
nD-SQL: A Multi-dimensional Language

for Interoperability and OLAP

Frkd&ic Gingras and Laks V.S. Lakshmanan

Department of Computer Science, Concordia University,

Mont&al, Qukbec H3G lM8

e-mail: {gingras, laks}@cs.concordia.ca

Abstract

We propose a multi-dimensional language called

nD-SQL with the following features: (i) nD-SQL

supports queries that interoperate amongst

multiple relational sources with heterogeneous

schemas, including RDBMS and relational data

marts, overcoming the mismatch between data

and schema; (ii) it supports complex forms of

restructuring that permit the visualization of n-

dimensional data using the three physical dimen-

sions of the relational model, viz., row, column,

and relation; (iii) it captures sophisticated aggre-

gations involving multiple granularities, to an ar-

bitrary degree of resolution compared to CUBE,

ROLLUP, and DRILLDOWN. We propose a formal

model for a federation of relational sources and

illustrate nD-SQL against it. We propose an ex-

tension to relational algebra, called restructuring

relational algebra (RRA), capable of restructuring

and aggregation. We propose an architecture for

the implementation of an nD-SqL server, based on

translating nD-SC/L queries into equivalent RRA

expressions, which are then optimized. We are

currently implementing an nD-SQL server on the

PC platform based on these ideas.

1 Introduction

Interoperation among multiple heterogeneous databases

continues to be an important practical problem. It en-

tails resolving incompatibilities and conflicts between com-

ponent database systems on a number of different fronts,

Permission to copy without fee all OT part of this material is

granted provided that the copies are not made OT distributed jot
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is

given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, OT to republish, requires a fee

and/or special permission from the Endowment.

Proceedings of the 24th VLDB Conference

New York, USA, 1998

including platforms, database schemas, and transaction

management systems, to name a few. The importance

of developing query languages capable of “cross-querying”

the component databases, overcoming the discrepancies

among their schema and data semantics has been recog-

nized (see [CL93, GLRS93, KLK91, Lit89, SSR94, LSS96]

for a few proposals for such languages). It has been real-

ized from these earlier works that even in the context of a

federation consisting of relational databases, the conflicts

among the component database schemas raise serious chal-

lenges for interoperability. For instance, an entry such as

“ibm” might appear as a domain value in one component

database, as an attribute in another, and as a relation name

in the third (see Figure 1). It is known that conventional

languages like SQL or variants cannot be used to overcome

this conflict (see [LSS96]), without a host language.

In this paper, we view interoperability in a slightly larger

context where the objective is not only to run tradi-

tional SqL queries on the data in a federation, but also

queries involving multiple granularity aggregation required

for OLAP. Typically, such queries involve operators like

CUBE, ROLLUP, and DRILLDOWN. More precisely, the prob-

lcm studied in this paper is: how to develop a query Jan-

guage compatible with SqL, that is capable of(i) expressing

queries on a federation of relational sources resolving the

conflicts between the component schemas, and (ii) express-

ing OLAP queries involving multiple granularity aggrega-

tions?

The motivation for the above problem is as follows. First,

consider a complex organization whose data is distributed

among its functional or departmental units. Decision

support requires: (i) interoperability among component

databases, and (ii) eventually the creation of a data ware-

house storing integrated summaries of the operational

data, providing efficient support for OLAP queries.’ Once

a data warehouse is created, the discrepancies among com-

ponent databases are resolved and the data would be inte-

grated. Why then need yet another query language? How-

ever, as discussed in [CD97], building a data warehouse is

‘Actually, a data warehouse should ideally support both
OLAP and mining as argued by Chaudhuri and Dayal [CD97],
but in this paper, we do not consider mining.

134

. . .
Ii:;,]

ibm 10127197 close 62.56

. . .

ms ;‘i(O1(97 1 ;Idw 1 44.60

. I . . .

(a nyse: :prices

’ Ticker Date low high . . .

ibm 10127197 62.00 64.00 . . .

.

ms 11101197 46.00 48.72 :::

(b)tse: :quotas

Date open, ibm open, ms open, close, ibm close, ms close, . . .

10127197 59.89 45.00 62.05 46.17 . . .

.

11101)97 60.89 43.98 62.05 46.17

(c) bse: :prices

Date

10127197 58021

. . .

11101197

l.y 2 11; -1

55.75

mse : : ibm mse: :ms . . .

(d) relations in mse

Figure 1: A federation of relational databases with heterogeneous schemes, containing stock market data. Only

relevant relations from each database are shown. The notation db: :rel means db is a database containing

relation rel.

a long, complex, and expensive process, often taking up to

several years to complete. Many organizations adopt an in-

termediate solution, whereby they create the so-called data

marts, which are essentially miniature data warehouses in-

tegrating small subsets of the operational databases. Thus,

in the evolutionary lifecycle of a data warehouse, one has

to cope with interoperating among operational databases,

among data marts, and among both. Given the ultimate

need to perform OLAP style computations, it would be

desirable to have one query language that can express not

only conventional queries across component databases (or

data marts), but also OLAP queries.

Next, consider interoperation of a general federation of

databases, not necessarily belonging to any one organiza-

tion. The participants of the federation may not permit

the data in their databases to be integrated into a cen-

tral warehouse. One approach that has been followed in

the past to resolve schematic discrepancies is to convert

the data in the databases to conform to a common canon-

ical schema, by defining mappings (e.g., see [ASD+Sl]).

Unfortunately, such mappings tend to be very low level

and converting data in this manner is labor intensive, ne-

cessitating lengthy and costly human interventions. This

once again calls for a high level query language capable

of resolving such conflicts automatically, assuming addi-

tional information on the component schemas is added to

the federation in a non-intrusive manner. In this context,

even though traditionally interoperability has been posed

as a problem without the requirement to support OLAP

queries, we anticipate there are many applications which

can benefit from such a feature. For example, in a stock

market federation, an investment broker or analyst might

wish to compute multiple granularity summaries on the

data pooled from a number of exchanges, in order to study

the performance of stocks and funds.

In this paper, we propose a formal model for a federation of

relational databases with possibly heterogeneous schemas

(Section 2). We also propose an n-dimensional query lan-

guage called nD-SCJL, capable of: (a) resolving schematic

discrepancies among a collection of relational databases

or data marts with heterogeneous schemas, and (b) sup-

porting a whole range of multiple granularity aggregation

queries like CUBE, ROLLUP, and DRILLDOWN, but, to an ar-

bitrary, user controlled, level of resolution. In addition,

nD-SqL can express queries that restructure data conform-

ing to any particular dimensional representation to any

other (Section 3). We propose an extension to relational

algebra capable of restructuring, called restructuring rela-

tional algebra (RRA). We use RRA as a vehicle for efficient

processing of nD-SQL queries, and propose an architecture

for this purpose. We develop query optimization strategies

based on properties of RRA operators (Section 4). We also

discuss the implementation of a system based on our ideas

(Section 5). We finally compare nD-SQL and its approach

with related work (Section 6).

Before concluding this section, we briefly illustrate the

power of nD-SQL. In nD-SQL, it is straightforward to re-

structure the data in any of the databases in Figure 1, to

the schema of any other database, which is impossible in

most known query languages, without external calls to pro-

cedures in a host language. For lack of space, we suppress

the proofs of all our results and finer details of our query

processing algorithms in this paper, and refer the reader

to the full version [GL98]. We also point the reader to

the URL http://www.cs.concordia.ca/-special/bibdb/nd-

sql for more information about nD-SQL.

