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Abstract Hydrodynamics under regular plunging breaking waves over a fixed breaker bar were studied

in a large-scale wave flume. A previous paper reported on the outer flow hydrodynamics; the present paper

focuses on the turbulence dynamics near the bed (up to 0.10 m from the bed). Velocities were measured

with high spatial and temporal resolution using a two component laser Doppler anemometer. The results

show that even at close distance from the bed (1 mm), the turbulent kinetic energy (TKE) increases by a fac-

tor five between the shoaling, and breaking regions because of invasion of wave breaking turbulence. The

sign and phase behavior of the time-dependent Reynolds shear stresses at elevations up to approximately

0.02 m from the bed (roughly twice the elevation of the boundary layer overshoot) are mainly controlled by

local bed-shear-generated turbulence, but at higher elevations Reynolds stresses are controlled by wave

breaking turbulence. The measurements are subsequently analyzed to investigate the TKE budget at wave-

averaged and intrawave time scales. Horizontal and vertical turbulence advection, production, and dissipa-

tion are the major terms. A two-dimensional wave-averaged circulation drives advection of wave breaking

turbulence through the near-bed layer, resulting in a net downward influx in the bar trough region, fol-

lowed by seaward advection along the bar’s shoreward slope, and an upward outflux above the bar crest.

The strongly nonuniform flow across the bar combined with the presence of anisotropic turbulence enhan-

ces turbulent production rates near the bed.

Plain Language Summary The flow of water under wind-driven waves near the coast is highly

energetic, leading to the production of chaotic, ‘‘turbulent’’ fluid motions. Turbulence plays an important

role in the flow and the transport of sediment under waves. Therefore, understanding turbulence dynamics

is crucial to understanding the behavior of waves and their effects on shoreline processes (e.g., beach ero-

sion). Previous research shows that the breaking of waves leads to a massive production of turbulent

energy, but the vertical and horizontal spreading of turbulence is not properly understood. Through experi-

ments in a large-scale wave flume, using acoustic and laser-based measurement instrumentation, the

behavior of turbulent energy under breaking waves is systematically investigated. Results show that wave

breaking alters turbulence dynamics over the full water column, from the water surface all the way down to

the bed. Turbulence is spread horizontally and vertically by ‘‘undertow’’ currents generated by the breaking

wave. Moreover, wave breaking turbulence leads to the production of additional turbulence in the water

column. The new insights in this paper can be used to further develop computational models for the flow

and transport of sediment under breaking waves.

1. Introduction

The wave bottom boundary layer (WBL) is defined as the lowest part of the water column where orbital

velocities are significantly affected by the presence of the bed (Nielsen, 1992). The WBL is important in

terms of bed shear stress, sediment transport, and the production of turbulent vortices through velocity

shear. Turbulence contributes to momentum exchange and particle suspension, and should therefore be

included in near-shore hydrodynamic and morphodynamic numerical models.
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Much of our knowledge of WBL turbulence dynamics originates from flow visualizations (Carstensen et al.,

2010, 2012; Hayashi & Ohashi, 1982; Sarpkaya, 1993) and turbulent velocity measurements (Akhavan et al.,

1991; Hino et al., 1983; Jensen et al., 1989; Sleath, 1987; van der A et al., 2011; Yuan & Dash, 2017) in oscilla-

tory flow tunnel studies. Turbulence measurements in the WBL under nonbreaking surface waves are lim-

ited, but have been conducted at full scale (Conley & Inman, 1992; Foster et al., 2006) and small-scale

(Henriquez et al., 2014; Kemp & Simons, 1982, 1983), generally showing behavior that is similar to tunnel

observations. Direct numerical simulations (e.g., Costamagna et al., 2003; Pedocchi et al., 2011; Scandura,

2013; Scandura et al., 2016; Vittori & Verzicco, 1998) have further advanced the understanding of oscillatory

boundary layer turbulence. In wave-generated bed boundary layers at full scale, turbulence is unsteady and

builds up and decays during each half-cycle. Turbulence is initially generated at the bed during the acceler-

ating flow phase in the form of longitudinal low-speed streaks, which then break up into smaller-scale vorti-

ces that merge and produce a burst of turbulence during the decelerating stage of the half-cycle

(Carstensen et al., 2010; Costamagna et al., 2003; Hayashi & Ohashi, 1982; Scandura et al., 2016; Vittori & Ver-

zicco, 1998). Consequently, turbulent intensities and Reynolds stress at the bed increase during flow accel-

eration and reach a maximum during the decelerating phase (e.g., Jensen et al., 1989). As turbulence

diffuses upward, turbulent intensities and Reynolds stresses show a progressive time lag with elevation, rel-

ative to their phase behavior at the bed (e.g., Hayashi & Ohashi, 1982; Hino et al., 1983; Jensen et al., 1989;

van der A et al., 2011). The precise spatial and temporal turbulent behavior of oscillatory flows depends on

Reynolds number and bed roughness (e.g., Jensen et al., 1989).

Under breaking waves, the dynamics of turbulence inside the WBL are altered. A breaking wave forms

large-scale coherent vortices, which have been well documented on the basis of small-scale wave flume

observations (Chiapponi et al., 2017; Kimmoun & Branger, 2007; LeClaire & Ting, 2017; Longo, 2009;

Nadaoka et al., 1989; Peregrine, 1983; Stansby & Feng, 2005). These wave breaking vortices can invade the

WBL and reach the bed, as shown in wave flumes at small (Cox & Kobayashi, 2000; Nadaoka et al., 1989;

Sumer et al., 2013) and large (van der Zanden et al., 2016) scales. For these conditions, local bed-generated

turbulence is not the only source of near-bed TKE: horizontal and vertical advection and diffusion of exter-

nal turbulence cannot be neglected. In addition, these vortices may alter the turbulent production process

and production rate in the WBL. Turbulent production is explained by turbulent vortices entraining nontur-

bulent fluid, which then break up to random turbulence fluctuations due to internal shear (Hussain, 1986;

Pope, 2000). This mechanism of TKE production depends on the strength and orientation of the ambient

turbulent structures, and is different for a situation with interacting bed-generated and breaking-generated

vortices compared to a purely oscillatory WBL.

The incursion of breaking-generated turbulence into the WBL has significant effects on near-bed hydrody-

namics and sand transport. External turbulence enhances the momentum exchange between the free-

stream and WBL, hence altering the flow inside the WBL (Fredsøe et al., 2003). Breaking-generated turbu-

lence enhances magnitudes of instantaneous bed shear stresses (Cox & Kobayashi, 2000; Deigaard et al.,

1991) and suspended sediment pick-up and transport rates (Nadaoka et al., 1988; van der Zanden et al.,

2017a; Zhou et al., 2017). Consequently, numerical simulations of velocities, suspended sediment concentra-

tions, and ultimately net sand transport rates and morphology in the surf zone, require accurate predictions

of TKE, especially near the bed, where the majority of sediment transport occurs (van der Zanden et al.,

2017a). However, existing turbulence closure models tend to systematically overestimate TKE levels under

breaking waves, both above (Brown et al., 2016; Christensen, 2006; Lin & Liu, 1998) and inside (Fernandez-

Mora et al., 2016) the WBL.

In a recent laboratory experiment involving a barred sand bed profile, van der Zanden et al. (2016) studied

for the first time the WBL flow and near-bed TKE under a large-scale plunging wave. Their measurements

showed that wave breaking turbulence invades the WBL in the breaking region, leading to a significant

increase in near-bed TKE compared to the shoaling zone, hence reaffirming the aforementioned observa-

tions from small-scale wave flumes. However, due to instrumental limitations, their experiment did not

enable an in-depth analysis of the physical mechanisms behind the spatiotemporal variation of near-bed

TKE, such as the importance of locally versus externally produced turbulence. Therefore, the objective of

the present study is to gain more insight into the physical processes that drive the near-bed spatiotemporal

behavior of turbulence under plunging waves. This will be achieved by systematically investigating the

dominant terms in the TKE budget, hence following an approach similar to previous studies on outer-flow
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turbulence under small-scale breaking waves (Chang & Liu, 1999; Clavero et al., 2016; Melville et al., 2002;

Ting & Kirby, 1995). Because the present study focuses on the concurrent effects of breaking-generated and

bed-shear-generated turbulence on near-bed TKE, it is important that the WBL flow is in a turbulent flow

regime that is representative for prototype waves at natural beaches. For this reason, the experiments are

conducted at large-scale.

The paper is organized as follows. Section 2 describes the experiments, data treatment, and the methodol-

ogy used to quantify the TKE budget terms. Section 3 presents results for the phase-averaged and time-

averaged velocities at outer-flow (z – zbed> 0.1 m) and near-bed (z – zbed< 0.1 m) elevations. Section 4

presents the primary turbulence statistics and a systematic investigation of the near-bed TKE budget terms.

The discussion (section 5) addresses the uncertainties in the results and the implications of the results for

turbulence modeling in the surf zone. Section 6 summarizes the main conclusions.

2. Methodology

2.1. Experimental Facility and Bed Profile

The experiment was conducted in the 100 m long, 3 m wide, and 4.5 m deep CIEM wave flume at the Poly-

technic University of Catalunya in Barcelona. The flume is equipped with a wedge-type wave paddle and

steering signals are generated based on first-order wave generation. Measurements for the present study

were collected during the same experimental campaign as that reported by van der A et al. (2017), who

focused on the outer-flow hydrodynamics.

