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Abstract 

We propose a multi-dimensional language called 

nD-SQL with the following features: (i) nD-SQL 

supports queries that interoperate amongst 

multiple relational sources with heterogeneous 

schemas, including RDBMS and relational data 

marts, overcoming the mismatch between data 

and schema; (ii) it supports complex forms of 

restructuring that permit the visualization of n- 

dimensional data using the three physical dimen- 

sions of the relational model, viz., row, column, 

and relation; (iii) it captures sophisticated aggre- 

gations involving multiple granularities, to an ar- 

bitrary degree of resolution compared to CUBE, 

ROLLUP, and DRILLDOWN. We propose a formal 

model for a federation of relational sources and 

illustrate nD-SQL against it. We propose an ex- 

tension to relational algebra, called restructuring 

relational algebra (RRA), capable of restructuring 

and aggregation. We propose an architecture for 

the implementation of an nD-SqL server, based on 

translating nD-SC/L queries into equivalent RRA 

expressions, which are then optimized. We are 

currently implementing an nD-SQL server on the 

PC platform based on these ideas. 

1 Introduction 

Interoperation among multiple heterogeneous databases 

continues to be an important practical problem. It en- 

tails resolving incompatibilities and conflicts between com- 

ponent database systems on a number of different fronts, 
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including platforms, database schemas, and transaction 

management systems, to name a few. The importance 

of developing query languages capable of “cross-querying” 

the component databases, overcoming the discrepancies 

among their schema and data semantics has been recog- 

nized (see [CL93, GLRS93, KLK91, Lit89, SSR94, LSS96] 

for a few proposals for such languages). It has been real- 

ized from these earlier works that even in the context of a 

federation consisting of relational databases, the conflicts 

among the component database schemas raise serious chal- 

lenges for interoperability. For instance, an entry such as 

“ibm” might appear as a domain value in one component 

database, as an attribute in another, and as a relation name 

in the third (see Figure 1). It is known that conventional 

languages like SQL or variants cannot be used to overcome 

this conflict (see [LSS96]), without a host language. 

In this paper, we view interoperability in a slightly larger 

context where the objective is not only to run tradi- 

tional SqL queries on the data in a federation, but also 

queries involving multiple granularity aggregation required 

for OLAP. Typically, such queries involve operators like 

CUBE, ROLLUP, and DRILLDOWN. More precisely, the prob- 

lcm studied in this paper is: how to develop a query Jan- 

guage compatible with SqL, that is capable of(i) expressing 

queries on a federation of relational sources resolving the 

conflicts between the component schemas, and (ii) express- 

ing OLAP queries involving multiple granularity aggrega- 

tions? 

The motivation for the above problem is as follows. First, 

consider a complex organization whose data is distributed 

among its functional or departmental units. Decision 

support requires: (i) interoperability among component 

databases, and (ii) eventually the creation of a data ware- 

house storing integrated summaries of the operational 

data, providing efficient support for OLAP queries.’ Once 

a data warehouse is created, the discrepancies among com- 

ponent databases are resolved and the data would be inte- 

grated. Why then need yet another query language? How- 

ever, as discussed in [CD97], building a data warehouse is 

‘Actually, a data warehouse should ideally support both 
OLAP and mining as argued by Chaudhuri and Dayal [CD97], 
but in this paper, we do not consider mining. 
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ibm 10127197 close 62.56 

. . . 

ms ;‘i(O1(97 1 ;Idw 1 44.60 

. . . . . . . . . I . . . 

(a nyse: :prices 

’ Ticker Date low high . . . 

ibm 10127197 62.00 64.00 . . . 

. . . . . . 

ms 11101197 46.00 48.72 ::: 

(b)tse: :quotas 

Date open, ibm open, ms open, . . . . . . close, ibm close, ms close, . . . 

10127197 59.89 45.00 . . . . . . 62.05 46.17 . . . 

. . . . . . . . . . . . . . . . . . . . . . . . 

11101)97 60.89 43.98 . . . . . . 62.05 46.17 

(c) bse: :prices 

Date 

10127197 58021 

. . . 

11101197 

l.y 2 11; -1 ... ... 

55.75 

mse : : ibm mse: :ms . . . 

(d) relations in mse 

Figure 1: A federation of relational databases with heterogeneous schemes, containing stock market data. Only 

relevant relations from each database are shown. The notation db: :rel means db is a database containing 

relation rel. 

a long, complex, and expensive process, often taking up to 

several years to complete. Many organizations adopt an in- 

termediate solution, whereby they create the so-called data 

marts, which are essentially miniature data warehouses in- 

tegrating small subsets of the operational databases. Thus, 

in the evolutionary lifecycle of a data warehouse, one has 

to cope with interoperating among operational databases, 

among data marts, and among both. Given the ultimate 

need to perform OLAP style computations, it would be 

desirable to have one query language that can express not 

only conventional queries across component databases (or 

data marts), but also OLAP queries. 

Next, consider interoperation of a general federation of 

databases, not necessarily belonging to any one organiza- 

tion. The participants of the federation may not permit 

the data in their databases to be integrated into a cen- 

tral warehouse. One approach that has been followed in 

the past to resolve schematic discrepancies is to convert 

the data in the databases to conform to a common canon- 

ical schema, by defining mappings (e.g., see [ASD+Sl]). 

Unfortunately, such mappings tend to be very low level 

and converting data in this manner is labor intensive, ne- 

cessitating lengthy and costly human interventions. This 

once again calls for a high level query language capable 

of resolving such conflicts automatically, assuming addi- 

tional information on the component schemas is added to 

the federation in a non-intrusive manner. In this context, 

even though traditionally interoperability has been posed 

as a problem without the requirement to support OLAP 

queries, we anticipate there are many applications which 

can benefit from such a feature. For example, in a stock 

market federation, an investment broker or analyst might 

wish to compute multiple granularity summaries on the 

data pooled from a number of exchanges, in order to study 

the performance of stocks and funds. 

In this paper, we propose a formal model for a federation of 

relational databases with possibly heterogeneous schemas 

(Section 2). We also propose an n-dimensional query lan- 

guage called nD-SCJL, capable of: (a) resolving schematic 

discrepancies among a collection of relational databases 

or data marts with heterogeneous schemas, and (b) sup- 

porting a whole range of multiple granularity aggregation 

queries like CUBE, ROLLUP, and DRILLDOWN, but, to an ar- 

bitrary, user controlled, level of resolution. In addition, 

nD-SqL can express queries that restructure data conform- 

ing to any particular dimensional representation to any 

other (Section 3). We propose an extension to relational 

algebra capable of restructuring, called restructuring rela- 

tional algebra (RRA). We use RRA as a vehicle for efficient 

processing of nD-SQL queries, and propose an architecture 

for this purpose. We develop query optimization strategies 

based on properties of RRA operators (Section 4). We also 

discuss the implementation of a system based on our ideas 

(Section 5). We finally compare nD-SQL and its approach 

with related work (Section 6). 

