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Abstract

In this paper, we propose a novel Convolutional Neu-

ral Network (CNN) structure for general-purpose multi-task

learning (MTL), which enables automatic feature fusing at

every layer from different tasks. This is in contrast with

the most widely used MTL CNN structures which empiri-

cally or heuristically share features on some specific lay-

ers (e.g., share all the features except the last convolutional

layer). The proposed layerwise feature fusing scheme is for-

mulated by combining existing CNN components in a novel

way, with clear mathematical interpretability as discrimina-

tive dimensionality reduction, which is referred to as Neural

Discriminative Dimensionality Reduction (NDDR). Specif-

ically, we first concatenate features with the same spatial

resolution from different tasks according to their channel

dimension. Then, we show that the discriminative dimen-

sionality reduction can be fulfilled by 1 × 1 Convolution,

Batch Normalization, and Weight Decay in one CNN. The

use of existing CNN components ensures the end-to-end

training and the extensibility of the proposed NDDR layer to

various state-of-the-art CNN architectures in a “plug-and-

play” manner. The detailed ablation analysis shows that

the proposed NDDR layer is easy to train and also robust

to different hyperparameters. Experiments on different task

sets with various base network architectures demonstrate

the promising performance and desirable generalizability

of our proposed method. The code of our paper is available

at https://github.com/ethanygao/NDDR-CNN .

1. Introduction

Deep convolutional neural networks (CNNs) have

greatly pushed the previous limits of various computer vi-

sion tasks since the seminal work [20] in 2012. CNN

models can naturally integrate hierarchical features and

classifiers, which can be trained in an end-to-end man-

* indicates corresponding authors.

ner. Benefiting from that, significant improvements have

been witnessed in fundamental computer vision tasks, such

as image classification [14–16, 20, 45], object detection

[8, 9, 13, 25, 35, 36, 42–44, 47, 48, 50], semantic segmenta-

tion [1–5, 27, 33, 37, 51], etc.

One of the main factors that can further boost the CNN

performance is multi-task learning (MTL), which is en-

gaged in learning multiple related tasks simultaneously.

This is because related tasks can benefit from each other

by jointly learning certain shared, or more precisely, mu-

tually related representations [13, 19]. The multiple super-

vision signals originating from different tasks in MTL can

be viewed as implicit data augmentation (on labels) or ad-

ditional regularization (among different tasks) [39]. This

enables to learn mutually related representations that work

well for multiple tasks, thus avoiding overfitting and leading

to better generalizability.

Most commonly, the CNN structure for MTL is heuris-

tically determined by sharing all convolutional layers, and

splitting at fully-connected layers for task-specific losses.

However, as different layers learn low-, mid-, and high-level

features [57], a natural question arises: Why would we as-

sume that the low- and mid-level features for different tasks

in MTL should be identical, especially when the tasks are

loosely related? If not, is it optimal to share the features

until the last convolutional layer?

The study in Misra et al. [31] reveals that shar-

ing/splitting at different layers gives different performances.

Especially, improper features sharing at some layers may

degrade the performance of some, or even all, tasks. In ad-

dition, the deep nature of CNNs makes it infeasible to ex-

haustively test all the possible structures to find the optimal

sharing/splitting scheme. In order to tackle this issue, Misra

et al. used trainable scalars to weighted-sum the features

from different tasks at multiple CNN levels and achieved

state-of-the-art performance [31].

We consider this problem in another way, i.e., by lever-

aging all the hierarchical features from different tasks. This

is because that the CNN layers trained by different tasks can

be treated as different feature descriptors, therefore the fea-
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tures learned from them can be treated as different represen-

tations/views of input data. We hypothesize that these fea-

tures, obtained from multiple feature descriptors (i.e., dif-

ferent CNN levels from multiple tasks), contain additional

discriminative information of input data, which should be

exploited in MTL towards better performance.

Specifically, starting with K single-task networks (from

K tasks), a direct attempt to take advantage of hierarchi-

cal features from all the tasks is that: we may concatenate

all the task-specific features with the same spatial resolu-

tion from different tasks according to the feature channel

dimension. After that, we expect the CNN to learn a dis-

criminative feature embedding for each task, by receiving

these concatenated features as inputs. However, most exist-

ing CNNs have carefully designed structures, which only

receive features (tensors) with a fixed number of feature

channels. By concatenating features, we substantially en-

large the number of channels as K times if we have K tasks.

This makes it impossible to feed these concatenated features

to the following layers of the CNN.

This property of the CNN motivates us to conduct dis-

criminative dimensionality reduction on the concatenated

features. Its purpose is to learn a discriminative feature

embedding, and to reduce the feature dimension such that

it can satisfy the input channel requirement of the follow-

ing layers. Feature transformation is one of the most im-

portant approaches to tackle the discriminative dimension

reduction problem. It aims to learn a projection matrix

that projects the original high-dimensional features into a

low-dimensional representation, while keeping as much dis-

criminative information as possible.