135

2 The Model
In this section, we propose a formal model for collec-

tions of relational databases. The highlights of this model

are: (i) It captures heterogeneous schemas of relational

databases arising in practice, treating data and schema

symmetrically; (ii) It gives a first class status to the three

physical dimensions implicit in the traditional relational

model ~ row, column, and relation; (iii) Using this, it gives

a precise meaning to representations of n-dimensional data

using three physical dimensions; (iv) it is straightforward

to incorporate (relational) data marts with the federation

model, and this is discussed at the end of the section.

We begin with the notion of a scheme. The size of prac-

tical database schemas, may be data dependent (e.g., the

number of columns of tse and the number of relations in

mse, in Figure l), unlike in the classical relational model.

Our notion of a “federation scheme”, proposed next, makes

it possible to elegantly view the scheme of a relation, a

database, or a federation, as a fired entity independent of

the contents in it, just as in the classical case. We as-

sume pairwise disjoint, infinite, sets of names, A!, values,

V, and id’s, 0. We use typewriter font for names (e.g.,

Measure) and roman for values (e.g., open), regardless of

what positions they appear in-- data or relation/column

label positions. Ids will always be clear from the context.

The partial function dom : N ~2 V maps names in JV to

their underlying domains of values. Names that only cor-

respond to relations or databases do not have associated

domains.

Definition 2.1 (Federation Scheme) A federated

name is a pair (N, X) where N E N is a name and X C N
is a finite subset of names, such that N@X. In a federated

name, the component N is referred to as the concept and

the set X as the associated criteria set. A federated name

(N, X) is simple (resp., complex) provided X = 0 (req.,

X # 0). We usually denote simple federated names (N, 0)

just as N, following the classical convention. A federated

attribute or relation name is any federated name. A feder-

ated relation scheme is of the form R(C1,. . , C,), where

R is a federated relation name and the C,s are all federated

attribute names. A federated database scheme is a set of

federated relation schemes, and a federation scheme is a

set of named federated database schemes.

The intuition behind the above definition is two-

fold: (1) A complex attribute (resp., relation) name

translates to a set of complex column (resp., re-

lation) labels in an instance. For example, the

complex attribute name (Price, {Measure, Ticker}) in

the scheme might correspond in an instance to the

:z?q IPrice

FOR Measure = low AND Ticker =

.) Price FOR Measure = close AND Ticker =

hp} of column labels. The federation scheme of the

instance shown in Figure 1 is: Si = {nyse: :prices(

Ticker, Date, Measure, Price), tse: :quotes(Ticker,

Date, (Price, {Measure})), bse: :prices(Date, (Price,

;p”

easure, Ticker})), mse: : (prices, {Ticker})(Date,

rice, {Measure}))}. Notice that in the instance shown

in Figure 1, the somewhat cryptic labels like “open” take

the place of the formal label “Price FOR Measure = open”.

We will return to this point later. (2) The notion of a

federated relation scheme formalizes the idea that certain

attribute domains are arranged along each of the three di-

mensions ~ relation, column, and row. Specifically, in an in-

stance of a federated relation scheme (e.g., mse: : (prices,

{Ticker})), domain values of relation criteria (Ticker) are

placed along the relation dimension, domain values of cri-

teria of complex columns (Measure) along the row dimen-

sion, and domain values of simple columns (Date) along

the column dimension.

Definition 2.2 (Federation Instance) Let S = {di ::

Rl(Cl!. . , Ck), . ,d, :: &(Di,. , D,)}, the d, not

necessarily distinct, be a federation scheme. Then a fed-

eration instance (instance for short) oj this scheme is a

7-tuple Z = (V, rel, col, tup, cone, crit, val), defined as jol-

lows.

‘D = {dl, . , dm}, i.e. ‘D consists exactly of the dis-

tinct database names mentioned in the scheme S.

rel : D-2’ as a junction that maps each database

name in V to a jinite set of relation id’s. Below, we

will use R = U,,, ret(d) to denote the set of all rela-

tion id’s in the instance.

col: Ri2L3 as a function thaf maps each relation id

to a finite set of column id’s,

tup is a junction that maps each relation id r in R

to a finite set of tuples tup(r) over the set of columns

CO(T).

cone : O-N is a function that maps each id to a

name, called its underlying concept.

crit : O+aN 1s a function that maps each id to a

finite set of names, namely its underlying set of crite-

ria.

val : O x N-V is a partial function that maps an id

and a name (viewed as (z possible criterion associated

with the id) to a value.

For example, an instance of the scheme S1 above is the

federation shown in Figure 1, intuitively speaking. There

are four database names- nyse, tse, bse, mse, each

of them having their associated simple/complex relations.

For instance, mse has the relations “ibm, ms, . ..I’. each

having the same set of column labels-- “Date, low, high,
1, . . . All these labels intuitively correspond to (relation

and column) id’s in the formal definition. The concepts

and criteria associated with these labels are typically not

recorded in real-life federations. However, intuitively, we

can understand that the concept associated with the label

“low” is Price and that the only associated criterion is

Measure. In the sequel, we shall refer to the formal notion

of instances defined above as abstract instances to distin-

guish them from the “real” (i.e. real-life) instances, defined

shortly. For an abstract instance to be a legal instance of

a federation scheme, certain consistency conditions should

be met.

Definition 2.3 (Legal Instances) Let T be an abstract

instance of a federation scheme S. Then T is said to be a

legal instance provided it satisfies the jolloming conditions.

136

db 1 relid rellabel rel-concept

nyse Tl (prices [prices

relid attrid attrlabel attrxoncept

9.1 al Ticker Ticker

id criteria

T4 1 Ticker 1

T5 Ticker

ai Heasure

at Ticker
.

a3 Measure

.

criteria

1. The following sets are pairwise disjoint: each set of

relation id’s associated with a given database, each set

of column id’s associated with a given relation.

2. Whenever a, b E coJ(r), a # b, and both a, b correspond

to complex attribute names, i.e. crit(a) # 0 # crit(b),

we require that crit(a) = crit(b). In words, the crite-

ria sets associated with any two complex columns in a

relation must be identical.

3. For each relation id r, for each tuple t E tup(r), for

a E coJ(r), we require t[a] E dom(conc(a)), i.e. the

relations must respect the types of the concepts asso-

ciated with their column labels.

4. For a E coJ(r) U reJ(d), r being any relation id, and d

being any database in V, and N E crit(a), we require

vaJ(a, N) E dam(N), i.e. the values associated with

criteria should belong to the appropriate domains.

In the sequel, when we refer to abstract instances, we mean

legal (abstract) instances.

Real Federations and Formal Model Bridged: Two

questions need to be addressed now: (1) How can real-

life federations be captured in the formal framework? (2)

How relevant is our formal notion of abstract federation

instances to practice, and specifically, for the purpose of

interoperability? To deal with question 1, we define real

instances.

Definition 2.4 (Real Instance) A real instance 3 of a

federation scheme S is simply a named collection of rela-

tional databases such that: (i) 3 contains a database cor-

responding to each database name d in S; (ii) each simple

(resp., complex) relation name R associated with a database

d in S corresponds to a relation label (resp., set of relation

labels) in 3; (iii) each simple (resp., complex) attribute

name A associated with a relation name R in database d

in S corresponds to a column label (resp., set of column

labels) in 3; (iv) all relation labels corresponding to a rela-

tion name R haue the 8ame set of associated column labels.

