O�O�O
O�O�O
O�O�O
O�O�O
O�O�O
O�O�O

P�P�P
P�P�P
P�P�P
P�P�P
P�P�P
P�P�P
P�P�P
P�P�P
P�P�P
P�P�P

Q�Q�Q�Q
Q�Q�Q�Q
Q�Q�Q�Q
Q�Q�Q�Q
Q�Q�Q�Q
Q�Q�Q�Q
Q�Q�Q�Q
Q�Q�Q�Q
Q�Q�Q�Q
Q�Q�Q�Q

R�R�R�R
R�R�R�R
R�R�R�R
R�R�R�R
R�R�R�R
R�R�R�R
R�R�R�R
R�R�R�R
R�R�R�R
R�R�R�R

S�S�ST�T�T

U�U�U
U�U�U
U�U�U
U�U�U
U�U�U
U�U�U
U�U�U
U�U�U
U�U�U
U�U�U
U�U�U

V�V�V
V�V�V
V�V�V
V�V�V
V�V�V
V�V�V
V�V�V
V�V�V
V�V�V
V�V�V
V�V�V

 0

 10

 20

 30

 40

 50

 60

 70

CFS TCFS BC NC

Sy
st

em
 ti

m
e 

(S
ec

on
ds

)

 

Blowfish
NULL

EXT2−2.4
 EXT2−2.2

Figure 3: Am-utils build system time. Each bar represents an
EXT2 configuration, a NULL configuration, and an encrypting
configuration.

was expected because of the added network overhead.
BestCrypt has a simpler interface and hence a smaller
overhead than NCryptfs.

The user times for all tests were within 2% of the
EXT2 configuration. This is expected as the encryption
happens outside of the process in all of these systems.

5.2.4 Postmark Results

The elapsed time overheads for Postmark are shown in
Figure 4 and the first two rows of Table 3. This shows
that for I/O-intensive operations, all of the cryptographic
file systems we tested have a non-negligible impact on
system performance. Increasing security often affects
performance, so these results were consistent with our
expectations. The results for CFS and TCFS show a
larger performance overhead than for Am-utils, but the
overhead of user-space data copies and the NFS proto-
col explain this. BestCrypt performed significantly bet-
ter in the Am-utils test than in the Postmark test; this
is because BestCrypt uses a single kernel thread for en-
cryption that often disables interrupts. The I/O inten-
sive nature of the Postmark test exposes this behavior.
Other elapsed times did not significantly increase when
encryption was used.

Configuration CFS TCFS BC NC

Elapsed Time – NULL 119 106 101 56
Elapsed Time – BF 123 106 127 59
System Time – NULL 553 50 95 51
System Time – BF 821 118 280 156

Table 3: Postmark percentage overheads over EXT2

Figure 5 and the last two rows of Table 3 shows sys-
tem time in the same manner as described in Section
5.2.3. CFS has the worst performance degradation over
EXT2, caused by the excessive number of data copies
from user-space to kernel-space and within the network

12



������

��������

������	�	
�


������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

����������

������ ������ ������

�����
�����
�����
�����
�����
�����
�����
�����

 � � 
 � � 
 � � 
 � � 
 � � 
 � � 
 � � 
 � � 

!�!�!
!�!�!
!�!�!
!�!�!
!�!�!
!�!�!
!�!�!
!�!�!

"�"�"
"�"�"
"�"�"
"�"�"
"�"�"
"�"�"
"�"�"
"�"�"

#�#$%�%&

'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'
'�'�'

(�(�(
(�(�(
(�(�(
(�(�(
(�(�(
(�(�(
(�(�(
(�(�(
(�(�(
(�(�(
(�(�(
(�(�(

)�)�)*�*�*

+�+�+,�,�,

-�-�-
-�-�-
-�-�-
-�-�-
-�-�-
-�-�-
-�-�-
-�-�-

.�.�.
.�.�.
.�.�.
.�.�.
.�.�.
.�.�.
.�.�.
.�.�.