Before concluding this section, we briefly illustrate the 

power of nD-SQL. In nD-SQL, it is straightforward to re- 

structure the data in any of the databases in Figure 1, to 

the schema of any other database, which is impossible in 

most known query languages, without external calls to pro- 

cedures in a host language. For lack of space, we suppress 

the proofs of all our results and finer details of our query 

processing algorithms in this paper, and refer the reader 

to the full version [GL98]. We also point the reader to 

the URL http://www.cs.concordia.ca/-special/bibdb/nd- 

sql for more information about nD-SQL. 
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2 The Model 
In this section, we propose a formal model for collec- 

tions of relational databases. The highlights of this model 

are: (i) It captures heterogeneous schemas of relational 

databases arising in practice, treating data and schema 

symmetrically; (ii) It gives a first class status to the three 

physical dimensions implicit in the traditional relational 

model ~ row, column, and relation; (iii) Using this, it gives 

a precise meaning to representations of n-dimensional data 

using three physical dimensions; (iv) it is straightforward 

to incorporate (relational) data marts with the federation 

model, and this is discussed at the end of the section. 

We begin with the notion of a scheme. The size of prac- 

tical database schemas, may be data dependent (e.g., the 

number of columns of tse and the number of relations in 

mse, in Figure l), unlike in the classical relational model. 

Our notion of a “federation scheme”, proposed next, makes 

it possible to elegantly view the scheme of a relation, a 

database, or a federation, as a fired entity independent of 

the contents in it, just as in the classical case. We as- 

sume pairwise disjoint, infinite, sets of names, A!, values, 

V, and id’s, 0. We use typewriter font for names (e.g., 

Measure) and roman for values (e.g., open), regardless of 

what positions they appear in-- data or relation/column 

label positions. Ids will always be clear from the context. 

The partial function dom : N ~2 V maps names in JV to 

their underlying domains of values. Names that only cor- 

respond to relations or databases do not have associated 

domains. 

Definition 2.1 (Federation Scheme) A federated 

name is a pair (N, X) where N E N is a name and X C N 
is a finite subset of names, such that N@X. In a federated 

name, the component N is referred to as the concept and 

the set X as the associated criteria set. A federated name 

(N, X) is simple (resp., complex) provided X = 0 (req., 

X # 0). We usually denote simple federated names (N, 0) 

just as N, following the classical convention. A federated 

attribute or relation name is any federated name. A feder- 

ated relation scheme is of the form R(C1,. . , C,), where 

R is a federated relation name and the C,s are all federated 

attribute names. A federated database scheme is a set of 

federated relation schemes, and a federation scheme is a 

set of named federated database schemes. 

The intuition behind the above definition is two- 

fold: (1) A complex attribute (resp., relation) name 

translates to a set of complex column (resp., re- 

lation) labels in an instance. For example, the 

complex attribute name (Price, {Measure, Ticker}) in 

the scheme might correspond in an instance to the 

:z?q IPrice 

FOR Measure = low AND Ticker = 

. ) Price FOR Measure = close AND Ticker = 

hp} of column labels. The federation scheme of the 

instance shown in Figure 1 is: Si = {nyse: :prices( 

Ticker, Date, Measure, Price), tse: :quotes(Ticker, 

Date, (Price, {Measure})), bse: :prices(Date, (Price, 

;p” 

easure, Ticker})), mse: : (prices, {Ticker})(Date, 

rice, {Measure}))}. Notice that in the instance shown 

in Figure 1, the somewhat cryptic labels like “open” take 

the place of the formal label “Price FOR Measure = open”. 

We will return to this point later. (2) The notion of a 

federated relation scheme formalizes the idea that certain 

attribute domains are arranged along each of the three di- 

mensions ~ relation, column, and row. Specifically, in an in- 

stance of a federated relation scheme (e.g., mse: : (prices, 

{Ticker})), domain values of relation criteria (Ticker) are 

placed along the relation dimension, domain values of cri- 

teria of complex columns (Measure) along the row dimen- 

sion, and domain values of simple columns (Date) along 

the column dimension. 

Definition 2.2 (Federation Instance) Let S = {di :: 

Rl(Cl!. . , Ck), . ,d, :: &(Di,. , D,)}, the d, not 

necessarily distinct, be a federation scheme. Then a fed- 

eration instance (instance for short) oj this scheme is a 

7-tuple Z = (V, rel, col, tup, cone, crit, val), defined as jol- 

lows. 

‘D = {dl, . , dm}, i.e. ‘D consists exactly of the dis- 

tinct database names mentioned in the scheme S. 

rel : D-2’ as a junction that maps each database 

name in V to a jinite set of relation id’s. Below, we 

will use R = U,,, ret(d) to denote the set of all rela- 

tion id’s in the instance. 

col: Ri2L3 as a function thaf maps each relation id 

to a finite set of column id’s, 

tup is a junction that maps each relation id r in R 

to a finite set of tuples tup(r) over the set of columns 

CO(T). 

cone : O-N is a function that maps each id to a 

name, called its underlying concept. 

crit : O+aN 1s a function that maps each id to a 

finite set of names, namely its underlying set of crite- 

ria. 

val : O x N-V is a partial function that maps an id 

and a name (viewed as (z possible criterion associated 

with the id) to a value. 

For example, an instance of the scheme S1 above is the 

federation shown in Figure 1, intuitively speaking. There 

are four database names- nyse, tse, bse, mse, each 

of them having their associated simple/complex relations. 

For instance, mse has the relations “ibm, ms, . ..I’. each 

having the same set of column labels-- “Date, low, high, 
1, . . . All these labels intuitively correspond to (relation 

and column) id’s in the formal definition. The concepts 

and criteria associated with these labels are typically not 

recorded in real-life federations. However, intuitively, we 

can understand that the concept associated with the label 

“low” is Price and that the only associated criterion is 

Measure. In the sequel, we shall refer to the formal notion 

of instances defined above as abstract instances to distin- 

guish them from the “real” (i.e. real-life) instances, defined 

shortly. For an abstract instance to be a legal instance of 

a federation scheme, certain consistency conditions should 

be met. 

Definition 2.3 (Legal Instances) Let T be an abstract 

instance of a federation scheme S. Then T is said to be a 

legal instance provided it satisfies the jolloming conditions. 
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db 1 relid rellabel rel-concept 

nyse Tl ( prices [ prices 

relid attrid attrlabel attrxoncept 

9.1 al Ticker Ticker 

id criteria 

T4 1 Ticker 1 

T5 Ticker 

ai Heasure 

at Ticker 
. . . . . . 

a3 Measure 

. . . . . . . . . 

criteria 

1. The following sets are pairwise disjoint: each set of 

relation id’s associated with a given database, each set 

of column id’s associated with a given relation. 

2. Whenever a, b E coJ(r), a # b, and both a, b correspond 

to complex attribute names, i.e. crit(a) # 0 # crit(b), 

we require that crit(a) = crit(b). In words, the crite- 

ria sets associated with any two complex columns in a 

relation must be identical. 