Given an abstract instance Z of a federation scheme S, it

is straightforward to construct a real instance F by turn-

ing the various id’s in Z into labels. We call such a real

instance 7 the real instance corresponding to the abstract

instance 1. The federation shown in Figure I is indeed the

real instance of the federation scheme &, corresponding

to the abstract instance sketched following Definition 2.2.

Notice that (i) the notions of concepts and criteria are not

present in the definition of a real instance; (ii) there is no

constraint on the labels chosen for the relations or columns.

ms

OpXl

ibm
. . .

low

Figure 2: The catalog database associated with the federation of Figure 1.

Indeed, in real-life federations, we may have no control over

the chosen labels, and the concept and criteria information

may not be explicitly present. Thus, the notion of real

instances captures real-life federations.

We next address question 2 above. We can connect ab-

stract and real instances by treating the various labels in

the real instance as though they were id’s, The actual

concepts and criteria associated with them, which are not

explicitly present, can be attached in a non-intrusive way

in the form of system catalog tables, formalized next.

Definition 2.5 (Catalog Database) The catalog

database associated with an abstract instance Z consists

of the following three relations (which we call catalog ta-

bles):

dbscheme(db, relid, rel-label, rel-concept) ,
relschemes(relid, attrid, attrlabel, attr-concept),

criteriacid, criteria, value) satisfying the following

conditions.

l the relation dbscheme contains a tuple (d, r, f?, c) ex-

actly when, according to 1, database d has a relation

with relation id r whose label is I! and underlying con-

cept is c.

l the relation relschemes has a tuple (r, a, e, c) exactly

when, according to Z, relation with id r has attrid a

as one of its associated attributes, k! is the label of a

while c is its underlying concept.

l the relation criteria has a tuple (i, CT,O) exactly

when, according to Z, the id i has CT as one of its

criteria which has the associated value II.

The catalog database associated with the federation of Fig-

ure 1 is shown in Figure 2.

We treat the database catalog as a distinguished database

from a formal viewpoint in that it always consists of the

three catalog tables defined above. We stress that casual

users do not have to expIicitly manipulate the catalog db.

For linking an abstract instance to its corresponding real

instance, we propose the notion of an augmented instance.

Let T be a real instance corresponding to an abstract in-

stance Z. The augmented instance associated with F and Z

is the federation obtained by adding to 1F the distinguished

database catalog, the catalog database associated with Z.

We then have the following theorem:

Theorem 2.1 Let S be a federation scheme. Then to ew-

ery abstract instance of S, there exists an equivalent (aug-

mented) real instance of S, and vice versa. .

137

Incorporating data marts: So far, we have focused at-

tention on relational databases. Many data marts (like

data warehouses) that are based on the so-called ROLAP

approach adopt a star schema or a snowflake schema for

their implementation. We call such data marts relational

data marts. It is easy to see that such schemas corre-

spond to federated schemas where both relation names and

attributes are simple. Thus, the notions of a federation

scheme and instance defined in Definitions 2.1 and 2.2

subsume relational data marts.

3 Syntax and Semantics of nD-SQL

In this section, we present the syntax of nD-SqL by ex-

plaining the additions made to SqL. The semantics of

nD-SCJL will be illustrated with examples. The complete

syntax of the language and a rigorous account of the se-

mantics can be found in [GL98]. Tables summarizing the

differences in syntax between SQL and nD-SqL are avail-

able at http://www.cs.concordia.ca/lspecial/bibdb/ndsql.

Throughout, we will use the federation of Figure I as a

running example to illustrate our queries.

3.1 Multi-dimensionality and Restructuring

nD-SqL uses the classic SELECT, FROM, WHERE, GROUP BY and

HAVING clauses of SqL, and adds to the syntax in several

manners. (1) FROM clause: In addition to declaring the

usual tuple variables (called ‘aliases’ in SqL), users can

now also declare variables ranging over database names,

a set of relations , or a set of columns of relation(s).

(2) WHERE clause: We introduce two new interpreted con-

straints which may be used in the WHERE clause to constrain

relation or column variables to range over a “homogeneous”

set of schema objects, i.e. over relations/columns having

the same concept and set of criteria. The use of such con-

straints will help ensure queries are “well-typed”, a notion

we will formally define at the end of the present section.

As an example of the use of variable declarations and of

proper constraints, here is what the FROM and WHERE clauses

could contain in order to query the data from Figure l(d):

FROM mse -> R, mse::R T, mse::R -> C

WERE R HASA Ticker AID C ISA Price

Here, R is a rel-var restricted to range over the relations of

database mse having Ticker values as criteria values, and C

is a clmn-var restricted to range over the columns of these

relations having Price dues as their underlying concept.

(3)SqL has a unique kind of domain expression,

tnple-var.attr (abbreviated as attr). In addition

to this, nD-SqL also has the domain expressions

tuple-var.clmn-var and C.criterion, where C is a rela-

tion/column variable and criterion is one of the criteria

of the relations/columns it ranges over. This expression

serves to extract criteria values. All of these domain ex-

pressions can be used in the SELECT and GROUP BY clauses,

and in conditions in the WHERE and HAVING clauses. We

define the underlying concept of a domain as follows:

Definition 3.1 (Underlying concept of a domain)

undcorac(domain) =

I
attribute if domain is of the form

tuple-var.attribute

criterion if domain is of the form

rel-var.criterion

criterion if domain is of the form

clmn-var.criterion

concept(clmnsar) if domain is of the form

tuple-var.clmn-var

where we refer to the concept of a complex column or rela-

tion over which a var ranges as concept(var). We will also

refer in the sequel to the set of criteria of the same column

or relation var as crit(var).

As an example of the use of each kind of domains, the

following query “flattens” the data from the tables of Fig-

ure l(d) into a form similar to table nyse: :prices:

SELECT R.Ticker, T.Date, C.Haasure,
T.C AS Price

(Ql) FROM mse -> R, mse::R T, mse::R -> C
WHERE R HASA Ticker AID C ISA Price

Note in this query, in addition to the use of the HASA/ISA

conditions to constrain the relation and column variables,

the extraction of the values of criteria C.Measure into a

column ofits own. The multiple columns that C ranges over

are aligned into a single column by the select..object T.C

AS Price. Here, each tuple of each table of Figure I(d) is

broken down into many output tuples, one per value of the

criterion Measure.

(4)In order to create complex columns and relations, we

need to deposit data values as criteria values. The syntax

for depositing data values as column criteria values is to

use the following new type of select-objects in the SELECT

clause:

domain0 [AS label] FOR (domain1 {, domaini}), i > 1

where the optional label can be any combination of con-

stant strings concatenated (using the “&” symbol) with

any combination of the domains domain,, j 2 1. Ex-

amples of labels could be: “Price for Year = “&T.Ticker,

“Price for “&T.Ticker, T.Ticker&“‘s Price” or even simply

T.Ticker. When no label (AS subclause) is present, appro-

priate default conventions for labels are used [GL98].

The use of the FOR subclause with a select-object indi-

cates that there should be a complex attribute with name

(undconc(domaino), {undconc(domainl), undconc(domainz),

. ..}) (see Definition 3.1) in the output relation schema.

The following example illustrates the use of this syntax by

transforming the content of nyse: :prices into a format

similar to the one of table tse: :quotes.

SELECT T.Ticker, T.Date,

(92) T.Price AS T.l4easure FOR T.Heasure

FROM nyse::prices T

Note in this query how the multiple Price columns are cre-

ated, one for each Measure values, by the use of the FOR

subclause. Note also how these Measure values are used as

column labels.