 0

 500

 1000

 1500

 2000

 2500

 3000

CFS TCFS BC NC

E
la

ps
ed

 T
im

e 
(s

ec
on

ds
)

 

NULL
EXT2−2.4
EXT2−2.2

Blowfish

Figure 4: Postmark elapsed time. Each bar represents an
EXT2 configuration, a NULL configuration, and an encrypting
configuration.

/0

1�1�1�1
1�1�1�1
1�1�1�1
1�1�1�1
1�1�1�1
1�1�1�1
1�1�1�1
1�1�1�1
1�1�1�1
1�1�1�1
1�1�1�1
1�1�1�1
1�1�1�1
1�1�1�1
1�1�1�1
1�1�1�1
1�1�1�1
1�1�1�1
1�1�1�1
1�1�1�1
1�1�1�1

2�2�2
2�2�2
2�2�2
2�2�2
2�2�2
2�2�2
2�2�2
2�2�2
2�2�2
2�2�2
2�2�2
2�2�2
2�2�2
2�2�2
2�2�2
2�2�2
2�2�2
2�2�2
2�2�2
2�2�2
2�2�2

3�3�3
3�3�3
3�3�3
3�3�3
3�3�3
3�3�3
3�3�3
3�3�3
3�3�3
3�3�3
3�3�3
3�3�3
3�3�3
3�3�3

4�4�4
4�4�4
4�4�4
4�4�4
4�4�4
4�4�4
4�4�4
4�4�4
4�4�4
4�4�4
4�4�4
4�4�4
4�4�4
4�4�4

5�5�5
5�5�5
5�5�5
5�5�5
5�5�5
5�5�5
5�5�5
5�5�5
5�5�5

6�6�6
6�6�6
6�6�6
6�6�6
6�6�6
6�6�6
6�6�6
6�6�6
6�6�6

7�7�7�7
7�7�7�7
7�7�7�7
7�7�7�7
7�7�7�7
7�7�7�7

8�8�8
8�8�8
8�8�8
8�8�8
8�8�8
8�8�8

9�9:�:

;<=> ?�?@�@A�AB�B C�CDE�EF

G�G�G�G
G�G�G�G
G�G�G�G
G�G�G�G

H�H�H
H�H�H
H�H�H
H�H�H

I�I�I
I�I�I
I�I�I
I�I�I

J�J�J
J�J�J
J�J�J
J�J�J

K�K�K�K
K�K�K�K
K�K�K�K
K�K�K�K

L�L�L
L�L�L
L�L�L
L�L�L

MNOP

Q�Q�Q
Q�Q�Q
Q�Q�Q
Q�Q�Q
Q�Q�Q
Q�Q�Q
Q�Q�Q
Q�Q�Q

R�R�R
R�R�R
R�R�R
R�R�R
R�R�R
R�R�R
R�R�R
R�R�R

S�ST�T

U�U
U�U
V�V
V�V

 0

 50

 100

 150

 200

 250

 300

CFS TCFS BC NC

Sy
st

em
 T

im
e(

se
co

nd
s)

 

NULL
EXT2−2.4
EXT2−2.2

Blowfish

Figure 5: Postmark system time. Each bar represents an
EXT2 configuration, a NULL configuration, and an encrypt-
ing configuration.

stack. TCFS also suffers from data-copy overheads in
the network stack. BestCrypt and NCryptfs both have
smaller overheads than CFS and TCFS.

6 Conclusions
Our main contribution is in designing and building a
cryptographic file system that for the first time, to our
best knowledge, was developed with the express goal of
balancing all of these four conflicting aspects: security,
performance, convenience, and portability.

We achieved high security by including support for
many ciphers and authentication methods, addressing
vulnerabilities in OS caches and the task manager, sepa-
rate OS name spaces, separate encryption from authen-
tication keys, session-based and process-based encryp-
tion, reduced user need for superuser privileges, and key
timeouts that are transparent to processes.

We achieved high performance by designing
NCryptfs to run in the kernel. Our performance bench-
marks show a small 5% overhead for normal system

operation.
We achieved ease of use by allowing administrators

and users alike to tailor the levels of security, perfor-
mance, and convenience to their needs: by providing
encryption and authentication that is transparent to users
and processes; by allowing users to quickly attach and
detach from NCryptfs; by supporting ad-hoc encryption
groups for shared yet secure collaboration; and by auto-
matic loading of ciphers and authentication modules.