3. For each relation id r, for each tuple t E tup(r), for 

a E coJ(r), we require t[a] E dom(conc(a)), i.e. the 

relations must respect the types of the concepts asso- 

ciated with their column labels. 

4. For a E coJ(r) U reJ(d), r being any relation id, and d 

being any database in V, and N E crit(a), we require 

vaJ(a, N) E dam(N), i.e. the values associated with 

criteria should belong to the appropriate domains. 

In the sequel, when we refer to abstract instances, we mean 

legal (abstract) instances. 

Real Federations and Formal Model Bridged: Two 

questions need to be addressed now: (1) How can real- 

life federations be captured in the formal framework? (2) 

How relevant is our formal notion of abstract federation 

instances to practice, and specifically, for the purpose of 

interoperability? To deal with question 1, we define real 

instances. 

Definition 2.4 (Real Instance) A real instance 3 of a 

federation scheme S is simply a named collection of rela- 

tional databases such that: (i) 3 contains a database cor- 

responding to each database name d in S; (ii) each simple 

(resp., complex) relation name R associated with a database 

d in S corresponds to a relation label (resp., set of relation 

labels) in 3; (iii) each simple (resp., complex) attribute 

name A associated with a relation name R in database d 

in S corresponds to a column label (resp., set of column 

labels) in 3; (iv) all relation labels corresponding to a rela- 

tion name R haue the 8ame set of associated column labels. 

Given an abstract instance Z of a federation scheme S, it 

is straightforward to construct a real instance F by turn- 

ing the various id’s in Z into labels. We call such a real 

instance 7 the real instance corresponding to the abstract 

instance 1. The federation shown in Figure I is indeed the 

real instance of the federation scheme &, corresponding 

to the abstract instance sketched following Definition 2.2. 

Notice that (i) the notions of concepts and criteria are not 

present in the definition of a real instance; (ii) there is no 

constraint on the labels chosen for the relations or columns. 

ms 

OpXl 

ibm 
. . . 

low 

Figure 2: The catalog database associated with the federation of Figure 1. 

Indeed, in real-life federations, we may have no control over 

the chosen labels, and the concept and criteria information 

may not be explicitly present. Thus, the notion of real 

instances captures real-life federations. 

We next address question 2 above. We can connect ab- 

stract and real instances by treating the various labels in 

the real instance as though they were id’s, The actual 

concepts and criteria associated with them, which are not 

explicitly present, can be attached in a non-intrusive way 

in the form of system catalog tables, formalized next. 

Definition 2.5 (Catalog Database) The catalog 

database associated with an abstract instance Z consists 

of the following three relations (which we call catalog ta- 

bles): 

dbscheme(db, relid, rel-label, rel-concept ) , 
relschemes(relid, attrid, attrlabel, attr-concept), 

criteriacid, criteria, value) satisfying the following 

conditions. 

l the relation dbscheme contains a tuple (d, r, f?, c) ex- 

actly when, according to 1, database d has a relation 

with relation id r whose label is I! and underlying con- 

cept is c. 

l the relation relschemes has a tuple (r, a, e, c) exactly 

when, according to Z, relation with id r has attrid a 

as one of its associated attributes, k! is the label of a 

while c is its underlying concept. 

l the relation criteria has a tuple (i, CT,O) exactly 

when, according to Z, the id i has CT as one of its 

criteria which has the associated value II. 

The catalog database associated with the federation of Fig- 

ure 1 is shown in Figure 2. 

We treat the database catalog as a distinguished database 

from a formal viewpoint in that it always consists of the 

three catalog tables defined above. We stress that casual 

users do not have to expIicitly manipulate the catalog db. 

For linking an abstract instance to its corresponding real 

instance, we propose the notion of an augmented instance. 

Let T be a real instance corresponding to an abstract in- 

stance Z. The augmented instance associated with F and Z 

is the federation obtained by adding to 1F the distinguished 

database catalog, the catalog database associated with Z. 

We then have the following theorem: 

Theorem 2.1 Let S be a federation scheme. Then to ew- 

ery abstract instance of S, there exists an equivalent (aug- 

mented) real instance of S, and vice versa. . 
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Incorporating data marts: So far, we have focused at- 

tention on relational databases. Many data marts (like 

data warehouses) that are based on the so-called ROLAP 

approach adopt a star schema or a snowflake schema for 

their implementation. We call such data marts relational 

data marts. It is easy to see that such schemas corre- 

spond to federated schemas where both relation names and 

attributes are simple. Thus, the notions of a federation 

scheme and instance defined in Definitions 2.1 and 2.2 

subsume relational data marts. 

3 Syntax and Semantics of nD-SQL 

In this section, we present the syntax of nD-SqL by ex- 

plaining the additions made to SqL. The semantics of 

nD-SCJL will be illustrated with examples. The complete 

syntax of the language and a rigorous account of the se- 

mantics can be found in [GL98]. Tables summarizing the 

differences in syntax between SQL and nD-SqL are avail- 

able at http://www.cs.concordia.ca/lspecial/bibdb/ndsql. 

Throughout, we will use the federation of Figure I as a 

running example to illustrate our queries. 

3.1 Multi-dimensionality and Restructuring 

nD-SqL uses the classic SELECT, FROM, WHERE, GROUP BY and 

HAVING clauses of SqL, and adds to the syntax in several 

manners. (1) FROM clause: In addition to declaring the 

usual tuple variables (called ‘aliases’ in SqL), users can 

now also declare variables ranging over database names, 

a set of relations , or a set of columns of relation(s). 

(2) WHERE clause: We introduce two new interpreted con- 

straints which may be used in the WHERE clause to constrain 

relation or column variables to range over a “homogeneous” 

set of schema objects, i.e. over relations/columns having 

the same concept and set of criteria. The use of such con- 

straints will help ensure queries are “well-typed”, a notion 

we will formally define at the end of the present section. 

As an example of the use of variable declarations and of 

proper constraints, here is what the FROM and WHERE clauses 

could contain in order to query the data from Figure l(d): 

FROM mse -> R, mse::R T, mse::R -> C 

WERE R HASA Ticker AID C ISA Price 

Here, R is a rel-var restricted to range over the relations of 

database mse having Ticker values as criteria values, and C 

is a clmn-var restricted to range over the columns of these 

relations having Price dues as their underlying concept. 

(3)SqL has a unique kind of domain expression, 

tnple-var.attr (abbreviated as attr). In addition 

to this, nD-SqL also has the domain expressions 

tuple-var.clmn-var and C.criterion, where C is a rela- 

tion/column variable and criterion is one of the criteria 

of the relations/columns it ranges over. This expression 

serves to extract criteria values. All of these domain ex- 

pressions can be used in the SELECT and GROUP BY clauses, 

and in conditions in the WHERE and HAVING clauses. We 

define the underlying concept of a domain as follows: 

Definition 3.1 (Underlying concept of a domain) 

undcorac(domain) = 

I 
attribute if domain is of the form 

tuple-var.attribute 

criterion if domain is of the form 

rel-var.criterion 

criterion if domain is of the form 

clmn-var.criterion 

concept(clmnsar) if domain is of the form 

tuple-var.clmn-var 

where we refer to the concept of a complex column or rela- 

tion over which a var ranges as concept(var). We will also 

refer in the sequel to the set of criteria of the same column 

or relation var as crit(var). 