Figure 1 shows the fixed bed profile in the wave flume as measured with echo sounders from a mobile car-

riage. The profile consists of an 18 m long, 1:12 offshore slope, a 0.6 m high breaker bar (measured from

crest to trough), followed by a 10 m long, 1:125 slope and a 1:7 sloping beach. The profile was generated

during a preceding mobile-bed experiment (van der Zanden et al., 2016) by running the same regular wave

condition as for the present study for 3 h over a medium-sand bed profile that initially consisted of a 1:10

offshore slope and an 18 m long, 1.35 m high horizontal test section. The sand bed profile was homoge-

nized by flattening out bedforms and by removing any lateral (cross-flume) asymmetry, and was then fixed

by laying a 0.2 m thick layer of concrete over the profile; the concrete was homogenized in lateral direction

and allowed to cure for about 40 days prior to the start of the experiment.
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Figure 1. Experimental setup. (a) Locations of water surface elevation measurements by resistive wave gauges (RWGs;

vertical black lines), side-wall-deployed pressure transducers (PTs wall; triangles), and mobile-frame PT (dots). (b) Close-up

of barred test section, indicating velocity measurement locations by ADV (crosses), and LDA (diamonds). Red diamonds

mark detailed near-bed measurements with LDA at seven cross-shore locations.
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The surface roughness, ks, was quantified using boundary layer velocity measurements from the wave

shoaling region by applying the log-law fitting procedure of Dixen et al. (2008) to velocity profiles measured

at the phase of maximum onshore velocity: first, the straight-line fraction of u(f) versus 10log(f) was identi-

fied; second, the vertical displacement Df was found by vertically shifting the data until the number of

velocity measurements satisfying a linear trend was maximum; finally, the best linear fit was calculated

(coefficient of determination r2> 0.99). This method yielded a roughness ks5 1.4 (6 1) mm, where the

uncertainty was estimated by varying Df by6 1 mm (corresponding to the vertical spacing of measure-

ments close to the bed). The roughness was reasonably uniform across the profile, except on the lee-side

slope of the bar, where coarser aggregates were more exposed as cement leaked from the slope during the

curing process. Unfortunately, the measurements did not allow quantification of ks at this region, but we

estimate a bed roughness that is twice higher than at the shoaling and inner surf zones, i.e., ks5 3 (6 2)

mm. Based on the local Reynolds number Re5 a�h~uimax/m (where a is the orbital semi-excursion amplitude

and m5 1.0�1026 m2/s is the kinematic viscosity) and bed roughness estimates (see values in Table 1), the

WBL flow is in the rough turbulent regime at locations seaward of the bar and in the transitional regime

shoreward of the bar (following definitions by Jonsson, 1980).Throughout the paper, the coordinate system

has its x-origin at the toe of the wave paddle and is defined positively toward the beach; the lateral y-coor-

dinate has its origin at the right-hand side-wall of the flume when facing the beach and is positive toward

the flume’s centerline; the vertical coordinate z is defined positively upward, with z5 0 at the still water

level. Annotation f is used to express elevations with respect to the local bed level zbed (i.e., f5 z – zbed).

Velocity components in x, y, and z direction are denoted u, v, and w, respectively.

2.2. Test Condition

The water depth, h, in the deeper part of the wave flume was 2.65 m. Regular waves were generated based

on first-order wave theory, with wave period T5 4 s and a measured wave height Hp5 0.76 m near the

wave paddle (x5 11.8 m). The deep-water surf similarity parameter n05tanb=
ffiffiffiffiffiffiffiffiffiffiffiffi
H0=L0

p
5 0.46, where tan b

is the 1:12 beach slope, H0 is the deep-water wave height that corresponds to Hp following linear wave the-

ory, and L05 gT2/2p is the deep-water wave length. Breaking waves were of the plunging type, which is

consistent with n05 0.46, following the classification of Smith and Kraus (1991) for barred beaches.

The breaking process is described in detail by van der A et al. (2017) and was classified following the termi-

nology of Smith and Kraus (1991). The bar crest is at x5 54.5 m. The wave starts to overturn at x5 52 m

(‘‘break point’’), hits the water surface above the bar crest at x5 54.5 m (‘‘plunge point’’), and pushes up a

wedge of water that develops into a surf bore at x5 58.5 m (‘‘splash point’’). We follow Svendsen et al.

(1978) by defining the (outer) breaking region as the region between the break point and the splash point;

the regions seaward and shoreward from the the breaking region are termed shoaling zone and inner surf

zone, respectively.

2.3. Measurements

Water surface elevations were measured at data rate fs5 40 Hz using sidewall-mounted resistive wave

gauges at 19 locations along the deeper part of the wave flume and along the shoaling zone (Figure 1a). In

the breaking and inner surf zones, measurements of dynamic pressure were obtained at fs5 40 Hz with

pressure transducers deployed from the flume side-walls and from a mobile measuring frame. The pressure

measurements were converted to water surface elevation using linear wave theory. More details on the

water surface measurements are provided by van der A et al. (2017).

Table 1

Wave and Velocity Statistics at Free-Stream Elevation (f � 0.10 m) at Seven WBL Measurement Locations

x (m) h (m) H (m) dzbed/dx �u (m/s) ~urms (m/s) huimax (m/s) huimin (m/s) a (m) ks (mm) a/ks Re

51.0 1.10 0.77 0.10 20.13 0.54 1.01 20.70 0.46 1 460 5.23 105

55.0 0.78 0.48 20.02 20.23 0.51 0.73 20.96 0.43 1 430 4.13 105

56.0 0.94 0.36 20.26 20.67 0.29 20.06 21.06 0.25 3 80 1.6 3 105

57.0 1.34 0.43 20.33 20.28 0.23 0.23 20.47 0.20 3 70 1.0 3 105

58.1 1.45 0.42 20.02 20.16 0.19 0.23 20.34 0.16 1 160 6.23 104

60.2 1.30 0.39 0.01 20.22 0.22 0.22 20.49 0.19 1 190 8.53 104

63.0 1.26 0.38 0.07 20.18 0.27 0.34 20.49 0.23 1 230 1.23 105
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Velocities were measured at 12 cross-shore locations along the bar using a two-component laser Doppler

anemometer (LDA) and two acoustic Doppler velocimeters (ADV) deployed from a measurement frame

attached to a carriage on top of the flume. The two-component backscatter LDA system (Dantec FiberFlow)

consisted of a 14 mm diameter submersible transducer probe with 50 mm focal length powered by a 300

mW argon-ion air-cooled laser. The LDA measured the u and w velocity components in an ellipsoidal

shaped measurement volume of 115 lm maximum diameter and 2 mm length in y direction. The data rate

of the LDA depends on seeding particle density and velocity magnitude and therefore varied throughout

the wave cycle and per location. For the present experiment, fs typically varied between 100 and 600 Hz.

The three-component ADVs (Nortek Vectrino) measured velocities at outer-flow elevations with fs5 100 Hz.

The ADVs were orientated horizontally (side-looking). Their cylindrical shaped measurement volume was

approximately 6 mm in diameter and 2.8 mm in the y direction. The vertical spacing between the LDA and

the ADVs was 0.33 m (for the lower ADV) and 0.83 m (for the upper ADV). The lateral coordinate of the LDA

measurement volume was y5 1.9 m, i.e., at 1.1 m from the nearest side-wall and at 0.4 m from the flume’s

centerline, which ensures minimum flow perturbation by the side-walls.

The ‘‘mobile frame’’ allowed the instruments to be positioned with 1 cm accuracy in the horizontal and

submillimeter accuracy in the vertical. Vertical repositioning was done manually using a spindle and the

elevation was recorded using a magnetic tape sensor. More details on the frame are provided by Ribberink

et al. (2014). One run consisted of 38 min of wave generation. Video recordings showed that the breaking

point gradually shifted during the first 400 s. After this, the breaking location stabilized, indicating that a

hydrodynamic quasi-equilibrium was established. The term quasi-equilibrium is used because the cross-

shore location of wave breaking maintained a slight and random variability (6 0.2 m). Subsequently, three

successive measurements were made for a duration of 10 min each (150 wave cycles), by positioning the

frame at three elevations. Hence, during one run, 10 min velocity time series were recorded at nine eleva-

tions (three instruments x three frame positions). A total of 78 runs were conducted with the frame posi-

tioned at 12 cross-shore locations and at different vertical elevations, resulting in vertical profiles of

velocity that cover the WBL up to wave crest level with high vertical resolution (Dz� 0.10 m) as shown in

Figure 1b.

Additional detailed WBL LDA velocity measurements were made at seven cross-shore locations (x5 51.0,

55.0, 56.0, 57.0, 58.1, 60.2, and 63.0 m), at 14 elevations (f5 1, 2, 3, 4, 5, 7, 10, 14, 19, 26, 36, 51, 70, and

94 mm) (Figure 1b). To facilitate these near-bed measurements the LDA was orientated at an angle of 8.98

to the horizontal and the bed level was found by slowly lowering the frame until the LDA’s focal point inter-

sected the top of the bed, the intersection point being determined by a sharp increase in the backscattered

light intensity. The vertical positioning has an estimated accuracy of6 0.5 mm.

Data acquisition was started on a 40 Hz analogue trigger pulse, corresponding to a 1/405 0.025 s accuracy

in timing between different LDA acquisitions. To improve this accuracy, the lowest ADV measurement

(always at free-stream elevation) was recorded by the LDA internal acquisition system at the same fs as the

LDA. By matching the free-stream velocities measured by ADV for all acquisitions, the synchronization

between different LDA measurements was improved to an accuracy of 60.01 s.

2.4. Data Processing

The standing wave which occurred in the flume, with frequency f5 0.022 Hz and amplitude of O(cm),

was removed from the water surface and velocity time series through a high-pass filter with a cutoff fre-

quency of 0.125 Hz (5 0.5/T). ADV data were cleaned using a combination of signal-to-noise ratio and

correlation threshold criteria and outlier identification, as described by van der A et al. (2017). The LDA

data scarcely suffered from spurious measurements because measurements were SNR-validated during

acquisition and no data were recorded when air bubbles blocked the path of the laser beams. Any

remaining outliers were identified as instantaneous velocity measurements that deviated from more

than five times the standard deviation from the ensemble-median at a given wave phase. These data

points, which form less than 0.1% of the total number of LDA measurements, were removed from the

record, and not replaced.

Phase-averaged velocities are indicated by angular brackets and were calculated following a conditional

averaging method (e.g., Petti & Longo, 2001):
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hu tð Þi5 1

N

XN21

n50

u t1tnð Þ 0 � t < T : (1)

Here, N is the number of wave cycles and tn is the cyclic trigger, defined as the time instant of the nth zero-

up crossing of the water surface measured by the resistive wave gauge at x5 48.6 m (shoaling region).

Water surface elevations were phase-averaged over 30 min (450 waves) and over different runs. Velocity

measurements were phase-averaged over the 10 min measurement duration (150 waves) at each measure-

ment elevation. For the irregularly sampled LDA measurements, the data were averaged, accounting for

seeding particle residence time, over intervals of 1/128 s centered on each phase instant. All phase-

averaged results were time-referenced such that t/T5 0 corresponds to the zero-up crossing of the water

surface at x5 50 m.

Wave-averaged velocities are indicated by an overbar:

u5
1

T

ðT

0

huidt : (2)

The phase-averaged velocity hui5 �u1 ~u, with ~u being the periodic velocity. The turbulent velocity u’ is

defined as the difference between the instantaneous velocity u and the phase-averaged velocity hui. The
same methodology is applied to decompose the vertical velocity w. Note that following this definition of u’,

any phase-coherent velocity contributions of the plunging jet are considered part of the periodic velocity ~u

and do not contribute to the computed TKE (as also pointed out by e.g., Nadaoka et al., 1989). Furthermore,

following this decomposition, any deviations of u from hui emerging from small variations in wave genera-

tion, wave celerity and breaking location, potentially lead to wave bias in the turbulence signal (also termed

‘‘pseudo-turbulence’’) (e.g., Nadaoka et al., 1989; Scott et al., 2005; Svendsen, 1987). Such wave bias appears

in the spectra of u’ and w’ as peaks at the frequencies of the primary wave and its higher harmonics, and in

the integrated cospectrum (ogive) of u’w’ (Feddersen & Williams, 2007) as stepwise increments at these fre-

quencies. Therefore, the spectra and ogives were examined for all measurements, yet no such wave bias

was evident. For this reason, we expect minor contributions (< 5%) of pseudo-turbulence to u’rms and w’rms.