Lastly, we achieved high portability by building
NCryptfs as a stackable file system. This allows users
to use any file system as the backing store for encrypted
data, and helps to reduce the development and porting
effort of NCryptfs to other systems. Although our first
prototype works in Linux alone, we developed NCryptfs
using the FiST stackable templates system, which also
supports Solaris and FreeBSD [34].

6.1 Future Work
In the immediate future, we plan to integrate a lockbox
mode and cryptographic checksumming into NCryptfs.
One possible method to achieve integrity assurance is to
store block-by-block checksums of the file in a separate
checksum file. This technique is similar to using index
files in size-changing file systems [31]. We will also in-
vestigate the best way to store a unique IV along with
each file, so that NCryptfs does not rely on the inode
number of files.

Currently, a stackable file system can change lower-
level file system data independently from upper-level
data. Data on multiple levels must be associated within
OS caches to present a coherent system view. We plan
to modify the VFS caches to associate each upper level
cache object (dentry, inode, and page) with its lower
level object [7].

Presently, NCryptfs exposes the owner and other in-
ode meta-data of a file. We cannot remove all of this
structure without making incompatible changes to the
lower-level file system. We can perturb some data, such
as adding padding to the file’s name or storing owner-
ship information outside of the lower-level inode. These
operations may complicate backup and restore. We also
expect this to decrease system performance.

7 Acknowledgments
We wish to thank Jeffrey Osborn, Amit Purohit, and Ki-
ran Reddy for reviewing early drafts of the paper and
assisting with benchmarking. We thank Tzi-cker Chi-
ueh, Fred B. Schneider, Jukka T. Virtanen, our shep-
herd Bennet Yee, and the anonymous USENIX review-
ers for the valuable feedback they provided. This work
was partially made possible by an NSF CAREER award
EIA-0133589, and HP/Intel gifts numbers 87128 and
88415.1.

13



References
[1] M. Blaze. A cryptographic file system for Unix. In Pro-

ceedings of the first ACM Conference on Computer and
Communications Security, 1993.

[2] G. Cattaneo, L. Catuogno, A. Del Sorbo, and P. Per-
siano. The Design and Implementation of a Transpar-
ent Cryptographic Filesystem for UNIX. In Proceedings
of the Annual USENIX Technical Conference, FREENIX
Track, pages 245–252, June 2001.

[3] M. Corner and B. D. Noble. Zero-interaction authenti-
cation. In The Eigth ACM Conference on Mobile Com-
puting and Networking, September 2002.

[4] R. Dowdeswell and J. Ioannidis. The CryptoGraphic
Disk Driver. In Proceedings of the Annual USENIX
Technical Conference, FREENIX Track, June 2003.

[5] A. Grüenbacher. Extended attributes and access control
lists. http://acl.bestbits.at, 2002.

[6] P. C. Gutmann. Secure filesystem (sfs) for dos/windows.
www.cs.auckland.ac.nz/˜pgut001/sfs/index.html, 1994.

[7] J. Heidemann and G. Popek. Performance of cache
coherence in stackable filing. In Proceedings of Fif-
teenth ACM Symposium on Operating Systems Princi-
ples. ACM SIGOPS, 1995.

[8] J. Hennessey. The Future of Systems Research. IEEE
Computer, 32(8):27–32, 1999.

[9] IEEE/ANSI. Information Technology–Portable Operat-
ing System Interface (POSIX)–Part 1: System Applica-
tion Program Interface (API)—Amendment: Protection,
Audit, and Control Interfaces [C Language]. Technical
Report STD-1003.1e draft standard 17, ISO/IEC, Octo-
ber 1997. Draft was withdrawn in 1997.

[10] Jetico, Inc. BestCrypt software home page. www.jetico.
com, 2002.

[11] J. Katcher. PostMark: a New Filesystem Benchmark.
Technical Report TR3022, Network Appliance. www.
netapp.com/tech˙library/3022.html.