In this paper, we show that, from the perspective of fea-

ture transformation, discriminative dimensionality reduc-

tion is closely related to some common operations of mod-

ern CNNs. Specifically, the transformation in discrimina-

tive dimensionality reduction is in fact equivalent to the

1 × 1 convolution. In addition, the constraints on the norm

of the transformation weights (i.e., the weights of the 1× 1
convolutional layer) and input feature vectors can be repre-

sented by weight decay and batch normalization [17], re-

spectively. We refer to the combination of these opera-

tions as Neural Discriminative Dimensionality Reduction

(NDDR). Therefore, we are able to link the original single-

task networks from different tasks by the NDDR layers. De-

sirably, the proposed network structure can be trained end-

to-end in the CNN without any extraordinary operations.

It is worth noting that this paper focuses on a general

structure for general-purpose MTL. The proposed NDDR

layer combines existing CNN components in a novel way,

which possesses clear mathematical interpretability as dis-

criminative dimensionality reduction. Moreover, the use of

the existing CNN components is desirable to guarantee the

extensibility of our method to various state-of-the-art CNN

architectures, where the proposed NDDR layer can be used

in a “plug-and-play” manner. The rest of this paper is or-

ganized as follows. First, we describe the NDDR layer and

propose a novel NDDR-CNN as well as its variant NDDR-

CNN-Shortcut for MTL in Sect. 3. After that, we discuss

the related works in Sect. 2, where we show that our method

can generalize several state-of-the-art methods, which can

be treated as our special cases. In Sect. 4, the ablation anal-

ysis is performed, where the hyperparameters used in our

network are suggested. Following that, the experiments are

performed on different network structures and different task

sets in Sect. 5, demonstrating the promising performance

and desirable generalizability of our proposed method. We

make concluding remarks in Sect. 6.

2. Related Works

Various computer vision tasks benefit from MTL [41],

such as detection [8,9,13,36,42–44,50], human pose and se-

mantic segmentation [52], surface normal prediction, depth

prediction, semantic segmentation [6], action recognition

[53, 54], etc. Several human face related tasks, includ-

ing face landmark detection, attributes detection (such as

smile and glasses), gender classification, and face orienta-

tion, were studied in [12,34,49]. Yim et al. used face align-

ment and reconstruction as auxiliary tasks for face recogni-

tion [56]. MTL on sequential data was also studied in [24].

Recently, Kokkinos proposed a UberNet which enables a

great number of low-, mid-, and high-level vision tasks to

be handled simultaneously [19].

CNN based MTL theory has also been greatly devel-

oped in recent years. Long and Wang proposed a deep

relationship network to enable the feature sharing at the

fully-connected layers [28]. Starting with a thin network, a

top-down layerwise widening method was proposed to au-

tomatically determine which layer to split [29]. Yang and

Hospedales used tensor decomposition at initialization to

share the MTL weights [55]. The weights to combine the

task-specific losses were also studied, and a Bayesian ap-

proach was proposed to predict these weights [18]. The

cross-stitch network used trainable scalars to fuse (i.e.,

weighted sum) the features at layers in the same level from

different tasks [31]. Most recently, the sluice network pre-

defines several subspaces on the features from each task and

learns the weights to fuse the features across different sub-

spaces [40].

Our method is also related to discriminative dimension-

ality reduction. The goal of the discriminative dimensional-

ity reduction techniques is to reduce the computational and

storage costs, by learning a low-dimensional embedding

that retains most of the discriminative information. Linear

discriminant analysis (LDA) is one of the most popular con-

ventional discriminative dimensionality reduction methods,

which aims to seek the optimal projection matrix by maxi-
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mizing the between-class variance and meanwhile minimiz-

ing the within-class variance [30]. In addition, low-rank

metric learning [26] can also be viewed as a discriminative

dimensionality reduction technique.

Introduced by network in network [22], 1 × 1 convolu-

tion has been widely used in many modern CNN architec-

tures [14, 16, 23, 46]. For example, it was used in ResNet to

reduce the number of weights to train, by producing a “bot-

tleneck unit” [14]. 1 × 1 convolution is also implemented

in the feature pyramid network to fuse hierarchical features

(in different CNN levels) on a single task [23]. Note that we

do NOT claim the 1×1 convolution as our novelty. Instead,

we use 1× 1 convolution together with batch normalization

and weight decay in a novel way, which yields an NDDR

layer. In other words, we formulate the multi-task feature

fusing paradigm as a discriminative dimensionality reduc-

tion problem, and use the NDDR layer, which is composed

of 1 × 1 convolution, batch normalization, and weight de-

cay, to learn the feature embeddings from multiple tasks.