It is expected that velocity streamlines close to the bed follow the local bed inclination. In order to facilitate

comparison with oscillatory boundary layer observations in tunnels and under nonbreaking waves, veloci-

ties were transformed to a bed-parallel (uR) and bed-normal (wR) component:

uR5u � cos b1w � sinb;

wR5w � cosb2u � sinb ; (3)

with b5 atan(dzbed/dx) the local bed slope, which was found by rotating velocities such that the root-

mean-square ~wR at f5 0.01 m is minimized. Values of b estimated in this way were within 0.058 agreement

with atan(dzbed/dx) obtained from the measured bed profile.

To reduce uncertainty in the estimated TKE budget terms, the analysis which follows considers depth-

averaged turbulence within a near-bed layer that is defined here as f5 0 to 0.10 m, where the latter

value corresponds roughly to the upper measure of the WBL thickness based on a 5% velocity defect

(e.g., Sleath, 1987) at x5 51.0 m. The depth-averaged quantities are indicated by a hat symbol, i.e., for arbi-

trary variable w:

bw5 1

D2zb

ðD

zb

wdf ; (4)

where zb5 0.001 m and D � 0.10 m are the bottom and top levels of the near-bed control volume, respec-

tively. The free-stream velocity u1 is defined at the top of the near-bed layer, i.e., at f5D.

2.5. Turbulent Kinetic Energy Budget

For the two-component LDA, phase-averaged turbulent kinetic energy hki (per unit mass) is calculated as
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hki50:5 � 1:47 hu02i1hw02i
� �

; (5)

where the factor 1.47 was proposed by Svendsen (1987) for the outer region of the wave bottom boundary

layer. The two-dimensional (x, z) budget equation for phase-averaged TKE reads (Pope, 2000; Tennekes &

Lumley, 1972):

@hki
@t

52
@huihki

@x
1
@hwihki

@z

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{advection;A

2
@hu0k0i
@x

1
@hw0k0i

@z

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{turbulent diffusion;D

2
1

q

@hu0p0i
@x

1
@hw0p0i

@z

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{pressure diffusion

2m
@2hki
@x2

1
@2hki
@z2

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{viscous diffusion

1 P
z}|{production

2 E

z}|{dissipation

: (6)

The six terms on the right-hand side of equation (6) denote, respectively, rates of horizontal and vertical

advection (A); turbulent diffusion (D); pressure diffusion with p’ being the instantaneous pressure fluctua-

tion; viscous diffusion with m being the kinematic viscosity; turbulence production (P); and turbulence dissi-

pation (E). Depth-averaged over the near-bed layer and in the transformed coordinate system, the

advective influx of TKE into the near-bed layer can be rewritten to

bA52
ddhuRichki

dx
1
hwR zbð Þihk zbð Þi

D2zb
2
hwR Dð Þihk Dð Þi

D2zb
5bAx1Az zbð Þ1Az Dð Þ ; (7)

where the three terms on the right-hand side of equation (7) denote the near-bed, depth-averaged influx

due to cross-shore advection along the bed (bAx), the advective influx in the bed-normal direction from

below (Az zbð Þ), and the advective influx in the bed-normal direction at the top (Az Dð Þ), respectively. Note
that all terms are defined positively into the control volume, i.e., A> 0 corresponds to an increase in near-

bed TKE.

Similarly, the depth-averaged diffusion term is rewritten to

bD52
d dhu0Rk0i

dx
1
hw0

Rk
0i zbð Þ

D2zb
2
hw0

Rk
0i Dð Þ

D2zb
5bDx1Dz zbð Þ1Dz Dð Þ : (8)

In equations (7) and (8), the bed-normal influx at f5 zb (terms Az(zb) and D(zb)) can be evaluated only at

the seven cross-shore locations for which we have detailed WBL velocity measurements (Figure 1b). The

other two terms are evaluated at all 12 cross-shore measurement locations. This means that for five of the

cross-shore locations, the cross-shore influx terms (bAx and bDx) are based on measurements at only three

elevations, which results in a random error in bAx and bDx of about 10%, estimated by intercomparing the

two methods (3 versus 14 data points) at the other cross-shore locations. The bAx and bDx terms were calcu-

lated through a central-difference scheme using measurements at two adjacent locations and using the

bed-parallel separation distance for Dx. The uncertainty in bAx due to the limited horizontal resolution was

estimated to be in the range of 0 to 20%. This uncertainty was quantified by cubic interpolation of dhuRichki
to a finer horizontal spacing, and bAx was then compared between the original and the interpolated

calculations.

The pressure transport term (third term on the right side of equation (6)) cannot be quantified from the

measurements. The viscous diffusion term (fourth term in equation (6)) is assumed neglibly small compared

to diffusion by turbulent velocities (second term). This was confirmed for small-scale breaking waves (e.g.,

Clavero et al., 2016), while for the present large-scale experiment the dominance of turbulent diffusion over

molecular diffusion is even greater.

The production term consists of four contributions:

P52hu0w0i @hui
@z

1
@hwi
@x

� �
2 hu02i @hui

@x
1hw02i @hwi

@z

� �
; (9)

i.e., contributions by shear stresses Ps (first two terms) and by normal stresses Pn (latter two terms). By esti-

mating velocity gradients in the horizontal and vertical directions, it was found that j @hwi@x j � j @hui@z j.
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Therefore, the vertical velocity contribution to Ps (2hu0w0i @hwi@x ) is neglected. Assuming 2-D flow ( @@y50),

mass continuity requires that
@hui
@x 52

@hwi
@z which allows the normal stress contributions to be rewritten in

terms of vertical gradients only. With these considerations equation (9) can be rewritten to

P5Ps1Pn � 2hu0Rw0
Ri
@huRi
@z

2 hw02
R i2hu02R i

� 	 @hwRi
@z

; (10)

from which follows that Pn5 0 when turbulence is isotropic (hw02
R i5hu02R i) or when the flow is uniform

(
@hwRi
@z 52

@huRi
@x 50Þ. Equation (10) is evaluated using a central-difference scheme at the seven cross-shore

locations with detailed WBL measurements. Note that the vertical resolution for calculating the velocity gra-

dients is rather small (Dz5O(1 mm)). Consequently, slight differences between experimental runs may lead

to large errors in the estimated velocity gradients. Therefore, data points that deviated, by sign, from the

overal trend of d�u/dz or dw/dz at each cross-shore location were removed (25 out of 104 samples) prior to

evaluation of equation (10). The predominant effect of removing these runs is a reduction in scatter in P(f);
the effect on depth-averaged bP is limited (<10%). The estimates of P are insensitive to the applied velocity

transformation prior to evaluating equation (10), but the transformation does lead to a redistribution

between the Ps and Pn terms.

Turbulent dissipation rates E were calculated based on autospectra of LDA-measured u, using two methods

proposed for surf zone conditions. The well-established method of Trowbridge and Elgar (2001) for calculat-

ing time-averaged E has been applied to outer-flow velocities from the present experimental campaign

(van der A et al., 2017) and, to surf zone velocities measured in the field (Feddersen et al., 2007; Rauben-

heimer et al., 2004) and in the laboratory (Yoon & Cox, 2010). However, the method does not provide time-

varying dissipation rates. Therefore, we also adopted a method similar to that of George et al. (1994) to

compute surf-zone E at an intrawave time scale. Both methods are based on the relation between turbulent

dissipation rate and the velocity spectrum at inertial subrange frequencies (e.g., Pope, 2000):

Euu jxð Þ518

55
CkE jxð Þ2=3j25=3

x : (11)

Here, Euu(jx) is the energy spectrum as function of wave number jx in x direction and is defined such that

the one-dimensional integrated spectrum equals the spatial variance of u; Ck5 1.5 is the Kolmogorov con-

stant. In the present study, Euu(jx) could not be estimated directly since only local point measurements of u

were made. Therefore, the temporal power spectral density Puu(x) (where x 5 2pf is the radian frequency)

of u was translated into a wave number spectrum following Taylor’s (1938) frozen-turbulence hypothesis,

which assumes that turbulent fluctuations u’ relate to the advection of locally isotropic turbulence by the

(phase-)mean flow U (with U � u’), yielding jx5x/U and Euu(jx)5Puu(x)U. This allows equation (11) to be

rewritten to:

E xð Þ5 55

18
Ck

21U2
2
3x

5
3Puu xð Þ


 �3=2
: (12)

First, following George et al. (1994), equation (12) was applied at an intrawave time scale over short time

intervals Dt (5 T/24 � 0.17 s). In the present study, turbulence is advected in horizontal and vertical

directions. The advection speed U was therefore equated to the magnitude of the resultant phase-

averaged velocity vector, i.e., U5 hju* tð Þji with hu* tð Þi5 hu tð Þi; hw tð Þið Þ. To be consistent with Taylor

(1938), this also required using the spectrum of the velocity time series transformed in the direction of

hu* tð Þi. This approach differs from that of George et al. (1994) who assumed negligible vertical advection.

Note that close to the bed, U approaches 0 during flow reversals, hence potentially leading to asymptotic

behavior in hEi. Nevertheless, as will be shown in section 4.5, no such bias in hEi around flow reversals

was observed.

Second, we adopted the methodology of Trowbridge and Elgar (2001) to compute the time-averaged dissi-

pation rate E for a wave-plus-current situation:

E xð Þ5 55

18
Ck

21u2
2
3x

5
3I

~urms

u

� �
21

Puu xð Þ
" #3=2

; (13)

with
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I
~urms

u

� �
5

1ffiffiffiffiffiffi
2p

p ~urms

u

� �2=3 ð1

21

x212
u

~urms

x1
u2

~u2
rms

" #1=3

exp 2
x2

2

� �
dx ; (14)

and ~urms is the root-mean-square periodic velocity.

For both methods, the LDA-measured velocities were linearly interpolated to a regular time series in order

to compute Puu(x). This was done for each individual wave for equation (13) and for each wave phase Dt

for equation (12); the frequency of the regular time series was equal to the mean sampling rate over each

wave or phase (fs5 100 to 600 Hz, corresponding to x5 600 to 3,800 rad/s). The assumptions of isotropic

turbulence and u’ � U are only justified for small-scale eddies occuring at high frequencies. Comparison of

Puu and Pww close to the bed (f5 0.001 m) showed that turbulence was approximately isotropic only for

x> 300 rad/s, so Puu estimates for x< 300 rad/s were discarded. Equations (12) and (13) were then evalu-

ated to calculate E(x), which, consistent with e.g., Feddersen et al. (2007), was approximately constant

over the frequencies x> 300 rad/s corresponding to the inertial subrange. Following Feddersen et al.