As an example of the use of each kind of domains, the 

following query “flattens” the data from the tables of Fig- 

ure l(d) into a form similar to table nyse: :prices: 

SELECT R.Ticker, T.Date, C.Haasure, 
T.C AS Price 

(Ql) FROM mse -> R, mse::R T, mse::R -> C 
WHERE R HASA Ticker AID C ISA Price 

Note in this query, in addition to the use of the HASA/ISA 

conditions to constrain the relation and column variables, 

the extraction of the values of criteria C.Measure into a 

column ofits own. The multiple columns that C ranges over 

are aligned into a single column by the select..object T.C 

AS Price. Here, each tuple of each table of Figure I(d) is 

broken down into many output tuples, one per value of the 

criterion Measure. 

(4)In order to create complex columns and relations, we 

need to deposit data values as criteria values. The syntax 

for depositing data values as column criteria values is to 

use the following new type of select-objects in the SELECT 

clause: 

domain0 [ AS label ] FOR (domain1 {, domaini}), i > 1 

where the optional label can be any combination of con- 

stant strings concatenated (using the “&” symbol) with 

any combination of the domains domain,, j 2 1. Ex- 

amples of labels could be: “Price for Year = “&T.Ticker, 

“Price for “&T.Ticker, T.Ticker&“‘s Price” or even simply 

T.Ticker. When no label (AS subclause) is present, appro- 

priate default conventions for labels are used [GL98]. 

The use of the FOR subclause with a select-object indi- 

cates that there should be a complex attribute with name 

(undconc(domaino), {undconc(domainl), undconc(domainz), 

. ..}) (see Definition 3.1) in the output relation schema. 

The following example illustrates the use of this syntax by 

transforming the content of nyse: :prices into a format 

similar to the one of table tse: :quotes. 

SELECT T.Ticker, T.Date, 

(92) T.Price AS T.l4easure FOR T.Heasure 

FROM nyse::prices T 

Note in this query how the multiple Price columns are cre- 

ated, one for each Measure values, by the use of the FOR 

subclause. Note also how these Measure values are used as 

column labels. 

(5)To deposit data values as relation criteria, we englobe 

all the select-objects of the SELECT clause in parentheses 

and apply the following additional FOR subclause: 
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SumPrice FOR SumPrice FOR . . . SumPrice FOR SumPrice FOR . . . 
Measure = open Measure = close . . . . . . Measure= open Measure = close ,.. . . . 

6521K 5475K . . . 5905K 6308K . . . 
output::10127)97 . . . output ::11(01197 . . . 

Figure 3: Result of query q3 

SELECT (select-objectslist) [ AS label 1 

FOR domain1 {, domaini}, i > 1 

which indicates that a relation with name (relk, 

{undconc(domainl), undconc(domaina), . ..}) should be 

created. The relation concept relk is generated by the sys- 

tem in order to prevent conflicts with other relation con- 

cepts in the catalog. 

The following example illustrates the creation of complex 

relations, while an aggregation is performed. 

SELECT (Sum(T.C) AS "SumPrice FOR 
Measure = " & C.Measure FOR C.Heasure) 
AS T.Date FOR T.Date 

(93) FROM bse::prices -> C, bse::prices T 
WERE C ISA Price 
GROUP BY C.Reasure, T.Date 

This query takes the aggregation of each individual Price 

for a given Measure on a given Date (i.e. the aggrega- 

tion is over Tickers). Here, note that the aggregation is 

performed over a subset of the criteria of C. The aggrega- 

tion is performed on T.C (i.e. Price values), grouping by 

C .Measure (extracting the values of Measure) and T .Date. 

The inner FOR subcJause restructures the sums into muJ- 

tiple columns, one per value of Measure, while the outer 

FOR subclause restructures the result into multiple rela- 

tions, one per value of Date. The result of the query is 

shown in Figure 3, where we assume all output relations 

to be temporarily viewed as members of a database named 

“output”. 

Various abbreviations are acceptable in nD-SqL syntax 

[GL98], whose details are suppressed for lack of space. 

Well Typing: Intuitively, a query can be meaningful only 

if it maps legal instances to legal instances. More precisely, 

we have the following definition. 

Definition 3.2 (Well-Typing) A nD-SQL query 9 is 

well-typed provided for every legal instanced, q(Z), viewed 

as an instance is also legal. 

Ensuring well-typing is important for query processing, not 

only to make sure the result presented to the user is mean- 

ingful, but also for ensuring aggregations can be correctly 

applied. Thus, an efficient algorithm for testing well-typing 

is essential. We develop such an algorithm below. 

It turns out that there are simple rules that the user can 

follow in order to make sure a query is well-typed. In par- 

ticular, let us call a query 9 well-formed, provided it satis- 

fies the following conditions. 

l relation variables must be restricted (by ISA and HASA 

conditions) to range over relations having the same 

concept and criteria set; 

attribute variables must be restricted (by ISA and 

HASA conditions) to range over columns having same 

concept and same set of criteria; 

all the complex columns created in the SELECT clause 

have the same set of criteria; 

The following is a syntactic characterization of well-typing. 

Theorem 3.1 A query is well-typed if and only if it is 

well-formed. 

Theorem 3.1 immediately yields an algorithm for testing 

well-typing: test whether the query satisfies the conditions 

for being well-formed. We can test the latter in time linear 

in the size of a given query [GL98]. 

3.2 Enhancing nD-SqL for OLAP: multiple vi- 

sualizations and subaggregates 

Since the proposal by Gray et al. [Gray+961 for the pow- 

erful CUBE operator, researchers have developed several ef- 

ficient algorithms for computing this expensive operator 

[Agars96, ZDN97]. The CUBE operator corresponds to ag- 

gregation at exponentially many granularities. It has been 

recognized [Agar+96, ZDN97] that in practice, a user may 

be interested in specific subsets of group-bys. Two such 

examples are ROLLUP (e.g., {{Date, Ticker}, {Date}, {}) 

and its converse DRILLDOWN. While these operators are im- 

portant, we contend that in general, depending on the ap- 

plication at hand, users may be interested in subsets that 

need not be covered by these operators (see Example 3.4 

e.g.). In this section, we develop some simple extensions to 

nD-SqL and show how they lead to a powerful mechanism 

for expressing arbitrary subsets of group-bys. In addition, 

we will also show that together with the restructuring ca- 

pabilities of nD-SQL, this allows us to compute arbitrary 

multiple granularity aggregations and visualize the results 

in multiple ways. Following OLAP terminology, we refer 

to each of the names in a federation scheme as a logical 

dimension. More precisely, we have the following 

Definition 3.3 (Logical Dimensions) The logical di- 

mensions of a federated relation scheme R(C1,. , C,) are 

the set of concepts of C, together with the set of criteria 

of R, and of the complex columns among C,, 1 5 i 5 n. 