The use of the existing CNN components ensures the ex-

tensibility of our method to various state-of-the-art CNN

architectures in a “plug-and-play” manner.

3. Methodology

In this section, we propose a novel method to automati-

cally learn the optimal structure for layerwise feature fusing

in a multi-task CNN. Instead of the “split-style” multi-task

CNN (e.g., split at the last convolutional layer for different

task-specific losses), we consider the “fuse-style” network

combining multiple single-task networks via discriminative

dimensionality reduction.

We first relate the discriminative dimensionality reduc-

tion to 1 × 1 convolution and propose the NDDR layer.

Then, a novel multi-task network is proposed, namely

NDDR-CNN, where the NDDR layer is leveraged to con-

nect the original single-task networks. Moreover, a vari-

ant of NDDR-CNN is introduced, namely NDDR-CNN-

Shortcut, which enables to directly route the gradients to the

lower NDDR layers by shortcut connections. Finally, we

give the implementation details of the proposed network.

3.1. NDDR Layer

As discussed in previous sections, we aim to utilize the

hierarchical features learned from different tasks. It is un-

like the most widely used method which heuristically shares

all the low-(and mid-) level features and splits the network

at the last convolutional layer.

In order to do that, we first concatenate the task-specific

features from different tasks according to the channel di-

mension. Then, we use a discriminative dimensionality re-

duction technique to reduce the feature channels such that

the output features satisfy the channel dimension require-

ment of the next CNN layers. We refer to the new CNN

layer with such operations as the Neural Discriminative Di-

mensionality Reduction (NDDR) layer.

Specifically, let F i
l ∈ R

N×H×W×C be the output fea-

tures (arranged in a tensor) at an intermediate layer l of task

i. Regarding K tasks, concatenating the features from them

according to the channel dimension gives:

Fl = [F 1

l , ..., F
K
l ] ∈ R

N×H×W×KC . (1)

Discriminative dimensionality reduction learns a trans-

formation W to reduce the dimensionality of the input fea-

tures, while keeping most discriminative information:

F i∗
l = FlW

i, (2)

where W i ∈ R
KC×M and M < KC is the projection ma-

trix to be learned for each task i. In our case, M is equal to

C (i.e., F i∗
l ∈ R

N×H×W×C) in order to satisfy the channel

size requirement of the following CNN layers.

Conventional discriminative dimensionality reduction

methods learn the transformation W with specific assump-

tions/objectives which make the features more separable.

For example, Linear Discriminative Analysis (LDA) learns

W by minimizing the projected within-class variation and

meanwhile maximizing the projected between-class varia-

tion [30]. Intuitively, the objective function of the discrimi-

native dimensionality reduction is related to the CNN loss,

i.e., the features projected by discriminative dimensional-

ity reduction are more separable, therefore giving a smaller

CNN loss.

Motivated by this, we aim to learn the transformation W
in the CNN implicitly by back-propagation. The transfor-

mation W ∈ R
KC×C can be represented precisely by a

convolution operation with stride 1 and size (C × 1 × 1 ×
KC), where these size dimensions represent filters, kernel

height, kernel width, and channels, respectively. It is worth

noting that the convolution with 1 × 1 kernel size and 1

stride enables to perform the computations only according

to channels, rather than fusing the features at different spa-

tial locations or changing the spatial sizes of the features.

In addition, discriminative dimensionality reduction

methods also have constraints on the norms of the transfor-

mation W (to avoid a trivial solution) and the input features

Fl (otherwise, the learned projections may project the fea-

tures to some noise directions). We borrow this idea to our

NDDR layer for stable learning, which can be achieved by

imposing batch normalization on the input features and ℓ2
weight decay on the 1×1 convolutional weights W , respec-

tively.

In summary, a novel NDDR layer is proposed in this sec-

tion. The NDDR layer can be constructed by: 1) concate-

nating the task-specific features with the same spatial reso-

lution from different tasks according to the channel dimen-

sion, and 2) using 1×1 convolution to learn a discriminative
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Figure 1. The network structure of NDDR-CNN. In the NDDR layer, we concatenate the outputs of original single-task networks from

multiple tasks (two tasks shown here), and use 1×1 convolution to perform discriminative dimensionality reduction. Therefore, the output

of the NDDR layer retains the discriminative information from both the input features, and can be fed to the following layers of the single-

task networks. The proposed NDDR layer can be leveraged to connect the original single-task networks of multiple levels for layerwise

feature fusing (best view in color).

feature embedding for each task. We also use batch normal-

ization on the input features of the NDDR layer for stable

learning. We train the NDDR layer by back-propagating the

task-specific losses and the ℓ2 weight decay loss on the 1×1
convolutional weights W . Without any extraordinary oper-

ations, the network with our NDDR layer can be trained in

an end-to-end fashion.