(2007), the logarithmic mean of E(x) over x was computed to obtain hEðtÞi (using equation (12)) and E

(using equation (13)).

3. Water Surface Elevation and Flow Velocities

3.1. Outer-Flow Hydrodynamics

Details of the outer flow hydrodynamics for the experiment have been presented by van der A et al. (2017);

a short summary of the most pertinent results is given here to aid understanding of the near-bed

hydrodynamics.

Figure 2a shows the time-averaged velocity field and the envelope of minimum, mean, and maximum

phase-averaged water surface elevation. The plunging jet strikes the water surface at x5 54.5 m at t/T �
0.35 and pushes up a wedge of water that strikes the water surface at x � 58.5 m at t/T � 0.65. This wedge

develops into a surf bore which leads the remainder of the original wave (van der A et al., 2017). Wave

breaking leads to a 50% reduction in wave height between the break point (x5 52.0 m) and the splash

point (x5 58.5 m). Between these locations, the mean water level (mwl) changes from a set-down

(� 20.025 m) to a setup (� 10.025 m). The first-order wave generation led to the presence of spurious

mwl

crest

trough
1 m/s

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
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Figure 2. Time-averaged velocities at (a) outer flow and (b) near-bed elevations. Plot (a) shows time-averaged water surface (mwl; dotted line), levels of maximum

and minimum phase-averaged water surface (triangles), and 2-dimensional vector field (u, w; arrows). Figure 2b shows time-averaged bed-parallel velocity, depth-

averaged over the near-bed control volume (black arrows plus background color indicating magnitude), and bed-normal velocities wR at f5D (grey arrows). The

latter data points are averaged over two adjacent cross-shore locations for illustration purposes. The wide curved arrow in Figure 2b illustrates the two-

dimensional time-averaged fluid circulation.
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secondary waves. These secondary waves modulated wave heights over the offshore slope, but their effect

on wave evolution was limited in the breaking and inner surf zones (van der A et al., 2017).

The time-averaged velocity field reveals distinct undertow profiles with negative (offshore-directed) veloci-

ties in the lower half of the water column. Undertow magnitudes and profiles vary strongly across the test

section, with particularly large magnitudes (up to 0.8 m/s) close to the bed along the shoreward-facing bar

slope between bar crest and trough (x5 55 to 58 m). The velocity vectors are clearly affected by the bed

geometry and partly follow the curvature of the breaker bar. The vectors further reveal a large-scale, wave-

averaged fluid circulation between the breaking and inner surf zone, with velocities over the water column

directed downward in the inner surf zone (x> 58.5 m) and upward above the bar crest (x5 55.5 m).

3.2. Near-Bed Flow

The colored rectangles in Figures 2a and 2b depict the near-bed control volumes that are used in section 4 to

analyze the TKE budget. The color code and size of the black arrow indicate the magnitude of the near-bed

depth-averaged (up to f5 0.10 m) undertow velocity buR . Undertow magnitudes increase from the shoaling

region to the bar crest and continue to increase until a local maximum in buR magnitude is reached along the

shoreward-facing bar slope at x5 56.0 m. Further shoreward, toward the bar trough, buR decreases in magni-

tude. Overall, time-averaged bed-parallel velocities show strong cross-shore variation along the barred profile.

Mass conservation requires that the cross-shore gradient in bed-parallel velocities should be balanced by

velocities in the bed-normal direction, wR, i.e., wR Dð Þ52
1=D

d
�
dx

Ð D
0
uRdf . The latter expression was vali-

dated with the measurements, yielding 0.01 m/s accuracy, which supports the applied velocity transforma-

tion. Bed-normal velocities wR at f5D are included in Figure 2b (grey arrows), revealing a net fluid flux that

is directed away from the bed at the shoaling zone and bar crest (x 5 52 to 56 m) and toward the bed at

the lower section of the shoreward-facing bar slope and the bar trough (x5 56 to 59 m), thereby confirming

a clockwise fluid circulation through the near-bed layer. Between x5 52 and 56 m, wR (D) reaches magni-

tudes of about 0.05 m/s.

The phase-averaged near-bed horizontal and vertical velocities at seven cross-shore locations are shown at

intrawave time scale in Figure 3. For reference throughout the paper, and to facilitate comparison with other

studies, the main hydrodynamic parameters corresponding to these locations are presented in Table 1.

Figure 3a shows huRðf; tÞi as contour and Figure 3c shows the vertical profiles of �uR(f) (blue) and of huR fð Þi
at the phases of minimum and maximum free-stream velocity (black). Although the data at each cross-

shore location were obtained from point measurements during different experimental runs, the scatter in

the data is limited which indicates good experimental repeatability. At all locations, �uR is directed offshore

at all elevations and is largely dominated by the undertow: the vertical structures of �uR do not reveal evi-

dent contributions of other WBL streaming mechanisms (e.g., offshore wave shape streaming, onshore

Longuet-Higgins streaming). At x5 51.0 m, i.e., before wave breaking, �uR is small compared to the periodic

velocities ~uR. The maximum velocity overshoot during the onshore flow half-cycle is found at f � 0.01 m

(Figure 3c); this elevation can be used as an indication of the WBL thickness (Jensen et al., 1989). At

x5 55.0 m (bar crest), the undertow velocity increases in magnitude, which leads to a decrease in peak

onshore and an increase in peak offshore velocity compared to x5 51.0 m. At x5 56.0 m, the highest

undertow magnitudes occur and huRi is directed offshore for almost the complete wave cycle. Between

x5 57.0 and 63.0 m, i.e., at the bar trough and the inner surf zone, the undertow weakens and onshore-

directed wave crest velocities are restored. At these locations, huRi is almost depth-uniform, indicating a

thin WBL (thickness � 0.005 m).

Figure 3b shows phase-averaged velocities in the bed-normal direction hwRðf; tÞi. At x5 51.0 and 55.0 m,

hwRi shows an evident signature of the wave orbital motion, with particularly strong upward hwRi during
the zero-up crossing and relatively mild downward hwRi during the zero-down crossing of the strongly

asymmetric wave. At x5 56.0 m, hwRi is almost continuously directed away from the bed. This location is at

the shoreward-facing bar slope where the time-averaged circulation described above leaves the near-bed

layer. At x5 57.0 m, hwRi is predominantly negative because at this location the time-averaged circulation

is toward the bed; a short duration of positive hwRi occurs around the zero-up crossing of the water surface.

The behavior of hwRi at x5 58.1 to 63.0 m is similar to that at x5 57.0 m, but the magnitudes of hwRi are
smaller.

Journal of Geophysical Research: Oceans 10.1002/2017JC013411

VAN DER ZANDEN ET AL. TKE BUDGET UNDER BREAKING WAVES 1438



A remarkable feature in the phase-averaged velocities is the fluid motion induced by the plunging jet,

which produces a periodic vortex. By the applied velocity decomposition, the phase-coherent velocities

induced by this vortex are part of the periodic velocity components h~ui and h~wi. The plunging jet induces a

short but intense downward and onshore-directed fluid pulse at the front of the wave, which can be clearly

observed in outer-flow h~ui and h~wi at x5 55.0 to 56.0 m (see Figure 8 in van der A et al., 2017). In Figure

3b, the penetration of the plunging jet into the near-bed layer is observed at x5 56.0 m at t/T � 0.5, when

hwRi reveals a short-duration negative value, i.e., directed toward the bed. This shows that the periodic

plunging wave vortex extends vertically over nearly the full water column.

4. Turbulence

4.1. Outer-Flow TKE and Reynolds Stress

The outer-flow phase-averaged and time-averaged turbulence parameters have been described in detail by

van der A et al. (2017). Here we briefly revisit the outer-flow turbulent kinetic energy (k) and time-averaged

Figure 3. Phase-averaged near-bed velocity. (a) Color contours of bed-parallel velocity huRi, including time series of the free-stream velocity huR;1i (black line;
arrow in left plot depicts magnitude); (b) as (a), but contours and line now showing velocity in bed-normal direction hwRi; (c) Vertical profiles of time-averaged

bed-parallel velocity �uR (blue) and profiles of huRi during instant of maximum huR;1i in onshore and offshore direction (black). Note the differences in color scale

between Figures 3a and 3b.

Journal of Geophysical Research: Oceans 10.1002/2017JC013411

VAN DER ZANDEN ET AL. TKE BUDGET UNDER BREAKING WAVES 1439



Reynolds stresses (2u0w0 ), as shown in Figure 4, because these are essential for understanding the near-

bed turbulence presented in the subsequent sections.

Due to breaking-induced turbulence production, k is up to an order of magnitude higher in the breaking

region than in the shoaling zone (Figure 4a). High k is especially observed above the bar crest, about 1 to

2 m shoreward from the plunge point. This increase in k is not restricted to elevations near the water sur-

face, but is also observed at elevations close to the bed. The transport of TKE in the horizontal and vertical

directions is mainly by advection: the diffusive transport is almost an order of magnitude lower. Breaking-

generated turbulence is transported offshore by the undertow and reaches as far offshore as x � 52 m,

which corresponds to the ‘‘break point’’ where wave breaking commences. A fraction (20–50%) of the

breaking-generated TKE decays within a wave cycle; the remainder is still present upon arrival of the subse-

quent breaking wave (van der A et al., 2017). The correlation between TKE and wave phase at near-bed ele-

vations showed that turbulence at most locations is highest under the wave trough, suggesting that the

arrival of breaking-generated TKE at the bed lags its production at the water surface by about T/2. However,

at the bar crest (x5 55.0 to 56.0 m), TKE over the complete water column is highest under the wave crest.

The region with high k also shows high values of time-averaged turbulent Reynolds stress 2u0w0 (Figure

4b). Outer-flow Reynolds stresses are positive between x5 55.0 and 63.0 m, corresponding to a directional

orientation of the breaking-generated vortices that is, on average, downward and onshore, or upward and

offshore. In the breaking region, seaward of the bar crest (x< 55.0 m), 2u0w0 has much smaller magnitude

and has negative sign.