Let Q be an nD-SQL query and let RI,. . . , R, be the set of 

federated relation schemes mentioned in Q, Then the set 

of logical dimensions associated with Q is the union of the 

logical dimensions associated with R,, 1 5 i < m. 

For example, the dimensions of each of the four federated 

relation schemes in &, corresponding to the instance of 

Figure 1 are Ticker, Date, Measure, Price. We do not 

address the issue of dimension hierarchies in this paper. 

The main enhancement to nD-SQL syntax is a new kind of 

variable called dimension variable (declared as DIM var), 

ranging over the names of all logical dimensions associated 

139 



with the query, except those being aggregated. An nD-SQL 

query Q with dimension variables is equivalent to a set 

of nD-SDL queries without dimension variables, obtained 

by instantiating the dimension variables in Q to all possi- 

ble combinations of dimension names that satisfy the con- 

straints on the dimension variables, specified in the WHERE 

clause of Q. We start with an extremely simple example 

to illustrate the ideas. 

Example 3.1 

SELECT X, SM(T.Price) 
(94) FROH nyse::prices T, DIM X 

GROUP BY X 

The only dimension variable is X. The only federated rela- 

lion scheme mentioned in (q4) is nyse: :prices, whose as- 

sociated dimensions are Date, Ticker, Measure, Price. 

Of these, Price is being aggregated. So, the dimension 

variable X ranges over the dimension names Date, Ticker, 

andMeasure. The equivalent set of queries without dimen- 
sion variables are as follows. 

SELECT T.Ticker, SUH(T.Price) 

(Q4a) FROM nyse::prices T 
GROUP BY T.Ticker 

SELECT T.Date, SUlJ(T.Price) 

(Q4b) FROH nysa : : prices T 

GROUP BY T.Date 

SELECT T.Measure, SUH(T.Price) 
(Q4c) FROM nyse : : prices T 

GROUP BY T.Heasure 

Thus, this query expresses the aggregation of T.F’rice with 

respect to each of the three possible group-bys - Ticker, 

Date, and Measure. . 

Constraints on dimension variables include the standard 

rel-ops =, 5, <, >, 2, #. We interpret them w.r.t. the lex- 

icographic ordering of the dimension names. E.g., Date 

< Ticker. We introduce a special constant, NONE, in- 

spired by the special constant all introduced by Gray et 

al. [Gray+96].’ We give this constant a special status 

w.r.t. the way the rel-ops are interpreted. We assume: 

(i) NONE Op NONE is always true for all rel-ops Op; (ii) 

(dimension) < NONE is always true, for all dimension names 

(dimension). Besides rel-ops, we also allow constraints in- 
volving the IN operator, with the obvious semantics. Fi- 

nally, we introduce a special type of constraint using which 

we can allow a dimension variable to assume the value 

NONE. This feature is particularly useful for specifying mul- 

tiple granularity aggregations, as our examples will show. 

Example 3.2 Let us now revisit the previous example and 

see how we can express a CUBE of Price values over the 

dimensions T. Ticker, T. Date and T .Measure. 

SELECT X, Y, Z, SUR(T.Price) 

FROH nyse::prices T, DIH X,Y,Z 

(95) WHERE X < Y < Z AUD DIM CAR BE ROBE 

GROUP BY X, Y, Z 

2We simply find the nameYOEEmoreappropriate fortheuse 
we have for this constant here. 

In this query, X, Y and Z can each range over the di- 

mension names {T.Ticker, T.Date, T.Measure, NONE}. 

The condition X < Y < Z (an abbreviation for X < Y AND 

Y < Z) further restricts the possible groupings. Finally, if 

we modify the constraints on dimension variables to: X 

IN {T.Date, NONE} AND Y IN {T.Measure, NONE} AND Z 

IN {T.Ticker, NONE} AND X < Y < Z, then this produces 

exactly the group-bys {T.Date, T.Measure, T.Ticker}, 

{T.Date, T.Heasure}, {T.Date}, and {}, corresponding 

to ROLLUP. . 

Our next example shows the interplay between multiple 

granularity aggregation and restructuring. 

Example 3.3 

SELECT (AVG(T.Price) AS Y FOR Y) AS X FOR X 
(QS) FROn nyse::prices T, DIM X, Y 

YHERE DIHS IB CT.Date, T.Heasure, T.Ticker) 
GROUP BY X, Y 

This query generates all possible group- 

ings of AVG (T. Price) along two logical dimensions among 

Date, Measure and Ticker. Furthermore, it restructures 

each particular grouping in multiple ways along (physical) 

relation and row dimensions such that multiple visualiza- 

tions of the same data are provided at once, as shown in 

Figure 4(b). . 

Our last example in this section illustrates the power of 

nD-SQL to generate sets of multiple granularity aggrega- 

tions which do not seem to be obviously expressible us- 
ing a combination of operators like CUBE, ROLLUP and/or 

DRILLDOWN. 

Figure 4: (a) “neighborhood” operator (b) Visualiza- 

tions or result of query q6 

Example 3.4 

Consider a relation db: :rel(A,B,C,D,E,F,G), and sup- 

pose a user is looking at the result of SUM(G) grouped by 

A,B ,C. It is very natural for the user to want to took at the 
“neighborhood” of this group-by, 1 level below and above 

{A,B,C} in the group-by lattice. Specifically, the user 

might be interested in examining the group-by8 {A, B , C ,D}, 

{A,B,c,E}, {A,B,c,F}, {A,B}, {A,c}, and {B,c} which 
form the neighborhood of {A,B,C} in the cube lattice. This 

query can be expressed as follows. 
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SELECT Y, X, Y, Z, SUH(G) 
(97) FROM db::rel T, DIH Y,X,Y,Z 

WHERE u < X < Y < Z AID u 11 CA,B,C) AID 
x 11 CA,B,C) Am Y In Ic, ROBE) AID 
z II {D,E,F, rors) 

Figure 4(a) depicts the “shape” oj this set of group-bys. It 

is not clear how such a query can be expressed using known 

operators. . 

4 Query Processing 
We will discuss in this section our approach to an efficient 

implementation of the nD-SQL language. In order to sim- 

plify the presentation, we will first cover the processing of 

queries that do not involve dimension variables (Section 

4.1). We will then discuss the processing of those queries 

involving dimension variables (Section 4.3). 

4.1 Processing of queries that do not involve 

dimension variables 

Overview: In order to efficiently process nD-SQL queries, 

we will define a new Restructuring Relational Algebra 

(RRA) which extends classical Relational Algebra (RA) 

with restructuring operators. Thus, to process nD-SQL 

queries we will translate them into equivalent RRA expres- 

sions, just like SQL queries are translated into RA expres- 
sions. We will then take advantage of the properties of the 

RRA operators to optimize the expressions. We can also 

take advantage of downward compatibility of RRA with 

RA to push some of the processing to remote databases. 