3.2. NDDRCNN Network

We insert the NDDR layers in multiple levels of the orig-

inal single-task networks, to enable layerwise feature fus-

ing/embedding for different tasks. We refer to the proposed

network for MTL as the NDDR-CNN network.

Figure 1 shows the NDDR-CNN network structure for

two tasks. It can easily be extended to K-task problems.

Let the number of channels for the single-task features be

D. Then NDDR-CNN for K tasks can be constructed by:

1) concatenating the features from K tasks according to the

channel dimension, and 2) using 1 × 1 convolution with

(filters ×1× 1× channels) = (C × 1× 1×KC) to conduct

dimensionality reduction, where C is the channel dimension

size of the output features from each task.

Note that the elements of the NDDR layer are common

CNN operations, which ensures that the proposed NDDR

layer can be extended to various state-of-the-art CNN ar-

chitectures in a “plug-and-play” manner.

3.3. NDDRCNN Network with Shortcuts

In order to avoid gradient vanishing at lower NDDR lay-

ers, we propose a new network that enables to pass gradients

directly from the last convolutional layer to the lower ones

via shortcut connections, namely NDDR-CNN-Shortcut.

Figure 2. The NDDR-CNN-Shortcut network. In NDDR-CNN-

Shortcut, we use shortcut connections to enable gradients to di-

rectly route to the lower NDDR layers. This is done by resizing the

lower NDDR output to the spatial size of the last NDDR output,

then concatenating the resized features of the same task according

to the channel dimension, and finally using 1 × 1 convolution to

do dimensionality reduction (best view in color).

Specifically, the output of each NDDR layer is resized to

the spatial sizes of the last convolutional output. Then we

concatenate all the resized feature maps of the same task

from different layers together according to the channel di-

mension. Finally, in order to fit the input size of the fol-

lowing fully-convolutional/connected layers, we further use

1 × 1 convolution to learn more compact feature tensors

(e.g., in the VGG network, we reduce the channel dimen-

sion of concatenated features to 512). An illustration of the

NDDR-CNN-Shortcut network is shown in Fig. 2.

3.4. Relationship to Stateoftheart Methods

Our method is closely related to the cross-stitch net-

work [31]. In order to seek the optimal network struc-
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ture for MTL, the cross-stitch network [31] uses trainable

scalars to scale the features at layers in the same level from

different tasks, and then adds them together as new fea-

tures. Our work is related to the cross-stitch network but

has three major differences: 1) We have different motiva-

tions, i.e., our work is motivated by learning discrimina-

tive low-dimensional embeddings on the concatenated fea-

tures from multiple tasks. 2) Our method can generalize

the cross-stitch network by fixing the off-diagonal elements

of the projection matrix to 0, and only updating the diag-

onal elements with the same value (i.e., update the projec-

tion matrix by α and β in Eq. (3)). 3) We further propose

an NDDR-CNN-Shortcut model, which further uses hierar-

chical features from different CNN levels for better train-

ing and convergence. Similarly, our network also takes the

sluice network [40] as a special case: the sluice network

predefines a fixed number of subspaces to fuse the features

from different tasks between different subspaces (each con-

tains multiple feature channels), while our model can auto-

matically fuse the features according to each single channel.

3.5. Implementation Details

Note that the state-of-the-art convolutional network ar-

chitectures such as VGG [45], ResNet [14], and DenseNet

[16] typically group similar operations into stages/blocks,

where each stage contains {convolution-activation}n (pos-

sibly with pooling). In order to make the least modification

to the baseline network architecture to investigate the per-

formance of the proposed NDDR layer, we only connect

the two networks by applying the NDDR layer at the end of

each stage/block. For example, we apply the NDDR layers

at the outputs of pool1, pool2, pool3, pool4, and pool5 for

the VGG network. Similarly, as much deeper as ResNet

is, we still apply only 5 NDDR layers in it, e.g., at the

outputs of conv1n3, conv2 3n3, conv3 4n3, conv4 6n3, and

conv5 3n3 for ResNet-101. Also, it is worth noting that the

additional parameters introduced by the NDDR layers are

also very few with respect to those for the whole networks.

For example, when applying NDDR layers at pool1, pool2,

pool3, pool4, and pool5 of the VGG-16 network, the addi-

tional parameters for the NDDR layers are only 1.2M, being

0.8% compared to the original 138M parameters of the en-

tire VGG-16.

4. Ablation Analysis

In this section, several ablations have been done to ana-

lyze NDDR-CNN. Two factors about the NDDR layers are

analyzed, i.e., different 1 × 1 convolutional weight initial-

izations, and the scales of the “base” learning rate (i.e., the

learning rate for the remaining network) to train the NDDR

layers. We also analyze which pretrained weights should be

used as initialization, i.e., the weights trained on ImageNet

or different single tasks. We use a two-task problem here

and in the following sections. For the ablation analysis, we

use semantic segmentation and surface normal prediction.