4.2. Near-Bed TKE and Turbulence Intensities

This section presents the near-bed turbulence intensities and TKE at the seven cross-shore locations at

which high-resolution LDA velocity measuremenst were obtained. Figures 5a–5g shows color contour plots

of hk f; tð Þi; and Figures 5h–5n shows time series of hk tð Þi at f5 0.001 m (blue) and of the depth-averaged

near-bed TKE, hbk tð Þi (black).
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Figure 4. (a) Time-averaged turbulent kinetic energy; (b) time-averaged turbulent Reynolds stress. Open triangles at top

mark maximum and minimum phase-averaged water surface. Grey dots indicate the outer-flow velocity measurement

positions. Grey triangles at bottom mark the seven cross-shore locations for which detailed WBL velocities were

measured.
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The most offshore located measurement in the shoaling region (x5 51.0 m) is not significantly affected by

breaking-generated turbulence. At this location, TKE is generated close to the bed during both the onshore

(positive) and offshore (negative) flow half-cycles, leading to two maxima in hki at f5 0.001 m that are

approximately in phase with the maximum onshore (t/T5 0.17) and maximum offshore (t/T5 0.87) free-

stream velocity (Figure 5h, blue line). At f5 0.001 m, the maximum hki during the onshore half-cycle

(0.019 m2/s2) exceeds the maximum hki during the offshore half-cycle (0.005 m2/s2) by more than a factor

of 3. At such close proximity to the bed, hki is expected to scale with hu1i2 (e.g., Hinze, 1975). Based on

velocity skewness, maximum hu1i2 during the onshore half-cycle exceeds hu1i2 during the offshore half-

cycle by a factor 2. The even higher difference (factor 3) in hki between both half cycles may therefore be

due to positive acceleration skewness, which also contributes to higher bed friction and turbulence produc-

tion during the onshore half-cycle (van der A et al., 2011). The turbulence generated during the offshore

half-cycle appears to spread upward to f> 0.05 m under the wave front (t/T � 0 to 0.1; Figure 5a). This verti-

cal spreading is partly due to advection by the upward-directed periodic velocities under the wave front.

However, as will be shown in section 4.6, intrawave cross-shore advection by the periodic velocity also con-

tributes to high TKE under the wave fronts of the propagating waves. In contrast to the offshore half-cycle,

the turbulence generated during the onshore half-cycle remains confined to a distance close to the bed

(f< 0.02 m), since hwRi is directed toward the bed under the rear of the wave (Figure 5a, t/T5 0.2 to 0.6).

Figure 5. Time series of near-bed phase-averaged TKE. (a)–(g) depth-varying phase-dependent turbulent kinetic energy hki (color contour), with the free-stream

bed-parallel velocity huR;1i (black line) for reference (arrow in (a) indicates velocity magnitude); (h)–(n) hki at f5 0.001 m (blue) and depth-averaged over near-

bed control volume (black).
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The depth-averaged TKE hbki (Figure 5h, black line) is highest at t/T5 0.1, slightly lagging the zero-crossing

of huR;1i at t/T5 0.05.

The behavior of near-bed TKE is notably different at x5 55.0 m, which is at the bar crest and about 0.5 m

shoreward from the plunge point. TKE increases rapidly and at all elevations under the wave front, i.e., start-

ing during the deceleration phase of the offshore half-cycle (t/T5 0.3) and continuing during the accelerat-

ing stage of the onshore half-cycle (until t/T5 0.45). Note that the TKE increase commences slightly before

the plunging jet strikes the water surface (t/T5 0.35) and arrives at the bottom (t/T5 0.50; Figure 3b), so

this increase is not explained by a direct turbulence influx by the plunging jet from above. The latter is con-

firmed by the upward-directed free-stream velocity (hwR;1i> 0) during the stage of TKE increase (t/T5 0.3

to 0.45). Instead, this increase is primarily caused by local turbulence production and a bed-parallel TKE

influx from shoreward locations, as will be explained in sections 4.4 and 4.6. TKE decreases during the

remainder of the onshore half-cycle (t/T5 0.45 to 0.7) and increases gradually during the beginning of the

offshore half-cycle (from t/T5 0.75 to 0.30 in next half-cycle), especially at f> 0.05 m (Figure 5b).
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Figure 6. Time-averaged turbulence quantities. (a) Vertical profiles of time-averaged turbulent kinetic energy; (b) Vertical profiles of turbulence intensities u’R,rms
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(e) Bed profile. Dotted lines in Figures 6a and 6b and error bars in Figure 6c indicate 95% confidence-interval.
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At x5 56.0 m hki is almost depth-uniform and is continuously high, with slightly greater values during the

onshore than during the offshore half-cycle. Further shoreward (x5 57.0 m), TKE magnitudes are signifi-

cantly lower. Here, hki increases slightly during the onshore-to-offshore velocity reversal (t/T5 0.65), when

hwRi is directed toward the bed. The measurement locations at the bar trough and inner surf zone between

x5 58.1 to 63.0 m generally reveal limited temporal variation and vertical structure in hki.

Figure 6 shows vertical profiles of time-averaged TKE (k ; plot (a)) and of bed-parallel and bed-normal turbu-

lence intensities (u0R;rms and w0
R;rms; plot (b)). The 95% confidence intervals were calculated based on the tur-

bulence time series, taking into account the nonnormal distribution of these turbulence parameters

(Benedict & Gould, 1996). At x5 51.0 m, turbulence intensities and k are largest close to the bed and

decrease upward, as expected for a rough-bed oscillatory boundary layer where bed shear is the primary

source of turbulence generation (e.g., Sleath, 1987; van der A et al., 2011). Turbulence is anisotropic with a

ratio w0
R;rms/u

0
R;rms � 0.5, consistent with boundary layer measurements (e.g., Jensen et al., 1989; Sleath,

1987) and Svendsen’s (1987) proposed value for boundary layer turbulence (outer region). The latter also

justifies the factor 1.47 in equation (5) to calculate hki.

In contrast, at x5 55.0 m and x5 56.0 m, k and turbulence intensities increase from the bed upward. Such

an upward increase cannot be explained by local bed shear production only and marks the combined effect

of external turbulence that arrives at these locations and local turbulence production, as will be explored in

detail in the next sections. The wave breaking vortices at these locations are compressed in the vicinity of

the bed, which explains why w0
R;rms reduces more rapidly than u0R;rms toward the bed (Figure 6b). Conse-

quently, turbulence in the near-bed layer is strongly anisotropic (u0R;rms >w0
R;rms). The k (f) profile at

x5 56.0 m shows a distinct structure with a local maximum near f5 0.01 m and a depression near

f5 0.04 m (Figure 6a). This could be attributed to separate contributions by the two turbulence sources,

being wave breaking, and bed shear stress, leading to a local ‘‘bottleneck’’ in the near-bed TKE profile (Juste-

sen et al., 1987).

From x5 57.0 to 63.0 m, free-stream turbulence at f5 0.10 m is roughly isotropic (w0
R;rms/u

0
R;rms � 1), but

also here, turbulence becomes increasingly anisotropic toward the bed. At these locations, k (f) is almost

depth-uniform over the complete near-bed layer.

Figure 6c shows the cross-shore variation of time-averaged TKE at three elevations. At all elevations, k

increases significantly between the shoaling (x5 51.0 m) and breaking regions. k is highest at x5 56.0 m,

which is on the shoreward-facing bar slope, about 1.5 m shoreward from the plunge point. The increase in

TKE is not restricted to elevations far from the bed, since also at f5 0.001 m k increases (by a factor 5 from

x5 51.0 to 56.0 m). Note further that x5 51.0 m (shoaling zone), albeit difficult to see on this scale, is the

only location where k is higher close to the bed (at f5 0.001 m) instead of at the free-stream elevation

(f5 0.10 m). At the bar trough and inner surf zone (x� 58.1 m), k is substantially lower than in the breaking

region and has similar magnitude as k in the shoaling zone (x5 51.0 m).

4.3. Turbulent Reynolds Stress

Figure 7a shows the phase-averaged turbulent Reynolds stress 2hu0Rw0
Ri. At x5 51.0 m the Reynolds stress

is consistent with the results for hki at the same location (Figure 6). Here 2hu0Rw0
Ri is highest at the bed,

where it is in phase with huR;1i, showing peak values at times of maximum onshore and offshore free-

stream velocity. With distance from the bed, 2hu0Rw0
Ri decreases in magnitude and shows an increasing

phase lag with respect to huR;1i. Such temporal behavior is consistent with previous boundary layer obser-

vations of 2hu0Rw0
Ri in oscillatory flow tunnel (Jensen et al., 1989; Sleath, 1987; van der A et al., 2011) and

small-scale wave flume (Henriquez et al., 2014) experiments. Note that the negative Reynolds stress, corre-

sponding to turbulence generated during the offshore half-cycle, persists well into the onshore half-cycle (f

� 0.02 m, t/T � 0.2). This behavior has been observed before for oscillatory boundary layers in acceleration-

skewed flows and is due to the relatively short time between maximum negative velocity and the negative-

positive reversal (van der A et al., 2011).

At x5 55.0 m (bar crest), the temporal and vertical structure of 2hu0Rw0
Ri for elevations close to the bed

(f< 0.02 m) is similar to that at x5 51.0 m, suggesting that the Reynolds stresses close to the bed at this x

are primarily determined by the local bed shear-produced turbulence. At f> 0.02 m, 2hu0Rw0
Ri is predomi-

nantly negative, which is consistent with the negative 2u0w0 observed at outer-flow elevations (Figure 4).
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The negative 2hu0Rw0
Ri could relate to the offshore-directed undertow, which produces a negative velocity

shear (d�uR/df< 0) and hence negative 2hu0Rw0
Ri by current-related bed shear on average. Alternatively, the

negative2hu0Rw0
Rimay be associated with breaking-generated vortices: although these vortices have a pref-

erential orientation corresponding to a positive Reynolds stress in the region with highest outer-flow TKE

(Figure 4b), their orientation may change whilst being convected downward and offshore over the breaker

bar by the rotational plunging vortex and the undertow.

At x5 56.0 m on the shoreward slope of the bar, the Reynolds stress is mostly positive for f> 0.02 m, which

is consistent with the positive 2u0w0 at outer-flow elevations and is due to breaking-generated turbulence.

Close to the bed, the sign of 2hu0Rw0
Ri changes from positive (f> 0.02 m) to negative (f< 0.02 m). As for

x5 55.0 m, the negative Reynolds stress at f< 0.02 m can be explained by bed-shear-generated turbulence,

which is expected to produce negative 2hu0Rw0
Ri due to the strong offshore-directed undertow. Further

shoreward (x5 57.0 to 63.0 m), the magnitudes of 2hu0Rw0
Ri decrease. Negative Reynolds stress is produced

at the bed during the offshore half-cycle and spreads upward, while the positive Reynolds stress at higher

elevations is associated with breaking-generated turbulence.

Figure 7b shows the time series of 2hu0Rw0
Ri very close to the bed (f5 0.001 m). The6 standard deviation

of 2hu0Rw0
Ri, included as grey lines, provides an estimate of the magnitude of the instantaneous Reynolds

stress 2u0Rw
0
R. At all locations, 2hu0Rw0

Ri corresponds well with the free-stream velocity huR;1i in terms of

sign and phase behavior. Consequently, the presence of wave breaking turbulence in the WBL at some loca-

tions (especially at x5 55.0 and 56.0 m) appears to have no effect on the phase-averaged Reynolds stresses

2hu0Rw0
Ri at f5 0.001 m.