Our architecture is illustrated in Figure 6. Its highlights 

are that it is non-intrusive, requiring minimal extensions 

to existing technology, for deployment on top of existing 

SQL systems. 

T 
3 1 Query Interface 

& “I 

rD - SQL to RRA Translator 

4 

I RRA Optimizer I 

Source, Source 2 Source Ir 

Figure 6: System Architecture 

Restructuring Relational Algebra: RRA consists of 

the classical RA operators (that we extend slightly), to- 

gether with new restructuring operators. These address the 

issues arising from: (i) complex relations and columns; (ii) 

restructuring with a dynamic input and/or output schema. 

Recall that in our model, simple columns of relations are 

denoted as in the classical relational model, while com- 

plex columns are of the form (concept FOR criteria = 

G), where criteria is a list of criteria and v’ is a tu- 

ple of values of the appropriate type for the criteria. In 

formal definitions, we denote such complex columns as 

( concept, tcri+,eria), where tcriteria is the tuple that 
maps criteria to V: We sometimes refer to icriteria as 

a criteria-tuple. A similar remark applies for complex rela- 

tions. The operators of RRA are thus: 6, rI, W, ADD-COL, 

REM-COL, ADDREL and AGG where the latter can be any 

of the usual aggregation operators. 

We first define the new operators, then explain how the 

classical ones are extended. 

Definition 4.1 (Add Criteria to Columns) The op- 

eration ADD-COL,,jtLi,t,,,,,ti,t(rsl), crii%ist and concList 

being sets of concepts, applied to a relation with name rel, 

has the following effect. Let T be any instance of the rela- 

tion name rel in the database. Then, the operation pro- 

duces an output relation r’ with the same concept as r, 

satisfying the following conditions. 

l The column labels of r’ are cols(r’) = (cols(r) - 

{C ( C is a column of r with concept in critlist} - 

(C ) C is a column of r with concept in conclist}) u 

{Cc7 tcritList) I c is a column of r with concept in 

conclist} A 3 E r : t[critList] = tcritList}. Here 

cols(r) is the set of column labels of r. 

l The instance of r’ consists of a set of tuples over 

cols(r’), defined as inst(r’) = {t ( V(C,t,,itL& E 

COlS(r’) - COh(r) : 39 E T : VA E COlS(r) n COlS(d) : 

t[A] = s[A] A tcritl;ist = s[critList] 

A tt(C,tcritList)l = s[cIl. 

It should be noted that the column C could be a 

simple or complex column, in the above definition. 

As an illustration of the above operator, the ex- 

pressloll ADD-COLM,,s,,,-p,i,, (we :: prices) would pro- 

duce a relation with column labels similar to those of 

tse: :quotes of Figure 1, and contents equivalent to those 

of nyse : : prices. The resulting table, call it ny2t, is shown 

in Figure 5. 

Definition 4.2 (Remove Criteria from Columns) 

The operation REM_COL,,i,Li,t(rel), critList being a list of 

criteria, applied to a relation with name rel, has the jol- 

lowing efiect. Let r be any instance of the relation name 

rel in the database. Then, corresponding to each such re- 

lation r, the operation produces an output relation T', with 

the same concept as r, satisfying the following conditions. 

l The column labels of r’ are cola(r’) = {A 1 

A is a simple column in cols(r)} U {(A, tc)[C - 

critList]) ( (A, tc) is a complex column in co/s(r)} U 

critlist. 

l The instance of T' consists of a set of tuples over 

cols(r’), defined as inst(r’) = {t 1 33 E r : 

3 a criteria-tuple tc : (V simple column A E cols(r) : 

t[A] = s[A]) A (V complex column (C,tc) E cols(r) : 

t[(C, tc[C - critlist])] = s[(C, tc)]) A t[critList] = 

tc[critListl}. 

E.g., the expression REM-COLM,,,,,, (ny2t :: prices), ap- 

plied to the relation ny2t: :prices of Figure 5, exactly 

yields the relation nyse: :prices of Figure 1. 
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Figure 5: ny2t::prices 

Ticker Date open close low . . . 
ibm 10127197 63.67 62.56 62.00 . . . 
. . . . . . 
UIS 11101197 ii.02 ii.50 44.60 ::: 

ny2m: : ibm ny2m : :ms 

Figure 7: ny2m: :prices 

Definition 4.3 (Add Criteria to Relations) The op- 

e&ion ADDREL,,;,Li,t(rel), Crii%ist being a list of crite- 

ria, applied to a relation with name rel, has the following 

eflect. Let r be any instance of the relation name rel in the 

database. Assume for simplicity that all criteria in critList 

are concepts of simple columns in r. Then, corresponding 

to each relation r, the operation produces multiple output 

relations r’, with the same concept as T, and with criteria 

critlist, that satisfy the following conditions. 

l The column labels of every T’ are cols(r’) = cols(r) - 

critList 

l There is one output relation I-’ corresponding to r and 

to each distinct critlist-value, say t,ritList, in r. Let 

the label of this relation r’ be (rel, tcritlist 
>I 

). 

l The instance of each (rel, tcritlist,,) consists of a 

set of tuples over cols(r’), defined as inst(r’), = (1 1 

39 E T : (VA E COIS(r’) : t[A] = s[A]) A tc,itList,l = 

s[critList]}. 

As an illustration of the above operator, the expres- 

sion ADDRELTi,ker(lly2t :: prices) would produce mul- 

tiple relations, with relation labels similar to those of 

mse : : quotes of Figure 1, with column labels similar to the 

ones of those relations, and contents equivalent to those of 

ny2t: :prices. The resulting table is shown in Figure 7. 

It turns out the converse of ADD-REL, call it REM-REL, is 

not needed as an explicit operator, as its sense is built into 

our query processing algorithms. We point the reader to 

[GL98] for the details as well as for an algorithmic presen- 

tation of the restructuring operators. 

The classical RA operators are extended in the following 

way: we allow that parameters to these operators refer to 

one specific column instance of a complex column by us- 

ing its label. We also also allow them to refer to the set 

of instances of a complex column by using the column’s 

concept. This serves as a shorthand to enumerating ev- 

ery column label and applying the same operation to each 

(e.g. TIprice (IlySS : : prices) denotes the projection of rela- 

tion nyse: :quotes on the set of columns having concept 

Price). This is perfectly compatible with RA since when a 

column is simple, this abbreviation reduces to the classical 

select or project. 

In general, operators of our RRA commute provided cer- 

tain conditions are met. 

. . . 

. . . 

Theorem 4.1 Commutativity of operators. 