(5)To deposit data values as relation criteria, we englobe

all the select-objects of the SELECT clause in parentheses

and apply the following additional FOR subclause:

138

SumPrice FOR SumPrice FOR . . . SumPrice FOR SumPrice FOR . . .
Measure = open Measure = close Measure= open Measure = close ,.. . . .

6521K 5475K . . . 5905K 6308K . . .
output::10127)97 . . . output ::11(01197 . . .

Figure 3: Result of query q3

SELECT (select-objectslist) [AS label 1

FOR domain1 {, domaini}, i > 1

which indicates that a relation with name (relk,

{undconc(domainl), undconc(domaina), . ..}) should be

created. The relation concept relk is generated by the sys-

tem in order to prevent conflicts with other relation con-

cepts in the catalog.

The following example illustrates the creation of complex

relations, while an aggregation is performed.

SELECT (Sum(T.C) AS "SumPrice FOR
Measure = " & C.Measure FOR C.Heasure)
AS T.Date FOR T.Date

(93) FROM bse::prices -> C, bse::prices T
WERE C ISA Price
GROUP BY C.Reasure, T.Date

This query takes the aggregation of each individual Price

for a given Measure on a given Date (i.e. the aggrega-

tion is over Tickers). Here, note that the aggregation is

performed over a subset of the criteria of C. The aggrega-

tion is performed on T.C (i.e. Price values), grouping by

C .Measure (extracting the values of Measure) and T .Date.

The inner FOR subcJause restructures the sums into muJ-

tiple columns, one per value of Measure, while the outer

FOR subclause restructures the result into multiple rela-

tions, one per value of Date. The result of the query is

shown in Figure 3, where we assume all output relations

to be temporarily viewed as members of a database named

“output”.

Various abbreviations are acceptable in nD-SqL syntax

[GL98], whose details are suppressed for lack of space.

Well Typing: Intuitively, a query can be meaningful only

if it maps legal instances to legal instances. More precisely,

we have the following definition.

Definition 3.2 (Well-Typing) A nD-SQL query 9 is

well-typed provided for every legal instanced, q(Z), viewed

as an instance is also legal.

Ensuring well-typing is important for query processing, not

only to make sure the result presented to the user is mean-

ingful, but also for ensuring aggregations can be correctly

applied. Thus, an efficient algorithm for testing well-typing

is essential. We develop such an algorithm below.

It turns out that there are simple rules that the user can

follow in order to make sure a query is well-typed. In par-

ticular, let us call a query 9 well-formed, provided it satis-

fies the following conditions.

l relation variables must be restricted (by ISA and HASA

conditions) to range over relations having the same

concept and criteria set;

attribute variables must be restricted (by ISA and

HASA conditions) to range over columns having same

concept and same set of criteria;

all the complex columns created in the SELECT clause

have the same set of criteria;

The following is a syntactic characterization of well-typing.

Theorem 3.1 A query is well-typed if and only if it is

well-formed.

Theorem 3.1 immediately yields an algorithm for testing

well-typing: test whether the query satisfies the conditions

for being well-formed. We can test the latter in time linear

in the size of a given query [GL98].

3.2 Enhancing nD-SqL for OLAP: multiple vi-

sualizations and subaggregates

Since the proposal by Gray et al. [Gray+961 for the pow-

erful CUBE operator, researchers have developed several ef-

ficient algorithms for computing this expensive operator

[Agars96, ZDN97]. The CUBE operator corresponds to ag-

gregation at exponentially many granularities. It has been

recognized [Agar+96, ZDN97] that in practice, a user may

be interested in specific subsets of group-bys. Two such

examples are ROLLUP (e.g., {{Date, Ticker}, {Date}, {})

and its converse DRILLDOWN. While these operators are im-

portant, we contend that in general, depending on the ap-

plication at hand, users may be interested in subsets that

need not be covered by these operators (see Example 3.4

e.g.). In this section, we develop some simple extensions to

nD-SqL and show how they lead to a powerful mechanism

for expressing arbitrary subsets of group-bys. In addition,

we will also show that together with the restructuring ca-

pabilities of nD-SQL, this allows us to compute arbitrary

multiple granularity aggregations and visualize the results

in multiple ways. Following OLAP terminology, we refer

to each of the names in a federation scheme as a logical

dimension. More precisely, we have the following

Definition 3.3 (Logical Dimensions) The logical di-

mensions of a federated relation scheme R(C1,. , C,) are

the set of concepts of C, together with the set of criteria

of R, and of the complex columns among C,, 1 5 i 5 n.

Let Q be an nD-SQL query and let RI,. . . , R, be the set of

federated relation schemes mentioned in Q, Then the set

of logical dimensions associated with Q is the union of the

logical dimensions associated with R,, 1 5 i < m.

For example, the dimensions of each of the four federated

relation schemes in &, corresponding to the instance of

Figure 1 are Ticker, Date, Measure, Price. We do not

address the issue of dimension hierarchies in this paper.

The main enhancement to nD-SQL syntax is a new kind of

variable called dimension variable (declared as DIM var),

ranging over the names of all logical dimensions associated

139

with the query, except those being aggregated. An nD-SQL

query Q with dimension variables is equivalent to a set

of nD-SDL queries without dimension variables, obtained

by instantiating the dimension variables in Q to all possi-

ble combinations of dimension names that satisfy the con-

straints on the dimension variables, specified in the WHERE

clause of Q. We start with an extremely simple example

to illustrate the ideas.

Example 3.1

SELECT X, SM(T.Price)
(94) FROH nyse::prices T, DIM X

GROUP BY X

The only dimension variable is X. The only federated rela-

lion scheme mentioned in (q4) is nyse: :prices, whose as-

sociated dimensions are Date, Ticker, Measure, Price.

Of these, Price is being aggregated. So, the dimension

variable X ranges over the dimension names Date, Ticker,

andMeasure. The equivalent set of queries without dimen-
sion variables are as follows.

SELECT T.Ticker, SUH(T.Price)

(Q4a) FROM nyse::prices T
GROUP BY T.Ticker

SELECT T.Date, SUlJ(T.Price)

(Q4b) FROH nysa : : prices T

GROUP BY T.Date

SELECT T.Measure, SUH(T.Price)
(Q4c) FROM nyse : : prices T

GROUP BY T.Heasure

Thus, this query expresses the aggregation of T.F’rice with

respect to each of the three possible group-bys - Ticker,

Date, and Measure. .

Constraints on dimension variables include the standard

rel-ops =, 5, <, >, 2, #. We interpret them w.r.t. the lex-

icographic ordering of the dimension names. E.g., Date

< Ticker. We introduce a special constant, NONE, in-

spired by the special constant all introduced by Gray et

al. [Gray+96].’ We give this constant a special status

w.r.t. the way the rel-ops are interpreted. We assume:

(i) NONE Op NONE is always true for all rel-ops Op; (ii)

(dimension) < NONE is always true, for all dimension names

(dimension). Besides rel-ops, we also allow constraints in-
volving the IN operator, with the obvious semantics. Fi-

nally, we introduce a special type of constraint using which

we can allow a dimension variable to assume the value

NONE. This feature is particularly useful for specifying mul-

tiple granularity aggregations, as our examples will show.

Example 3.2 Let us now revisit the previous example and

see how we can express a CUBE of Price values over the

dimensions T. Ticker, T. Date and T .Measure.