However, the instantaneous Reynolds stress magnitudes vary strongly between different x-locations, which

can be most prominently seen in the overall much higher standard deviations at x5 55.0 and 56.0 m com-

pared to x5 51.0 m (grey lines in Figure 7b). The cross-shore variation is further examined through Figure

6d, which shows the root-mean-square Reynolds stresses u0Rw
0
R

 �
rms

5 u0Rw
0
R

 �2 1=2
along the bar. Figure 6d

reveals a factor 5 increase in u0Rw
0
R

 �
rms

from the shoaling (x5 51.0 m) to the breaking region (at

x5 56.0 m), followed by a strong decrease at the bar trough and inner surf zone—a pattern that is consis-

tent with k (f5 0.001 m). The increase in instantaneous Reynolds stress magnitudes can be explained by

the intermittent (i.e., uncorrelated with wave phase) arrival of breaking-generated turbulence at the bed, as

explained by Cox and Kobayashi (2000) based on similar observations under small-scale spilling breakers.

Figure 7. Phase-averaged turbulent Reynolds stress 2hu’Rw’Ri. (a) Depth-varying phase-dependent turbulent Reynolds stress (color contour), with the free-stream

bed-parallel velocity huR;1i (black line) for reference; (b) phase-averaged Reynolds stress at f5 0.001 m (black)6 1 standard deviation (grey).
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4.4. Turbulence Production Rate

Equation (10) shows that the turbulence production has a shear stress contribution Ps � 2hu0Rw0
Ri @huRi=@z

and a normal stress contribution Pn5 hw02
R i2hu02R i

� 	
@hwRi=@z. Shear production Ps will contribute particu-

larly when the velocity shear @huRi=@z is high, i.e., at elevations close to the bed (inside the WBL) and at

times of peak onshore/offshore velocity. The normal stress term contributes only when the flow is nonuni-

form, i.e., @hwRi=@z52@huRi=@x 6¼ 0. The latter is always true under progressive surface waves where the

periodic velocity field changes in time and space, leading to horizontal flow convergence, and upward

velocities under the wave front and horizontal flow divergence, and downward velocities under the wave

rear. For the present strongly asymmetric waves, the spatial velocity gradients (@huRi=@x, @hwRi=@z) are par-
ticularly high under the steep wave front, where the converging bed-parallel flow yields high convective

accelerations in the horizontal and vertical directions. The bar geometry further contributes to cross-shore

variations in undertow (@huRi=@x) and orbital velocities.

Figure 8a shows vertical profiles of the time-averaged production P , including the contributions from Ps

and Pn (note the different scales on the horizontal axes). Figure 8b shows vertical and temporal distribu-

tions of the phase-averaged production rate hPi5hPsi1hPni. At x5 51.0 m turbulence production is pre-

dominantly due to Ps. For both half-cycles, turbulence production is initiated at the bed (f< 0.01 m) during

the accelerating flow stages, when it is in phase with the free-stream velocity magnitude. As soon as the

free-stream velocity starts to decelerate (t/T5 0.90 in the offshore half-cycle and t/T5 0.15 in the onshore

half-cycle) and the Reynolds stress diffuses upward, hPi increases at higher elevations. Moving away from

the bed, hPi increasingly lags the free-stream velocity magnitude. The temporal and vertical behavior of

hPi is qualitatively similar to smooth bed numerical simulations of sinusoidal oscillatory flows by Pedocchi

et al. (2011) and Vittori and Verzicco (1998), although the present study shows a strong asymmetry in hPi
between the onshore and offshore half cycles due to the skewed-asymmetric nature of the flow and due to

progressive surface wave effects.

Figure 8. Turbulent production rates. (a) Time-averaged production, contribution by shear stresses (black diamond), contribution by normal stresses (grey trian-

gle), and sum of both contributions (red dots and line; note the different scales for the horizontal axes); (b) Phase-averaged production P as color contour, includ-

ing free-stream bed-parallel velocity huR;1i (black line) and huR;1i5 0 (grey line) for reference.
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At x5 55.0 m, turbulence production magnitudes are much greater than at x5 51.0 m, especially at eleva-

tions further away from the bed. Both production terms Ps and Pn contribute significantly to P (Figure 8a).

The significant production by Pn is due to the presence of energetic anisotropic turbulence at this location

(section 4.2). hPi is consistently high, but largest production rates occur under the wave front (t/T5 0.3 to

0.6; Figure 8b). Within this time, the high convective acceleration and the relatively high degree of flow non-

uniformity lead to turbulent production by the anisotropic turbulent vortices through normal stresses (Pn).

This local production of TKE is expected to contribute significantly to the observed increase in hki during
the same phase (cf., Figure 5b).

Strong production by Ps and Pn is also observed at x5 56.0 m. Close to the bed, inside the WBL

(f< 0.02 m), hPi is continuously high due to the strong shear @uR=@f by the undertow. At higher elevations,

hPi shows more time variation, with highest values under the rear of the wave, i.e., after the passage of the

wave crest (t/T5 0.6 to 1.0). This turns out to be mainly due to high hPni, which is again explained by the

combination of anisotropic turbulence and convective fluid accelerations. At x5 56.0 m these convective

accelerations are not so much driven by the orbital velocity, but instead, by the strong cross-shore under-

tow velocity gradients at this location (@uR=@x< 0; @wR=@f> 0) (Figure 2). Note that the high contributions

of hPni mark a distinct difference from observations by Ting and Kirby (1995), who found this term to be

negligible under small-scale plunging waves over a plane-sloping bed.

Further shoreward (x5 57.0 to 63.0 m), P is largely restricted to the lowest 0.01 m, i.e., inside the WBL, and

is mostly induced by shear stress. Turbulence production is highest during the offshore half-cycle, because

the velocity shear magnitude j@huRi=@fj exceeds the shear during the onshore half-cycle. Note that small

but consistent negative production rates are locally observed (x5 57.0 and 60.2 m) for f> 0.05 m (Figure

8a). Negative production rates indicate that kinetic energy is transferred from turbulent motions to the

mean velocity field (Tennekes & Lumley, 1972) and can occur when the mean flow field changes or when

turbulence is advected to a region with a different mean velocity shear distribution. Observations by Clav-

ero et al. (2016) for plunging waves also highlighted the occurrence of hPi< 0, for a short duration under

the wave front. In the present study, the negative turbulence production is induced by normal stresses (Ps

� 0) and occurs mainly under the wave rear. During this stage, anisotropic breaking-generated turbulence

is vertically advected by orbital and wave-averaged velocity from free-stream elevations toward the bed

(hwR;1i< 0), where the flow is deflected in the offshore direction (@hwRi=@f< 0; @huRi=@x> 0).

4.5. Turbulence Dissipation Rate

The estimates of E presented here (using equations (12) and (13)) are subject to important assumptions

regarding the relation between E and measured autospectra of velocities (section 2.5). Consequently, of all

TKE budget terms discussed herein, the dissipation rate has the largest expected uncertainty. Previous stud-

ies have acknowledged difficulties in quantifying E in the surf zone; different methods generally produce

estimates with consistent qualitative behavior and same order of magnitude, but values may differ by up to

a factor of 4 (Bryan et al., 2003; Feddersen et al., 2007; Veron & Melville, 1999). Note that time-averaged dis-

sipation rates E (computed following Trowbridge & Elgar, 2001) for the outer-flow elevations of the present

experiment were shown to be qualitatively and quantitatively consistent with previous surf zone observa-

tions (van der A et al., 2017).

Vertical profiles of time-averaged dissipation rate E(f) are presented in Figure 9a. Note that the horizontal

axes have the same scales as in Figure 8a (showing P (f)) to facilitate comparison with production rates. Fig-

ure 9a shows E(f) for both applied methods, i.e., equations (12) and (13). The two methods yield E values

that are qualitatively consistent, but quantitatively, E estimates by equation (13) are approximately twice as

high as those calculated using equation (12). The difference is largest at the most offshore location

(x5 51.0 m). This location is characterized by strong periodic velocities and a relatively weak undertow

(high ~urms, low �u). The difference in E estimates may be found in the assumption of sinusoidal orbital veloci-

ties in the derivation of equation (13) (Lumley & Terray, 1983; Trowbridge & Elgar, 2001), which is violated

when applying the method to the present strongly skewed-asymmetric waves.

Both methods however yield a consistent vertical and horizontal variation in E(f). Dissipation rates are high-

est in the breaking region at x5 56.0 m, where the maximum TKE was also observed. At each location, E(f)

is upward concave with highest values close to the bed, inside the WBL (f< 0.01 m). Note that E(f) shows

more vertical variation than k (f) (cf., Figure 6a). The high dissipation rates at the bed for approximately
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depth-uniform k (f) is explained by the restricted size of vortices in the vicinity of the bed: E scales to the

inverse of the typical turbulence length scale (e.g., Pope, 2000). The vertical E(f) profiles are consistent with

production rate profiles P (f) (Figure 8a). This is particularly true in the shoaling zone (x5 51.0 m) and at the

bar trough and inner surf zone locations (x5 57.0 to 63.0 m), indicating that at these locations the locally

produced TKE is approximately in equilibrium with dissipation. However, in the breaking region around the

bar crest (x5 55.0 – 56.0 m) the production rates exceed the dissipation rates, i.e., both terms are not in

local equilibrium. This leads to a net outgoing flux of TKE from these locations, as discussed in section 4.6.

For completeness Figure 9b shows the phase-averaged dissipation rate hEi. At all locations, the temporal

behavior of hEi is consistent with the behavior of hki (Figure 5), showing that dissipation rates relate directly

to TKE.

4.6. TKE Transport

This section presents the horizontal and vertical transport of TKE as advection and diffusion. The present

analysis focuses on the complete depth-integrated near-bed layer and does not address the depth-

dependent TKE fluxes. In order to relate the spatial and temporal variation of TKE to horizontal and vertical

turbulence transport, the data are presented as color contours that represent the spatiotemporal domain

(Figure 10). Each of the plots (a)–(f) shows the cross-shore location on the horizontal axis and the normal-

ized time on the vertical axis. Waves propagate through the domain from the lower left corner to the upper

right corner. Each plot includes the zero crossings of the water surface for phase reference (dotted lines). A

similar presentation of data was used by van der Zanden et al. (2016, 2017a) to study the spatiotemporal

variation in breaking-generated turbulence and suspended sediment over a mobile sand bed; their analyses

are here extended by quantifying the horizontal and vertical influx of TKE.