0 ADDXOLpl+p2 [ REM-COLp, (Table) ] E 

REM-COLP, [ ADD-COLpl,p2 (Table) 1, provided the 

sets of domains referred to in the parameter lists pl 

and p3 are disjoint, and those in p2 and ps. 

l Let RES-OP be either of REM-COL or ADDXOL 

and NONRES-OP be any non-restructuring opera- 

tor, then NONRES-OPp, [ RES-OP,,, (Tab/e) ] E 

RES-OPp, [ NONRES-OPT, (Table) 1, provided the sets 

of domains referred to in the parameter lists pl and 

pp are disjoint. 

Translation from nD-SQL to RRA: As stated earlier, 

the processing of nD-SQL queries is based on the translation 

of said queries into equivalent RRA expressions. For lack 

of space, we point the reader interested in details of the 

translation algorithm to [GL98]. We will provide here a 

very high level description of the algorithm. 

Intuitively, we expect that the classical SQL parts of a query 

translate into the corresponding classical RA operations 

(e.g. selected objects in the SELECT clause become param- 

eters of projections, conditions in the WHERE clause become 

parameters to selections, etc). In addition to this, the new 

parts of the syntax will induce additional operations. Re- 

structurings are derived from both (i) the new FOR sub- 

clauses of the SELECT clause, and (ii) those conditions of 

the WHERE clause that involve some criteria. 

The tables to which these operations will be applied are ob- 

tained from the instantiations of the variables (both those 

declared or those implicit that appear only after unfold- 

ing an abbreviation). We note that while the information 

necessary to instantiate non-tuple variables is contained in 

the catalog tables, we need to pull data by querying re- 

mote sources to instantiate tuple variables. We denote the 

Variable Instantiation Table containing the instantiations 

of a variable Vi by VIT-V,. 

Consider query q8: 

SELECT T.Date, C.Heasure, 
T.C AS R.Ticker FOR ll.Ticker 

(Q8) FROH mse -> R, mse::R T, mse::R -> C 
WHERE R HASA Ticker AID C HASA Measure 

AED T.Date > lOi 
AID R.Ticker > 'rn' AID R.Ticker < 'n) 

The following would be the equivalent RRA expression: 
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uVIT-T.Date>10129)97AVIT-R.Ticker>’m’l\V.Ti~k~~<~~~ ( 

VITR W VIT-T )] } 

Note that it joins the necessary VITs, extracts the column 

criteria Measure, adds the criteria Ticker to the Price 

columns and applies the proper selections. 

4.2 Optimization 

Many opportunities for optimization arise from our use of 

RRA in processing nD-SQL queries. Since RRA is down- 

ward compatible with RA, and since the projections and 

selections are commutative with the new restructuring op- 

erators, we have the opportunity to push to remote sources 

some computations. 

A preliminary step in optimizing the computations con- 

sists in ordering the instantiation of variables and using 

the technique of sideways information passing (sip). This 

becomes particularly important in order to determine what 

database and/or relation to access to instantiate some tu- 

ple variable. Equally important is the possibility of passing 

bindings from a first instantiated variable to the query in- 

stantiating a second one. This opportunity arises when a 

join is called for between tables originating from two dis- 

tinct sources. In some situations, we should delay instan- 

tiating the second variable until we can pass as bindings 

the values of the join attribute(s) obtained from the first 

variable’s instantiations. These bindings would be passed 

on as selections in an SQL query. 

We can also use for optimization purposes the following 

equivalences arising from the symmetry between our re- 

structuring operators REM-COL and ADD-C• L: 

Theorem 4.2 RRA expression equivalences. 

l ADDXOLpl.+p2 [REM-COLp, (Table)] 

= ADD-COL~~-~~ (Table), 

ifp3 Cm Ap4 =PI -p3. 

l ADD-COL~~-~~ [REM-COLT, (Table) ] 

3 REM-COLp, (Table), 

ifpl Cp3Ap4 =p3-PI. 

l ADD-COL~,,~, [ REM-COLT, (Table) ] z Table, if 

PI = p3. 

Another set of optimization rules rely on the following 

heuristic: 

Heuristic 4.1 It is in general more efficient to perform 

join or restructuring on fewer tuples, albeit they be wider. 
Since ADD-COL (in general) lowers the number of tuples and 

REM-COL increases it, we derive the following additional 

heuristics: 

Derived Heuristics 4.1 
l REM-COLp, [ADD-COLp,,Pz (T&e)] i3 more efiCient 

than ADD-COL~~-~~ [REM-COLT, (Table) ]. 

. If&Q andREM-COLP, can commute andpz only refers 

to Tablez, 

then REMXOLp, [ Table1 WPI Table2 ] is more efi- 

Gent than Table1 HP, [ REM-COLT, (Tablez) 1, pro- 

vided the join selectivity is higk3 

3Recall, the higher the join selectivity, the fewer the tuples 

that result from the join. 

’ If wp, and ADD-COL~,,~, can commute and p2 and 

ps refer only to Tablez, 

then Table1 WP, [ ADD-COL~~-~~ (Tablez) ] is more 

efficient than ADD-COL~,,~, [ Table1 W,, Table2 1, 

provided the join selectivity is low. 

l If AGG~,, Pa and REM-COLA, are such that pl and p3 

are disjoints but p3 C pz (pz is the group-by list) then 

REM-COLP, [AGGpl,Pa (Table) ] is more efficient than 

AGGP1, PZ [REM-COLP, (Table)] 

Another form of optimization would be to take advantage 

of what we call “interleaving”. Interleaving is the efficient 

implementation of a series of operators that are often called 

for in cascade, similar to the way join is a more efficient 

implementation of Cartesian product ‘interleaved’ with se- 

lection. In RRA, we have pinpointed two such series of 

operations: (1) A selection applied to the values of a col- 

umn criterion without any restructuring being called for 

should be implemented more efficiently than by first re- 

moving the criteria, selecting on it, and adding it back. 

(2) A selection applied to the values of the concept of a 

complex column without any restructuring being called for 

should also be implemented more efficiently than by re- 

moving all criteria of that complex column, selecting on 

the concept and adding all criteria back. We define two 

new operators, II* and o* that capture the series of oper- 

ations (1) and (2) respectively. For lack of space, we refer 

their formal definition to [GL98]. 

4.3 Processing of queries involving dimension 

variables 

The most interesting (and challenging) class of queries of 

this kind are the ones which involve aggregation, The key 

idea in their processing is recognizing that they involve the 

computation of a subset of group-bys from the cube lat- 

tice. Such computations are referred to as partial cubes 

[Agar+ 96, ZDN97]. ROLLUP is a common example of a par- 

tial cube. See Example 3.4 for another intersting example 

of a partial cube. The papers [Agar+96, ZDN97] discuss 

how algorithms for computing the CUBE can be adapted for 

computing partial cubes. Optimization of partial cubes is 

a topic of its own interest and is orthogonal to this paper. 

We mainly observe that queries with dimension variables 

and aggregation may in general involve: (i) computing a 

partial cube, and (ii) computing multiple visualizations of 

the result. The processing of such queries can be organized 

as follows: 

(1) Identify the precise partial cube to be computed, by 

instantiating the dimension variables in the query. (2) Ap- 

ply any fast algorithm in the literature for computing the 

partial cube. These algorithms can be made more efficient 

by taking advantage of the implicit grouping provided by 

column and relation criteria. (3) Apply the required re- 

structuring operations for each group-by computed in step 

(2). An interesting research problem is: how to interleave 

the computation of the partial cube with the required re- 

structuring for each group-by in the partial cube. 