SELECT X, Y, Z, SUR(T.Price)

FROH nyse::prices T, DIH X,Y,Z

(95) WHERE X < Y < Z AUD DIM CAR BE ROBE

GROUP BY X, Y, Z

2We simply find the nameYOEEmoreappropriate fortheuse
we have for this constant here.

In this query, X, Y and Z can each range over the di-

mension names {T.Ticker, T.Date, T.Measure, NONE}.

The condition X < Y < Z (an abbreviation for X < Y AND

Y < Z) further restricts the possible groupings. Finally, if

we modify the constraints on dimension variables to: X

IN {T.Date, NONE} AND Y IN {T.Measure, NONE} AND Z

IN {T.Ticker, NONE} AND X < Y < Z, then this produces

exactly the group-bys {T.Date, T.Measure, T.Ticker},

{T.Date, T.Heasure}, {T.Date}, and {}, corresponding

to ROLLUP. .

Our next example shows the interplay between multiple

granularity aggregation and restructuring.

Example 3.3

SELECT (AVG(T.Price) AS Y FOR Y) AS X FOR X
(QS) FROn nyse::prices T, DIM X, Y

YHERE DIHS IB CT.Date, T.Heasure, T.Ticker)
GROUP BY X, Y

This query generates all possible group-

ings of AVG (T. Price) along two logical dimensions among

Date, Measure and Ticker. Furthermore, it restructures

each particular grouping in multiple ways along (physical)

relation and row dimensions such that multiple visualiza-

tions of the same data are provided at once, as shown in

Figure 4(b). .

Our last example in this section illustrates the power of

nD-SQL to generate sets of multiple granularity aggrega-

tions which do not seem to be obviously expressible us-
ing a combination of operators like CUBE, ROLLUP and/or

DRILLDOWN.

Figure 4: (a) “neighborhood” operator (b) Visualiza-

tions or result of query q6

Example 3.4

Consider a relation db: :rel(A,B,C,D,E,F,G), and sup-

pose a user is looking at the result of SUM(G) grouped by

A,B ,C. It is very natural for the user to want to took at the
“neighborhood” of this group-by, 1 level below and above

{A,B,C} in the group-by lattice. Specifically, the user

might be interested in examining the group-by8 {A, B , C ,D},

{A,B,c,E}, {A,B,c,F}, {A,B}, {A,c}, and {B,c} which
form the neighborhood of {A,B,C} in the cube lattice. This

query can be expressed as follows.

140

SELECT Y, X, Y, Z, SUH(G)
(97) FROM db::rel T, DIH Y,X,Y,Z

WHERE u < X < Y < Z AID u 11 CA,B,C) AID
x 11 CA,B,C) Am Y In Ic, ROBE) AID
z II {D,E,F, rors)

Figure 4(a) depicts the “shape” oj this set of group-bys. It

is not clear how such a query can be expressed using known

operators. .

4 Query Processing
We will discuss in this section our approach to an efficient

implementation of the nD-SQL language. In order to sim-

plify the presentation, we will first cover the processing of

queries that do not involve dimension variables (Section

4.1). We will then discuss the processing of those queries

involving dimension variables (Section 4.3).

4.1 Processing of queries that do not involve

dimension variables

Overview: In order to efficiently process nD-SQL queries,

we will define a new Restructuring Relational Algebra

(RRA) which extends classical Relational Algebra (RA)

with restructuring operators. Thus, to process nD-SQL

queries we will translate them into equivalent RRA expres-

sions, just like SQL queries are translated into RA expres-
sions. We will then take advantage of the properties of the

RRA operators to optimize the expressions. We can also

take advantage of downward compatibility of RRA with

RA to push some of the processing to remote databases.

Our architecture is illustrated in Figure 6. Its highlights

are that it is non-intrusive, requiring minimal extensions

to existing technology, for deployment on top of existing

SQL systems.

T
3 1 Query Interface

& “I

rD - SQL to RRA Translator

4

I RRA Optimizer I

Source, Source 2 Source Ir

Figure 6: System Architecture

Restructuring Relational Algebra: RRA consists of

the classical RA operators (that we extend slightly), to-

gether with new restructuring operators. These address the

issues arising from: (i) complex relations and columns; (ii)

restructuring with a dynamic input and/or output schema.

Recall that in our model, simple columns of relations are

denoted as in the classical relational model, while com-

plex columns are of the form (concept FOR criteria =

G), where criteria is a list of criteria and v’ is a tu-

ple of values of the appropriate type for the criteria. In

formal definitions, we denote such complex columns as

(concept, tcri+,eria), where tcriteria is the tuple that
maps criteria to V: We sometimes refer to icriteria as

a criteria-tuple. A similar remark applies for complex rela-

tions. The operators of RRA are thus: 6, rI, W, ADD-COL,

REM-COL, ADDREL and AGG where the latter can be any

of the usual aggregation operators.

We first define the new operators, then explain how the

classical ones are extended.

Definition 4.1 (Add Criteria to Columns) The op-

eration ADD-COL,,jtLi,t,,,,,ti,t(rsl), crii%ist and concList

being sets of concepts, applied to a relation with name rel,

has the following effect. Let T be any instance of the rela-

tion name rel in the database. Then, the operation pro-

duces an output relation r’ with the same concept as r,

satisfying the following conditions.

l The column labels of r’ are cols(r’) = (cols(r) -

{C (C is a column of r with concept in critlist} -

(C) C is a column of r with concept in conclist}) u

{Cc7 tcritList) I c is a column of r with concept in

conclist} A 3 E r : t[critList] = tcritList}. Here

cols(r) is the set of column labels of r.

l The instance of r’ consists of a set of tuples over

cols(r’), defined as inst(r’) = {t (V(C,t,,itL& E

COlS(r’) - COh(r) : 39 E T : VA E COlS(r) n COlS(d) :

t[A] = s[A] A tcritl;ist = s[critList]

A tt(C,tcritList)l = s[cIl.

It should be noted that the column C could be a

simple or complex column, in the above definition.

As an illustration of the above operator, the ex-

pressloll ADD-COLM,,s,,,-p,i,, (we :: prices) would pro-

duce a relation with column labels similar to those of

tse: :quotes of Figure 1, and contents equivalent to those

of nyse : : prices. The resulting table, call it ny2t, is shown

in Figure 5.

Definition 4.2 (Remove Criteria from Columns)

The operation REM_COL,,i,Li,t(rel), critList being a list of

criteria, applied to a relation with name rel, has the jol-

lowing efiect. Let r be any instance of the relation name

rel in the database. Then, corresponding to each such re-

lation r, the operation produces an output relation T', with

the same concept as r, satisfying the following conditions.

l The column labels of r’ are cola(r’) = {A 1

A is a simple column in cols(r)} U {(A, tc)[C -

critList]) ((A, tc) is a complex column in co/s(r)} U

critlist.

l The instance of T' consists of a set of tuples over

cols(r’), defined as inst(r’) = {t 1 33 E r :

3 a criteria-tuple tc : (V simple column A E cols(r) :

t[A] = s[A]) A (V complex column (C,tc) E cols(r) :

t[(C, tc[C - critlist])] = s[(C, tc)]) A t[critList] =

tc[critListl}.

E.g., the expression REM-COLM,,,,,, (ny2t :: prices), ap-

plied to the relation ny2t: :prices of Figure 5, exactly

yields the relation nyse: :prices of Figure 1.