Figure 10a shows the depth-averaged bed-parallel velocity h buRi. The black arrows show the direction of

h buRi during two instants, illustrating how the flow convergences under the wave front (t/T5 0.24) and

diverges under the wave rear (t/T5 0.55). During the onshore half-cycle (between the dotted lines),

Figure 9. Turbulence dissipation rates. (a) Time-averaged dissipation, calculated through equation (12) (circles) and calculated through equation (13) (squares;

note the different scales for the horizontal axes); (b) Phase-averaged dissipation as color contour, calculated through equation (12), with black line indicating free-

stream velocity for reference.
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Figure 10. Spatiotemporal variation of velocities, TKE, and advective influx of TKE. Each of plots (a)–(f) shows the spatial domain on the horizontal axis and the

temporal domain on the vertical axis. The color contours depict: (a) Depth-averaged (over near-bed control volume) bed-parallel velocity, with arrows showing

velocity vectors as explained in text; (b) Bed-normal velocity at the top of the control volume; (c) Depth-averaged near-bed TKE; (d) Temporal rate of change of

depth-averaged near-bed TKE; (e) Depth-averaged cross-shore advection of TKE along the bed; (f) Bed-normal advective fluxes at top of control volume. Plots

(d)–(f) have the same color scale, positive (negative) values correspond to a gain (loss) in near-bed TKE. The black lines and circles depict the downward and

upward zero-crossings of the water surface. Plot (g) shows the bed profile.
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velocities are generally positive as waves propagate through the domain, except for the region with strong

undertow velocities (around x5 56.0 m). Figure 10b shows the bed-normal velocity hwRi at the top of the

near-bed layer (f5D). As addressed in section 3.2, hwRi follows the orbital motion at locations before the

bar crest (x< 55.0 m), leading to highest hwRi under the wave front (offshore-to-onshore flow reversal).

Between the crest and trough of the breaker bar (x5 55.0 to 58.0 m), hwR Dð Þi is affected by the time-

averaged clockwise circulation of fluid through the near-bed layer (section 3.2), which explains the predomi-

nantly negative (downward) hwR Dð Þi around x5 57.0 m and positive (upward) around x5 55.5 m. For the

following discussions, we emphasize that bed-normal and bed-parallel are directly related since

hwR Dð Þi � 2
1=Ddh buRi=dx. This also follows from Figure 10, where upward hwR Dð Þi in plot (b) (‘‘red regions’’)

corresponds to converging h buRi in plot (a), while downward hwR Dð Þi (‘‘blue regions’’) corresponds to diverg-

ing h buRi.
Figure 10c shows the spatiotemporal variation in depth-averaged TKE, hbki, which was already discussed in

section 4.2. Figure 10d shows the temporal rate of change of near-bed TKE, dhbki/dt. At locations seaward of

the bar crest (x5 52 – 54.5 m), positive dhbki/dt marks a gain in near-bed TKE that commences about half-

way during the trough phase (t/T � 0.8) and lasts until the beginning of the wave crest phase (t/T � 0.3 to

0.5, depending on location). During the remainder of the crest phase and the early wave trough phase,

near-bed TKE decreases (dhbki/dt< 0). The TKE behavior is notably different along the steep slope between

bar crest and trough (x5 55.0 to 58.0 m), where dhbki/dt is negative during most of the wave trough phase

and increases sharply under the wave front (trough-to-crest transition). The time variation in the inner surf

zone (x> 58.5 m) is relatively small.

These patterns in dhbki/dt can be partly explained by spatial gradients in horizontal and vertical transport of

TKE. As detailed in section 2.5, TKE transport comprises a diffusive and an advective contribution, both of

which can be split into bed-parallel and bed-normal components. All contributions were quantified (equa-

tions (7) and (8)). The advective fluxes typically exceed the diffusive fluxes by an order of magnitude. In

addition, it was shown that the bed-normal influxes from the top (f5D) were much greater than those

from the bottom (f5 zb). Hence, we restrict the analysis here to the two most significant transport terms:

the TKE influx due to cross-shore advection bAx and the bed-normal influx from the outer flow to the near-

bed layer Az(D), respectively, shown in Figures 10e and 10f. Note that both influx terms are defined such

that positive A corresponds to a gain in hbki. Note that these terms do not fully explain the variation in

dhbki/dt: local production and dissipation (see section 4.5) are also significant but are not discussed again

here for brevity.

In the shoaling region (x5 52.0 m) the cross-shore advective influx hbAxi (Figure 10e) is dominated by

orbital velocities. hbAxi is positive under the propagating wave front, i.e., during the final stage of the trough

half-cycle and the beginning of the crest half-cycle (t/T5 0 to 0.2). Conversely, hbAxi is negative under the

wave rear (around water surface zero down-crossing, t/T5 0.3 to 0.5), marking a net horizontal outflux of

TKE. By comparing with Figures 10c and 10d, it becomes clear that this cross-shore advection yields a ‘‘con-

centration’’ of TKE under the wave front and a ‘‘dilution’’ under the wave rear—much like the changing field

of suspended sand concentration under progressive surface waves, as described by, for example, Kranen-

burg et al. (2013). This process occurs irrespective of the wave breaking process further shoreward, and is

instead directly related to the temporal behavior of dh buRihbki/dx in the nonuniform flow field under progres-

sive surface waves.

Further toward the bar crest, between x5 53.0 and 54.5 m, the temporal behavior of hbAxi is similar to that

at x< 53.0 m, but the magnitudes are higher. A region of positive bed-parallel influx commences at

x5 54.5 m relatively early in the trough half-cycle (t/T5 0.85) and extends in the seaward direction during

the remainder of the trough phase. This positive hbAximarks the arrival of seaward-advected TKE originating

from the bar crest (x � 55.0 m). Conversely, a net cross-shore outflux of TKE (hbAxi< 0) is observed during

the second half of the crest half-cycle, indicating that TKE is advected back in the shoreward direction.

Hence, TKE travels back and forth between the bar crest and the shoaling locations, consistent with the

observations of van der Zanden et al. (2016). Note that the intrawave cross-shore advection of TKE (Figure

10e) explains much of the time variation in TKE at x5 53.0 – 54.5 m seen in Figure 10d.

In the region between bar crest and trough (x5 55.0 to 57.0 m), where TKE is high, hbAxi is dominated by

time-averaged (undertow) velocities. Figure 10e reveals the presence of an almost continuous seaward-
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directed transport cell, which drives a net flux of TKE from the toe of the breaker bar (x5 56.0 to 57.0 m;

hbAxi< 0) toward the bar crest (x5 55.0 to 56.0 m; hbAxi> 0). This is explained because both undertow mag-

nitudes and TKE increase from bar trough to bar crest in the seaward direction, due to (i) the influx of highly

turbulent fluid from above (section 3.2) and (ii) the local near-bed production of TKE along the shoreward

slope of the bar that exceeds dissipation (sections 4.4 and 4.5). This continuous transport cell is not fully

interrupted by the passage of the wave crest (t/T5 0.4 to 0.7), but its location is shifted about 0.5 to 1 m

shoreward.

Figure 10f shows the advective downward TKE influx by the bed-normal velocity hwRi. Note that hwRi was
previously explained in terms of orbital velocity motion and of two-dimensional time-averaged velocity cir-

culations (see beginning of this section and Figure 10b). An almost continuous influx of TKE (hbAzi> 0) is

observed at the lower section of the bar shoreward slope (x5 56.0 to 57.0 m) and at the bar trough

(x5 57.0 to 58.0 m), while a continuous outflux occurs at the breaker crest (hbAzi< 0; x5 55.0 to 56.0 m).

This influx and outflux can be interpreted as the bed-normal constituents of the advective transport cell

through the near-bed layer that was identified in Figure 10e.

Comparison of Figures 10d and 10e–10f reveals that the time variation of TKE between the bar crest and

trough is not simply the result of advected TKE that passes through the near-bed region. Instead, dk/dt is

the result of a complex interplay between advection, production, and dissipation. This is most evident

around the trough-to-crest flow reversal (around t/T5 0.4), when the bed-parallel influx of wave breaking

turbulence (Figure 10e) does not only lead to a direct gain in near-bed TKE, but also enhances local turbu-

lent production rates (Figure 8b), which together contribute to the sharp increase in TKE at the wave front

(Figures 5b, 10c, and 10d).
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Figure 11. Time-averaged turbulent kinetic energy budget, depth-integrated over near-bed control volume (f5 zb to D).

All terms are defined such that positive values correspond to an increase in near-bed TKE. (a) Contributions of production

P (black circles and solid line) and dissipation E (blue circles and dashed line), and residual term r (dashed grey line); (b)

Advective contributions A: cross-shore gradient of bed-parallel advection (blue3), bed-normal-directed advective flux

into control volume at f5D (red�), bed-normal-directed advective flux into control volume at f5 zb (green�); (c) Diffu-

sive contributions D, with symbols as in plot (b); (d) Time-averaged TKE, depth-integrated over near-bed control volume,

with error bars indicating 95% confidence interval; and (e) Bed profile.
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4.7. Wave-Averaged TKE Budget

The previous sections addressed the local contributions of the major terms in the TKE budget. The present

section discusses the wave-averaged TKE budget across the whole test section. The wave-averaged and

depth-averaged TKE budget over the near-bed layer (equation (6)) can be written:

bP2bE1bAx1Az Dð Þ1Az zbð Þ1bDx1Dz zbð Þ1Dz Dð Þ1r50 ; (15)

where r denotes a residual term associated with pressure diffusion, which could not be quantified, and

uncertainty errors in the computed terms and in the experimental setup (e.g., 3-D effects induced by the

measurement frame and the flume side-walls). The residual term was quantified by evaluating equation

(15) for all seven cross-shore locations. For this computation, and for the results that follow in this section,

the time-averaged dissipation rate E was calculated through equation (13) (Trowbridge & Elgar, 2001). The

net advection of TKE (huihki, hwihki) can be decomposed into current-related (uk , wk ) and wave-related

(h~uih~ki, h~wih~ki) contributions. This decomposition revealed that the net current-related and wave-related

contributions are of similar magnitude in the shoaling region (x� 52.0 m), but in the breaking and inner

surf zone, the current-related advection dominates (> 90%) the total net advective transport. This relates to

the strong undertow velocity and to the limited intrawave variation of hki in this region, as also shown by

van der A et al. (2017) in Figure 14).

Figure 11 shows all terms of equation (15), revealing that the main terms in the time-averaged TKE budget

are production, dissipation, and the advective influxes in bed-parallel direction and in bed-normal direction

at f5D. The diffusive fluxes D and the upward advective influx of TKE from f< 0.001 m, Az zbð Þ, are both

minor. The residual term r, which is of similar magnitude as the other terms, will be addressed in the discus-

sion (section 5).

In the shoaling zone (x� 52.0 m) the net contributions from advection are limited. At these locations, near-

bed TKE is predominantly controlled by local production and dissipation, which are approximately in equi-

librium at a wave-averaged time-scale; this also holds for the inner surf zone (x� 58.5 m).