5 Implementation 
The implementation of our nD-SQL Server follows the archi- 

tecture described in Section 4 (see Figure 6). The platform 
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is IBM PCs running Windows 95. The system is built as an 

external module, independent of the databases in the fed- 

eration. The main components of the Server are: a Query 

Interface, a Translator to go from nD-SClL to RRA, an RRA 

Expression Optimizer, and an RRA Expression Executor. 

The Query Interface accepts a user’s input query and veri- 

fies well-typedness, giving back helpful messages to the user 

if the query is ill-typed. Once a query is accepted by the In- 

terface, the Translator creates the equivalent RRA expres- 

sion which is sent to the Optimizer for a first pass. Then, 

the SQL queries for tuple-var VIT creation are created from 

the RRA expression and submitted to local databases, us- 

ing sip to determine the order of submission, and passing 

parameters from one result to another query. When all 

the VITs are instantiat,ed the Optimizer finishes optimiz- 

ing the RRA expression. The Executor then executes it, 

using restructuring operations, and presents the final re- 

sult to the user. The RRA operators are implemented in 

Visual C++. 

6 Comparison With Related Work 
We compare our work with previously proposed extensions 

to SqL, including SchemaSqL, and related work on multi- 

database query optimization. 

1. SQL Extensions: There have been numerous exten- 

sions to SqL-like languages over the years, some inspired 

by multi-database interoperability requirements ([Lit89, 

GLRS93, SSR94, MR95]), some motivated by querying 

OODBs ([KKS92, ASDt91, CL93]). An extensive compar- 

ison between nD-SqL and many of these languages appears 

in [GL98]. For lack of space, we merely observe that none 

of the above languages have both the restructuring and 

complex aggregation capabilities of nD-SqL. Important ex- 

tensions to SqL inspired by OODB querying include Kifer 

et al.% XSQL [KKS92], Ahmed at al.‘s HOSQL [ASD+Sl], 

and Chomicki and Litwin’s OSQL [CL93]. XSQL permits 

very complex and powerful queries, and the concern about 

its effective and efficient implementability has not been ad- 

dressed by its authors. Both HOSQL and OSQL do not al- 

low ad hoc queries that refer to more than one component 

database in one shot. Finally, it is not clear that the se- 

mantics of HOSQL, OSQL, and XSQL are downward com- 

patible with SQL. The powerful emerging standard for SqL3 

([SQL96, Bee93]) supports ADTs, oid’s, and external func- 

tions, but to our knowledge, does not directly support the 

kind of higher-order features for meta-data manipulation 

as in nD-SqL; programming such features would thus be too 

low level and tedious. Some of the expressions for extract- 

ing domain values and values of criteria in nD-SqL resemble 

the path expressions of IlqL [Cat96]. However, there seems 

to be no direct facility for restructuring in OqL. 

Two noteworthy extensions to SqL from the vendor side are 

DB2/SqL [DB296] and ORACLE/SqL [ORA]. Of these, 

DB2/SqL is being incorporated in DataJoiner, IBM’s new 

middleware for interoperability, and supports queries in- 

volving joins of tables from multiple DBMS in one select 

statement. As far as we know, restructuring and complex 

forms of aggregation of the kind supported in nD-SClL are 

not directly supported at a high level. ORACLE/SqL’s 

DECODE feature is worth noting, since it permits some lim- 

ited form of cross-tabbing. This is far too limited compared 

to the restructuring capabilities of nD-SqL. 

Finally, Ross [Ros92] and Gyssens et al. [GLS96] are two 

recently proposed algebras which have the power of ma- 

nipulating meta-data. Of these, [Ros92] has limited re- 

structuring capabilities, while [GLS96] has been shown to 

be complete for all generic restructuring transformations. 

However, both languages do not handle aggregation. A 

comparison between nD-SQL and a whole class of related 

logics is given in [GL98]. Ross et al. [SRC97] generalize 

CUBE into a multi-feature CUBE, and propose fast algorithms 

for computing queries involving this operator. Their con- 

tributions and those of this paper are complementary. 

2. SchemaSqL: SchemaSaL is a multi-database interopera- 

ble query language proposed by one of the authors [LSS96], 

capable of restructuring and complex aggregations, and is 

the closest language to nD-SqL. In particular, our syntax 

for database, relation, and column variables was inspired 

by SchemaSqL. However, there are the following major dif- 

ferences between the two languages. (1) Lack of typing: 

SchemaSqL offers no aids to the programmer to control an 

indiscriminate use of column/relation variables. This can 

lead to “ill-typed” and meaningless queries; e.g., it is easy 

to write a query in SchemaSqL that puts all values appear- 

ing in all columns of bse: :prices into one output col- 

umn! In the presence of aggregation, this is a very serious 

problem. (2) Limited restructuring: At most one attribute 

domain can be placed in the relation/column dimension; 

e.g., one cannot transform the data in tse: :quotes to 

the representation similar to bse: :prices. Besides, un- 

like nD-SqL, only views, and not queries, can express re- 

structuring, leading to an unpleasant asymmetry. (3) Loss 

of meta-data: The underlying model of SchemaSqL cannot 

keep track of meta-data against restructuring; e.g., when 

nyse: :prices is restructured into the schema of mse, the 

fact that ‘ibm’ is a Ticker is lost. In nD-‘SQL, the notions 

of concepts and criteria are rich enough to always retain 

meta-data. (4) Limited subaggregation: SchemaSqL does 

not allow many subaggregates; e.g., it is impossible to com- 

pute the daily total price (over all stocks) for each measure 

type in bse: :prices. By contrast, this is straightforward 

in nD-SqL(e.g., see query (q3), page 6). (5) Multiple gran- 

ularity: One of the strengths of nD-SQL is its ability to ex- 

press multiple granularity aggregation, possibly together 

with multiple visualizations (see Section 3.2), something 

SchemaSqL cannot do. On the query processing side, un- 

like [LSS96], we give an algebra and exploit its properties 

for query optimization. 

3. Multi-database Query Optimization: Much work has 

been done in the context of multi-database query optimiza- 

tion, particularly in integrating data sources with diverse 

capabilities. See Haas et al. [Haa97] for a survey. Du 

et al. [DKS92], Qian [Qia96] and Florescu et al. [Flo95] 

are related works studying query optimization in multi- 

database systems. Our concern in query optimization in 

this paper is different: we focus on algebraic optimization 

of queries across multiple relational databases with hetero- 

geneous schemas, where queries can involve attribute/value 

conflicts, restructuring, and complex OLAP-style aggrega- 
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tion. To our knowledge, optimization in such a setting is 

new. There are many interesting open research problems 

in this context, which we are currently investigating. 
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