141

Figure 5: ny2t::prices

Ticker Date open close low . . .
ibm 10127197 63.67 62.56 62.00 . . .
.
UIS 11101197 ii.02 ii.50 44.60 :::

ny2m: : ibm ny2m : :ms

Figure 7: ny2m: :prices

Definition 4.3 (Add Criteria to Relations) The op-

e&ion ADDREL,,;,Li,t(rel), Crii%ist being a list of crite-

ria, applied to a relation with name rel, has the following

eflect. Let r be any instance of the relation name rel in the

database. Assume for simplicity that all criteria in critList

are concepts of simple columns in r. Then, corresponding

to each relation r, the operation produces multiple output

relations r’, with the same concept as T, and with criteria

critlist, that satisfy the following conditions.

l The column labels of every T’ are cols(r’) = cols(r) -

critList

l There is one output relation I-’ corresponding to r and

to each distinct critlist-value, say t,ritList, in r. Let

the label of this relation r’ be (rel, tcritlist
>I

).

l The instance of each (rel, tcritlist,,) consists of a

set of tuples over cols(r’), defined as inst(r’), = (1 1

39 E T : (VA E COIS(r’) : t[A] = s[A]) A tc,itList,l =

s[critList]}.

As an illustration of the above operator, the expres-

sion ADDRELTi,ker(lly2t :: prices) would produce mul-

tiple relations, with relation labels similar to those of

mse : : quotes of Figure 1, with column labels similar to the

ones of those relations, and contents equivalent to those of

ny2t: :prices. The resulting table is shown in Figure 7.

It turns out the converse of ADD-REL, call it REM-REL, is

not needed as an explicit operator, as its sense is built into

our query processing algorithms. We point the reader to

[GL98] for the details as well as for an algorithmic presen-

tation of the restructuring operators.

The classical RA operators are extended in the following

way: we allow that parameters to these operators refer to

one specific column instance of a complex column by us-

ing its label. We also also allow them to refer to the set

of instances of a complex column by using the column’s

concept. This serves as a shorthand to enumerating ev-

ery column label and applying the same operation to each

(e.g. TIprice (IlySS : : prices) denotes the projection of rela-

tion nyse: :quotes on the set of columns having concept

Price). This is perfectly compatible with RA since when a

column is simple, this abbreviation reduces to the classical

select or project.

In general, operators of our RRA commute provided cer-

tain conditions are met.

. . .

. . .

Theorem 4.1 Commutativity of operators.

0 ADDXOLpl+p2 [REM-COLp, (Table)] E

REM-COLP, [ADD-COLpl,p2 (Table) 1, provided the

sets of domains referred to in the parameter lists pl

and p3 are disjoint, and those in p2 and ps.

l Let RES-OP be either of REM-COL or ADDXOL

and NONRES-OP be any non-restructuring opera-

tor, then NONRES-OPp, [RES-OP,,, (Tab/e)] E

RES-OPp, [NONRES-OPT, (Table) 1, provided the sets

of domains referred to in the parameter lists pl and

pp are disjoint.

Translation from nD-SQL to RRA: As stated earlier,

the processing of nD-SQL queries is based on the translation

of said queries into equivalent RRA expressions. For lack

of space, we point the reader interested in details of the

translation algorithm to [GL98]. We will provide here a

very high level description of the algorithm.

Intuitively, we expect that the classical SQL parts of a query

translate into the corresponding classical RA operations

(e.g. selected objects in the SELECT clause become param-

eters of projections, conditions in the WHERE clause become

parameters to selections, etc). In addition to this, the new

parts of the syntax will induce additional operations. Re-

structurings are derived from both (i) the new FOR sub-

clauses of the SELECT clause, and (ii) those conditions of

the WHERE clause that involve some criteria.

The tables to which these operations will be applied are ob-

tained from the instantiations of the variables (both those

declared or those implicit that appear only after unfold-

ing an abbreviation). We note that while the information

necessary to instantiate non-tuple variables is contained in

the catalog tables, we need to pull data by querying re-

mote sources to instantiate tuple variables. We denote the

Variable Instantiation Table containing the instantiations

of a variable Vi by VIT-V,.

Consider query q8:

SELECT T.Date, C.Heasure,
T.C AS R.Ticker FOR ll.Ticker

(Q8) FROH mse -> R, mse::R T, mse::R -> C
WHERE R HASA Ticker AID C HASA Measure

AED T.Date > lOi
AID R.Ticker > 'rn' AID R.Ticker < 'n)

The following would be the equivalent RRA expression:

142

uVIT-T.Date>10129)97AVIT-R.Ticker>’m’l\V.Ti~k~~<~~~ (

VITR W VIT-T)] }

Note that it joins the necessary VITs, extracts the column

criteria Measure, adds the criteria Ticker to the Price

columns and applies the proper selections.

4.2 Optimization

Many opportunities for optimization arise from our use of

RRA in processing nD-SQL queries. Since RRA is down-

ward compatible with RA, and since the projections and

selections are commutative with the new restructuring op-

erators, we have the opportunity to push to remote sources

some computations.

A preliminary step in optimizing the computations con-

sists in ordering the instantiation of variables and using

the technique of sideways information passing (sip). This

becomes particularly important in order to determine what

database and/or relation to access to instantiate some tu-

ple variable. Equally important is the possibility of passing

bindings from a first instantiated variable to the query in-

stantiating a second one. This opportunity arises when a

join is called for between tables originating from two dis-

tinct sources. In some situations, we should delay instan-

tiating the second variable until we can pass as bindings

the values of the join attribute(s) obtained from the first

variable’s instantiations. These bindings would be passed

on as selections in an SQL query.

We can also use for optimization purposes the following

equivalences arising from the symmetry between our re-

structuring operators REM-COL and ADD-C• L:

Theorem 4.2 RRA expression equivalences.

l ADDXOLpl.+p2 [REM-COLp, (Table)]

= ADD-COL~~-~~ (Table),

ifp3 Cm Ap4 =PI -p3.

l ADD-COL~~-~~ [REM-COLT, (Table)]

3 REM-COLp, (Table),

ifpl Cp3Ap4 =p3-PI.

l ADD-COL~,,~, [REM-COLT, (Table)] z Table, if

PI = p3.

Another set of optimization rules rely on the following

heuristic:

Heuristic 4.1 It is in general more efficient to perform

join or restructuring on fewer tuples, albeit they be wider.
Since ADD-COL (in general) lowers the number of tuples and

REM-COL increases it, we derive the following additional

heuristics:

Derived Heuristics 4.1
l REM-COLp, [ADD-COLp,,Pz (T&e)] i3 more efiCient

than ADD-COL~~-~~ [REM-COLT, (Table)].

. If&Q andREM-COLP, can commute andpz only refers

to Tablez,

then REMXOLp, [Table1 WPI Table2] is more efi-

Gent than Table1 HP, [REM-COLT, (Tablez) 1, pro-

vided the join selectivity is higk3

3Recall, the higher the join selectivity, the fewer the tuples

that result from the join.

’ If wp, and ADD-COL~,,~, can commute and p2 and

ps refer only to Tablez,

then Table1 WP, [ADD-COL~~-~~ (Tablez)] is more

efficient than ADD-COL~,,~, [Table1 W,, Table2 1,

provided the join selectivity is low.

l If AGG~,, Pa and REM-COLA, are such that pl and p3

are disjoints but p3 C pz (pz is the group-by list) then

REM-COLP, [AGGpl,Pa (Table)] is more efficient than

AGGP1, PZ [REM-COLP, (Table)]

Another form of optimization would be to take advantage

of what we call “interleaving”. Interleaving is the efficient

implementation of a series of operators that are often called

for in cascade, similar to the way join is a more efficient

implementation of Cartesian product ‘interleaved’ with se-

lection. In RRA, we have pinpointed two such series of

operations: (1) A selection applied to the values of a col-

umn criterion without any restructuring being called for

should be implemented more efficiently than by first re-

moving the criteria, selecting on it, and adding it back.