[12] H. Krawczyk, M. Bellare, and R. Canetti. HMAC:
Keyed-hashing for message authentication. Technical
Report RFC 2104, Internet Activities Board, February
1997.

[13] A. D. McDonald and M. G. Kuhn. StegFS: A Stegano-
graphic File System for Linux. In Information Hiding,
pages 462–477, 1999.

[14] Microsoft Corporation. Encrypting File Sys-
tem for Windows 2000. Technical report, July
1999. www.microsoft.com/windows2000/techinfo/
howitworks/security/encrypt.asp.

[15] R. Nagar. Windows NT File System Internals: A devel-
oper’s Guide, pages 615–67. O’Reilly, September 1997.
Section: Filter Drivers.

[16] National Association of Insurance Commissioners.
Graham-Leach-Bliley Act, 1999. www.naic.org/GLBA.

[17] J. S. Pendry, N. Williams, and E. Zadok. Am-utils User
Manual, 6.0.4 edition, February 2000. www.am-utils.
org.

[18] R. Pike. Systems Software Research is Irrelevant. Bell
Labs, February 2000. www.cs.bell-labs.com/who/rob/
utah2000.pdf.

[19] R. Power. Computer Crime and Security Survey. Com-
puter Security Institute, VIII(1):1–24, 2002. www.gocsi.
com/press/20020407.html.

[20] N. Provos. Encrypting virtual memory. In Proceedings
of the 9th USENIX Security Symposium, August 2000.

[21] E. Riedel, M. Kallahalla, and R. Swaminathan. A Frame-
work for Evaluating Storage System Security. In Pro-
ceedings of the First USENIX Conference on File and
Storage Technologies (FAST 2002), pages 15–30, Mon-
terey, CA, January 2002.

[22] R. L. Rivest. The MD5 Message-Digest Algorithm.
Technical Report RFC 1321, Internet Activities Board,
April 1992.

[23] RSA Laboratories. Password-Based Cryptography Stan-
dard. Technical Report PKCS #5, RSA Data Security,
March 1999.

[24] J. H. Saltzer. Hazards of file encryption. Technical re-
port, 1981. http://web.mit.edu/afs/athena.mit.edu/user/
other/a/Saltzer/www/publications/csrrfc208.html.

[25] B. Schneier. Applied Cryptography. John Wiley & Sons,
2 edition, October 1995.

[26] U.S. Dept. of Health & Human Services. The Health
Insurance Portability and Accountability Act (HIPAA),
1996. www.cms.gov/hipaa.

[27] VERITAS Software. Veritas file server edition perfor-
mance brief: A postmark 1.11 benchmark comparison.
Technical report. http://eval.veritas.com/webfiles/docs/
fsedition-postmark.pdf.

[28] A. Whitten and J. D. Tygar. Why Johnny can’t encrypt:
A usability evaluation of PGP 5.0. In Proceedings of the
Eigth Usenix Security Symposium, August 1999.

[29] C. Wright, C. Cowan, J. Morris, S. Smalley, and
G. Kroah Hartman. Linux Security Modules: General
Security Support for the Linux Kernel. In Proceedings
of the 11th USENIX Security Symposium, August 2002.

[30] E. Zadok. Stackable file systems as a security tool. Tech-
nical Report CUCS-036-99, Computer Science Depart-
ment, Columbia University, December 1999.

[31] E. Zadok, J. M. Anderson, I. Bădulescu, and J. Nieh. Fast
Indexing: Support for size-changing algorithms in stack-
able file systems. In Proceedings of the Annual USENIX
Technical Conference, pages 289–304, June 2001.

[32] E. Zadok, I. Bădulescu, and A. Shender. Cryptfs: A
stackable vnode level encryption file system. Technical
Report CUCS-021-98, Computer Science Department,
Columbia University, June 1998.

[33] E. Zadok, I. Bădulescu, and A. Shender. Extending file
systems using stackable templates. In Proceedings of
the Annual USENIX Technical Conference, pages 57–70,
June 1999.

[34] E. Zadok and J. Nieh. FiST: A Language for Stackable
File Systems. In Proceedings of the Annual USENIX
Technical Conference, pages 55–70, June 2000.

14