Dataset. The NYU v2 dataset [32] is used for semantic

segmentation and surface normal prediction. We use the of-

ficial train/val splits which include 795 images for training

and 654 images for validation. For semantic segmentation,

the NYU v2 dataset contains 40 classes such as beds, cabi-

nets, clothes, books, etc. [11]. The NYU v2 dataset also has

the pixel-level surface normal ground-truths precomputed

by the depth labeling [6, 21, 32].

Network Architecture. We use the state-of-the-art ar-

chitecture for pixel-level tasks, i.e., Deeplab [4], for

both semantic segmentation and surface normal prediction.

Deeplab is essentially a VGG or ResNet network back-

bone with atrous convolution and atrous spatial pyramid

pooling. We do not implement Fully Connected CRFs or

multi-scale inputs as they are not related to the NDDR layer

we proposed. We are careful to stick closely to the pro-

posed NDDR layer by using the same atrous convolution

and atrous spatial pyramid pooling for all the methods, so as

to clearly see the effects of simply incorporating the NDDR

layer. We use the Deeplab-VGG-16 architecture in all the

ablation analysis.

Losses. We use the softmax cross-entropy loss for semantic

segmentation. For surface normal prediction, we use the ℓ2
regression loss after normalizing the normal vector of each

pixel to have unit ℓ2 norm (i.e., this represents a direction

for a certain angle). Therefore, our loss for surface normal

prediction is also equivalent to the cosine loss.

Evaluation Metrics. The performance of semantic seg-

mentation is evaluated by mean Intersection over Union

(mIoU) and Pixel Accuracy (PAcc). For surface normal

estimation, we use Mean and Median angle distances of

all the pixels for evaluation (the lower the better). In ad-

dition, we also use the metrics introduced by [6], which

are the percentage of pixels that are within the angles of

11◦, 22.5◦, 30◦ to the ground-truth (the higher the better).

4.1. Initializations for NDDR Layers

In order to have a mild initialization which resembles
single-task networks, we keep the diagonal weights of the
NDDR layer as non-zeros. Recall that the NDDR layer for

a two-task problem is F out =
[

F in
1
, F in

2

] [

W⊤
1
, W⊤

2

]⊤
.

In order to initialize the NDDR weights W1 and W2, we let:

F out

1 =
[

F in

1
, F in

2

]











α 0 ... 0 β 0 ... 0

0 α ... 0 0 β ... 0

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

0 0 ... α 0 0 ... β











⊤

, (3)

where F in
1
, F in

2
are the inputs to the NDDR layer and F out

1

is the output which will be fed to Task 11. By writing the

weight of NDDR in this way, it shows that if we initialize

1We take an NDDR layer from one task as an example, and the initial-

ization of the NDDR layer for the other task is identical.
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Surface Normal Prediction Semantic Seg.

Angle Distance Within t◦ (%) (%)

(Lower Better) (Higher Better) (Higher Better)

(α, β) Mean Med. 11.25 22.5 30 mIoU PAcc

(1, 0) 14.0 10.3 53.2 79.1 88.6 36.2 66.5

(0.9, 0.1) 13.9 10.2 53.5 79.5 88.8 36.2 66.4

(0.5, 0.5) 13.9 10.2 53.5 79.3 88.6 36.0 66.4

(0.1, 0.9) 14.3 10.6 52.4 78.5 88.0 35.7 66.1

(0, 1) 14.2 10.6 52.5 78.2 87.8 35.7 65.9

Random 15.0 11.6 49.0 76.7 87.0 33.4 64.4

Table 1. The results with different initializations for the NDDR

layers.

Surface Normal Prediction Semantic Seg.

Errors Within t◦ (%) (%)

(Lower Better) (Higher Better) (Higher Better)

Scale Mean Med. 11.25 22.5 30 mIoU PAcc

1 14.7 11.2 50.1 77.3 87.4 35.9 65.9

10 14.4 10.7 51.9 78.1 87.9 36.0 66.1

10
2 13.9 10.2 53.5 79.5 88.8 36.2 66.4

10
3 13.9 10.6 52.4 79.6 89.2 35.7 66.4

Table 2. The results with different learning rates for the NDDR

layers (i.e., the scale with respect to the base learning rate for other

layers). The learning rates are represented as different scales with

respect to those for other perception convolutional layers.

α = 1 and β = 0, the whole network will start with the

single-task networks, i.e., F out
1

= F in
1

. We refer to this as

diagonal initialization.