The area between the bar crest and the shoreward toe of the bar (x5 54.0 to 58.0 m) is the most interesting

region in terms of TKE budget, with strong net advection in conjunction with production and dissipation

rates that are not in local equilibrium. This region is also highlighted in Figure 12, which illustrates the two-

dimensional advective circulation of TKE through the near-bed layer. Between the bar’s shoreward slope
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Figure 12. Illustration of time-averaged TKE transport through near-bed layer. Each colored rectangle depicts a near-bed control volume f5 0 to 0.10 m, with

color coding representing the time-averaged TKE level. Black arrows depict the direction and magnitude of the time-averaged bed-parallel advective plus diffusive

transport of TKE, depth-averaged over the near-bed control volume. Grey arrows depict direction and magnitude of time-averaged bed-normal advective plus dif-

fusive transport of TKE at top of control volume. For three locations, plot (b) shows the depth-averaged turbulence production minus dissipation rates.
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and the bar trough (x5 56.0 to 58.0 m), the time-averaged undertow circulation and the large-scale peri-

odic breaking vortex induce a downward influx of breaking-generated TKE into the near-bed layer (Figure

11b, red markers). This TKE is advected seaward along the bed, leading to net outflux (bAx < 0) between

x5 56.0 and 58.0 m and a net influx around the bar crest (x5 54.0 to 56.0 m; bAx > 0). At these locations,

the estimated turbulent production rate P exceeds the dissipation E by nearly a factor 2 (Figure 11a), lead-

ing to a further increase in k . These high production rates are due to the presence of highly anisotropic

breaking-generated turbulence in combination with strong flow nonuniformity that yields high velocity

shear in the cross-shore and vertical directions (section 4.5). At the bar crest (x5 54.0 to 56.0 m), TKE is then

advected upward from the near-bed region to the outer flow (Az Dð Þ< 0). Note that the bed-normal TKE

outflux at x 554.0 to 56.0 m exceeds the bed-normal influx at x5 56.0 to 58.0 m (Figure 11b). Hence, the

near-bed layer is a zone of net TKE production, rather than net dissipation, a finding that is discussed in

detail in what follows (section 5).

5. Discussion

For the present measurements, the TKE balance could not be closed, leaving a residual term r with similar

magnitude as the dominant physical terms (section 4.7). This is first attributed to the pressure diffusion

term that could not be quantified using the present instrumental setup. Note that previous studies on wave

breaking TKE (Chang & Liu, 1999; Clavero et al., 2016; Melville et al., 2002; Ting & Kirby, 1995) were also

unable to resolve the pressure diffusion term and close the budget because of measurement limitations.

Identical to the present study, the studies by Melville et al. (2002) and Clavero et al. (2016) found residual

terms that were similar in magnitude to the advection, production, and dissipation terms. Note that Clavero

et al. (2016), who measured the instantaneous flow field under small-scale breaking waves with high spatial

coverage using particle image velocimetry, directly equated r to the pressure diffusion contribution. Such

an approach does not seem justifiable for the present large-scale study: first, because of the coarser spatial

resolution of the measurements, which introduces errors in the computed spatial gradients and hence in

the advection and production estimates (as addressed in section 2.5); second, because of uncertainties in

the dissipation rate estimation based on local point velocity measurements (as addressed in sections 2.5

and 4.5). Consequently, the residual term r in the TKE balance is likely due to the combination of pressure

diffusion and measurement uncertainties.

The somewhat arbitrary choice for the near-bed layer (f5 0 to 0.10 m) considered for the depth-averaged

TKE budget analysis raises the question to what extent results would change had another layer thickness

been chosen. The overall spatiotemporal behavior of all terms remains qualitatively similar. However, with a

decreasing upper limit of the near-bed layer (i.e., the closer to the bed), local turbulence production, and dissi-

pation become increasingly more significant relative to the horizontal and vertical advective transport terms.

A striking feature in the experiment is the high near-bed turbulent production, which exceeds the dissipa-

tion around the bar crest (sections 4.4 and 4.7). This result is somewhat surprising, as previous plunging

wave experiments (Chang & Liu, 1999; Ting & Kirby, 1995) suggested that turbulence is predominantly pro-

duced at the water surface followed by net dissipation (E>P) in the water column. A fundamental differ-

ence between the present study and most previous experimental breaking wave studies is the scale. In the

present study, the near-bed flow is in the rough turbulent flow regime around the bar crest whereas previ-

ous small-scale studies involved smooth beds and a transitional or even laminar WBL. Consequently, turbu-

lence generation by bed shear stress is likely to be more significant in the present study, and the

interaction between bed-shear-generated vortices and breaking vortices may contribute to the high pro-

duction rates. A second significant difference is that the present study involves a barred profile, whereas

most previous studies involved plane-sloping bed profiles. Note that the bar was ‘‘naturally’’ formed, by run-

ning the same regular breaking waves for about 100 min over an initially horizontal medium-sand test sec-

tion, resulting in a bar that at both sides is steeper than those occurring on natural beaches (see discussion

section in van der A et al., 2017). The bar will contribute to flow nonuniformity in the breaking region, for

instance because the seaward-directed undertow converges between bar trough and bar crest, which will

in turn favor turbulence production. This may also be another explanation for the relatively high ‘‘residual

turbulence’’ in the present experiment, compared to previous nonbarred studies (see discussion in van der

A et al., 2017).
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An important result for numerical turbulence modeling is the incursion of wave breaking turbulence into

the WBL, which significantly enhances TKE levels, even at elevations very close to the bed (f5 0.001 m).

This implies that near-bed TKE (kb) under breaking waves cannot be accurately described by common

empirical formulations of the form kb 	 u2
 (e.g., Hinze, 1975), where u
 is the friction velocity calculated

with friction factor based on nonbreaking wave observations. Instead, to improve the numerical modeling

of near-bed TKE in surf zone conditions, it seems appropriate to consider alternative boundary conditions,

e.g., a no-flux boundary condition (dk/df5 0) (as also advised by Hsu & Liu, 2004) or an adaptation of the

friction factor to account for ‘‘external’’ turbulence effects on u
 (as measured by Fredsøe et al., 2003).

Another important result is the significant contribution of turbulence production by normal stresses, which

is explained by the anisotropy of the turbulent vortices. This turbulence production term cannot be

accounted for in common turbulence closure models k–E and k–x, which often assume isotropic turbu-

lence, although adapted models that consider turbulence anisotropy are available and have been applied

to breaking waves (see e.g., Brown et al., 2016, for an overview).

The results of the present experiment can be compared with observations of sand transport processes dur-

ing an accompanying mobile-bed experiment involving similar wave conditions and bed profile (van der

Zanden et al., 2016, 2017a, 2017b). The overall distribution of near-bed TKE seen in the present study is

qualitatively and quantitatively similar to observations from the mobile-bed experiment (van der Zanden

et al., 2016). This relates to the dominant contribution of wave breaking turbulence to total TKE, which over-

powers the differences in bed-shear-generated TKE due to different roughness and mobile versus fixed bed

effects between both experiments. The time-averaged 2-D fluid circulation through the near-bed layer may

largely explain the cross-shore distribution of suspended sand pick-up, advection and deposition reported

in van der Zanden et al. (2017a). At the bar trough and lower section of the bar’s shoreward slope, TKE is

advected toward the bed and enhances local turbulent sand pick-up. The entrained sand is subsequently

transported offshore toward the bar crest, where it is partly deposited as turbulence decays and is partly

advected upward by the time-averaged velocity. Note that the upward-directed time-averaged velocity

above the bar crest reaches values of up to 0.05 m/s (section 3.2), which is of similar magnitude to the set-

tling velocity of medium sand (0.034 m/s for the accompanying mobile-bed experiment). Hence, these bed-

normal velocities can contribute significantly to vertical advective mixing of suspended sediment. Indeed,

the nearly depth-uniform vertical profiles of suspended sand above the bar crest indicate strong vertical

mixing (van der Zanden et al., 2017a). Another important observation concerns the high near-bed Reynolds

stresses in the wave breaking region (section 4.3). Assuming that these also induce high instantaneous bed

shear stresses, one may expect significant effects on sand transport dynamics. Given that the instantaneous

near-bed Reynolds stress is particularly high in the region between bar crest and bar trough, these stresses

may partly explain the downslope, shoreward transport of sand as bedload observed by van der Zanden

et al. (2017b).

6. Conclusions

Large-scale experiments involving a plunging wave over a barred bed profile with an immobile concrete

top layer were conducted in a wave flume. LDA measurements of velocities were obtained within a 0.1 m

thick near-bed layer at shoaling, wave breaking, and inner surf zone cross-shore locations. The measure-

ments are used to explain the spatiotemporal variation in turbulent kinetic energy (TKE) near the bed in

terms of local production and dissipation, and advective plus diffusive transport. The following is concluded

from the results:

1. TKE inside the WBL, measured at 1 mm from the bed, increases by a factor 5 between the shoaling and

breaking regions. This reaffirms previous, predominantly small-scale, laboratory experiments and indi-

cates that near-bed TKE in the breaking region cannot be attributed solely to local bed shear.

2. Phase-averaged turbulent Reynolds stress at z – zbed> 0.02 m in the breaking region has the same sign

as the breaking-generated stress near the water surface. Close to the bed, at z – zbed5 1 mm, the arrival

of wave breaking turbulence and its interaction with bed-shear-generated turbulence leads to high mag-

nitudes of the instantaneous Reynolds stress. However, the phase-averaged Reynolds stress between z –

zbed5 0 to 0.02 m shows similar phase behavior and has the same sign as the free-stream velocity, sug-

gesting that the stress close to the bed is still largely controlled by bed-shear-generated turbulence.
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3. Two-dimensional flow circulation is the main driver for the transport of breaking-generated TKE into and

out of the near-bed layer on the shoreward slope of the bar. Incursion of TKE into the near-bed layer at

the breaker bar trough occurs by means of advection rather than turbulent diffusion. TKE is then trans-

ported seaward to the breaker bar crest, where it leaves the near-bed layer through upward vertical

advection.

4. Near-bed turbulence production is due to shear stresses and normal stresses. Production due to normal

stresses results from the anisotropy of wave breaking turbulence in combination with the nonuniformity

of the flow. In the shoaling and inner surf zones, local turbulence production and dissipation are roughly

in equilibrium at a wave-averaged time scale. In the breaking region around the bar crest, production

exceeds dissipation and the difference results in net advective transport of TKE.

5. The intrawave behavior of near-bed TKE is highly complex. In the shoaling zone, time-varying local pro-

duction and dissipation explains the intrawave TKE behavior up to 0.02 m from the bed, approximately

corresponding to the crest-phase WBL overshoot elevation. At higher elevations, the cross-shore advec-

tion of turbulence by orbital velocity contributes to ‘‘concentration’’ of TKE at the front of the progressing

wave. At the bar crest, TKE is highest under the wave front, which is explained by a sudden increase in

local production when the flow converges in the bed-parallel direction and accelerates in upward direc-

tion. At the shoreward slope between bar crest and trough, the time variation of near-bed TKE is largely

explained by bed-parallel and bed-normal advection of turbulence.
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