(2) A selection applied to the values of the concept of a

complex column without any restructuring being called for

should also be implemented more efficiently than by re-

moving all criteria of that complex column, selecting on

the concept and adding all criteria back. We define two

new operators, II* and o* that capture the series of oper-

ations (1) and (2) respectively. For lack of space, we refer

their formal definition to [GL98].

4.3 Processing of queries involving dimension

variables

The most interesting (and challenging) class of queries of

this kind are the ones which involve aggregation, The key

idea in their processing is recognizing that they involve the

computation of a subset of group-bys from the cube lat-

tice. Such computations are referred to as partial cubes

[Agar+ 96, ZDN97]. ROLLUP is a common example of a par-

tial cube. See Example 3.4 for another intersting example

of a partial cube. The papers [Agar+96, ZDN97] discuss

how algorithms for computing the CUBE can be adapted for

computing partial cubes. Optimization of partial cubes is

a topic of its own interest and is orthogonal to this paper.

We mainly observe that queries with dimension variables

and aggregation may in general involve: (i) computing a

partial cube, and (ii) computing multiple visualizations of

the result. The processing of such queries can be organized

as follows:

(1) Identify the precise partial cube to be computed, by

instantiating the dimension variables in the query. (2) Ap-

ply any fast algorithm in the literature for computing the

partial cube. These algorithms can be made more efficient

by taking advantage of the implicit grouping provided by

column and relation criteria. (3) Apply the required re-

structuring operations for each group-by computed in step

(2). An interesting research problem is: how to interleave

the computation of the partial cube with the required re-

structuring for each group-by in the partial cube.

5 Implementation
The implementation of our nD-SQL Server follows the archi-

tecture described in Section 4 (see Figure 6). The platform

143

is IBM PCs running Windows 95. The system is built as an

external module, independent of the databases in the fed-

eration. The main components of the Server are: a Query

Interface, a Translator to go from nD-SClL to RRA, an RRA

Expression Optimizer, and an RRA Expression Executor.

The Query Interface accepts a user’s input query and veri-

fies well-typedness, giving back helpful messages to the user

if the query is ill-typed. Once a query is accepted by the In-

terface, the Translator creates the equivalent RRA expres-

sion which is sent to the Optimizer for a first pass. Then,

the SQL queries for tuple-var VIT creation are created from

the RRA expression and submitted to local databases, us-

ing sip to determine the order of submission, and passing

parameters from one result to another query. When all

the VITs are instantiat,ed the Optimizer finishes optimiz-

ing the RRA expression. The Executor then executes it,

using restructuring operations, and presents the final re-

sult to the user. The RRA operators are implemented in

Visual C++.

6 Comparison With Related Work
We compare our work with previously proposed extensions

to SqL, including SchemaSqL, and related work on multi-

database query optimization.

1. SQL Extensions: There have been numerous exten-

sions to SqL-like languages over the years, some inspired

by multi-database interoperability requirements ([Lit89,

GLRS93, SSR94, MR95]), some motivated by querying

OODBs ([KKS92, ASDt91, CL93]). An extensive compar-

ison between nD-SqL and many of these languages appears

in [GL98]. For lack of space, we merely observe that none

of the above languages have both the restructuring and

complex aggregation capabilities of nD-SqL. Important ex-

tensions to SqL inspired by OODB querying include Kifer

et al.% XSQL [KKS92], Ahmed at al.‘s HOSQL [ASD+Sl],

and Chomicki and Litwin’s OSQL [CL93]. XSQL permits

very complex and powerful queries, and the concern about

its effective and efficient implementability has not been ad-

dressed by its authors. Both HOSQL and OSQL do not al-

low ad hoc queries that refer to more than one component

database in one shot. Finally, it is not clear that the se-

mantics of HOSQL, OSQL, and XSQL are downward com-

patible with SQL. The powerful emerging standard for SqL3

([SQL96, Bee93]) supports ADTs, oid’s, and external func-

tions, but to our knowledge, does not directly support the

kind of higher-order features for meta-data manipulation

as in nD-SqL; programming such features would thus be too

low level and tedious. Some of the expressions for extract-

ing domain values and values of criteria in nD-SqL resemble

the path expressions of IlqL [Cat96]. However, there seems

to be no direct facility for restructuring in OqL.

Two noteworthy extensions to SqL from the vendor side are

DB2/SqL [DB296] and ORACLE/SqL [ORA]. Of these,

DB2/SqL is being incorporated in DataJoiner, IBM’s new

middleware for interoperability, and supports queries in-

volving joins of tables from multiple DBMS in one select

statement. As far as we know, restructuring and complex

forms of aggregation of the kind supported in nD-SClL are

not directly supported at a high level. ORACLE/SqL’s

DECODE feature is worth noting, since it permits some lim-

ited form of cross-tabbing. This is far too limited compared

to the restructuring capabilities of nD-SqL.

Finally, Ross [Ros92] and Gyssens et al. [GLS96] are two

recently proposed algebras which have the power of ma-

nipulating meta-data. Of these, [Ros92] has limited re-

structuring capabilities, while [GLS96] has been shown to

be complete for all generic restructuring transformations.

However, both languages do not handle aggregation. A

comparison between nD-SQL and a whole class of related

logics is given in [GL98]. Ross et al. [SRC97] generalize

CUBE into a multi-feature CUBE, and propose fast algorithms

for computing queries involving this operator. Their con-

tributions and those of this paper are complementary.

2. SchemaSqL: SchemaSaL is a multi-database interopera-

ble query language proposed by one of the authors [LSS96],

capable of restructuring and complex aggregations, and is

the closest language to nD-SqL. In particular, our syntax

for database, relation, and column variables was inspired

by SchemaSqL. However, there are the following major dif-

ferences between the two languages. (1) Lack of typing:

SchemaSqL offers no aids to the programmer to control an

indiscriminate use of column/relation variables. This can

lead to “ill-typed” and meaningless queries; e.g., it is easy

to write a query in SchemaSqL that puts all values appear-

ing in all columns of bse: :prices into one output col-

umn! In the presence of aggregation, this is a very serious

problem. (2) Limited restructuring: At most one attribute

domain can be placed in the relation/column dimension;

e.g., one cannot transform the data in tse: :quotes to

the representation similar to bse: :prices. Besides, un-

like nD-SqL, only views, and not queries, can express re-

structuring, leading to an unpleasant asymmetry. (3) Loss

of meta-data: The underlying model of SchemaSqL cannot

keep track of meta-data against restructuring; e.g., when

nyse: :prices is restructured into the schema of mse, the

fact that ‘ibm’ is a Ticker is lost. In nD-‘SQL, the notions

of concepts and criteria are rich enough to always retain

meta-data. (4) Limited subaggregation: SchemaSqL does

not allow many subaggregates; e.g., it is impossible to com-

pute the daily total price (over all stocks) for each measure

type in bse: :prices. By contrast, this is straightforward

in nD-SqL(e.g., see query (q3), page 6). (5) Multiple gran-

ularity: One of the strengths of nD-SQL is its ability to ex-

press multiple granularity aggregation, possibly together

with multiple visualizations (see Section 3.2), something

SchemaSqL cannot do. On the query processing side, un-

like [LSS96], we give an algebra and exploit its properties

for query optimization.