In the experiments, we have 5 different diagonal initial-

izations with (α, β) ranging from (1, 0) to (0, 1), i.e., from

the mildest initialization from the same tasks to the most se-

vere initialization from the opposite tasks. In addition, we

also discuss the random initialization of the whole weight

matrices [W⊤
1
,W⊤

2
] with Xavier initialization [10].

Table 1 shows the performance with different initializa-

tions of the NDDR layer. The results show that the diag-

onal initialization is better than Xavier initialization2, and

that the initialization of (α, β) has a little effect on results.

In the following experiments, we use diagonal initialization

with (α, β) = (0.9, 0.1).

4.2. Learning Rates for NDDR Layer

In this section, we discuss the learning rate for the

NDDR layer. There are two main reasons to set a larger

learning rate specifically for the NDDR layer. First, as an-

alyzed in Sect. 4.1, the NDDR-CNN becomes single-task

networks if we set a very large weight (e.g., α = 1, much

larger than the weights of perception convolutional layers)

at the diagonal of W⊤
1

. Thus, we hypothesize that the mag-

nitude of the NDDR layer weights should be larger, there-

fore requiring a larger learning rate. Second, a larger learn-

ing rate for NDDR layers is also necessary if we fine-tune

2Note that the results from Xavier initialization (in Table 1) are still

comparable with the previous state-of-the-art method (i.e. the cross-stitch

network and the sluice network in Table 4) in surface normal prediction.

Surface Normal Prediction Semantic Seg.

Errors Within t◦ (%) (%)

(Lower Better) (Higher Better) (Higher Better)

Init. Mean Med. 11.25 22.5 30 mIoU PAcc

Pret. 14.3 10.6 52.2 78.6 88.2 34.3 65.2

Sing. 13.9 10.2 53.5 79.5 88.8 36.2 66.4

Table 3. The results with different pretrained models. Pret. means

the pretrained Deeplab-VGG-16 weights for semantic segmenta-

tion on Pascal VOC 2012, and Sing. represents the finetuned

weights from the corresponding target single tasks (through single-

task networks).

the NDDR-CNN from the pretrained single-task networks.

Therefore, we analyze the proper learning rate for the

NDDR layer as how many times it should be with respect to

the base learning rate (for the remaining network excluding

the NDDR layers). Table 2 shows the performance of using

different learning rates for the NDDR layer. It verifies that

larger learning rates should be applied for NDDR layers.

In the following experiments, we use 100 times of the base

learning rate for the NDDR layer.

4.3. Pretrained Weights for Network Initialization

Two network initialization strategies can be applied. We

may use the network weights pretrained on a general task

(e.g. pretrained Deeplab-VGG-16 [4] for semantic segmen-

tation on Pascal VOC 2012 [7]) or finetuned on correspond-

ing target single tasks. The results with different pretrained

models are summarized in Table 3, which show that ini-

tializing the finetuned weights from target single tasks per-

forms better. The results indicate that by simply adding

several NDDR layers, we have enlarged the capability of

the (converged) original networks, which further enables to

skip the previously existing saddle points.

5. Experiments

In this section, we perform various experiments on

both different network structures and different task sets to

demonstrate the promising performance and desirable gen-

eralizability of the proposed NDDR-CNN.

Specifically, VGG-16 [45] and ResNet-101 [14] have

been used in our experiments, we put the results on AlexNet

[20] in Table S1 of the Supplementary Materials. In addi-

tion, we also test our proposed NDDR-CNN-Shortcut with

the VGG structure, where the gradients can be passed to

the lower NDDR layers by the shortcut connections. This

can further demonstrate the performance of the proposed

NDDR layer. We refer to this network as VGG-16-Shortcut.

For evaluation, we train each task separately using the

common single-task network architecture without NDDR

layers as our single task baseline. The results from the

most widely used heuristic multi-task network structure are

performed as our multi-task baseline, where all the con-

volutional layers are shared and the split takes place after

3210



Surface Normal Prediction Semantic Seg.

Errors Within t◦ (%) (%)

(Lower Better) (Higher Better) (Higher Better)

Mean Med. 11.25 22.5 30 mIoU PAcc

Sing. 15.6 12.3 46.4 75.5 86.5 33.5 64.1

Mul. 15.2 11.7 48.4 76.2 87.0 33.4 64.2

C.-S. 15.2 11.7 48.6 76.0 86.5 34.8 65.0

Sluice 14.8 11.3 49.7 77.1 88.0 34.9 65.2

Ours 13.9 10.2 53.5 79.5 88.8 36.2 66.4

Table 4. Experimental results on semantic segmentation and sur-

face normal prediction using VGG-16. Sing., Mul., C.-S., and

Sluice represent the single-task baseline, the multiple-task base-

line, the cross-stitch network, and the sluice network, respectively.

the last convolutional layer. We also investigate the perfor-

mances of the cross-stitch network [31] and the state-of-

the-art sluice network [40] for comparison, in which we

apply the same number of cross-stitch/sluice layers at the

same locations as our NDDR layers. We use the number

of subspaces as 2 for sluice network as suggested in [40].

For the fair comparison, we use the best hyperparameters

in [31] and [40] to train the corresponding networks3.

As we aim to a general purpose MTL method, very

diverse task sets are chosen to evaluate our performance.

These include pixel-level labeling tasks on scene images,

i.e., semantic segmentation and surface normal prediction,

and image-level classification tasks on human faces, i.e.,

age and gender classification. In the following subsections,

we perform the semantic segmentation and surface normal

prediction on NYU v2 dataset [32], and the age and gender

classification on the IMDB-WIKI dataset [38]. We detail

the task configurations in the following.

5.1. Semantic Segmentation and Surface Normal
Prediction

In this section, we test our network on VGG-16, ResNet-

101, and VGG-16-Shortcut to verify the desirable perfor-

mance of the proposed network. In addition, by doing this,

we further demonstrate the desirable generalizability of the

proposed NDDR layers on different network architectures.

The configurations of the semantic segmentation, surface

normal prediction, and the best hyperparameters to train the

network can be found in Sect. 4.

5.1.1 Experiments on VGG-16 Network

In this section, we combine two VGG-16 networks by ap-

plying the NDDR layer at the outputs of pool1, pool2,

pool3, pool4 and pool5.

Table 4 shows the results on semantic segmentation

and surface normal prediction using the VGG-16 network.

3We show that the hyperparameters, originally from AlexNet in [31],

are still the best for other network backbones. Please see Table S2 in the

Supplementary Materials.

Surface Normal Prediction Semantic Seg.

Errors Within t◦ (%) (%)

(Lower Better) (Higher Better) (Higher Better)

Mean Med. 11.25 22.5 30 mIoU PAcc

Sing. 15.6 12.7 44.3 74.8 87.2 39.5 69.2

Mult. 16.3 13.8 41.1 73.9 86.5 39.1 68.7

C.-S. 15.9 13.2 42.9 75.1 86.8 40.5 69.5

Sluice 15.3 12.8 44.1 76.9 88.2 40.8 70.1

Ours 14.4 11.6 48.5 79.1 89.5 43.3 71.5

Table 5. Experimental results on semantic segmentation and sur-

face normal prediction using ResNet-101. Sing., Mul., C.-S., and

Sluice represent the single-task baseline, the multiple-task base-

line, the cross-stitch network, and the sluice network, respectively.

Surface Normal Prediction Semantic Seg.

Errors Within t◦ (%) (%)

(Lower Better) (Higher Better) (Higher Better)

Mean Med. 11.25 22.5 30 mIoU PAcc

Sing. 15.5 12.3 46.3 75.5 86.5 33.5 64.4

Mult. 15.2 11.8 48.3 76.1 86.6 33.6 64.4

C.-S. 14.8 11.1 50.3 76.9 87.0 35.0 65.1

Sluice 14.2 10.6 51.7 78.2 88.2 35.3 65.3

Ours 13.5 9.8 55.3 80.5 89.3 36.7 67.0

Table 6. Experimental results on semantic segmentation and sur-

face normal prediction using VGG-16-Shortcut. Sing., Mul., C.-

S., and Sluice represent the single-task baseline, the multiple-task

baseline, the cross-stitch network, and the sluice network, respec-

tively.

Though as simple as our method is, it significantly out-

performs the state-of-the-art methods. For example, our

method outperforms the sluice network by around 3.8%

in “within 11.25◦” metric in surface normal prediction,

and 1.1%-1.2% for both metrics in semantic segmentation.

These results demonstrate the promising performance of

our method.

5.1.2 Experiments on ResNet-101 Network

We perform the NDDR layers in the ResNet-101 network,

where the NDDR layers are only applied at the output of

conv1n3, conv2 3n3, conv3 4n3, conv4 6n3 and conv5 3n3.

The results are shown in Table 5. It indicates that our

method consistently outperforms the baseline and state-of-

the-art results. Noted that comparing with the as deep as

101-layer network, we only slightly modified the ResNet-

101 by adding five NDDR layers. These results further

demonstrate the efficacy of the proposed NDDR layer.

5.1.3 Experiments on VGG-16 Network with Shortcut

Connections

We test the proposed NDDR-CNN-Shortcut with the VGG-

16 structure, i.e., the VGG-16-Shortcut network to further

validate our performance.