3. Multi-database Query Optimization: Much work has

been done in the context of multi-database query optimiza-

tion, particularly in integrating data sources with diverse

capabilities. See Haas et al. [Haa97] for a survey. Du

et al. [DKS92], Qian [Qia96] and Florescu et al. [Flo95]

are related works studying query optimization in multi-

database systems. Our concern in query optimization in

this paper is different: we focus on algebraic optimization

of queries across multiple relational databases with hetero-

geneous schemas, where queries can involve attribute/value

conflicts, restructuring, and complex OLAP-style aggrega-

144

tion. To our knowledge, optimization in such a setting is

new. There are many interesting open research problems

in this context, which we are currently investigating.

Acknowledgments
This research was supported by a grant from the Natu-

ral Sciences and Engineering Research Council of Canada

(NSERC).

References

[Agar+96]

[ASD+Sl]

[Bee931

[Cat961

[CD971

[CL931

[DB296]

[DKS92]

[Flog51

(CL971

[GL98]

[GLRS93]

[GLS96]

[GLS+97]

Agarwal, S. et al. On the Computation of Multidi-

mensional Aggregates In PTOC. 28nd VLDB Conf.,

1996.

Ahmed, Ft., Smedt, P., Du, W., Kent, W., Ketabchi,

A., and Litwin, W. The Pegasus Heterogeneous

Multidatabase System. IEEE Computer, December

1991.

Beech, D. Collections of Objects in SqL3. In Proc.

19th VLDB Co@., 1993.

Cattell, R.G.G. The Object Database Standard:
ODMG-93 Release 1.2. Morgan-Kauffmamr, San

Francisco, CA, 1996.

Surajit Chaudhuri and Umesh Dayal. An Overview

of Data Warehousing and OLAP Technology, Tuto-
rial - VLDB’96 and SIGMOD’97, SIGMOD Record

‘97.

Chomicki, J. and Litwin, W. Declarative Defini-

tion of Object-Oriented Multidatabase Mappings.

In Ozsu, M.T, Dayal, U, and Valduriez, P, edi-

tors, Distributed Object Management. M. Kaufmann
Publishers, Los Altos, California, 1993.

IBM DB2 for MVS/ESA Version 5 , 1996. - Pro-
grammer’s Manual.

Weimin Du, Ravi Krishnamurthy, and Ming-Chien
Shan. Query Optimization in a Heterogeneous

DBMS. In PTOC. Int. Conf. on Very Large Data
Bases., pages 277-291, Dublin, Ireland, 1992.

Florescu, D. Using Heterogeneous Equivalences for
Query Rewriting in Multi-Database Systems. In

PTOC. 23rd Int. COnf. on Cooperative Information

Systems, 1995.

Marc Gyssens and Laks VS. Lakshmanan. A Foun-

dation for Mulit-Dimensional Databases. In PTOC.

83rd Int. Conf. on Very Large Data Bases, pages

106-115, Athens, Greece, August 1997.

Gingras, Frederic and Lakshmanan, Laks V.S. De-
sign and Implementation of nD-SQL, a Multi-

Dimensional Language for Interoperability and

OLAP. Technical report, Concordia University,
Montreal, Canada, in preparation.

Grant, J. , Litwin, W., Roussopoulos, N., and Sellis,

T. Query Languages for Relational Multidatabases.
VLDB Journal, 2(2):153-171,1993.

Gyssens, Marc, Lakshmanan, Laks VS., and Sub-
ramanian, Iyer N. Tables as a Paradigm for Query-

ing and Restructuring. In PTOC. ACM Symposium
on Principles of Database Systems (PODS), June
1996.

Gingras Frederic, Lakshmanan Laks VS., Subrama-

man Iyer N., Papoulis, Despina, and Shiri, Nematol-

lash. Languages for Multi-database Interoperability.
In Joan S. Peckham, editor, PTOC. of the ACM SIG-

MOD, Tucson, Arizona, May 1997. Tools Demo.

[Gray+961

[Haa97]

[KGK+95]

[KLKSI]

[KKS92]

[Lit891

[LSS96]

[MR95]

PR-4

[Qia96]

[RosSa]

[SRC97]

[SQL961

[SSR94]

[ZDN97]

Gray, J. and Bosworth, A. and Layman, A. and Pi-
rahesh H.. Data Cube: A Relational Aggregation

Operator Generalizing Group-By, Cross-Tab, and

Sub-Totals In PTOC. oj the 12th Intl. Conj. on Data
Engineering (ICDE), 1996.

Haas Laura et al. Optimizing Queries Across Di-

verse Data Sources. In PTOC. 23rd Int. Conf. on VeTy

Large Data Bases, pages 276-285, Athens, Greece,
August 1997.

Kelley, W., Gala, S. K., Kim, W., Reyes, T.C., and
Graham, B. Schema Architecture of the UniSQL/M

Multidatabase System. In Modern Database Sys-

tems. 1995.

Krishnamurthy, R., Litwin, W., and Kent, W. Lan-

guage Features for Interoperability of Databases

With Schematic Discrepancies. In ACM SIGMOD

Intl. Conference on Management of Data, pages 4O-
49, 1991.

Kifer Michael, Kim Won, and Sagiv Yehoshua.
Querying Object-Oriented Databases. In PTOC.

ACM SIGMOD Intl. Conj. on Management of
Data, pages 393-402, 1992.

Litwin, W. MSQL: A Multidatabase Language. In-

formation Science, 48(2), 1989.

Lakshmanan L.V.S., Sadri F., and Subramanian, I.
N. SchemaSQL - a Language for Querying and Re-

structuring multidatabase systems. In Proc. IEEE

Int. Conj. on Very Large Databases (VLDB’96),

pages 239-250, Bombay, India, September 1996.

Missier, P. and Rusinkiewicz, Marek. Extending a
Multidatabase Manipulation Language to Resolve

Schema and Data Conflicts. In PTOC. Sixth IFIP

TC-2 Working Conf. on Data Semantics (DS-6),

Atlanta, May 1995.

Oracle7 Server SQL Reference. available from:

http://www.oracle.com/documentation/sales/html
/o7sqlref.html.

Xiaolei Quian. Query Folding. In PTOC. IEEE Int.

Conj. on Data Eng., New Orleans, LA, February
1996.

Ross, Kenneth. Relations With Relation Names as

Arguments: Algebra and Calculus. In Proc. 11 th

ACM Symp. on PODS, pages 346-353, June 1992.

Kenneth A. Ross and Divesh Srivastava and Dami-

anos Chatziantoniou. Complex Aggregation at Mul-
tiple Granularities. In Proc. International Conjer-

ence on Extending Database Technology (EDBT),

March 1998.

SQL Standards Home Page.
SQL 3 articles and publications, 1996.

URL: www.jcc.com/sqlarticles.html.

Sciore, E., Siegel, M., and Rosenthal, A. Using Se-
mantic Values to Facilitate Interoperability Among

Heterogeneous Information Systems. A CM Trans-
actions on Database Systems, 19(2):254-290, June

1994.

Yihong Zhao, Prasad M. Deshpande, and Jeffrey F.
Naughton. An Array-Based Algorithm for Simulta-

neous Multidimensional Aggregates In PTOC. A CM

SIGMOD Intl. Conj. on Management of Data,

pages 159-169, Tucson, Arizona, 1997.

145