Compared with ResNet, the VGG-16-Shortcut network

resembles more to DenseNet [16]. In VGG-16-Shortcut,
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Figure 3. Some example illustrations and statistics of ages and

genders for the IMDB-WIKI dataset. The statistics show that we

have sufficient samples to train both genders, and the ages of most

samples are between 20 - 50.

the gradients can be passed to the lower NDDR layers by

the direct and shortest shortcut connections, rather than by

multiple shortcuts in ResNet-like networks where the gradi-

ents may still decay4.

The results for VGG-16-Shortcut are shown in Table 6.

Compared with the performance on the “vanilla” VGG-16

network (i.e., Table 4), the results of all the methods are im-

proved in VGG-16-Shortcut. Especially, the improvements

in our method are higher than those in our counterpart.

Table 6 shows that our method consistently outperforms

the state-of-the-art methods. Especially, our method out-

performs the sluice network by 3.1% for “within 11.25◦”

metric in surface normal prediction, and 1.0%-1.5% for the

two metrics in semantic segmentation.

5.2. Age Estimation and Gender Classification

Dataset. We use the IMDB-WIKI dataset [38] for this task

set, which contains 460723 images collected from 20284

subjects. After filtering out the images with more than one

faces and the images without age or gender labels, the re-

maining 187103 images from 12325 subjects are used to

perform our experiments. These contain images for both

genders with ages from 0 to 99. We randomly choose 24090

images from 2000 subjects for evaluation, and the remain-

ing 163013 images from 10325 subjects are used for train-

ing. In the training set, we have sufficient samples for both

male and female, but the training data for ages is imbal-

anced. Some image examples, with the gender and age

statistics, are shown in Fig. 3.

Network Architecture. The VGG-16 network is used as

the base network in this experiment, with the NDDR layers

applied after pool1, pool2, pool3, pool4 and pool5.

Losses. Motivated by [38], we treat both age and gender

estimations as classification problems, i.e., 2-class and 100-

class classifications. We use softmax cross-entropy loss in

both tasks.

Evaluation Metrics. Classification accuracy (Acc) is used

to evaluate the gender classification. For age estimation, we

follow the metric from [38]. That is, for each image i, we

treat the output pi ∈ R
100 from softmax as the probabilities

for different ages (i.e., 0-99). Therefore the final age esti-

4Note that we did not implement the ResNet-like shortcuts, such as

DenseNet. This is because that the ResNet-like shortcuts in DenseNet is

less related to the NDDR layer we proposed. Therefore, we carefully stitch

to the factors that influence the NDDR layer to analysis it more clearly.

Age Gender

(Lower Better) (Higher Better)

Mean AE Median AE Acc. (%)

Single-Task 9.1 7.4 83.5

Multi-Task 9.0 7.4 82.3

Cross-Stitch 8.6 7.0 84.0

Sluice 8.5 7.0 83.9

Ours 8.0 6.2 84.0

Table 7. Experimental results on age and gender classification.

mation is calculated by age∗i =
∑

99

k=0
pi(k)dict(k), where

dict = {0, 1, ..., 99} ∈ R
100 is the age dictionary. We use

Mean Absolute Error (Mean AE) and Median Absolute Er-

ror (Median AE) for evaluating the age estimation.

The experimental results are show in Table 7. It shows

that our method on age estimation significantly outperforms

the state-of-the-art methods, i.e., (8.5 − 8.0)/8.5 ≈ 5.9%
for Mean AE and (7.0 − 6.2)/7.0 ≈ 11.4% for Median

AE. While for the gender classification, our method just

performs comparably with the cross-stitch network. This

is because that gender classification is a two-class classi-

fication problem with sufficient labeled samples for each

gender. Therefore, it benefits less from the other task (with

another set of labels) when learning the representation.

6. Conclusions

In this paper, we proposed a novel CNN structure for

general-purpose MTL. Firstly, the task-specific features

with the same spatial resolution from different tasks were

concatenated. Then, we performed Neural Discriminative

Dimensionality Reduction (NDDR) over them to learn a

discriminative feature embedding for each task, which also

satisfies input sizes of the following layers.

The NDDR layer is simple and effective, which is con-

structed by combining existing CNN components in a novel

way. The proposed NDDR networks can be trained in an

end-to-end fashion without any extraordinary operations of

a modern CNN. This desirable property guarantees that

the proposed NDDR layer can easily be extended to vari-

ous state-of-the-art CNN architectures in a “plug-and-play”

manner. In addition, our proposed NDDR-CNN general-

izes several state-of-the-art CNN based MTL models, such

as the cross-stitch network [31] and the sluice network [40].

We performed detailed ablation analysis, showing that

the proposed NDDR layer is easy to train and also robust

to different hyperparameters. The experiments on vari-

ous CNN structures and different task sets demonstrate the

promising performance and desirable generalizability of our

proposed method. An interesting future research direction

can be studying explicitly imposing various dimensionality

reduction assumptions on the NDDR layer.
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